

City, University of London Institutional Repository

Citation: Nentwich, C., Emmerich, W., Finkelstein, A. & Zisman, A. (2000). BOX: Browsing

objects in XML. Software: Practice and Experience, 30(15), pp. 1661-1676. doi:
10.1002/1097-024x(200012)30:15<1661::aid-spe353>3.0.co;2-o

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26401/

Link to published version: https://doi.org/10.1002/1097-024x(200012)30:15<1661::aid-

spe353>3.0.co;2-o

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

BOX: Browsing Objects in XML

Christian Nentwich, Wolfgang Emmerich, Anthony Finkelstein and Andrea Zisman
Dept. of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
fC.Nentwich|W.Emmerich|A.Finkelstein|A.Zisman g@cs.ucl.ac.uk

Abstract

The latest Internet markup languages support the representation of structured information and
vector graphics. In this paper we describe how these languages can be used to publish software
engineering diagrams on the Internet. We do so by describing BOX, a portable, distributed and
interoperable approach to browsing UML models with off-the-shelf browser technology. Our ap-
proach to browsing UML models leverages XML and related specifications, such as the Document
Object Model (DOM), the XML Metadata Interchange (XMI) and a Vector Graphic Markup Lan-
guage (VML). BOX translates a UML model that is represented in XMI into VML. VML can be
directly displayed in Internet browsers, such as Microsoft’s Internet Explorer 5. BOX enables soft-
ware engineers to access, review and browse UML models without the need to purchase licenses
of tools that produced the models. BOX has been successfully evaluated in two industrial case
studies. The case studies used BOX to make extensive domain and enterprise object models avail-
able to a large number of stakeholders over a corporate intranets and the Internet. We discuss why
XML and the BOX architecture can be applied to other software engineering notations. We also
argue that the approach taken in BOX can be applied to other domains that already started to adopt
XML and have a need for graphic representation of XML information. These include browsing
gene sequences, chemical molecule structures and conceptual knowledge representations.

1 Introduction

The size and complexity of current software-intensive systems necessitates distributed development. It
is important to support collaboration and co-ordination of physically distributed teams of people during
system development. Such collaboration often demands that developers access documents that other
developers have produced. The wide-spread development and use of the Internet, the World-Wide-
Web and related technologies can foster such collaboration. Software engineering documents can be
published on web servers so that developers can search for and browse documents with web browsers.
Semantically related document parts can be connected by hyperlinks so that they can be traversed in
order to help the developer to understand the document better.

The Unified Modeling Language (UML) has been gained widespread attention for the development of
software systems. UML is used to visualize, specify, construct and document a software system from
multiple perspectives. In a distributed development scenario it is important to allow software engineers
and customers to exchange, access, review, query and browse UML models.

Until recently HTML was the language that was used to publish information on the Internet. HTML,
however, had no mechanisms to represent graphics directly. To represent UML or any other graphical

1

software engineering notation in HTML pages, these pages have to refer to images in GIF, TIF or
JPEG format. These image formats have the disadvantage that they cannot easily be hyperlinked and
can become rather big to download. Moreover, they do not scale well when printed on high-resolution
printers. Another approach would be to publish the documents in the format of the CASE tool that was
used to support them. Downloading the engineering documents in the storage representation of the
CASE tool, however, necessitates the availability of the tool on the developer’s workstation – which
incurs substantial installation, training and licensing costs in large-scale developments.

These limitations are resolved by the approach we describe in this paper. We discuss a portable, dis-
tributed and interoperable mechanism to browsing software engineering documents using standard off-
the-shelf browser technology. We exemplify the approach by discussing BOX. BOX supports access to
graphic UML models with Internet-scale distribution. The approach is built on top of existing Internet
technologies such as eXtensible Markup Language (XML), the Document Object Model (DOM), XML
Metadata Interchange (XMI), and Vector Graphic Markup Language (VML). Box translates XMI rep-
resentations of UML models into VML so that they can be directly viewed using the latest generation
of Internet browsers, such as Microsoft’s Internet Explorer 5.

The remainder of the paper is structured as follows. In Section 2 we briefly describe XML and the
related technologies that were used in our approach. Section 3 contains a description of our approach
and its associated architecture. In Section 4 we present issues related to the implementation of our
toolkit and examples of two case studies. In Section 3 we evaluate the proposed approach. Section 6
contains a review of related work. Finally, Section 7 outlines future directions and suggests ways of
extending the overall approach.

2 XML and Related Technologies

In this section we provide a succinct account of XML (eXtensible Markup Language) and the related
technologies which constitute the major part of the infrastructure on which we build. We introduce
XML itself and discuss how the OMG XML Metadata Interchange (XMI) specification utilizes XML
to define an open interchange format for UML models. We then give a very brief account of the
Document Object Model (DOM) that we use to traverse the XMI representation and discuss VML,
the output format that we use to generate the graphic representation. It must be appreciated that this
is a necessarily brief review of a complex set of technologies. In each case the base technologies are
pre-standard, or only just beginning to harden as standards, and hence are subject to continuing change.

2.1 XML

XML (eXtensible Markup Language) [Bray et al., 1998] is a data description language, which has been
standardized by the World Wide Web Consortium (W3C) XML is a subset of the Standard Generalized
Markup Language (SGML). XML is designed to bring structured information to the Web, it facilitates
the definition of markup tags relating to the content of documents and thus delivering both extensibility
and the potential for validation. XML is a major move away from the fixed markup tags embedded
in HTML. XML provides a data standard that can encode the content, semantics and schemata for a
wide variety of cases – whether as a wire format for sending data between client and server, a transfer
format for sharing data between applications, or a persistent storage format on disk.

XML provides a general method for describing data. It allows identification, exchange and processing

2

<Foundation.Core.Class xmi.id = ’S.10028’>

<Foundation.Core.ModelElement.name>SampleClass
</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value = ’private’/>

<Foundation.Core.ModelElement.stereotype>

<Foundation.ExtensionMechanisms.Stereotype xmi.idref = ’G.40’/>
</Foundation.Core.ModelElement.stereotype>

</Foundation.Core.Class>

Figure 1: An XML Representation of a Class using the XMI DTD

of distributed data in a manner that is mutually understood. Programmers can build simple parsers to
read XML files, making it a good format for interchanging data. It is designed to be straightforwardly
usable over the Internet and support a wide variety of applications. XML maintains the separation of
presentation details from structured data and, therefore, it allows the integration of data from diverse
sources. XML seeks to achieve a compromise between flexibility, simplicity, and readability by both
humans and machines.

XML provides a set of element types, which serve to define types of documents and are referred to
as Document Type Definitions (DTDs). A DTD contains a set of rules to control how documents and
tags are structured, which elements are presented and the structural relationship between the elements
for documents of a particular type. A DTD contains the definition of the syntax of an XML document,
i.e. DTDs are schemas for documents. A range of XML DTDs are emerging in particular domains, for
example MathML (the mathematical markup language).

Figure 1 shows a document containing a UML (Unified Modeling Language) class with a fragment of
the associated mark up in XMI [OMG, 1998], using a DTD for mark up of UML (see below).

The XML specification refers to two components: the XML processor and the XML application. The
XML processor is the parser with the task of loading the XML and any related files, checking to make
sure that a XML document follows all the necessary rules, and building a tree-like document structure
that can be passed on to the application. The XML application acts upon the structure and processes
the data it contains.

2.2 XMI

XMI (XML Metadata Interchange) [OMG, 1998] has been standardized by Object Management Group
(OMG) to enable easy interchange of metadata between modeling tools, based on the OMG UML, and
metadata repositories, based on OMG MOF, in distributed heterogeneous environments. XMI eases the
problem of tool interoperability by providing a flexible information interchange format. It can be used
by tool vendors to save and load UML models in a common format, i.e. XMI format, thus allowing
teams of developers working with object technology and using different tools to exchange information
over the Internet. With XMI data is interchanged as streams or files with a standard format based on
XML.

The XMI specification contains a complete specification for syntax and encoding needed to export and
import models, with complete DTDs for UML and MOF. Figure 2 shows part of the UML metamodel
related to the Core package and its respective XMI DTD specification.

3

ModelElement
name : Name

Class
isActive: Boolean

<!ELEMENT Foundation.Core.Class (
 Foundation.Core.ModelElement.name, ...)?>

<!ELEMENT Foundation.Core.ModelElement (
 Foundation.Core.ModelElement.name, ...)?>

<!ELEMENT Foundation.Core.ModelElement.name
 (#PCDATA | XMI.reference)*>

<!ELEMENT Foundation.Core.Class.isActive EMPTY>

<!ATTLIST Foundation.Core.Class.isActive
 xmi.value (false | true) #REQUIRED>

Figure 2: Part of the UML Core package and the respective XMI UML DTD

The UML DTD follows the UML description in the UML Semantics specification [OMG, 1997b].
Each class, attribute and association in the UML metamodel is represented in the XMI DTD as an
XML element. The classes, attributes and associations are referred by its fully qualified name; i.e.
the package name, followed by the subpackage name, if any, followed by the class name, followed by
either the attribute name or the association name, when appropriate.

In XMI, XML representations can also be defined for software engineering notations other than the
UML. It is rather straightforward to define a mapping between CDIF and XML in such a way that any
CDIF definition can be translated into an equivalent XML document type. We therefore assume that
the content of software engineering documents are represented in XML.

2.3 DOM

Associated with XML is the DOM (Document Object Model) [Apparao et al., 1998]. The DOM is
an application programming interface (API) for HTML and XML documents. It defines the logical
structure of documents and how to access and manipulate a document. DOM allows programmers to
build documents, navigate their structures, and add, modify, or delete elements and content. In DOM,
the documents have a logical structure that is similar to a tree. However, DOM is a logical model that
may be implemented in any convenient manner, not necessarily as a tree.

The nameDocument Object Modelreflects the modeling of documents using objects, and the model
encompasses the structure of a document and its behaviour. The DOM identifies (a) the interfaces used
to represent and manipulate a document, (b) the semantics of these interfaces, and (c) the relationships
and collaborations among these interfaces. The DOM interfaces are designed in UML and their detailed
interface definition is given in a programming-language independent way using the OMG Interface
Definition Language (IDL). IDL programming language bindings then define how the DOM is made
available in particular programming languages.

The DOM consists of two parts: DOM Core and DOM HTML. The DOM Core contains interfaces
for accessing and manipulating XML documents and serves as the basis for DOM HTML. The DOM
HTML contains interfaces for accessing and manipulating HTML contents.

4

VML <v:rect style=’top:20; left:50; width:80; height:150’/>
<v:line from=”20 50” to=”100 200”/>

SVG <g:rect x=”20” y=”50” width=”80” height=”150”/>
<g:line x1=”20” y1=”50” x2=”100” y2=”200”/>

PGML <rectangle x=”20” y=”50” width=”80” height=”150”/>
<path>
<moveto x=”20” y=”50”/>
<lineto x=”100” y=”200”/>
</path>

Figure 3: Drawing a rectangle and line in VML, PGML and SVG

2.4 Vector Graphic Markup Languages

Vector graphic markup languages are still in their infancy. So far, two major proposals have been made:
the Vector Markup Language (VML) [Mathews et al., 1998], mainly proposed by Microsoft, and the
Precision Graphics Markup Language (PGML) [Al-Shamma et al., 1998], mainly proposed by Adobe.
Microsoft have implemented a VML renderer in Internet Explorer 5 and their Office 2000 product also
makes use of the format.

Vector graphic markup languages are set to become standard components in future generation brow-
sers. Transmitting graphics in a vectorised form brings with it a host of advantages for web design and
web programming. For example, a parsed vector graphics markup file will be incorporated in the DOM
tree and can thus be manipulated, the remote user can select different output representations without
having to regenerate the whole image, it is possible to search the contents for information, etc. None of
these would be very easy to realize using bitmap images. In addition, as vector graphics gain maturity
and modification of their content using inline HTML scripting becomes feasible, features like client
side zooming can be added. The implications of this for software engineering which makes much use
of complex diagrams are very significant.

Following the specification of VML and PGML, a W3C working group was set up to create an open
standard for vector graphics markup called Scalable Vector Graphics (SVG) using the available formats
as a starting point. The lineup of key industry players supporting SVG is more than impressive, includ-
ing Microsoft and Adobe themselves, and the language looks set to become a major open standard in
the near future.

For our purpose of diagram layout, only the most basic features of any of the available markup lan-
guages are required: rectangles, lines and text. We have chosen VML primarily because it is the only
language for which there is a working implementation in the form of Internet Explorer 5. As soon as
the first SVG implementations appear, it should be easy to adapt our prototype because of the similarity
of the languages, as demonstrated in Figure 3.

3 Approach

In this section we describe our approach to converting XML representations of software engineering
diagrams into displayable web pages that use the Vector Markup Language (VML). We exemplify the
discussion by showing how we translate XMI representations of UML models into VML. We describe

5

CASE Tool

XML Parser

DOM Structure

Import

Converter

Export

Tree Generator

VML Generator

UML ModelUML Model

BOX Browser

foo

bar

HTML VML

Exporter/
ConverterSE Models

XML Document

Intern. Model

Figure 4: Overview of the prototype architecture

the methods used to visualize UML diagram elements and a user interface to facilitate manipulation
and browsing of a UML model. We give a general overview of how to store the geometric information
necessary for diagram transfer inside XMI files and outline the architecture of our prototype.

3.1 Architecture

Figure 4 gives a general overview of the architecture of our prototype system. The architecture is
applicable for every software engineering notation that has a representation in XML.

The process starts with a CASE tool that allows the creation of a model in a particular software engi-
neering notation. In case of BOX, this notation is the UML and we use Rational Rose [Quatrani, 1998]
because of its current market leadership in graphical UML modelling software. After creating the
software engineering document, we export it into a standard XML representation. In case of BOX,
this export creates an XMI file. In the general case this translation process demands understanding
of the proprietary CASE tool format and generating the XML equivalent. For the UML and Rational
rose, we were able to utilize an off-the-shelf exporter from Unisys Corporation, which uses the Rose
extension capabilities to traverse the internal Rose model and generate the XMI representation. The
exporter appends geometric information at the end of the file, inside an XMI extension tag that has
been designed to allow arbitrary, user-defined content. This geometric information is also taken from
the internal model of Rational Rose.

In the next step, BOX is invoked with the name of the XML input file as a parameter. BOX uses a stan-
dard XML parser [IBM, 1999] which conforms to the Simple API for XML (SAX) [Megginson, 1998]
to construct a DOM tree-like representation of the XML document in memory.

6

The DOM structure now contains all elements found in the XML file and can be traversed in order to
select relevant elements. The information stored in the tree allows an Internal Model to be built that
is suitable for the software engineering notation at hand. In the case of the UML, we have chosen
a representation that is in accordance with the UML Semantic Specification [OMG, 1997b]. At this
stage, BOX has reconstructed the whole UML model from the XMI file and generated the necessary
ViewElement objects to display the model.

The information generated can now be exported in a variety of ways. In our toolkit, we take advantage
of the fact that most software engineering notations are hierarchically arranged. Processes in dataflow
diagrams are refined by child dataflow diagrams, transitions in Petri nets may be refined by another
complete Petri net and so on. In case of the UML, packages contain a set of diagrams, model elements
and nested packages. This refinement relationship forms a tree. The first pass of our tool creates an
HTML document containing a view of this tree that is displayed in a frame of the browser. The second
pass exports a VML representation of each diagram. After the converter has exited, the output directory
contains a number of HTML files together with one index file which can now be viewed in a browser.

The back-end of BOX is by no means limited to exporting graphical information. We have also added
a package to generate an XML DTD from a UML model. It took about four person hours to write this
back-end from scratch so the construction of other applications, such as collecting software engineering
metrics should be very straightforward.

3.2 Visualisation of XML

The appendix of the XMI specification [OMG, 1998], provides a DTD that can be used to store UML
models in XML. However, both the UML standard and XMI do not clearly specify how to handle
geometric information and this section attempts to briefly explain the problems this presents.

The UML describes a metamodel for system modelling. In this metamodel, there are a variety of
metaclasses available that allow a software engineer to describe a complete system in different ways.
It is important to maintain a distinction between a UML model and the visual representation of that
model.

The UML specification is composed of two parts, UML Semantics [OMG, 1997b] and UML Nota-
tion [OMG, 1997a]. The former defines the metaclasses (e.g. Class, Association,. . .) that can be used
to model the system. The latter defines how each of the metaclasses can be displayed graphically. What
remains is the question of how to tie a model element in a UML model to its graphical representation.

The UML Semantic specification stops short of specifying how the graphical information of a model is
supposed to be handled. In the specification, a meta-class calledModelElementis defined as a (meta)-
superclass for almost every other meta-class in the model. EachModelElementhas a many-to-many
mapping to another meta-class calledViewElement. However, while there is a complete hierarchy of
model elements, the descendants of the ViewElement metaclass are described as“proper to a graphic
editor tool and [are] not specified here”[OMG, 1997b].

A CASE tool that intends to display UML diagrams therefore needs a complete hierarchy of meta-
classes below the ViewElement metaclass to implement view support for all elements, like classes and
associations. A diagram is then a collection of ViewElements and descendants of this meta-class. Since
view elements have a many to many mapping to their respective model elements, each model element
can appear in multiple diagrams.

7

Figure 5: The basic web interface

The XMI standard defines how to build an XML DTD from a metamodel and has as an example a DTD
generated from the UML Semantic metamodel. Since this model is not concerned with diagrams, XMI
is currently unable to carry geometric information without the use of proprietary extension tags. Even
if automatic layout features are available, the diagram information has been lost and no tool will be
able to reconstruct the original view of the model without extensive interaction with the original creator
of the model.

4 Toolkit

This section briefly describes the main features of our prototype together with some sample screenshots
of diagram representations produced by BOX.

The converter is written in Java, using the Java Development Kit (JDK) 1.2. The generated HTML
documents use Dynamic HTML (DHTML) and JavaScript to provide reactive documents. In particular,
we support expand and collapse operations for the tree of the hierarchical document structure.

Figure 5 presents a screenshot of our interface. Similar to Rational Rose, our interface is divided into
three regions. The top left frame contains a tree representation of the software engineering model that
can be expanded as needed, the main right frame contains the diagrams themselves and the small frame
on the bottom left automatically displays any documentation associated with model elements as soon
as the mouse is moved over the respective shape in the diagram.

We use icons to allow rapid distinction of model elements in the tree. For some elements, it is possible
to activate hyperlinks to bring up related diagrams, for example it is possible to click on a package in
a diagram and display the topmost diagram inside that package.

In the diagram, it is also possible to activate detailed information about the elements of the model.

8

Figure 6: Hiding details in layered popups

This is executed by moving the mouse over a particular element. Figure 6 presents this situation. The
idea of hiding detailed information of the model elements is to simplify the presentation of complex
diagrams. Any number of popups can be pinned to the screen to allow comparisons.

The two graphical exporters discussed above are just two out of many possible back-ends to the XML
importer and model generator front-end. The simplicity of manipulating XML means that it was fairly
straightforward to write the front end and it should be similarly straight-forward to add any kind of
back-end.

5 Evaluation

This section describes three case studies that we used in order to evaluate Box. We present an overview
of the main problem areas and describe alternative routes of design that were considered.

Our initial goal was to display UML diagrams in a browser so that they could be accessed by distributed
teams or clients without the need to purchase the license of a CASE tool. Moreover, we wanted
to facilitate interoperability between different CASE tools based on the standard defined by the XMI.
Initial feedback from demonstrations suggested that there was a real need for such a tool and in general,
people seem to be enthusiastic about this application of web technology.

The prototype has been tested in two industrial case studies. The first of these is an enterprise ob-
ject model of one of the largest European airlines. This model contains147 classes and49 diagrams.
The second model is a domain object model from Eurocontrol, the European air traffic control author-
ity. The result of our translation of the Eurocontrol model can be viewed using Internet Explorer 5
[Abbot and Watson, 1999]. This model is slightly larger than the airline enterprise model and contains
170 classes but only18 diagrams. Figure 7 shows a fragment of a diagram from the converted Euro-
control model. Furthermore, we have also tested Box on an academic example, a UML design for a

9

Figure 7: Eurocontrol model fragment

meeting scheduler as described in [Feather et al., 1997]. This is a small-scale model with12 classes
and6 diagrams.

The testing machine used was a PC with Windows-98, on an Intel Pentium processor running at
400Mhz and 128 Megabytes of RAM. As can be seen from our timing figures, on-the-fly conversion
from XMI to VML is not an option for the time being, although our prototype has not been optimised
for speed. For no model conversion did the memory utilization exceed the amount of physical memory
available. The maximum amount of main memory utilized for both the Eurocontrol and the airline
case study was34 Megabytes and the memory utilization of the meeting scheduler case study was6

Megabytes. This suggests that our approach scales to industrial-scale projects.

Figure 8 compares the different file sizes that we observed for the Rational Rose input model files, the
intermediate XMI representation and the output representation in VML. For both the XMI represen-
tation and the VML representations, the sizes grow more or less linearly with the number of model
elements. The Rational Rose representation, however, shows an anomaly in that a model with more
elements is smaller in size. This can be attributed to the fact that the enterprise object model has fewer
elements, which are however more heavily annotated with documentation than the larger Eurocontrol
model. We can also note that the VML representation of all models is not only a lot smaller but also
grows at a slower rate with more model elements. This strongly suggests that the VML representation
is better suited for transport across the Internet or corporate intranets than the XMI representation (with
client side translation).

Figure 9 shows the elapsed time that was needed for the conversion of the three models. The limited
data seem to suggest that the total conversion time is dominated by the time needed for reading and
parsing the XMI file and that it grows linearly with the number of model elements. Note also that the
time needed for VML export does not depend on the number of model elements, but on the amount
of diagram information stored in the XMI files. The larger Eurocontrol case study has fewer diagrams
than the airline model and it is thus natural that the VML export of the airline case study takes longer
even though it has fewer model elements overall.

10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600 800 1000 1200 1400 1600 1800

Model Elements

F
ile

 S
iz

e
(K

B
)

Rational Rose MDL File

XMI File

VML Files

Figure 8: File sizes observed

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600 1800

Model Elements

E
la

ps
ed

 T
im

e

Total Conversion Time

Parsing Time

Model Construction

VML Export

Figure 9: Timings obtained during Case Studies

In all case studies, one of the problems we have encountered was the lack of diagram geometry infor-
mation being made available by existing tools. It was possible to obtain information about the location
and size of classifiers (classes, use cases, actors, etc.) on the screen, but associations between clas-
sifiers were generally assumed to stretch between the midpoints of boxes. The problem occurs when
users insert extra vertices in the lines representation associations in diagrams, for example, to navigate
associations around classes when they would normally penetrate them. These extra vertices are lost in

11

Class1 Class1 Class1

Class2 Class2 Class2

3. Corrected diagram2. Association crosses 45 degree threshhold
and will be broken

1. Association not broken

Figure 10: Breaking a line into two orthogonal segments

the XMI generation process. In one of our case studies, the association lines were fairly long and the
generated diagrams looked very messy, with lines crossing.

We have so far implemented heuristics for adjusting the routing of lines that give satisfactory results
most of the time. When an association is found in the XMI file, it is not possible to know anything
about the geometry of the association itself. However, information about where to place the label of
the association is known. We therefore propose an algorithm that will check how far the label deviates
from the midpoint between two classifiers. If the distance is too big, the association will be “broken”
through the label.

With a dependency or association, the angle between the two boxes it connects is measured and if the
line has the right slope (around45 degrees+� 20), it is broken into two orthogonal lines, as demon-
strated in Figure 10. This approach worked well in our case study because it turned out that whenever
orthogonal lines are used, the connected classes are quite far apart and if connected with a straight line,
the line would be at an angle of 45 degrees (+� the threshold). When a line becomes almost horizontal
or vertical, the initial creator of the diagram would draw a straight line so the workaround would not
be required.

6 Related Work

In this section we briefly describe current developments in the area of XMI and the web and present
the research and technologies that is related to our prototype.

Efforts are currently under way to supplement the XMI standard with a standard for diagram transfer.
Two possible solutions that could be envisaged are:

� Use the XMI extension facilities to append geometric data at the end of the model definition.
Since XMI allows a unique identifier to be associated with each model element, it is then possible
to link every model element to its geometric information. The beta version of the XMI exporter
from Unisys Corp. uses this approach: diagram packages are stored in an extension element at
the end of the file. Each diagram packages contains multiple diagrams and is linked to the model
package it represents. The diagrams themselves are a set of UML Presentation objects and are
linked to the ModelElements they represent using the ID facility.

� Store the diagrams in separate files that use a vector markup language. Every shape in the dia-

12

gram file can then be linked to its corresponding element in the XMI file using the ID facility or
more sophisticated technology like XLink [Maler and DeRose, 1998]. This approach is imple-
mented by the open source tool Argo/UML [Robins et al., 1999] and has the advantage that no
translation is necessary and that diagrams can now be distributed separately.

The disadvantages are mainly that a model and its diagrams are now stored in several files, which
can be inconvenient, and that diagrams do not consist of UML elements but vector graphic
information which means that a commitment to a specific vector graphics language has to be
made.

A number of CASE tool vendors are currently extending their tools with support for publishing models
on the WWW. Rational have recently launched the Internet edition of Rational Rose. It does however
not utilize vector graphic languages to create graphical representations of UML models but creates
the models as GIFs, which unlike our models are not hyperlinked, not amenable to access via search
engines and also bigger to download.

[Ciancarini et al., 1999] introduce “displets” for embedding Z fragments [Spivey, 1992] in web pa-
ges. Displets are tiny Java programs that can be used to extend browsers with additional rendering
capabilities. The author of a document can then introduce new tags and define which displet to call
when a specific tag is encountered. Displets are a lightweight solution because of their relatively small
size compared to proprietary plugins or full-blown Java applets. However, the problem of having to
transfer a huge XMI file across a network remains, as does the problem of the relatively long layout
time.

We have also considered using the eXtensible Stylesheet Language (XSL). This would ensure good
use of existing standards and avoid writing Java code, however the following reasons explain why we
did not choose XSL:

� Scalability - industrial models are huge. We exported one third of a model from a large invest-
ment bank and the resulting XMI file was about thirty megabytes in size. The diagrams generated
from such big models are typically only a few hundred kilobytes big. Thus, for client side di-
agram generation XSL is completely unsuitable with today’s bandwidth constraints. As for the
use of server side XSL to generate diagrams on demand, that would require hugely expensive
equipment to meet the tight time constraints (see also Figure 9).

� One to many mapping - The previous points do not exclude the use of XSL to pre-generate
diagrams the way we are doing now using Java. However, XSL was designed to provide a one to
one mapping between XML documents with one stylesheet (one source document, one target).
With the exporter we are using to generate the XMI file, all the diagrams of a model are specified
in one XMI file. Since we did not want to display all diagrams in one page, and specifying one
stylesheet per diagram would have limited the amount of diagrams that can be stored in the XMI
file, XSL was not suitable for our approach.

7 Future Work

The work presented in this paper is part of a large programme of research to allow consistency check-
ing of distributed documents on the World Wide Web [Ellmer et al., 1999]. We intend to extend our
approach to allow semantic and consistency relationships among distributed software engineering doc-
uments to be represented as hyperlinks. The consistency relationships can then be traversed to under-
stand the semantic context of documents by following hyperlinks.

13

Our current implementation of BOX for the UML is restricted to class and use case diagrams due to
limitations of current XMI export tools. Future XMI export tools will make those parts of the UML
metamodel accessible that cannot currently be reached by our tool. When that information is made
available, support for more types of UML diagrams, e.g. sequence diagrams, can be added quite easily.

We expect that in the foreseeable future, our architecture can be used as a base for different applications,
such as different notations employed ubiquitously in Software Engineering. As XML dialects for such
notations become available, so will the need to present graphical representations of the hard to read
XML content. The basic architecture of BOX that parses the XML content, generates an internal model
of an instance of a domain-specific metamodel and then compiles different output representations in
subsequent export passes is strong candidate to achieve this aim.

Finally, vector graphics markup languages are slowly reaching the stage of maturity. The upcoming
SVG language [Ferraiolo et al., 1999] will be a strong standard, supported by key industry players. We
will provide a back-end for this language as soon as working implementations appear.

In [Arlow et al., 1999], we describe literate modelling, the application of Knuth’s literate programming
ideas to earlier phases of software engineering. Literate modelling overcomes the problems of stake-
holders, who are not software engineers, in understanding formal UML models. Stakeholders, such
as project managers and users, also do not have any training for using a CASE tool and are generally
reluctant to incur substantial CASE tool licensing costs. We therefore plan to integrate the graphic
export mechanisms of BOX with standard web publishing tools so that literate models can be produced
and be published on the web.

Acknowledgements

We would like to thank Gene Mutschler from the Computer Systems Group at Unisys for providing us
with a beta copy of the XMI exporter, Jerry Watson from Eurocontrol for the Rose models, Jim Arlow
and John Quinn for evaluating BOX with the enterprise object model of a large airline and providing
valuable feedback. Moreover we wish to thank Morten Wang, who implemented the Javascript tree
menu.

8 References

Abbot, P. and Watson, J. (1999). Gate to Gate Object Model. http://www.cs.ucl.ac.uk/research/box.

Al-Shamma, N., Ayers, R., Cohn, R., Ferraiolo, J., Newell, M., de Bry, R. K., Mc-
Cluskey, K., and Evans, J. (1998). Precision Graphics Markup Language. Technical Report
http://www.w3.org/TR/1998/NOTE-PGML-19980410.html, World Wide Web Consortium.

Apparao, V., Byrne, S., Champion, M., Isaacs, S., Jacobs, I., Hors, A. L., Nicol, G., Robie, J., Sutor,
R., Wilson, C., and Wood, L. (1998). Document Object Model (DOM) Level 1 Specification. W3C
Recommendation http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001, World Wide Web Con-
sortium.

Arlow, J., Emmerich, W., and Quinn, J. (1999). Literate Modelling – Capturing Business Knowledge
with the UML. In Bezivin, J. and Muller, P. A., editors,Proc. <<UML>> ’98, Mulhouse, France,
volume 1618 ofLecture Notes in Computer Science, pages 165–172. Springer.

14

Bray, T., Paoli, J., and Sperberg-McQueen, C. M. (1998). Extensible Markup Language. Recommen-
dation http://www.w3.org/TR/1998/REC-xml-19980210, World Wide Web Consortium.

Ciancarini, P., Vitali, F., and Mascolo, C. (1999). Managing Complex Documents over the WWW: A
Case Study for XML.IEEE Transactions on Knowledge and Data Engineering, 11(4):629–638.

Ellmer, E., Emmerich, W., Finkelstein, A., Smolko, D., and Zisman, A. (1999). Consistency Manage-
ment of Distributed Documents using XML and Related Technologies. Technical report, University
College London, Dept. of Computer Science.

Feather, M. S., Fickas, S., Finkelstein, A., and v. Lamsweerde, A. (1997). Requirements and Specifi-
cation Exemplars.Automated Software Engineering, 4(4):419–438.

Ferraiolo, J., .Bowler, J., Capsimalis, M., Cohn, R., Donoho, A., Duce, D., Evans, J., Furman, S.,
Graffagnino, P., Henderson, L., Hester, A., Hopgood, B., Lawrence, K., Lilley, C., Mansfield, P.,
Nguyen, K. M. T., Sandal, T., Santangeli, P., Sheikh, H., State, G., Stevahn, R., and Zhou, S. (1999).
Scalable Vector Graphics. Working Draft http://www.w3.org/1999/08/WD-SVG-19990812, World
Wide Web Consortium.

IBM (1999). IBM XML Parser for Java. http://alphaworks.ibm.com/tech/xml4j.

Maler, E. and DeRose, S. (1998). XML Linking Language (XLink). Technical Report
http://www.w3.org/TR/1998/WD-xlink-19980303, World Wide Web Consortium.

Mathews, B., Lee, D., Dister, B., Bowler, J., Cooperstein, H., Jindal, A., Nguyen, T., Wu, P., and
Sandal, T. (1998). Vector Markup Language. Technical Report http://www.w3.org/TR/1998/NOTE-
VML-19980513, World Wide Web Consortium.

Megginson, D. (1998). Simple API for XML.

OMG (1997a).UML Notation Guide. Object Management Group, 492 Old Connecticut Path, Fram-
ingham, Mass., ad/97-08-05 edition.

OMG (1997b).UML Semantics. Object Management Group, 492 Old Connecticut Path, Framingham,
Mass., ad/97-08-04 edition.

OMG (1998). XML Meta Data Interchange (XMI) – Proposal to the OMG OA&DTF RFP 3: Stream-
based Model Interchange Format (SMIF). Technical Report AD Document AD/98-10-05, Object Man-
agement Group, 492 Old Connecticut Path, Framingham, MA 01701, USA.

Quatrani, T. (1998).Visual Modeling with Rational Rose and UML. Addison Wesley.

Robins, J., Redmiles, D., and Hilbert, D. (1999). Argo/UML. http://www.ics.uci.edu/pub/arch/uml/.

Spivey, J. M. (1992).The Z Notation - A Reference Manual. Prentice Hall, 2 edition.

15

