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Abstract

Several structural results for the set of competitive equilibria in trad-

ing networks with frictions are established: The lattice theorem, the rural

hospitals theorem, the existence of side-optimal equilibria, and a group-

incentive-compatibility result hold with imperfectly transferable utility and

in the presence of frictions. While our results are developed in a trading

network model, they also imply analogous (and new) results for exchange

economies with combinatorial demand and for two-sided matching markets

with transfers. JEL-classification:C78, D47, D52, L14

Keywords: Trading Networks; Full Substitutability; Imperfectly Transfer-

able Utility; Competitive Equilibrium; Indivisible Goods; Frictions; Lattice;

Rural Hospitals

1 Introduction

The assumption of transferable utility is pervasive in models of matching markets,

exchange economies with indivisible goods, trading networks, and in mechanism

∗An extended abstract under the previous title ”Trading Networks with General Preferences”
appeared in the Proceedings of the 20th ACM Conference on Economics and Computation
(EC’19). The paper extends and supersedes Schlegel (2018) which proves similar result in the
more restrictive model of job matching with salaries. I gratefully acknowledge financial support
by the Swiss National Science Foundation (SNSF) under project 100018-150086. I thank Ravi
Jagadeesan, Bettina Klaus, Alex Nichifor, Alex Teytelboym, Ning Yu and Klaus Zauner, three
anonymous referees, seminar participants in Bristol, Lausanne and Oxford, participants of the
2018 Lisbon Game Theory Meetings, the Matching in Practice workshop in Mannheim, the
5th Match-Up workshop, the 20th ACM Conference on Economics and Computation (EC19),
the 2019 North American Summer Meeting of the Econometric Society and the International
Conference on Game Theory & the 6th Microeconomics Workshop in Nanjing, for valuable
comments.
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design. The transferable utility assumption can simplify the analysis considerably

since it allows us to exploit the duality between optimal allocations and support-

ing equilibrium prices. While the assumption of transferable utility simplifies the

analysis, it is often empirically problematic. Wealth effects are present in marriage

and labor markets so that matching models with transferable utility are unrealistic

for these applications. Even if wealth effects are absent, transaction frictions such

as those induced by taxation, subsidies, or transaction costs, make a transferable

utility model inapplicable. This has motivated researchers to explore how results

for matching markets with transfers (Demange and Gale, 1985; Legros and New-

man, 2007; Nöldeke and Samuelson, 2018; Galichon et al., 2019) and for trading

networks (Fleiner et al., 2019; Hatfield et al., 2021) can be generalized beyond

transferable utility.

In this paper, we contribute to this discussion and study wealth effects and

frictions1 in the context of trading networks (Hatfield et al., 2013). Trading net-

works with bilateral contracts model complex supply chains in an industry where

firms are engaged in upstream as well as downstream contracts. They generalize

two-sided matching markets, in the sense that they replace a bipartite graph of

potential relations, by an arbitrary graph where each edge represents a potential

trade. We show that important structural results for trading networks do not de-

pend on the assumption of transferable utility, and establish several results about

the set of competitive equilibria under minimal assumptions on utility functions.

Our results apply even in the case of wealth effects, in the presence of frictions,

and if constraints make the execution of certain combinations of trades infeasible.

Our results can be summarized as follow: For a model of trading networks

with frictions (Fleiner et al., 2019) and under the assumptions of full substitutabil-

ity (Sun and Yang, 2006; Ostrovsky, 2008; Hatfield et al., 2013) and the laws of

aggregate demand and supply (Hatfield and Kominers, 2012; Hatfield et al., 2021),

we show that

- the set of competitive equilibria is a sublattice of the price space (first part

of Theorem 1),

- a generalized ”rural hospitals theorem” holds: the difference between the

number of signed downstream and the number of signed upstream contracts

1We use the term ”frictions” for any situation where utility is not necessarily a function of
the sum of transfers received, but a function of the entire vector of transfers. If frictions are
present, it thus not only matters how much a firm receives in total transfers, but also through
which trades it receives the transfers. This can e.g. be the case if different trades involve different
transaction costs. The results in our paper apply to both wealth effects and frictions.
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is the same for each firm in each equilibrium (second part of Theorem 1),

- assuming additionally ”bounded willingness to pay” (Fleiner et al., 2019),2

there is an equilibrium that is most preferred by terminal sellers and an

equilibrium that is most preferred by terminal buyers (Theorem 2),

- a mechanism that selects buyer-optimal equilibria is group-strategy-proof for

terminal buyers on the domain of unit-demand utility functions and similarly

a mechanism that selects seller-optimal equilibria is group-strategy-proof for

terminal sellers on the domain of unit-supply utility functions (Theorem 3).

While our results are established for trading networks, the results are already

new for many-to-one matching markets and for exchange economies with com-

binatorial demand which are special cases of our model. For matching markets,

similar results were so far only known (a) under transferable utility, (b) for models

without transfers and with strict preferences, or (c) for one-to-one matching mar-

kets with imperfectly transferable utility. For exchange economies with indivisible

goods, analogous results were so far only known for (a) quasi-linear utility, or for

the case of (b) unit demand.

Working with imperfectly-transferable utility requires us to develop fundamen-

tally new techniques: Similar results without the transferable utility assumption

were so far only known for one-to-one matching markets (Demange and Gale,

1985) and the proof techniques developed in this context (in particular the ”de-

composition lemma”) do not adapt to more general settings. On the other hand,

techniques from transferable utility models do not generalize to our model: Hat-

field et al. (2013) use the efficiency of competitive equilibria and the submodularity

of the indirect utility function to establish the lattice property. For our model

with frictions, competitive equilibria can fail to be efficient. Moreover, full substi-

tutability implies only the weaker notion of quasi-submodularity (Hatfield et al.,

2020). More subtly, as we will discuss below, with wealth effects or frictions there

are several non-equivalent definitions of full substitutability and these definitions

are not distinguishable through conditions on the indirect utility function alone.

Thus, an approach as in Hatfield et al. (2013) that characterizes competitive equi-

libria through the indirect utility function and uses properties of that function un-

der full substitutability does not generalize. Likewise, the network flow approach

to trading networks (Candogan et al., 2021) obtains structural results on the set of

equilibria through the duality between optimal allocations and supporting prices.

2Alternatively, the result also holds with ”bounding compensating variations” instead of
bounded willingness to pay, as we show in the full working paper version (Schlegel, 2020).
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Since efficiency fails in our setting this duality approach does not generalize. Fi-

nally, techniques from trading networks without transfers (Ostrovsky, 2008) that

rely on Tarski’s fixpoint theorem do not apply to the our model. With transfers,

the issue of tie-breaking arises that is not present in models without transfers

and with strict preferences. While versions of Tarski’s fixpoint theorem for cor-

respondences are known (Zhou, 1994), none of them work under sufficiently weak

assumptions to be useful in our environment.

Since existing techniques do not work for our setting, we introduce a new

approach to establish structural results for the set of competitive equilibria. The

approach can be characterized as a tie-breaking approach: we show that for each

finite set of (equilibrium) price vectors and each firm a single-valued selection

from the demand correspondence can be made such that the properties of full

substitutability and the laws of aggregate demand and supply are satisfied by

the selection, and moreover, relevant trades that are demanded in the supporting

equilibrium allocations are demanded in the selection. The assumption of the Laws

of Aggregate Demand and Supply is necessary for our tie-breaking argument, and

our result does not hold under Full Substitutability alone (see Example 3).

We also make a more technical contributions to the literature on trading net-

works with imperfectly transferable utility and clarify issues related to the defini-

tion of Full Substitutability: For the transferable utility model, there are various

equivalent definitions of Full Substitutability (Hatfield et al., 2019). The equiv-

alence, however, breaks down if we go beyond transferable utility, and, for our

results, it matters which of the full substitutability notions is used. More specif-

ically, it matters how full substitutability restricts the demand at price vectors

at which the demand is multi-valued. We consider weak notions of Full Sub-

stitutability and the Laws of Aggregate Demand and Supply that only restrict

the demand at price vectors where the demand is single-valued and stronger ver-

sions that also restrict it at prices where the demand is multi-valued. The notions

are equivalent for transferable utility, but not in general. The set of competitive

equilibria is a lattice only under the strong versions of Full Substitutability (see

Example 1) and the rural hospitals theorem requires the strong versions of the law

of aggregate demand and supply (see Example 2). Our group-strategy-proofness

result, however, holds also under the weaker notions (Corollary 1). Thus, the

exact definition of Full Substitutability matters in the model with frictions.3

3Related issues occur in Hatfield et al. (2021) where the stronger Monotone Substitutability
property is needed that restricts the choice in circumstances where the choice correspondence is
multi-valued.
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We proceed as follows: In Section 2, we introduce the model and discuss dif-

ferent versions of the Full Substitutability conditions and their relation to each

other. In Section 3, we prove our main results: the lattice structure of the set

of competitive equilibria, the generalized rural hospitals theorem, the existence of

extremal equilibria, and group-incentive compatibility for terminal buyers. In Sec-

tion 4, we apply our main results to two-sided matching markets, and to exchange

economies with indivisible goods.

1.1 Related Literature

The literature on trading networks has its origins in the literature on matching

markets with transfers. In a seminal paper, Kelso and Crawford (1982) show

that, under the assumption of gross substitutability, competitive equilibria with

personalized prices exist and are equivalent to core allocations in a many-to-one

labor market matching model. The construction is by an approximation argument

where the existence in the continuum is obtained from the existence of an equi-

librium in a discrete markets with smaller and smaller price increments. Different

versions of a strategy-proofness result for a many-to-one matching model with

continuous transfers were established by Hatfield et al. (2014); Schlegel (2018);

Jagadeesan et al. (2018). Subsequent to Kelso and Crawford (1982), the question

of existence of equilibria has been studied in the context of exchange economies

with indivisibilities. See for example Gul and Stacchetti (1999) and the recent

contribution of Baldwin and Klemperer (2019).

Trading networks with bilateral contracts and continuous transfers were intro-

duced by Hatfield et al. (2013). Under the assumption of transferable utility and

full substitutability they establish many results that we generalize to the case of

general utility functions. The notion of full substitutability has been studied in

detail by Hatfield et al. (2019) who show the equivalence of various different defini-

tions of full substitutability. The existence result of Hatfield et al. (2013) is proved

via a reduction to the existence result of Kelso and Crawford (1982). An alterna-

tive approach is via a submodular version of a network flow problem (Candogan

et al., 2021).

The work of Hatfield et al. (2013) builds on the work of Ostrovsky (2008) on

trading networks without transfers that generalizes matching models with con-

tracts (Hatfield and Milgrom, 2005; Fleiner, 2003; Roth, 1984) beyond two-sided

markets. The matching model with contracts in turn originates in the discrete ver-

sion of the model of Kelso and Crawford (1982). Hatfield and Kominers (2012) and
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Fleiner et al. (2016) provide additional results for the discrete trading networks

model, which in many ways are parallel to the results we obtain in the continuous

model. Importantly, results for the model without continuous transfers rely on

the assumption of strict preferences.

All the above mentioned work for the continuous models make the assump-

tion of transferable utility.4 There are few papers that deal with wealth effects,

frictions or constraints and that are particularly close to our work: In a classical

paper, Demange and Gale (1985) establish several structural results about the

core (or equivalently the set of competitive equilibria) for a one-to-one matching

model with continuous transfers. In particular, they show that the core has a

lattice structure and an agent that is unmatched in one core allocation receives

his reservation utility in each core allocation (the result is often called the rural

hospitals theorem in the literature on discrete matching markets). Moreover, they

show that the mechanism that selects an extreme point of the bounded lattice is

strategy-proof for one side of the market. Importantly, these results are established

without assuming transferable utility. They only require that utility is increasing,

continuous in transfers and satisfies a full range assumption. We generalize this

work to trading networks and to situations in which utility does not satisfy the

full range assumption.

In recent work, Fleiner et al. (2019) study trading networks with frictions.

Their work is in many regards complementary to our work. In particular, Fleiner

et al. (2019) establish the existence of a competitive equilibrium under the as-

sumption of Full Substitutability and mild regularity conditions. Moreover, they

study the efficiency of competitive equilibria and provide conditions under which

equilibria correspond to allocations satisfying different related cooperative solu-

tion concepts. We derive our results for competitive equilibria. However, by the

equivalence result of Fleiner et al. (2019) analogous results also would hold for

”trail-stable” allocations. All results of Hatfield et al. (2013), except for the maxi-

mal domain result (Theorem 7) are generalized to the model with frictions, either

in our work or by Fleiner et al. (2019). Table 1 summarizes results for trading

networks with frictions.

Kojima et al. (2020b) introduce constraints in the job matching model of Kelso

and Crawford (1982) and characterize constraints that leave the gross substitutes

condition invariant. The model with constraints is a special case of the model in

4Note however that the existence proof of Kelso and Crawford (1982) is actually more general
and applies as long as preferences are continuous, monotonic and unbounded in transfers for each
bundle.
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Table 1: Sufficient conditions for results for trading networks with frictions.

Result (Theorem*) Source FS LADS BCV BWP NF

Existence of Equil. (1) Fleiner et al. (2019) x x
1st Welfare Theorem (2) Fleiner et al. (2019) x
Rural Hospitals (3) Theorem 1.(ii) x x
Lattice (4) Theorem 1.(i) x x
Side Optimality (4) Theorem 2 x x x
Equil.⇒ Stable (5) Fleiner et al. (2019) x
Stable ⇒ Equil. (6) Fleiner et al. (2019) x x
Stable ⇔ Group-Stable (8,9) Fleiner et al. (2019) x x x
Trail-Stable ⇔ Equil. Fleiner et al. (2019) x x
Chain-Stable ⇔ Stable Hatfield et al. (2021) x x
Group-Strategy-Proofness Theorem 3 x x x

Notation:
Theorem* Corresponding theorem in Hatfield et al. (2013) under transferable utility.
The existence of a side-optimal equilibrium additionally assumes finite valuations.
FS stands for Full Substitutability,
LADS stands for the Laws of Aggregate Demand and Supply,
BCV stands for Bounded Compensating Variations,
BWP stands for Bounded Willingness to Pay, and
NF stands for No Frictions.

the current paper so that we obtain as a corollary of our results a version of a

lattice and of the rural hospital theorems for their model of job matching under

constraints. In a spin-off paper, Kojima et al. (2020a) study comparative statics

for their model and also prove versions of the lattice result and the rural hospitals

theorem. These results have been obtained independently and contemporaneously

with the results in the current paper.5

2 Model

The model follows Hatfield et al. (2013), and the extensions of Fleiner et al. (2019)

and Hatfield et al. (2021). We consider a finite set of firms F and a finite set of

trades Ω. Each trade ω ∈ Ω is associated with a buyer b(ω) ∈ F and a seller

s(ω) ∈ F with b(ω) 6= s(ω). For a set of trades Ψ ⊆ Ω and firm f ∈ F we

define the set of downstream trades for f by Ψf→ := {ω ∈ Ψ : s(ω) = f}
and the set of upstream trades by Ψ→f := {ω ∈ Ω : b(x) = f}. Moreover, we

let Ψf := Ψf→ ∪ Ψ→f . A firm f ∈ F such that Ωf→ = ∅ is called a terminal

buyer and a firm such that Ω→f = ∅ is called a terminal buyer. Note that

terminal buyers and/or terminal buyers do not need to exist. A contract is a

5Weaker versions of these results were obtained prior to that in Schlegel (2018).
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pair (ω, pω) ∈ Ω× R, where pω is the price attached to the trade ω.

An allocation is a pair (Ψ, p) consisting of a set of trades Ψ ⊆ Ω and a

price vector p ∈ RΨ. We denote the set of allocations by A and we let Af :=

{(Ψf , (pω)ω∈Ψf
) : (Ψ, p) ∈ A}. An arrangement is a pair [Ψ, p] ∈ 2Ω × RΩ. In

contrast to an allocation the price vector also contains prices for unrealized trades.

Each firm has a utility function uf : Af → R ∪ {−∞}. For notational conve-

nience we extend uf to 2Ω × RΩ by defining for Ψ ⊆ Ω and p ∈ RΩ, the utility

uf (Ψ, p) := uf (Ψf , (pω)ω∈Ψf
). We allow the utility function to take on a value of

−∞ in which case the combination of trades is infeasible for the firm.6 We require

that

• if a bundle is infeasible under some prices, then it is infeasible under all

prices: if uf (Ψ, p) = −∞ for p ∈ RΩf then uf (Ψ, p′) = −∞ for each p′ ∈ RΩf ,

• at least one bundle of trades is feasible: there is a Ψ ⊆ Ωf such that

uf (Ψ, ·) > −∞.

Moreover, we make the following assumptions on utility functions:

• Continuity: For Ψ ⊆ Ωf with uf (Ψ, ·) > −∞ the function uf (Ψ, ·) is

continuous on RΨ.

• Monotonicity: For Ψ ⊆ Ωf with uf (Ψ, ·) > −∞ and p, p′ ∈ RΨ with

p′ 6= p:

(i) If p′ω = pω for ω ∈ Ψf→ and pω ≤ p′ω for ω ∈ Ψ→f , then uf (Ψ, p) >

uf (Ψ, p′).

(ii) If p′ω = pω for ω ∈ Ψ→f and pω ≥ p′ω for ω ∈ Ψf→, then uf (Ψ, p) >

uf (Ψ, p′).

Thus, utility is continuous in prices and firms strictly prefer higher sell prices to

lower sell prices and lower buy prices to higher buy prices.

We allow utility for a set of trades Ψ to be different for prices p, p′ ∈ RΨ,

even if the transfers received are the same for both price vectors, i.e. even if∑
ω∈Ψf→

pω −
∑

ω∈Ψ→f
pω =

∑
ω∈Ψf→

p′ω −
∑

ω∈Ψ→f p
′
ω. This can e.g. be the case

if different trades involve different transaction costs. If utility only depends on

6Infeasibilities can for example arise through technological constraints, if producing and sell-
ing an output good requires the firm to buy certain input goods. In that case executing a
downstream alone without executing related upstream trades is infeasible. Alternatively, in-
feasibilities can also arise through institutional constraints that restrict, for example, such as
in Kojima et al. (2020b), the number of trades that a firm is allowed to execute.
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the set of trades and the transfers received, we have a special case of our model:

We say that uf satisfies no frictions (Fleiner et al., 2019) if there is a function

ũf : 2Ωf × R→ R ∪ {−∞} such that

uf (Ψ, p) = ũf

Ψ,
∑

ω∈Ψf→

pω −
∑

ω∈Ψ→f

pω

 .

A utility function without frictions has full range if for each Ψ ⊆ Ωf , Ψ 6= ∅,
ũf (Ψ, ·) is a surjective function onto R. It is quasi-linear if there is a valuation

function vf : 2Ωf → R ∪ {−∞} such that

ũf (Ψ, t) = vf (Ψ) + t.

A utility function uf induces an indirect utility function vf : RΩ → R by

vf (p) := max
Ψ⊆Ωf

uf (Ψ, p),

and a demand correspondence Df : RΩ ⇒ 2Ω by:

Df (p) := argmaxΨ⊆Ωf
uf (Ψ, p).

Continuity of the utility function implies (e.g. by Berge’s maximum theorem) that

the demand correspondence is upper hemi-continuous. Monotonicity of the utility

function implies that price vectors where the demand is single-valued are dense

in price space. We will repeatedly use these facts to generate a single-valued

selection from the demand-correspondence that inherits its good properties (such

as full substitutability or the laws of aggregate demand and supply) by perturbing

the price vector such that it becomes single-valued, see in particular Lemma 3.

The proof is straightforward and hence omitted.

Lemma 1. For a continuous and monotonic utility function uf ,

(i) the induced demand Df is upper hemi-continuous, i.e. for each p ∈ RΩf there

is an ε > 0 such for any q ∈ RΩf with ‖p − q‖ < ε (where ‖ · ‖ denotes the

Euclidean norm) we have Df (q) ⊆ Df (p),

(ii) the set of price vectors such that the induced demand is single-valued is dense

in RΩf , i.e. for each ε > 0 and p ∈ RΩf there is a q ∈ RΩf with ‖p− q‖ < ε

such that |Df (q)| = 1.
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2.1 Full Substitutability

Our results rely on a full substitutability assumption on utility functions. Infor-

mally, the condition requires that a firm sees upstream (downstream) trades as

substitutes to each other, and upstream and downstream trades as complements to

each other. Hatfield et al. (2019) show that for transferable utility various ways of

defining full substitutability are equivalent, and hence one can work with either of

the definitions discussed in their paper. Going beyond transferable utility makes

issues more subtle: Not all equivalence results of Hatfield et al. (2019) generalize

and it matters which of the full substitutability conditions are used. More specif-

ically, it matters how the full substitutes condition is defined in instances where

indifferences matter, i.e. when the demand is multi-valued.

We will proceed as follows: First, we introduce our main definition of full sub-

stitutability which restrict the demand both at price vectors where the demand is

single-valued and where it is multi-valued. Second, we introduce a weaker version

of full substitutability that only restricts the demand at price vectors where the

demand is single-valued. We provide an example that shows that the single-valued

version of full substitutability is strictly weaker than the multi-valued version. We

later show, using this example, that the single-valued full substitutability condi-

tion is not sufficient for establishing the lattice and the rural hospitals theorem.

Importantly, the difference between the single-valued and multi-valued version of

full substitutability only matters for the ”cross-side conditions” on firms’ demand

functions. In particular, the notions are equivalent for a two-sided market and the

results for two-sided markets (see Section 4.1) hold under the single-valued notion

of full substitutability. Third, we show that the multi-valued and the single-valued

versions are, however, closely related in the sense that for each demand correspon-

dence satisfying single-valued full substitutability, a selection from the demand

correspondence exists that satisfies multi-valued full substitutability and can be

rationalized by a utility function inducing the same indirect utility. In particu-

lar, this will allow us, later on (Corollary 1), to obtain a group-strategy-proofness

result using the single-valued full substitutability notion.
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2.1.1 Multi-Valued Full Substitutability

The following notion of full substitutability is due to Hatfield et al. (2019).7

Precursors of the full substitutability notion were introduced for exchange

economies (Sun and Yang, 2006) and for trading networks without transfers (Os-

trovsky, 2008). Full substitutability can be further decomposed in a same-side

substitutability and a cross-side complementarity notion.

Expansion Same-Side Substitutability (SSS): For p, p′ ∈ RΩf and

each Ψ′ ∈ Df (p′) there exists a Ψ ∈ Df (p) such that if pω = p′ω for ω ∈ Ωf→ and

pω ≤ p′ω for ω ∈ Ω→f , then

{ω ∈ Ψ→f : pω = p′ω} ⊆ Ψ′→f ,

and if pω = p′ω for ω ∈ Ω→f and pω ≥ p′ω for ω ∈ Ωf→, then

{ω ∈ Ψf→ : pω = p′ω} ⊆ Ψ′f→.

Expansion Cross-Side Complementarity (CSC): For p, p′ ∈ RΩf and each

Ψ′ ∈ Df (p′) there exists a Ψ ∈ Df (p) such if pω = p′ω for ω ∈ Ωf→ and pω ≤ p′ω

for ω ∈ Ω→f , then

Ψ′f→ ⊆ Ψf→,

and if pω = p′ω for ω ∈ Ω→f and pω ≥ p′ω for ω ∈ Ωf→, then

Ψ′→f ⊆ Ψ→f .

Expansion Full Substitutability (FS): The demand of firm f satisfies Expan-

sion Full Substitutability if it satisfies Expansion Same-Side Substitutability and

Expansion Cross-Side Complementarity.

Next we introduce monotonicity properties called the Law of Aggregate

Demand respectively the Law of Aggregate Supply. Under quasi-linear utility and

7Hatfield et al., 2019 call this version of full substitutability the ”demand-language expan-
sion” version of full substitutability (cf. Definition A.3 in Hatfield et al., 2019). Throughout
the paper, we use “demand language” definitions of full substitubility that restrict the demand
correspondence induced by the utility function. The demand language definitions are generally
weaker than the corresponding “choice language” definitions that restrict the choice correspon-
dence induced by the utility function. Consequently, all of our result would also hold under the
corresponding “choice language” notions of full substitutability. Alternative multi-valued defi-
nitions of full substitutability are discussed in the full working paper version (Schlegel, 2020).
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without frictions, the two properties are implied by full substitutability. However,

in general they are independent of full substitutability.

Expansion Law of Aggregate Demand (LAD): For p, p′ ∈ RΩf and

each Ψ′ ∈ Df (p′) there exists a Ψ ∈ Df (p) such that if pω = p′ω for ω ∈ Ωf→ and

pω ≤ p′ω for ω ∈ Ω→f , then

|Ψ→f | − |Ψf→| ≥ |Ψ′→f | − |Ψ′f→|.

Expansion Law of Aggregate Supply (LAS): For p, p′ ∈ RΩf and each Ψ′ ∈
Df (p′) there exists a Ψ ∈ Df (p) such that if pω = p′ω for ω ∈ Ω→f and pω ≥ p′ω for

ω ∈ Ωf→, then

|Ψf→| − |Ψ→f | ≥ |Ψ′f→| − |Ψ′→f |.

Remark 1. Hatfield et al. (2021) introduce the notion of Monotone Substitutability

which requires that FS, LAD and LAS hold jointly for the same bundles of trades.

Hatfield et al. (2021) do not assume continuity of utility functions for their main

result, and in that case, monotone substitutability is generally a stronger property

than the combination of FS, LAD and LAS. With continuity, however, monotone

substitutability is equivalent to the combination of FS, LAD and LAS. The proof

of the equivalence is straightforward. See the full working paper version (Schlegel,

2020).

Alternatively, the combination of FS, LAD and LAS for continuous and mono-

tonic utility functions can also be formulated as a generalized single-improvement

property as we show in the full working paper version (Schlegel, 2020). Many of

our results indirectly rely on this observation.

2.1.2 Single-Valued Full Substitutability

Next we introduce a weaker notion of full substitutability where the condition

only needs to hold at price vectors where the demand is single-valued. The

weaker notion of full substitutability together with weaker notions of the law of

aggregate demand/supply will be sufficient for our main incentive compatibility

result (Corollary 1 in Section 3.3), but not for the other main results in the paper.

Single-Valued Full Substitutability (weak FS): For p, p′ ∈ RΩf such

that Df (p) = {Ψ} and Df (p′) = {Ψ′}, if pω = p′ω for ω ∈ Ωf→ and pω ≤ p′ω for
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ω ∈ Ω→f , then

{ω ∈ Ψ→f : pω = p′ω} ⊆ Ψ′→f and Ψ′f→ ⊆ Ψf→,

and if pω = p′ω for ω ∈ Ω→f and pω ≥ p′ω for ω ∈ Ωf→, then

{ω ∈ Ψf→ : pω = p′ω} ⊆ Ψ′f→ and Ψ′→f ⊆ Ψ→f .

The notions of Single-Valued Same Side Substitutability and Single-

Valued Cross Side Complementarity are defined analogously.

Remark 2. The single-valued and the expansion notions of same sided substi-

tutability are equivalent. Thus, for two-sided markets the two notions of full

substitutability are equivalent. See Appendix A of the full working paper ver-

sion (Schlegel, 2020) for a discussion of this and related facts.

We also define single-valued versions of the laws of aggregate demand and

supply.

Single-Valued Law of Aggregate Demand (Weak LAD): For p, p′ ∈ RΩf

such that Df (p) = {Ψ} and Df (p′) = {Ψ′}, if pω = p′ω for ω ∈ Ωf→ and pω ≤ p′ω

for ω ∈ Ω→f , then

|Ψ→f | − |Ψf→| ≥ |Ψ′→f | − |Ψ′f→|.

Single-Valued Law of Aggregate Supply (Weak LAS): For p, p′ ∈ RΩf such

that Df (p) = {Ψ} and Df (p′) = {Ψ′}, if pω = p′ω for ω ∈ Ω→f and pω ≥ p′ω for

ω ∈ Ωf→, then

|Ψf→| − |Ψ→f | ≥ |Ψ′f→| − |Ψ′→f |.

The following example shows that the two notions of full substitutability that we

have defined can differ for trading networks with frictions. In Section 3.1, we will

use the example to show that under weak FS the lattice result in our paper does

not necessarily hold.

Example 1. Consider four trades Ω = {α1, α2, β1, β2} with f = b(α1) = b(α2) =
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s(β1) = s(β2). We let

uf (∅) = 0,

uf ({αi, βj}, pαi , pβj) = 2− pαi + pβj , for i, j,= 1, 2,

uf ({α1, α2, β1, β2}, p) = 4− exp

(
pα1 + pα2

2
− 1

)
− exp

(
1−

pβ1 + pβ2

2

)
.

We let uf (Ψ, p) = −∞ for any other Ψ ⊆ Ω. Observe that

Df (1, 1, 1, 1) = {{α1, β1}, {α1, β2}, {α2, β1}, {α2, β2}, {α1, α2, β1, β2}}

but

Df (0, 1, 1, 1) = {{α1, β1}, {α1, β2}}.

As {α1, α2, β1, β2} ∈ Df (1, 1, 1, 1), FS would require that there is a Ψ ∈
Df (0, 1, 1, 1) with {β1, β2} ⊆ Ψ. Hence FS is not satisfied. As the demand at

(0, 1, 1, 1) and (1, 1, 1, 1) is multi-valued, Weak FS does not impose any structure

here. More generally, note that the bundle {α1, α2, β1, β2} is only demanded at

prices (1, 1, 1, 1) so that if we replace uf by the utility function ũf such that

ũf ({α1, α2, β1, β2}, ·) = −∞

ũf (Ψ, ·) = uf (Ψ, ·) for Ψ 6= {α1, α2, β1, β2},

only the demand at prices (1, 1, 1, 1) changes. One readily checks that ũf satisfies

FS. Hence uf satisfies Weak FS. Note, moreover, that uf satisfied LAD and LAS.

Similarly, weak LAD/LAS is strictly weaker than LAD/LAS.

Example 2. Consider two trades Ω = {ω1, ω2} with f = b(ω1) = b(ω2). We let

uf (∅) = 0, uf ({ωi}, pωi
) = 3− pωi

for i = 1, 2, and

uf ({ω1, ω2}, p) =


4− pω1 − pω2 if pω1 + pω2 ≤ 2,

2− (pω1+pω2 )2−4

12
if 4 ≥ pω1 + pω2 > 2,

5− pω1 − pω2 else.

See Figure 1 for a geometric representation of the demand in the example. The

induced demand violates LAD at p′ = (2, 2) and, e.g., p = (1, 2) since Ψ′ =

{ω1, ω2} ∈ Df (p′) but Df (p) = {{ω1}}. One readily checks that ũf satisfies FS

and weak LAD.
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{ω1}

{ω2}

{ω1, ω2}

∅

pω1

pω2

(1, 1)

(3, 3)

{{ω1}, {ω2}, {ω1, ω2}}

(2, 2)

Figure 1: A representation of the demand of firm f from Example 2 in price space.
Black lines indicate prices at which f is indifferent between several bundles. At
prices (2, 2) the bundle {ω1, ω2} is demanded in addition to bundle {ω1} and {ω2}.
Since {ω1, ω2} is demanded at (2, 2) but at no other price vector in a neighborhood,
NIB is violated.

In Example 1, the bundle {α1, α2, β1, β2} is only demanded at prices (1, 1, 1, 1),

but not at any price vector in the neighborhood. Similarly, in Example 2, the

bundle {ω1, ω2} is demanded at (2, 2) but at no other price vector in the neigh-

borhood. One can show that if there are no such ”isolated” bundles, i.e. bundles

that are demanded at a price vector but nowhere in the neighborhood of it,

then weak FS and FS are equivalent and weak LAD/LAS and LAD/LAS are

equivalent. Formally this requirement is the following:

No Isolated Bundles (NIB): For each p ∈ RΩf , Ψ ∈ Df (p) and ε > 0

there is a q ∈ RΩf with ‖p− q‖ < ε and Df (q) = {Ψ}.

Conversely if demand satisfies FS (CSC is sufficient here), LAD and LAS

then it satisfies NIB. The equivalence between weak FS, weak LAD/LAS and

NIB on one side and FS and LAD/LAS on the other side will be crucial for

subsequent proofs:

Lemma 2. Let uf be a continuous and monotonic utility function inducing a

demand Df .

(i) If Df satisfies NIB and weak FS then it satisfies FS.

(ii) If Df satisfies NIB and weak LAD/LAS, then it satisfies LAD/LAS.
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(iii) If Df satisfying CSC, LAD and LAS, then it satisfies NIB.

The converse of the first part of the lemma is not true in general. The demand

in Example 2 satisfies FS but not NIB.

Next we show that for each utility function satisfying weak FS, weak LAD

and weak LAS, we can construct a demand correspondence that satisfies FS, LAD

and LAS by removing isolated bundles from the original demand. The resulting

demand can be rationalized by a continuous and monotonic utility function. Put

differently, we show that the two notions of Full Substitutability are almost equiv-

alent in the following sense: for each utility function uf for which the induced

demand Df satisfies weak FS, weak LAD, and weak LAS, there is a corresponding

utility function ũf for which the induced demand D̃f satisfies FS, LAD, and LAS,

and such that D̃f selects from Df . The utility function can be chosen such that

the induced indirect utility is the same.

Proposition 1. Let uf satisfy weak FS, weak LAD, and weak LAS. Then there

is a utility function ũf that satisfies FS, LAD, and LAS such that the induced

indirect utility functions are the same

vf (p) = ṽf (p) for each p ∈ RΩf ,

and the induced demand is a selection from the original demand,

D̃f (p) ⊆ Df (p) for each p ∈ RΩf .

3 Results

3.1 The Lattice Theorem and the Rural Hospitals Theorem

As our first main result we establish that equilibrium prices in trading networks

form a lattice and that (modulo indifferences) for each firm the difference between

the number of signed upstream and downstream contracts is the same in each

equilibrium. The join and meet are the coordinate-wise maximum and minimum

of the two price vectors under consideration, i.e. the lattice is a sublattice of RΩ

with the usual partial order. These results extend results established by Hatfield

et al. (2013) for the case of transferable utility, and by Ostrovsky (2008); Hatfield

and Kominers (2012); Fleiner et al. (2016) for the case without transfers and with

strict preferences (for the solution concepts of chain-stability, stability resp. trail-

stability).

16



In the following, a competitive equilibrium for utility profile u = (uf )f∈F

is an arrangement [Ψ, p] ∈ 2Ω × RΩ such that for each f ∈ F and the demand

Df induced by uf we have Ψf ∈ Df (p). We call (Ψ, (pω)ω∈Ψ) the equilibrium

allocation induced by [Ψ, p]. We denote the set of equilibrium price vectors for u

by E(u) and define for each price vector p ∈ RΩ the (possibly empty) set E(u, p) :=

{Ψ ⊆ Ω : Ψf ∈ Df (p) for each f ∈ F} of sets of trades that support p as a

competitive equilibrium under u.

Theorem 1. Let u be a utility profile such that for each firm the induced demand

satisfies FS, LAD and LAS.

(i) Lattice Theorem: Let p, p′ ∈ E(u) be equilibrium prices. Then p̄, p ∈ RΩ

defined by

p̄ω := max{pω, p′ω}, p
ω

:= min{pω, p′ω},

are equilibrium prices.

(ii) Rural Hospitals Theorem: Let p, p′ ∈ E(u) be equilibrium prices. For

each Ψ ∈ E(u, p) there exists a Ψ′ ∈ E(u, p′) such that for each f ∈ F we

have |Ψ→f | − |Ψf→| = |Ψ′→f | − |Ψ′f→|.

The proof and all subsequent proofs of this section are in Appendix B. How-

ever, for the moment we give a sketch of the proof strategy and comment on the

challenges when generalizing results beyond transferable utility. Let p, p′ ∈ E(u)

be two equilibrium price vectors and consider the pairwise maximum p̄ ∈ RΩ (a

dual argument works for the pairwise minimum p). Suppose for the moment that

the demand for each firm is single-valued at p and at p′, i.e. each firm f has unique

optimal bundles of trades Ψf and Ψ′f at the equilibrium prices p and p′. The ar-

gument proceeds in two steps the first of which relies on the FS condition and the

second of which relies on LAD/LAS:

No excess supply : For each f ∈ F let Ψ̄f ∈ Df (p̄) be demanded at p̄. FS

applied at p and p̄ resp. at p′ and p̄ implies that

Ψ̄f→ ⊆ {ω ∈ Ψf→ : pω ≥ p′ω} ∪ {ω ∈ Ψ′f→ : p′ω > pω} (1)

{ω ∈ Ψ→f : pω ≥ p′ω} ∪ {ω ∈ Ψ′→f : p′ω > pω} ⊆ Ψ̄→f . (2)

Taking the union of (1) and of (2) over all firms shows that there is no excess

supply of trades at p̄:⋃
f∈F

Ψ̄f→ ⊆ {ω ∈ Ψ : pω ≥ p′ω} ∪ {ω ∈ Ψ′ : p′ω > pω} ⊆
⋃
f∈F

Ψ̄→f ,
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No excess demand : LAD/LAS imply that for each f ∈ F ,

|Ψ→f | − |Ψf→| ≥ |Ψ̄→f | − |Ψ̄f→|. (3)

Summing inequality (3) for all firms we obtain

0 =
∑
f∈F

|Ψ→f | − |Ψf→| ≥
∑
f∈F

|Ψ̄→f | − |Ψ̄f→| ⇒ |
⋃
f∈F

Ψ̄f→| ≥ |
⋃
f∈F

Ψ̄→f |.

Combining this inequality with the previous observation that there is no

excess supply shows that there is no excess demand and the market clears,⋃
f∈F

Ψ̄f→ =
⋃
f∈F

Ψ̄→f ,

and thus p̄ ∈ E(u).

Suppose now that we want to generalize the argument to the case of multi-valued

demand at the equilibrium prices. A natural idea is to use a perturbation argu-

ment: Continuity and monotonicity of utility in transfers allows us (see Lemma 1)

to perturb price vectors to obtain a single-valued selection from the demand cor-

respondence at prices p, p′ and p̄.

Lemma 3. Let uf be a utility function inducing a demand correspondence Df

satisfying weak FS, weak LAD and weak LAS. Let P ⊆ RΩf be finite. Then

there is a (single-valued) demand function D̃f : P → 2Ωf that selects from Df ,

i.e. D̃f (p) ∈ Df (p) for p ∈ P and satisfies FS, LAD and LAS.

Once perturbed, the argument above could be applied to the perturbed price

vectors. However, this line of argument has a flaw: There is no guarantee that

the trades demanded at the perturbed prices support an equilibrium,8 since not

every collection of demanded trades at an equilibrium price vector support these

prices as an equilibrium. While a naive perturbation argument fails to work, we

can use a more intricate perturbation argument. We perturb prices for each firm

individually. Importantly, we can rely on the observation (Lemma 2) that for each

firm f there are prices q (in general different for different firms) close to p where

the equilibrium set of trades Ψf is the unique demanded bundle of trades. This

8This is related to the observation that the set of competitive equilibrium price vectors for
our model can fail to be connected. See the example in Roth and Sotomayor (1988) for the case
of one-to-one matching with transfers which is a special case of our model. In contrast to this,
for the transferable utility case it is easy to show that the set of competitive equilibrium price
vectors is convex and thus, in particular, connected.
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allows to show that for each firm f there is a Ψ̄f ∈ Df (p̄) that satisfies (1), (2)

and (3) simultaneously (and a Ψf ∈ Df (p) that satisfies dual properties for the

pairwise minimum p). This is the content of the following lemma that is a main

ingredient in the proof of the theorem.

Lemma 4. Let uf be a utility function inducing a demand correspondence Df

satisfying FS, LAD and LAS. Let p, p′ ∈ RΩf and define p̄, p ∈ RΩf by

pω := max{pω, p′ω}, p
ω

:= min{pω, p′ω}.

Let Ψ ∈ Df (p) and Ψ′ ∈ Df (p′).

(i) There is a Ψ̄ ∈ Df (p̄) with

{ω ∈ Ψ→f : pω ≥ p′ω} ∪ {ω ∈ Ψ′→f : p′ω > pω} ⊆ Ψ̄→f ,

Ψ̄f→ ⊆ {ω ∈ Ψf→ : pω ≥ p′ω} ∪ {ω ∈ Ψ′f→ : p′ω > pω}.

(ii) There is a Ψ ∈ Df (p) with

Ψ→f ⊆ {ω ∈ Ψ→f : p′ω ≥ pω} ∪ {ω ∈ Ψ′→f : pω > p′ω},

{ω ∈ Ψf→ : p′ω ≥ pω} ∪ {ω ∈ Ψ′f→ : pω > p′ω} ⊆ Ψf→.

(iii) Ψ̄ and Ψ can be chosen such that

|Ψ→f | − |Ψf→| ≥ |Ψ→f | − |Ψf→| ≥ |Ψ̄→f | − |Ψ̄f→|.

With the lemma the proof of the theorem can be carried out as described

before. The lemma and the first part of the theorem fail to hold if we replace FS

by weak FS, as the following example shows.

Example 1 (cont.). Consider the set of trades Ω = {α1, α2, β1, β2} and firm f with

the utility function uf as defined in Example 1. The induced demand Df satisfies

weak FS as previously shown. Moreover, for each p ∈ RΩf and Ψ ∈ Df (p) we have

|Ψf→| = |Ψ→f |. Thus Df satisfies LAD and LAS. Consider four additional firms

s1, s2, b1, b2 with s1 = s(α1), s2 = s(α2), b1 = b(β1) and b2 = b(β2). Define utility
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functions for the additional firms as follows: For i = 1, 2 define

us
i

({αi}, pαi) = pαi ,

ub
i

({βi}, pβi) = 2− pβi ,

us
i

(∅) = ub
i

(∅) = 0.

Observe that the equilibria for u are [Ω, (1, 1, 1, 1)] and [{αi, βj}, (0, 0, 2, 2)] for

i, j = 1, 2. In particular, the vector (1, 1, 2, 2) is not an equilibrium price vector,

since Ds1(1, 1, 2, 2) = {{α1}} and Ds2(1, 1, 2, 2) = {{α2}} but Df (1, 1, 2, 2) =

{{α1, β1}, {α1, β2}, {α2, β1}, {α2, β2}}.

Similarly, the second part of the theorem fails if LAD (LAS) is replaced by

weak LAD (weak LAS) as the following example shows.

Example 2 (cont.). Consider the set of trades Ω = {ω1, ω2} and firm f with the

utility function uf as defined in Example 2. As observed before, Df satisfies FS,

weak LAD, (and, trivially, LAS), but not LAD. Consider a second firm f ′ with

f ′ = s(ω1) = s(ω2) with utility function uf
′

defined by

uf
′
({ωi}, pωi

) = pωi
, for i = 1, 2,

uf
′
({ω1, ω2}, p) = pω1 + pω2 − 1.5,

uf
′
(∅) = 0.

The induced demand satisfies FS and LAS (and, trivially, LAD). The set of equilib-

rium vectors is E(u) = {p : 1 ≤ pω1 = pω2 ≤ 1.5}∪{(2, 2)}. Each p ∈ E(u)\{(2, 2)}
is supported by {ω1} and by {ω2}. The equilibrium prices (2, 2) are supported by

{ω1, ω2}. An analogous example can be constructed to show that LAS and not

just weak LAS is necessary for the Rural Hospitals Theorem.

It is well-known that the theorem fails to hold without FS, even for transferable

utility. The following example shows that the first part of the theorem fails without

LAD. More generally, the example shows that without LAD the set of equilibria

can even fail to be a lattice with respect to the (weaker) partial ordering induced by

terminal sellers’ preferences. The example relies on the previous logic highlighted

in the discussion of Theorem 1: the FS condition can be used to show that there

is no excess supply of trades at the pair-wise maximum of two equilibrium price

vectors. However, without the LAD there can still be strict excess demand of

trades at the pairwise maximum (or at price vectors dominating it).

Example 3. Let Ω = {ω1, ω2, ω3}. Let b(ωi) = f for i = 1, 2, 3 and s(ωi) 6= s(ωj)
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for i 6= j. We let us(ωi)(ωi, pωi
) = pωi

, us(ωi)(∅) = 0 for i = 1, 2 and us(ω3)(ω3, pω3) =

−∞, us(b3)(∅) = 0. We define uf by

uf (∅) = 0,

uf ({ω1, ω2}, (pω1 , pω2)) = 2− pω1 − pω2 ,

uf ({ω1, ω2, ω3}, p) = 1− 1

1 + exp(−(pω1 + pω2 + pω3))
,

and uf (Ψ, ·) = −∞ else.

Consider the price vectors p = (0, 1, 0) and p′ = (1, 0, 0). Note that {ω1, ω2} ∈
Df (p) and {ω1, ω2} ∈ Df (p′). Moreover, we have Ds(ω1)(p) = {{ω1}} = Ds(ω1)(p′),

Ds(ω2)(p) = {{ω2}} = Ds(ω2)(p′) and Ds(ω3)(p) = {∅} = Ds(ω3)(p′). Thus p and

p′ are equilibrium price vectors. Suppose there is a p̄ that each terminal seller

weakly prefers to p and p′, i.e. vs(ω1)(p̄) ≥ max{vs(ω1)(p), vs(ω1)(p′)} = 1, vs(ω2)(p̄) ≥
max{vs(ω2)(p), vs(ω2)(p′)} = 1, and vs(ω3)(p̄) ≥ vs(ω3)(p) = vs(ω3)(p′) = us(ω3)(∅) =

0. Thus p̄ω1 ≥ 1 and p̄ω2 ≥ 1. But then Df (p̄) = {{ω1, ω2, ω3}}. Moreover,

Ds(ω3)(p̄) = {∅}. Thus, there is no such equilibrium price vector p̄.

To check that uf satisfies FS, first note that for each p ∈ RΩf , we have

uf ({ω1, ω2, ω3}, p) > 0 = uf (∅). Thus, at each p ∈ RΩf we have Df (p) ⊆
{{ω1, ω}, {ω1, ω2, ω3}} and the only possible FS violation could occur for p ≤ p′

with p′ω3
= pω3 and {ω1, ω2, ω3} ∈ Df (p). However, if uf ({ω1, ω2, ω3}, p) ≥

uf ({ω1, ω2}, p), then, as uf ({ω1, ω2, ω3}, p) − uf ({ω1, ω2}, p) is increasing in pω1

and in pω2 for each pω3 , we have uf ({ω1, ω2, ω3}, p′) ≥ uf ({ω1, ω2}, p′). Thus, FS

holds.9

3.2 Extremal equilibria

So far we have not considered whether competitive equilibria exist in our model

and, in principle, the lattice in Theorem 1 could be empty. Next we show that

under the additional assumption of bounded willingness to pay (we follow the

terminology of Fleiner et al., 2019), side-optimal equilibria exist, i.e. there exist

an equilibrium that is a most preferred equilibrium for all terminal buyers and an

equilibrium that is a most preferred equilibrium for all terminal sellers.

Bounded willingness to pay (BWP): The utility function uf satisfies

bounded willingness to pay if there exists a K ≥ 0 such that for all p ∈ RΩf and

Ψ ∈ Df (p) if ω ∈ Ψ→f then pω < K and if ω ∈ Ψf→ then pω > −K.

9The example violates the BWP and the BCV conditions that we consider in Section 3.2.
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The condition rules out for example the case that for a trade the seller would

never sell under any price and the buyer would buy under any price. BWP guar-

antees that equilibrium prices of trades realized in equilibrium are bounded. It

follows straightforwardly from the continuity of utility functions that equilibrium

prices of trades realized in equilibrium form a closed set. Thus, the set of equi-

librium prices of trades realized in equilibrium is compact. The existence of side-

optimal equilibria follows straightforwardly from this:

Theorem 2 (Existence of Extremal Equilibria). Under the assumption of

BWP, FS, LAD, LAS, there exists a seller-optimal equilibrium, i.e. a p̄ ∈ E(u)

such that for each terminal seller f ∈ F :

vf (p̄) ≥ vf (p) for each p ∈ E(u),

and a buyer-optimal equilibrium, i.e. a p ∈ E(u) such that for each terminal buyer

f ∈ F :

vf (p) ≥ vf (p) for each p ∈ E(u).

Remark 3. Under the assumptions of weak FS and BWP, Fleiner et al. (2019)

establish that equilibrium allocations are equivalent to trail-stable allocations.10

Thus, under BWP, FS, LAD, LAS there is a seller-optimal trail-stable allocation

and a buyer-optimal trail-stable allocation. In the case of no frictions, BWP is

implied by requiring, that uf (∅) > −∞ and utility functions have full range.

Fleiner et al. (2019) also introduce an alternative regularity condition,

called bounded compensating variations (BCV), which guarantees that utility of

individually rational allocations is bounded for all agents.

Bounded compensating variations: The utility function of firm f sat-

isfies bounded compensating variations if for each Ψ ⊆ Ω we have

inf
p∈RΨ:uf (Ψ,p)>uf (∅)

 ∑
ω∈Ψf→

pω −
∑

ω∈Ψ→f

pω

 > −∞.

10Fleiner et al. (2019) use the choice-language definition of weak FS. They show that the
choice-language definition is equivalent to the demand-language definition when the price space
is amended by infinite prices. Under BWP it is easy to see that the equivalence between the
choice-language and the demand-language versions of weak FS and of FS also holds on the
standard price space RΩ.
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Remark 4. The previous result also holds if BWP is replaced by BCV. See the full

working paper version (Schlegel, 2020) for the proof:

Theorem (Existence of Extremal Equilibria with BCV, Schlegel 2020).

Under the assumption of BCV, FS, LAD, LAS, there exists a seller-optimal equi-

librium and a buyer-optimal equilibrium.

3.3 Strategic Considerations

The existence of buyer-optimal equilibria established in Theorem 2, allows us

to obtain a group-incentive compatibility result.11 In the following, a domain

of utility profiles is a set U =×f∈F Uf where Uf is a set of (continuous and

monotonic) utility functions for firm f . A mechanism is a functionM : U → A.

A mechanism is (weakly) group-strategy-proof for a set of workers F ′ ⊆ F on

the domain U ′ ⊆ U if for each u, ũ ∈ U ′ with ũ−F
′

= u−F
′
, there exist a f ∈ F ′

with

uf (M(u)) ≥ uf (M(ũ)).

Theorem 2 allows us to define a class of focal mechanisms on the domain of

utility profiles satisfying BWP, FS, LAD and LAS: a buyer-optimal mechanism

maps to each utility profile a buyer-optimal equilibrium allocation.

To obtain a group-strategy-proofness results for terminal buyers for buyer-

optimal mechanisms, we have to restrict the domain. In the following a unit

demand utility function is a uf such that for the induced demand Df at each

p ∈ RΩf and Ψ ∈ Df (p) we have |Ψ→f | ≤ 1. For the case without transfers and

with strict preferences, analogous results are proved by Hatfield and Kominers

(2012) (for the case of acyclic networks and the solution concept of stability)

and Fleiner et al. (2016) (for arbitrary networks and the solution concept of trail-

stability).

Theorem 3 (Group-Strategy-Proofness). Each buyer-optimal mechanism is

group-strategy-proof for terminal buyers on the domain of utility profiles such that

terminal buyers’ utility functions satisfy Unit Demand and BWP and all other

firms’ utility functions satisfy BWP, FS, LAD and LAS.

In view of Proposition 1, we can extend the construction to profiles satisfying

BWP, weak (!) FS, weak LAD and weak LAS. For each such profile u there exists

a corresponding profile ũ satisfying BWP, FS, LAD and LAS such that the indirect

11In the following we talk about incentives for terminal buyers. A completely analogous result
also holds for terminal sellers.
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utility functions are the same for both profiles. The mechanism that assigns to each

profile u a buyer-optimal equilibrium allocation under a corresponding profile ũ is

group-strategy-proof for terminal buyers (since for terminal buyers (and terminal

sellers) the weak FS and the FS condition coincide), and the assigned allocations

are equilibrium allocations under u as well.

Corollary 1 (Group-Strategy-Proofness under weak FS). On the domain

of utility profiles such that terminal buyers’ utility functions satisfy Unit Demand

and BWP and all other firms’ utility functions satisfy BWP, weak FS, weak LAD

and weak LAS, there exists a group-strategy-proof mechanisms for terminal buyers

that implements a competitive equilibrium.

Remark 5. As noted in Remark 4, the existence of extremal equilibria can alter-

natively be proved with BWP replaced by BCV. Analogously, we can obtain a

group-strategy-proofness result with BWP replaced by BCV. The proof remains

unchanged in that case.

4 Applications

4.1 Two-sided Matching Markets

The results in the previous sections immediately apply to two-sided matching

markets. In this case, the results generalize previously known results for two-sided

matching markets in two directions: we provide a lattice result, a rural hospitals

theorem and a group-strategy-proofness result for markets with a) wealth effects

and frictions for both sides of the market b) the possibility that it is infeasible

for a hospital to hire certain groups of doctors. As remarked in Section 2.1, the

weak version of Full Substitutability is sufficient to obtain the results for two-sided

markets.

Instead of a set of firms, the economy now consists of a finite set of hospitals

H and a finite set of doctors D. Each hospital h has a utility function

uh : {(D′, p) : D′ ⊆ D, p ∈ RD′} → R ∪ {−∞} that assigns to each D′ ⊆ D

and price vector p ∈ RD′
a utility level. We extend uh to 2D × RD by letting

uh(D′, p) := uh(D′, (pd)d∈D′). We allow the utility function to take on a value of

−∞ to indicate that it is infeasible for the hospital to hire a particular group of

doctors. This allows us for example to incorporate institutional constraints such

as the “generalized interval constraints” characterized by Kojima et al. (2020b)

which specify a lower and an upper bound on the number of doctors a hospital
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can hire. We assume that uh(D′, p) = −∞ implies uh(D′, p′) = −∞ for each

p′ ∈ RD′
. We assume that there is at least one group of doctors D′ ⊆ D that

is feasible to hire, i.e. such that uh(D′, ·) > −∞. Moreover, we require that for

uh(D′, ·) 6= −∞, the utility function uh(D′, ·) is continuous and strictly decreasing

in prices. The utility function induces a demand correspondence Dh : RD ⇒ 2D

by Dh(p) := argmaxD′⊆Du
h(D′, p). We assume that doctors are gross substitutes

for hospitals. We only need to require the condition for price vectors where the

demand is single-valued.

Weak Gross Substitutability: For p, p′ ∈ RD with p ≤ p′, Dh(p) = {D′} and

Dh(p′) = {D′′} we have {d ∈ D′ : p′d = px} ⊆ D′′.

Moreover, we require the law of aggregate demand.

Law of Aggregate Demand: For p, p′ ∈ RD with p ≤ p′ and each D′ ∈ Df (p′)

there is a D̃ ∈ Df (p) with |D̃| ≥ |D′|.

Each doctor d has a utility function ud : H × R ∪ {∅} → R that is strictly

increasing and continuous in its second argument. We extend ud to H ∪{∅}×RH

by letting ud(h, p) := ud(h, phd) and ud(∅, p) := ud(∅).
A matching is a function µ : H × D → 2D ∪ H with µ(h) ⊆ D for each

h ∈ H and µ(d) ∈ H ∪ {∅} for each d ∈ D such that d ∈ µ(h) if and only if

h = µ(d). A competitive equilibrium (µ, p) is a pair consisting of a matching

µ, and a price vector p ∈ RH×D such that for each h ∈ H and ph := (phd)d∈D we

have µ(h) ∈ Dh(ph) and for each d ∈ D and pd = (phd)h∈H we have ud(µ(d), pd) =

maxh∈H∪{∅} u
d(h, pd). The following is an immediate consequence of Theorems 1, 2

and 3 and generalizes results of Hatfield et al. (2013, 2014) for the transferable

utility model.12

Corollary 2. For each matching market such that doctors are weak gross substi-

tutes for hospitals and the law of aggregate demand holds the following is true:

(i) Let p, p′ ∈ RH×D be equilibrium prices. Then p̄, p ∈ RH×D defined by

p̄hd = max{phd, p′hd}, p
hd

= min{phd, p′hd}

12It is important that we use the ”multi-valued” version of the Law of Aggregate Demand.
Otherwise, Example 3 demonstrates that the lattice result can fail. An example similar to
Example 2 but with two instead of one seller demonstrates that the rural hospitals theorem can
fail.
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are equilibrium prices.

(ii) Let p, p′ ∈ RH×D be equilibrium prices. For each matching µ supporting p as

an equilibrium (µ, p) there is a matching µ′ supporting p′ as an equilibrium

(µ′, p′) such that

(a) a doctor is unemployed in µ if and only if he is unemployed in µ′, i.e.

µ(d) = ∅ ⇔ µ′(d) = ∅, for each d ∈ D,

(b) each hospital hires the same number of doctors in µ and µ′, i.e. |µ(h)| =
|µ′(h)| for each h ∈ H.

(iii) If utility functions satisfy, moreover, BWP, then there exists a worker-

optimal equilibrium allocation and a hospital-optimal equilibrium allocation.

(iv) The worker-optimal mechanism is group-strategy-proof for workers on the

domain of utility profiles such that workers’ utility functions satisfy Unit

Supply and BWP and hospitals’ utility functions satisfy BWP, weak GS, and

LAD.

Proof. We can construct a corresponding trading network with Ω = H ∪ D and

ũh(Ψ, p) = uh({d : (h, d) ∈ Ψ}, p) for Ψ ⊆ Ωf and ũd({(h, d)}, phd) = ud(h, phd),

ũd(∅) = ud(∅) and ũd(Ψ, ·) = −∞ if Ψ ⊆ Ωf with |Ψ| > 1. The weak gross

substitutes condition then corresponds to the weak SSS condition. Weak SSS is

equivalent to SSS as shown in Appendix D of Fleiner et al. (2019) (SSS corresponds

to the conjunction of the two properties that Fleiner et al. (2019) call ”Increasing

Price Full Substitutability for Sales” and ”Decreasing Price Full Substitutability

for Purchases”). Since the market is two-sided, SSS and FS are equivalent. The

corollary follows from Theorems 1, 2 and 3.

4.2 Exchange economies with uniform pricing

Next, we apply the model to the exchange of indivisible objects. The result extend

results of Gul and Stacchetti (1999) and Hatfield et al. (2013) (see the discussion

in their Section IV.B) to imperfectly transferable utility. As in Gul and Stacchetti

(1999), we maintain the assumption that the market is cleared through transfers of

a perfectly divisible good and there is no constraint on the amount of the divisible

good an agent can consume. Moreover, negative quantities of the divisible good

can be consumed. However, we do not assume that utility in the divisible good is

quasi-linear. Similar assumption are standard in the object allocation literature

with general preferences, see for example Morimoto and Serizawa (2015).
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In the following, we let X be a finite set of heterogeneous indivisible objects.

From now on, we use the term agents in lieu of firms. Agents have utility functions

over bundles of objects and transfers, ũf : 2X ×R→ R such that for each Y ⊆ X,

ũf (Y, ·) is continuous, strictly increasing and has full range,13 and for each t ∈ R
and Y ⊆ Y ′ ⊆ X, we have ũf (Y, t) ≤ ũf (Y ′, t). Each agent f is endowed with a

bundle of objectsXf ⊆ X such thatXf∩Xf ′ = ∅ for f 6= f ′ and
⋃
f∈F Xf = X. An

exchange economy is a pair (ũ, (Xf )f∈F ) of utility functions and endowments for

each agent. We define for each f ∈ F a demand correspondence D̃f : RX
+ ×2X ⇒

2X by

D̃f (p,Xf ) := argmaxY⊆X ũ
f

Y, ∑
x∈Xf\Y

px −
∑

x∈Y \Xf

px

 .

Remark 6. In contrast to quasi-linear utility, demand can depend on the endow-

ment, i.e. in general D̃f (p,Xf ) 6= D̃f (p, X̃f ) for Xf 6= X̃f .

We assume that objects are gross substitutes for agents.14

Gross Substitutability (GS): For p, p′ ∈ RX
+ with p ≤ p′, if p′x = px for

x ∈ Xf , then for each Y ′ ∈ D̃f (p′, Xf ) there exists a Y ∈ D̃f (p,Xf ) such

that {x ∈ Y : p′x = px} ⊆ Y ′, and if p′x = px for x ∈ X \ Xf , then for each

Y ∈ D̃f (p,Xf ) there exists a Y ′ ∈ D̃f (p′, Xf ), such that {x ∈ Y : p′x = px} ⊆ Y ′.

Moreover, we assume the law of aggregate demand:

Law of Aggregate Demand (LAD): For p, p′ ∈ RX
+ with p ≤ p′, if

p′x = px for x ∈ Xf , then for each Y ′ ∈ D̃f (p′, Xf ) there exists a Y ∈ D̃f (p,Xf ),

and if p′x = px for x ∈ X \ Xf , then for each Y ∈ D̃f (p,Xf ) there exists a

Y ′ ∈ D̃f (p′, Xf ), such that |Y | ≥ |Y ′|.

Remark 7. We assume that there is only one copy of each object. More generally,

we can extend the model to multiple units of the same object by creating identical

copies of objects. In this case we can use the strong substitutes condition (Baldwin

and Klemperer, 2019) that requires that objects are gross substitutes for agents if

each of the identical copies of an object is treated as a separate object. The law

13This assumption is only necessary for the existence of side-optimal allocations and otherwise
redundant.

14As in Section 3.1 and in contrast to Section 4.1 we need a multi-valued version of gross
substitutability to obtain corresponding results for exchange economies. This is because gross
substitutability between a good that an agent owns and one that he does not own corresponds
to cross-side complementarity in a trading network.
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of aggregate demand can be generalized in an analogous way. One can show that

under the assumption of strong substitutes and the generalized law of aggregate

demand, an equilibrium with uniform prices (identical copies of the same good have

the same price) exists whenever an equilibrium with non-uniform prices (identical

copies of the same good can have different prices) exists. All subsequent results

generalize to this setting.

An allocation of objects is a partition Y = (Yf )f∈F with Yf ⊆ X and

Yf ∩ Yf ′ = ∅ for f 6= f ′. A competitive equilibrium of the exchange economy

(ũ, (Xf )f∈F ) is a pair [Y, p] where Y is an allocation of objects and p ∈ RX
+ such

that for each f ∈ F we have Yf ∈ D̃f (p,Xf ).

For each exchange economy (ũ, (Xf )f∈F ), a corresponding trading network can

be defined as follows: The set of trades is

Ω := {(x, f1, f2) ∈ X × F × F : x ∈ Xf1 , f2 6= f1}

where for ω = (x, f1, f2) ∈ Ω we have s(ω) = f1 6= f2 = b(ω). We write x(ω) for

the object involved in trade ω. For Ψ ⊆ Ωf and p ∈ RΩf define

Xf (Ψ) := {x(ω) : ω ∈ Ψ→f}∪Xf\{x(ω) : ω ∈ Ψf→}, pf (Ψ) :=
∑

ω∈Ψf→

pω−
∑

ω∈Ψ→f

pω.

Utility functions are induced by utility functions over bundles of objects and trans-

fers; for Ψ ⊆ Ωf and p ∈ RΩf

+ we let

uf (Ψ, p) =


ũf (Xf (Ψ), pf (Ψ)), if {x(ω) : ω ∈ Ψf→} ⊆ Xf and x(ω) 6= x(ω′)

for ω, ω′ ∈ Ψ with ω 6= ω′,

−∞, else.

To apply the results from the previous sections, we also extend the utility functions

to negative prices; for Ψ ⊆ Ωf and p ∈ RΨ \ RΨ
+ we let

uf (Ψ, p) := uf (Ψ, (max{pω, 0})ω∈Ψ) +
∑

ω∈Ψf→

min{pω, 0} −
∑

ω∈Ψ→f

min{pω, 0}.

Remark 8. Extending utility for negative prices in this way implies (see the proof

of Lemma 5) that the induced demand Df satisfies FS on RΩf whenever it satisfies

FS on RΩf

+ . Moreover, is easy to see that for each Ψ ⊆ Ωf with uf (Ψ, ·) > −∞, uf

is continuous (as uf is continuous on RΨ
+, and min and max are continuous) and

monotonic on RΨ. This will allow us to apply the results from previous sections.

28



Equilibrium prices in the trading network are non-negative by our assumption

that ũf (Y, t) ≤ ũf (Y ′, t) for t ∈ R and Y ⊆ Y ′ ⊆ X: Let p ∈ RΩ and define

Ω− := {ω ∈ Ω : pω < 0}. First note that for Ψ ∈ Df (p) we have Ψ ∩ Ω−f→ = ∅:
Define p+ ∈ RΩ by p+

ω := max{pω, 0} for ω ∈ Ωf→ and p+
ω := pω else. Note that

Xf (Ψ) ⊆ Xf (Ψ \ Ω−f→). Thus, by monotonicity

uf (Ψ, p) ≤ uf (Ψ, p+) ≤ uf (Ψ \ Ω−f→, p
+) = uf (Ψ \ Ω−f→, p).

As Ψ ∈ Df (p), all inequalities hold with equality, in particular, uf (Ψ, p) =

uf (Ψ, p+) and therefore, by monotonicity, Ψ ∩ Ω−f→ = ∅. By a similar argument,

if Ψ ∈ Df (p) and Ω−→f 6= ∅, then Ψ ∩ Ω−→f 6= ∅. Thus, for p ∈ RΩ \ RΩ
+ there is

excess demand and for each p ∈ E(u), we have pω ≥ 0 for each ω ∈ Ω.

The gross substitutes condition for ũf corresponds to the full substitutability

condition for uf and the law of aggregate demand for ũf implies the laws of

aggregate demand and supply for uf .

Lemma 5. If ũf satisfies GS, then uf satisfies FS. If ũf satisfies LAD, then uf

satisfies LAD and LAS.

In general, different trades involving the same object can be priced differently.

In the following, we call p ∈ E(u) a competitive equilibrium of the trading

network with uniform pricing, if for ω, ω′ ∈ Ω, with x(ω) = x(ω′) we have

pω′ = pω. Trades in the same object are perfect substitutes to each other for the

seller of the object, and he will sell the object to a buyer who is offering the highest

price. Thus, we can always construct an equilibrium with uniform pricing from

an equilibrium with non-uniform pricing by setting the price of the non-realized

trades to the highest price for the involved object over all trades in the trading

network. Similarly, a competitive equilibrium in the exchange economy, induces

a competitive equilibrium with uniform pricing in the trading network. The fol-

lowing theorem can be interpreted as a generalization of Theorem 10 of Hatfield

et al. (2013).

Proposition 2. (i) If p ∈ RΩ
+ are equilibrium prices in the trading network in-

duced by an exchange economy, then (maxω∈Ω,x=x(ω) pω)x∈X ∈ RX
+ are equi-

librium prices in the exchange economy.

(ii) If p ∈ RX
+ are equilibrium prices in an exchange economy, then (px(ω))ω∈Ω ∈

RΩ
+ are equilibrium prices in the trading network induced by the exchange

economy.
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Proof. Let [Ψ, p] be an equilibrium in the induced trading network. Let q :=

(maxω∈Ω,x=x(ω) pω)x∈X and consider the allocation [(Xf (Ψ))f∈F , q] in the exchange

economy. By construction, we have pω ≤ qx(ω) for each ω /∈ Ψ and pω = qx(ω) for

ω ∈ Ψ. Thus

Ψf ∈ Df (p)⇒ Xf (Ψ) ∈ D̃f (q,Xf )

and [(Xf (Ψ))f∈F , q] is an equilibrium of the exchange economy.

For the second part, let [Y, p] be an equilibrium of the exchange economy.

Define q := (px(ω))ω∈Ω and consider the set of trades Ψ ⊆ Ω defined by

Ψ := {ω ∈ Ω : x(ω) ∈ Yb(ω) ∩Xs(ω)}.

By construction, we have

Yf ∈ D̃f (p,Xf )⇒ Ψf ∈ Df (q).

Therefore [Ψ, q] is an equilibrium of the induced trading network.

Proposition 2 and the previous results for trading networks imply the following:

Corollary 3. Let (ũ, (Xf )f∈F ) be an exchange economy such that objects are gross

substitutes for agents and the law of aggregate demand holds.

(i) Lattice Theorem: Let p, p′ ∈ RX
+ be equilibrium prices. Then the price

vectors p̄, p ∈ RX
+ defined by

p̄x := max{px, p′x}, p
x

:= min{px, p′x},

are equilibrium equilibrium prices.

(ii) Rural Hospitals Theorem: Let p, p′ be equilibrium prices. For each

equilibrium [Y, p] there exists an assignment Y ′ such that for each f ∈ F

|Yf | = |Y ′f |, i.e. f consumes the same number of objects in Y and Y ′.

(iii) Existence of Extremal equilibria: There exist equilibrium price vectors

p̄, p ∈ RX
+ , such that for each equilibrium price vector p ∈ RX

+ and x ∈ X we

have

p
x
≤ px ≤ p̄x.

Remark 9. Throughout this section, we have made the assumption that utility

depends on the total amount of the divisible good, but not on how transfers of
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the divisible good are obtained through different trades. For the induced trading

network this means that utility satisfies the no frictions assumption. Frictions for

individual trades in the trading network can lead to non-uniform pricing. Suppose

for example that an agent is endowed with an object and faces different transac-

tions costs depending on whom he is selling the object to. In this case, he might

have an incentive to sell the object to a buyer who is offering a lower price, if trans-

action costs with this buyer are lower than with other buyers who offer a higher

price. Thus, Proposition 2 can fail to hold in the presence of frictions. A slightly

more general version of the theorem can be obtained, where it is assumed that

utility is symmetric in transfers from different trades with the same objects, but

transfers from trades with different objects can enter the utility asymmetrically.

In this case, trades in different objects can contain different frictions, however,

trades of the same objects are perfect substitutes for each other.

A Proofs for Section 2.1

A.1 Proof of Lemma 2

Proof. First we show the first and second part of the lemma. Let p, p′ ∈ RΩf

such that pω = p′ω for ω ∈ Ωf→ and pω ≤ p′ω for ω ∈ Ω→f . Let Ψ′ ∈ Df (p′).

By upper hemi-continuity there exists an ε > 0 such that for ‖p − q‖ < ε we

have Df (q) ⊆ Df (p). By NIB, there is a q′ with ‖q′ − p′‖ < ε/2 and Df (q′) =

{Ψ′}. Let q := p + q′ − p′. By construction ‖q − p‖ = ‖q′ − p′‖ < ε/2 < ε

and therefore Df (q) ⊆ Df (p). By upper hemi-continuity there exists an ε′ > 0

such that for r′ with ‖r′ − q′‖ < ε′ we have Df (r′) = {Ψ′} = Df (q′). We may

choose ε′ < ε/2. By the second part of Lemma 1, there exists a p̃ ∈ RΩf with

‖p̃ − q‖ < ε′ such that demand is single-valued, Df (p̃) = {Ψ} for a Ψ ⊆ Ωf . As,

‖p̃−p‖ ≤ ‖p̃−q‖+‖p−q‖ < ε′+ ε/2 < ε, we have Ψ ∈ Df (p). Let p̃′ := q′+ p̃−q.
As ‖p̃′ − q′‖ = ‖p̃ − q‖ < ε′, we have Df (p̃′) = {Ψ′}. By construction, we have

p̃′ = q′ + p̃ − q = q′ + p̃ − (p + q′ − p′) = p′ + p̃ − p and p̃ = p + p̃ − p. Since

pω = p′ω for ω ∈ Ωf→ and pω ≤ p′ω for ω ∈ Ω→f , this implies p̃ω = p̃′ω for ω ∈ Ωf→

and p̃ω ≤ p̃′ω for ω ∈ Ω→f . By weak FS applied to the vectors p̃ and p̃′ and the

fact that demand at both price vectors is single-valued with Df (p̃) = {Ψ} and

Df (p̃′) = {Ψ′} we obtain

{ω ∈ Ψ→f : pω = p′ω} ⊆ Ψ′→f , Ψ′f→ ⊆ Ψf→.
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If, moreover, weak LAD holds, then

|Ψ→f | − |Ψf→| ≥ |Ψ′→f | − |Ψ′f→|.

A completely analogous argument shows the second part of the FS, resp. the LAS.

To show the third part of the lemma, let p ∈ RΩf and Ψ ∈ Df (p). We show

that for each ε > 0 there is a q ∈ RΩf with ‖p − q‖ < ε such that Df (q) = {Ψ}.
Let ε > 0. First, consider a vector ε̃ ∈ RΩf with ‖ε̃‖ < ε such that ε̃ω > 0 for

ω ∈ Ω→f \ Ψ, ε̃ω < 0 for ω ∈ Ωf→ \ Ψ, and ε̃ω = 0 for ω ∈ Ψ. By monotonicity

of uf , for each Ξ ⊆ Ωf with Ξ * Ψ we have uf (Ξ, p + ε̃) < uf (Ξ, p), and we have

uf (Ψ, p + ε̃) = uf (Ψ, p). Thus, Df (p + ε̃) ⊆ 2Ψ and Ψ ∈ Df (p + ε̃). By upper

hemi-continuity, there is a ε′ > 0 such that for q ∈ RΩf with ‖q − (p + ε̃)‖ < ε′

we have Df (q) ⊆ Df (p + ε̃). We may choose ε′ < ε − ‖ε̃‖. By the second part of

Lemma 1, there is a q ∈ RΩf with ‖q − (p + ε)‖ < ε′ such that demand is single-

valued, |Df (q)| = 1, and we may choose it such that qω ≤ pω+ ε̃ω for ω ∈ Ω→f and

qω ≥ pω + ε̃ω for ω ∈ Ωf→. We show that for the unique Ξ ⊆ Ωf with Df (q) = {Ξ}
we have Ξf→ = Ψf→. An analogous argument shows that Ξ→f = Ψ→f .

Let r ∈ RΩf with rω = qω for ω ∈ Ω→f and rω = pω + ε̃ω for ω ∈ Ωf→.

By the first part of the CSC condition applied to vectors p + ε̃ (in the role of

p′) and r (in the role of p), there is a Φ ∈ Df (r) such that Ψf→ ⊆ Φf→. Since

‖r− (p+ ε̃)‖ ≤ ‖q− (p+ ε̃)‖ < ε′, we have Df (r) ⊆ Df (p+ ε̃) ⊆ 2Ψ. Thus, Φ ⊆ Ψ

and, by the previous observation that Ψf→ ⊆ Φf→, we have Φf→ = Ψf→. By LAS

applied to prices r (in the role of p′) and q (in the role of p) we have

|Ξf→| − |Ξ→f | ≥ |Φf→| − |Φ→f |. (4)

Since ‖q − (p + ε̃)‖ < ε′, we have Df (q) ⊆ Df (p + ε̃) ⊆ 2Ψ. Thus, Ξ ⊆ Ψ and,

by the previous observation that Ψf→ = Φf→, we have |Ξf→| ≤ |Ψf→| = |Φf→|.
Together with Inequality (4) this implies |Ξ→f | ≤ |Φ→f |. By the second part of

the CSC condition applied to prices r (in the role of p′) and q (in the role of p) we

have Φ→f ⊆ Ξ→f . Together with the previous inequality this implies Φ→f = Ξ→f .

Furthermore, together with Inequality (4), this implies |Ξf→| ≥ |Φf→|, and, as

Φf→ = Ψf→, we have |Ξf→| ≥ |Ψf→|. As observed previously, Ξ ⊆ Ψ. Together

with the previous inequality this implies Ξf→ = Ψf→.

A.2 Proof of Proposition 1

The proof uses the following lemma which will also be useful subsequently.
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Lemma A.1. Let uf be a continuous and monotonic utility function inducing a

demand correspondence Df . For each p, p′ ∈ RΩf and Ψ′ ⊆ Ωf with pω ≤ p′ω for

ω ∈ Ωf→ \ Ψ′f→, pω ≥ p′ω for ω ∈ Ψ′f→, pω ≥ p′ω for ω ∈ Ω→f \ Ψ′→f and pω ≤ p′ω

for ω ∈ Ψ′→f :

(i) If Df satisfies weak FS, weak LAD and weak LAS, then Df (p′) = {Ψ′}
implies Ψ′ ∈ Df (p).

(ii) If Df satisfies FS, LAD and LAS, then Ψ′ ∈ Df (p′) implies Ψ′ ∈ Df (p).

Proof. We first prove the first part. Let Df satisfy weak FS, weak LAD and weak

LAS and Df (p′) = {Ψ′}. By monotonicity of uf it is without loss of generality

to assume that p′ω = pω for ω ∈ Ωf \ Ψ′ (replacing p′ω with pω for ω ∈ Ωf \ Ψ′

does not change the utility for trades Ψ′ while it weakly decreases the utility for

any other set of trades). By upper hemi-continuity of Df , it suffices to show that

for each ε > 0 there is a q ∈ RΩf with ‖p − q‖ < ε such that Ψ′ ∈ Df (q). Let

ε > 0. By upper hemi-continuity of Df there is a ε′ > 0 such that for q′ ∈ RΩf

with ‖p′ − q′‖ < ε′ we have Df (q′) = {Ψ′} = Df (p′). Define p̃ ∈ RΩf such that

p̃ω :=

p′ω, if ω ∈ Ωf→

pω, if ω ∈ Ω→f .

By the second part of Lemma 1, there is a r ∈ RΩf with ‖r − p̃‖ < min{ ε
2
, ε

′

2
}

and a Ψ̃ ⊆ Ωf such that Df (r) = {Ψ̃}. By upper hemi-continuity of Df there

is a ε̃ > 0 such that for ‖q̃ − r‖ < ε̃ we have Df (q̃) = {Ψ̃} = Df (r). We may

choose ε̃ < min{ ε
2
, ε

′

2
}. By the second part of Lemma 1, there is a q ∈ RΩf with

‖(p+ (r − p̃))− q‖ < ε̃ and a Ψ ⊆ Ωf such that Df (q) = {Ψ}. Let q̃ := p̃+ q − p
and q′ := p′+q−p. By construction we have ‖q′−p′‖ = ‖q−p‖ ≤ ‖(p+(r− p̃))−
q‖+ ‖r− p̃‖ < ε̃+ min{ ε

2
, ε

′

2
} < min{ε, ε′}. Thus Df (q′) = {Ψ′}. By construction,

we have ‖r − q̃‖ = ‖r − (p̃ + q − p)‖ < ε̃ and therefore Df (q̃) = {Ψ̃} = Df (r).

Applying the weak CSC condition to vectors q̃ and q′ (note that by construction

we have q′ω = q̃ω for ω ∈ Ωf→) we have Ψ′f→ ⊆ Ψ̃f→. Applying the weak SSS

condition to vectors q̃ and q′ (recall that we have WLOG assumed that p′ω = pω

for ω ∈ Ωf \Ψ′ and therefore have p′ω = p̃ω = pω and q′ω = q̃ω = qω for ω ∈ Ωf \Ψ′),

we have Ψ̃→f ⊆ Ψ′→f . Applying the weak LAD to vectors q̃ and q′ it follows that

Ψ̃ = Ψ′.

Applying the weak CSC, condition to vectors q and q̃ (note that by construction

we have qω = q̃ω for ω ∈ Ω→f ) we have Ψ̃→f ⊆ Ψ→f . Applying the weak SSS

condition to vectors q and q̃ (recall that we have q′ω = q̃ω = qω for ω ∈ Ωf \ Ψ′ =
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Ωf \ Ψ̃) we, moreover, have Ψf→ ⊆ Ψ̃f→. Applying the weak LAS to vectors q and

q̃ it follows that Ψ̃ = Ψ.

The second part of the lemma follows from the first as follows: By Lemma 2,

there is for each ε > 0 a q′ ∈ RΩf with ‖p′ − q′‖ < ε such that Df (q′) = {Ψ′}.
By the first part of the lemma applied to vectors q′ and q := p + q′ − p′ we have

Ψ′ ∈ Df (q). Thus for each ε > 0 there is a q ∈ RΩf with ‖p − q‖ < ε and

Ψ′ ∈ Df (q). Thus, by upper hemi-continuity, Ψ′ ∈ Df (p).

Proof. We first define the demand D̃f and show that it is a selection from Df .

Then we rationalize it by a continuous and monotonic utility function that induces

the same indirect utility. Afterwards we show that it satisfies FS, LAD and LAS.

For each Ψ ⊆ Ωf , consider the (possibly empty) set of price vectors p such that

Ψ is the unique demanded bundle at p:

PΨ := {p ∈ RΩf : Df (p) = {Ψ}}.

Let P̄Ψ be the (topological) closure of PΨ. We let

D̃f (p) := {Ψ ⊆ Ωf : p ∈ P̄Ψ}.

By upper hemi-continuity of Df , for each Ψ ⊆ Ωf and p ∈ P̄Ψ we have Ψ ∈ Df (p).

Thus D̃f (p) ⊆ Df (p) for each p ∈ RΩf .

Claim 1. For each Ψ ⊆ Ωf , let P pr
Ψ := {(pω)ω∈Ψ : p ∈ PΨ} be the projection of PΨ

to RΨ and P pr
Ψ its (topological) closure. Then there is a continuous and monotonic

utility function ũf (Ψ, ·) such that

ũf (Ψ, p) = uf (Ψ, p), if p ∈ P pr
Ψ , (5)

ũf (Ψ, p) < uf (Ψ, p), if p /∈ P pr
Ψ . (6)

Proof of Claim 1. Denote for each p ∈ RΨ by d(p, P pr
Ψ ) := infq∈P pr

Ψ
‖p − q‖ the

distance from p to P pr
Ψ . We define

ũf (Ψ, p) =

uf (Ψ, p)− d(p, P pr
Ψ ), if PΨ 6= ∅,

−∞, if PΨ = ∅.

Suppose PΨ 6= ∅. The function ũf (Ψ, ·) is continuous since uf (Ψ, ·) is continuous

and the distance to a set in RΨ is continuous. Moreover, d(p, P pr
Ψ ) ≥ 0 with
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equality if and only if p ∈ P pr
Ψ . Thus (5) and (6) hold. It remain to show that

ũf (Ψ, ·) is monotonic. Let p, p′ ∈ RΨ with p 6= p′ such that p′ω = pω for ω ∈ Ψf→

and pω ≤ p′ω for ω ∈ Ψ→f (an analogous argument works for downstream trades).

For each ε > 0 there is q′ ∈ P pr
Ψ such that |‖p′ − q′‖ − d(p′, P pr

Ψ )| < ε. Let r′ ∈ Pψ
such that r′|Ψ = q′. Let q := p− (p′− q′) and define r ∈ RΩf by rω = qω for ω ∈ Ψ

and rω = r′ω for ω /∈ Ψ. Since r′ ∈ PΨ we have Df (r′) = {Ψ} and thus, by the first

part of Lemma A.1, we have Ψ ∈ Df (r). More generally, by upper hemi-continuity

of Df there is a ε′ > 0 such that for each s′ ∈ RΩf with ‖s′ − r′‖ < ε′ we have

Df (s′) = {Ψ}. Thus, by the first part of Lemma A.1, for each s ∈ RΩf with

‖s−r‖ < ε′ we have Ψ ∈ Df (s). By the second part of Lemma 1, this implies that

for each ε̃ > 0 there is a s ∈ PΨ with ‖s−r‖ < ε̃. Therefore q = r|Ψ ∈ (P̄Ψ)pr ⊆ P pr
Ψ .

Thus, d(p, P pr
Ψ ) = d(p, P pr

Ψ ) ≤ ‖p− q‖ = ‖p′− q′‖ < d(p′, P pr
Ψ ) + ε. Since this holds

for any ε > 0 we have d(p, P pr
Ψ ) ≤ d(p′, P pr

Ψ ). Thus, ũf (Ψ, p) > ũf (Ψ, p′).

Claim 2 implies that D̃f can be rationalized by a continuous and monotonic

utility function that induces the same indirect utility: By the second part of

Lemma 1, for each p ∈ RΩf there is a Ψ ∈ Df (p) with p ∈ P̄Ψ. Since p ∈ P̄Ψ

we have p|Ψ ∈ (P̄Ψ)pr ⊆ P pr
Ψ and therefore ṽf (p) = ũf (Ψ, p) = uf (Ψ, p) = vf (p).

Next we show that ũf rationalizes D̃f by showing that ũf (Ψ, p) = ṽf (p) for Ψ ∈
D̃f (p) and ũf (Ψ, p) < ṽf (p) for Ψ /∈ D̃f (p). Let Ψ ⊆ Ωf . If Ψ ∈ D̃f (p), then

p ∈ P̄Ψ and Ψ ∈ Df (p). Since p ∈ P̄Ψ we have p|Ψ ∈ (P̄Ψ)pr ⊆ P pr
Ψ and thus

ũf (Ψ, p) = uf (Ψ, p) = vf (p) = ṽf (p). If Ψ /∈ D̃f (p) and Ψ /∈ Df (p), then

ũf (Ψ, p) ≤ uf (Ψ, p) < vf (p) = ṽf (p). If Ψ ∈ Df (p) \ D̃f (p), then we show

p|Ψ /∈ P pr
Ψ and thus ũf (Ψ, p) < uf (Ψ, p) = vf (p) = ṽf (p): By definition of D̃f we

have p /∈ P̄Ψ. Thus, there is a ε > 0 such that for each q ∈ RΩf with ‖p− q‖ < ε

we have q /∈ P̄Ψ. Let q ∈ RΩf such that ‖p − q‖ < ε and pω = qω for ω ∈ Ψ,

pω > qω for ω ∈ Ωf→ \Ψ and pω < qω for ω ∈ Ω→f \Ψ. Since Ψ ∈ Df (p) and uf is

monotonic, we have Df (q) ⊆ 2Ψ. By Lemma 1, we can find a ε− ‖p− q‖ > ε̃ > 0

such that for ‖r − q‖ < ε̃ we have Df (r) ⊆ Df (q) ⊆ 2Ψ. Now suppose for the

sake of contradiction that p|Ψ = q|Ψ ∈ P pr
Ψ . Then, there is a r ∈ PΨ such that

‖p|Ψ − r|Ψ‖ < ε̃. Since r ∈ PΨ, we have Df (r) = {Ψ} and thus, in particular,

uf (Ψ, r) > uf (Ψ̃, r) for each Ψ̃ $ Ψ. Now define r̃ ∈ RΩf by r̃ω = rω for ω ∈ Ψ

and r̃ω = qω for ω /∈ Ψ. By construction, we have ‖r̃ − q‖ = ‖r|Ψ − p|Ψ‖ < ε̃.

Thus Df (r̃) ⊆ 2Ψ. Moreover, uf (Ψ, r̃) = uf (Ψ, r) > uf (Ψ̃, r) = uf (Ψ̃, r̃) for each

Ψ̃ $ Ψ. Thus Df (r̃) = {Ψ} and r̃ ∈ PΨ. However, ‖p− r̃‖ ≤ ‖p− q‖+ ‖q − r̃‖ <
‖p− q‖+ ε̃ < ε and therefore r̃ /∈ P̄Ψ, a contradiction.

Next we show that that D̃f satisfies FS, LAD and LAS. By Lemma 2 it suffices
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to show that D̃f satisfies NIB, weak FS, weak LAD and weak LAS. Let Ψ ⊆ Ωf .

Since P̄Ψ is the closure of PΨ there is for each p ∈ P̄Ψ and ε > 0 a q ∈ PΨ with

‖p − q‖ < ε. By definition of PΨ and D̃f we have D̃f (q) = Df (q) = {Ψ}. Thus

D̃f satisfies NIB. For the other properties, recall that Df satisfies weak FS, weak

LAD and weak LAS. Thus, it suffices to show that for each p ∈ RΩf we have

|D̃f (p)| = 1 if and only if |Df (p)| = 1. Let Ψ ⊆ Ωf with p ∈ P̄Ψ. If p ∈ PΨ, then

D̃f (p) = Df (p) = {Ψ}. If p ∈ P̄Ψ \ PΨ, then p is on the boundary of PΨ and

for each ε > 0 there is a q ∈ RΩf \ P̄Ψ with ‖p − q‖ < ε. By the second part of

Lemma 1, we may choose q such that |Df (q)| = 1. Since Ω is finite, this implies

that there is a Ψ̃ 6= Ψ such that for each ε > 0 there is a q ∈ RΩf \ P̄Ψ with

‖p− q‖ < ε and Df (q) = {Ψ̃}. Thus p ∈ P̄Ψ̃ for Ψ̃ 6= Ψ. Hence |D̃f (p)| > 1. Thus,

|D̃f (p)| = 1 if and only if |Df (p)| = 1 as desired.

B Proofs for Section 3

Proof of Lemma 3

Proof. By Lemma 1, there exists an ε0 > 0 such that for each p ∈ P and every q

with ‖q − p‖ < ε0 we have Df (q) ⊆ Df (p). Let P = {p1, . . . , pn}. By Lemma 1,

there is a ε1 ∈ RΩf with ‖ε1‖ < ε0 such that |Df (p1 + ε1)| = 1 and Ψ ∈ Df (p1)

for the unique Ψ ∈ Df (p1 + ε1). Consider P 1 := {p1 + ε1, . . . , pn + ε1}. For

each i = 1, . . . , n we have Df (pi + ε1) ⊆ Df (pi). By Lemma 1, there exists

an ε1 > 0 such that for each p ∈ P 1 and every q with ‖q − p‖ < ε1 we have

Df (q) ⊆ Df (p). By Lemma 1, there is a ε2 ∈ RΩf with ‖ε2‖ < ε1 such that

|Df (p2 + ε1 + ε2)| = 1 and Ψ ∈ Df (p2 + ε2) for the unique Ψ ∈ Df (p2 + ε1). Next

consider P 2 := {p1 + ε1 + ε2, . . . , pn + ε1 + ε2}. For each i = 1, . . . , n we have

Df (pi + ε1 + ε2) ⊆ Df (pi + ε1) ⊆ Df (pi) and so on. Iterating in this way, we

obtain ε1, . . . , εn such that for each i = 1, . . . , n, we have |Df (pi +
∑n

j=1 ε
j)| = 1

and Ψi ∈ Df (pi) for the unique Ψi ∈ Df (pi +
∑n

j=1 ε
j) ⊆ Df (pi). We define

D̃f (pi) = Ψi. By construction D̃f (pi) ∈ Df (pi). Moreover, as all price vectors are

translated by the same vector
∑n

j=1 ε
j, FS, LAD and LAS follow from weak FS,

weak LAD and weak LAS for Df .
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Proof of Lemma 4

Proof. By Lemma 1, there exists an ε > 0 such that for each q ∈ {p, p′, p̄, p}
and every q̃ with ‖q̃ − q‖ < ε we have Df (q̃) ⊆ Df (q). Let ε0 > 0 such that

ε0 < minω∈Ωf :p′ω 6=pω |p′ω − pω| and ε0
√
|Ωf | < ε. Define ε′ ∈ RΩf by

ε′ω =



ε0, if ω ∈ Ψ′f→ and p′ω 6= pω,

−ε0, if ω ∈ Ωf→ \Ψ′ and p′ω 6= pω,

−ε0, if ω ∈ Ψ′→f and p′ω 6= pω,

ε0, if ω ∈ Ω→f \Ψ′ and p′ω 6= pω,

0, if p′ω = pω.

Note that by construction we have ‖ε′‖ =
√
ε20|{ω ∈ Ωf : pω 6= p′ω}| ≤ ε0

√
|Ωf | < ε

and thus Df (p′ + ε′) ⊆ Df (p′). First we prove the following claim.

Claim 2. For each Ξ ∈ Df (p′ + ε′) we have {ω ∈ Ψ′ : p′ω 6= pω} ⊆ Ξ and

{ω /∈ Ψ′ : p′ω 6= pω} ∩ Ξ = ∅.

Proof. First we show that for each Ξ ∈ Df (p′+ε′) we have {ω ∈ Ψ′ : p′ω 6= pω} ⊆ Ξ.

Suppose not, and there is a Ξ ∈ Df (p′ + ε′) and a ω̃ ∈ {ω ∈ Ψ′ : p′ω 6= pω} \ Ξ.

Let p̃ ∈ RΩf with p̃ω̃ = p′ω̃ and p̃ω = p′ω + ε′ω for ω 6= ω̃. By the second part

of Lemma A.1, we have Ψ′ ∈ Df (p̃). Thus, by monotonicity, we have uf (Ξ, p′ +

ε′) = uf (Ξ, p̃) ≤ uf (Ψ′, p̃) < uf (Ψ′, p′ + ε′) contradicting the assumption that

Ξ ∈ Df (p′ + ε′).

Next we show that for each Ξ ∈ Df (p′+ε′) we have {ω /∈ Ψ′ : p′ω 6= pω}∩Ξ = ∅.
Suppose not, and there is a Ξ ∈ Df (p′ + ε′) and a ω̃ ∈ {ω /∈ Ψ′ : p′ω 6= pω} ∩ Ξ.

Let p̃ ∈ RΩf with p̃ω̃ = p′ω̃ and p̃ω = p′ω + ε′ω for ω 6= ω̃. By the second part

of Lemma A.1, we have Ψ′ ∈ Df (p̃). Thus, by monotonicity, we have uf (Ξ, p′ +

ε′) < uf (Ξ, p̃) ≤ uf (Ψ′, p̃) = uf (Ψ′, p′ + ε′) contradicting the assumption that

Ξ ∈ Df (p′ + ε′).

By Lemma 1, there exists ε1 > 0 such that for every q′ with ‖q′− (p′+ ε′)‖ < ε1

we have Df (q′) ⊆ Df (p′ + ε′). We may choose ε1 < ε− ‖ε′‖. By the third part of

Lemma 2, there is a q ∈ RΩf with ‖p − q‖ < ε1 such that Df (q) = {Ψ}. Define

q′ := p′ + ε′ + (q − p). Define q̄ as the pairwise maximum of q and q′, i.e. q̄ω =

max{qω, q′ω}, and q as the pairwise minimum of q and q′, i.e. q
ω

= min{qω, q′ω}.
By construction, we have qω < q′ω if and only if pω < p′ω, qω > q′ω if and only

if pω > p′ω, and qω = q′ω if and only if pω = p′ω. Moreover, we have Df (q′) ⊆
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Df (p′ + ε′) ⊆ Df (p′), we have ‖q̄ − p̄‖ ≤ ‖ε′‖ + ε1 < ε and thus Df (q̄) ⊆ Df (p̄),

and we have ‖q − p‖ ≤ ‖ε′‖ + ε1 < ε and thus Df (q) ⊆ Df (p). Let P := {q̃ ∈
RΩf : q̃ω ∈ {qω, q′ω} for all ω ∈ Ωf}. By Lemma 3, there is a single-valued selection

D̃f : P → 2Ωf from Df satisfying FS, LAD and LAS. Let Ψ̄ := D̃f (q̄), Ψ := D̃f (q)

and Ψ′′ := D̃f (q′). As Df (q) = {Ψ}, we have D̃f (q) = Ψ. First we show that

{ω ∈ Ψ→f : pω ≥ p′ω} ∪ {ω ∈ Ψ′→f : p′ω > pω} ⊆ Ψ̄→f .

For q̃ ∈ P such that q̃ω = q̄ω for ω ∈ Ω→f and q̃ω = qω for ω ∈ Ωf→ let Ψ̃ := D̃f (q̃).

By CSC for D̃f , we have Ψ̃→f ⊆ Ψ̄→f . By SSS for D̃f , we have {ω ∈ Ψ→f : qω =

q̄ω ≥ q′ω} ⊆ Ψ̃→f and therefore {ω ∈ Ψ→f : qω = q̄ω ≥ q′ω} ⊆ Ψ̄→f . Similarly, for

q̃ ∈ P such that q̃ω = q̄ω for ω ∈ Ω→f and q̃ω = q′ω for ω ∈ Ωf→ let Ψ̃ := D̃f (q̃).

By CSC for D̃f , we have Ψ̃→f ⊆ Ψ̄→f . By SSS for D̃f , we have {ω ∈ Ψ′′→f : q′ω =

q̄ω ≥ qω} ⊆ Ψ̃→f and therefore {ω ∈ Ψ′′→f : q′ω > qω} ⊆ {ω ∈ Ψ′′→f : q′ω = q̄ω ≥
qω} ⊆ Ψ̄→f . Moreover, by Claim 2 and as Ψ′′ ∈ Df (q′) ∈ Df (p′ + ε′), we have

{ω ∈ Ψ′ : p′ω 6= pω} ⊆ Ψ′′ and {ω /∈ Ψ′ : p′ω 6= pω} ∩Ψ′′ = ∅. Therefore

{ω ∈ Ψ→f : pω ≥ p′ω} ∪ {ω ∈ Ψ′→f : p′ω > pω}

⊆{ω ∈ Ψ→f : qω ≥ q′ω} ∪ {ω ∈ Ψ′′→f : q′ω > qω} ⊆ Ψ̄→f .

Next we show that

Ψ̄f→ ⊆ {ω ∈ Ψf→ : pω ≥ p′ω} ∪ {ω ∈ Ψ′f→ : p′ω > pω}.

Let ω̄ ∈ Ψ̄f→. We consider two cases. Either p̄ω̄ = pω̄ or p̄ω̄ = p′ω̄ > pω̄. In the

first case, consider q̃ ∈ P with q̃ω = q̄ω for ω ∈ Ω→f and q̃ω = qω for ω ∈ Ωf→.

Let Ψ̃ := D̃f (q̃). By SSS of D̃f , we have ω̄ ∈ Ψ̃f→. By CSC of D̃f , we have

Ψ̃f→ ⊆ Ψf→ and hence ω̄ ∈ Ψf→. Similarly, if p̄ω̄ = p′ω̄ > pω̄, consider q̃ ∈ P with

q̃ω = q̄ω for ω ∈ Ω→f and q̃ω = q′ω for ω ∈ Ωf→. Let Ψ̃ := D̃f (q̃). By SSS of D̃f , we

have ω̄ ∈ Ψ̃f→. By CSC of D̃f , we have Ψ̃f→ ⊆ Ψ′′f→ and hence ω̄ ∈ Ψ′′f→. Since

{ω /∈ Ψ′ : p′ω 6= pω} ∩Ψ′′ = ∅ and p′ω̄ 6= pω̄ this implies ω̄ ∈ Ψ′f→.

Finally, let q̃ ∈ P such that q̃ω = q̄ω for ω ∈ Ω→f and q̃ω = qω for ω ∈ Ωf→

and Ψ̃ := D̃f (q̃). By LAD for D̃f at q and q̃ and LAS for D̃f at q̃ and q̄ we have

|Ψ→f | − |Ψf→| ≥ |Ψ̃→f | − |Ψ̃f→| ≥ |Ψ̄→f | − |Ψ̄f→|.

A completely dual proof shows that Ψ has the desired properties.
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Proof of Theorem 1

Proof. Let Ψ ∈ E(u, p) and Ψ′ ∈ E(u, p′). First we show that for the pairwise

minimum p ∈ E(u). For each firm f ∈ F there is by Lemma 4 applied to Ψf ∈
Df (p) and Ψ′f ∈ Df (p′) a Ψf ∈ Df (p) with

Ψ→f ⊆ {ω ∈ Ψ→f : p′ω ≥ pω} ∪ {ω ∈ Ψ′→f : pω > p′ω}, (7)

{ω ∈ Ψf→ : p′ω ≥ pω} ∪ {ω ∈ Ψ′f→ : pω > p′ω} ⊆ Ψf→ (8)

and

|Ψ→f | − |Ψf→| ≥ |Ψ→f | − |Ψf→|. (9)

Taking the union over all firms of (7) and (8) we have⋃
f∈F

Ψ→f ⊆ {ω ∈ Ψ : p′ω ≥ pω} ∪ {ω ∈ Ψ′ : pω > p′ω} ⊆
⋃
f∈F

Ψf→, (10)

and summing inequality (9) over all firms∑
f∈F

(|Ψ→f | − |Ψf→|) ≥
∑
f∈F

(|Ψ→f | − |Ψf→|) = 0. (11)

This implies
∑

f∈F |Ψ→f | ≥
∑

f∈F |Ψf→| which together with (10) implies⋃
f∈F Ψf→ =

⋃
f∈F Ψ→f =: Ψ and [Ψ, p] is an equilibrium. Moreover, since⋃

f∈F Ψf→ =
⋃
f∈F Ψ→f , the left hand side of Inequality (11) is also equal to 0 and

the inequality holds with equality. This implies that for each f ∈ F , Inequality (9)

holds with equality as well and we have

|Ψ→f | − |Ψf→| = |Ψ→f | − |Ψf→|.

A completely dual argument shows that there is a Ψ̄ ∈ E(u, p̄) with

|Ψ→f | − |Ψf→| = |Ψ̄→f | − |Ψ̄f→|.

The same argument as before with Ψ̄ in the role of Ψ, and p̄ in the role of p

establishes (note that the pairwise minimum of p̄ and p′ is again p′) that there is

a Ξ ⊆ Ω such that [Ξ, p′] is an equilibrium and for each f ∈ F we have

|Ψ→f | − |Ψf→| = |Ξ→f | − |Ξf→|.
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Since

|Ψ→f | − |Ψf→| = |Ψ→f | − |Ψf→|,

this concludes the proof.

Proof of Theorem 2

Proof. Following an idea of Kelso and Crawford (1982), we can characterize

competitive equilibria by a zero-surplus condition. Define a surplus function

Z : RΩ → R by

Z(p) := min
Ψ⊆Ω

max
f∈F

max
Ψ′⊆Ωf

uf (Ψ′, p)− uf (Ψ, p).

By definition, for each f ∈ F , we have Df (p) = argmaxΨ′⊆Ωf
uf (Ψ′, p). Thus for

each arrangement [Ψ, p], we have maxf∈F maxΨ′⊆Ωf
uf (Ψ′, p)− uf (Ψ, p) ≥ 0 with

equality if and only if Ψ ∈ E(u, p). Thus p ∈ E(u) if and only if Z(p) = 0.

The surplus function is continuous, as uf (Ψ′, p)− uf (Ψ, p) is continuous in p and

the maximum resp. minimum of finitely many continuous functions is continuous.

Thus E(u) is a closed set, as it is the pre-image of the closed set {0} under the

continuous function Z.

By BWP, there is a K > 0 such that for all f ∈ F , p ∈ RΩf and Ψ ∈ Df (p)

if ω ∈ Ψ→f then pω < K and if ω ∈ Ψf→ then pω > −K. Let E ′(u) := E(u) ∩
[−K,K]Ω. By BWP, for each p ∈ E(u), the vector p′ ∈ RΩ defined by p′ω = pω for

−K < pω < K, p′ω = K for pω > K, and p′ω = −K for pω < −K is an equilibrium

price vector p′ ∈ E ′(u) with vf (p′) = vf (p) for each f ∈ F . By Corollary 2 in

Fleiner et al. (2019) (as indicated in Footnote 9, under BWP the choice-language

version of weak FS used by Fleiner et al. (2019) is equivalent to the demand-

language version), E(u) is non-empty and hence E ′(u) is non-empty. As E(u)

is closed, E ′(u) is compact. From Theorem 1, and observing that the pairwise

maximum (minimum) of two vectors in [−K,K]Ω is an element of [−K,K]Ω, we

conclude that E ′(u) is a non-empty, compact sublattice of RΩ. This implies that

E ′(u) has a maximal element p̄ and a minimal element p. By monotonicity and the

previous observation that for each p ∈ E(u) there is a p′ ∈ E ′(u) with vf (p′) = vf (p)

for each f ∈ F , for each terminal seller f and p ∈ E(u) we have vf (p̄) ≥ vf (p).

Thus p̄ is a terminal seller optimal equilibrium. Similarly, p is a terminal buyer

optimal equilibrium p under u.
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Proof of Theorem 3

Proof. Let F ′ ⊆ F be the set of terminal buyers. Let U =×f∈F Uf where for

f ∈ F ′ the set Uf is the set of unit demand and BWP utility functions and for

each f ∈ F \F ′ the set Uf is the set of BWP, FS, LAD and LAD utility functions.

In the following for ũf , ûf ∈ Uf etc. we denote the induced demand by D̃f , D̂f etc.

Let M : U → A be a buyer-optimal mechanism. First we establish that M is

immune to truncation strategies.

Claim 3. Let f ∈ F ′. Let u, ũ ∈ U with ũ−f = u−f and let [Ψ, p] be a buyer-

optimal equilibrium under u. If Ψf 6= ∅, ũf (ω, ·) = uf (ω, ·) for each ω ∈ Ω→f and

ũf (∅) > ũf (Ψ, p), then for each equilibrium [Ψ̃, p̃] under ũ, we have Ψ̃f = ∅.

Proof. Suppose not. Then Ψ̃f 6= ∅. Let Ψ̃f = {ω̃}. Note that also {ω̃} ∈ Df (p̃).

Thus [Ψ̃, p̃] is an equilibrium under u. But since

uf (ω̃, p̃ω̃) = ũf (ω̃, p̃ω̃) ≥ ũf (∅) > ũf (Ψ, p) = uf (Ψ, p)

this contradicts the buyer optimality of [Ψ, p].

Second we establish that M is immune to certain strategies where a single

terminal buyer changes the utility function for one trade so that it becomes more

attractive relative to the other trades. The claim can be interpreted as an adaption

of Lemma 1 of Hatfield and Kojima (2009) to the setting with transfers.

Claim 4. Let f ∈ F ′. Let u, û ∈ U with û−f = u−f such that there is a ω̂ ∈ Ω→f

with ûf (ω, ·) = uf (ω, ·) for ω 6= ω̂ and ûf (∅) = uf (∅). Let [Ψ̄, p̄] be a buyer-optimal

equilibrium under u. If for all pω̂ ∈ R, we have

uf (ω̂, pω̂) ≤ uf (Ψ̄, p̄)⇒ ûf (ω̂, pω̂) = uf (ω̂, pω̂),

uf (ω̂, pω̂) ≥ uf (Ψ̄, p̄)⇒ ûf (ω̂, pω̂) ≥ uf (ω̂, pω̂),

then [Ψ̄, p̄] is a buyer-optimal equilibrium under û.

Proof. Let [Ψ̂, p̂] be a buyer-optimal equilibrium under û. If uf (ω̂, p̂ω̂) ≤ uf (Ψ̄, p̄),

then we have Df (p̂) = D̂f (p̂) and [Ψ̂, p̂] is an equilibrium under u. Moreover,

ûf (ω̂, p̄ω̂) = uf (ω̂, p̄ω̂), and therefore [Ψ̄, p̄] is an equilibrium under û. By buyer-

optimality of [Ψ̄, p̄] under u, we have ûf
′
(Ψ̂, p̂) = uf

′
(Ψ̂, p̂) ≤ uf

′
(Ψ̄, p̄) = ûf

′
(Ψ̄, p̄)

for each f ′ ∈ F ′. Thus, [Ψ̄, p̄] is a buyer-optimal equilibrium under û. It remains

to consider the case that uf (ω̂, p̂ω̂) > uf (Ψ̄, p̄). In this case, consider the two

sub-cases that Ψ̂f = {ω̂} or Ψ̂f 6= {ω̂}.
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If Ψ̂f 6= {ω̂}, we can show that [Ψ̂, p̂] is an equilibrium under u. Suppose not.

Then, as Ψ̂f /∈ Df (p̂) and uf (ω, p̂ω) = ûf (ω, p̂ω) for ω 6= ω̂, we have uf (ω̂, p̂ω̂) >

uf (Ψ̂, p̂). Thus ûf (ω̂, p̂ω̂) ≥ uf (ω̂, p̂ω̂) > uf (Ψ̂, p̂) = ûf (Ψ̂, p̂) and therefore Ψ̂f /∈
D̂f (p̂). This contradicts the assumption that [Ψ̂, p̂] is an equilibrium under û.

Thus, [Ψ̂, p̂] is an equilibrium under u and by the same reasoning as above, [Ψ̄, p̄]

is a buyer-optimal equilibrium under û.

If Ψ̂f = {ω̂}, consider the utility function ũf obtained from uf by truncating

as follows: ũf (ω, ·) = uf (ω, ·) for all ω ∈ Ω→f and uf (Ψ̄, p̄) < ũf (∅) < uf (ω̂, p̂ω̂).

By Claim 3, for each equilibrium [Ψ, p] under ũ := (ũf , u−f ) we have Ψf = ∅.
Define the utility function ũf∗ by ũf∗(ω̂, ·) = ũf (ω̂, ·) = uf (ω̂, ·), by ũf∗(ω, ·) = −∞
for each ω 6= ω̂, and ũf∗(∅) = ũf (∅). As for each equilibrium [Ψ, p] under ũ we

have Ψf = ∅, we have E(ũ) ⊆ E(ũ∗) for ũ∗ := (ũf∗ , u
−f ), and in particular, there

is an equilibrium [Ψ̃, p̃] under ũ∗ with Ψ̃f = ∅. Observe however that ũf∗(ω̂, p̂ω̂) =

ũf (ω̂, p̂ω̂) = u(ω̂, p̂ω̂) > ũf∗(∅). Thus D̃f
∗ (p̂) = {{ω̂}} and [Ψ̂, p̂] is an equilibrium

under ũ∗ with ũf∗(Ψ̂, p̂) > ũf∗(∅). This contradicts the rural hospitals theorem (the

second part of Theorem 1).

With the claim, we can prove the result. Suppose there are profiles u, ũ ∈ U
such that ũ−F

′
= u−F

′
and for each f ∈ F ′, we have uf (M(ũ)) > uf (M(u)). Let

M(u) = (Ψ̄, p̄) and M(ũ) = (Ψ̃, p̃).

We define for each f ∈ F ′, a ûf ∈ Uf as follows: Note that Ψ̃f 6= ∅ as

uf (Ψ̃, p̃) > uf (Ψ̄, p̄) ≥ uf (∅). Let ω̃ ∈ Ψ̃ be the unique trade in Ψ̃ such that

b(ω̃) = f . We let ûf (ω, ·) = uf (ω, ·) for ω 6= ω̃ and we let ûf (∅) = uf (∅). To

construct ûf (ω̃, ·) we proceed as follows: Define ûf (ω̃, pω̃) := uf (ω̃, pω̃) for each

pω̃ ∈ R with uf (ω̃, pω̃) ≤ uf (Ψ̄, p̄). Define

ûf (ω̃, p̃ω̃) := max
ω∈Ω→f

uf (ω, p̃ω).

Note that

ûf (ω̃, p̃ω̃) ≥ uf (ω̃, p̃ω̃) > uf (Ψ̄, p̄) = ûf (Ψ̄, p̄).

For prices pω̃ 6= p̃ω̃ with uf (ω̃, pω̃) ≥ uf (Ψ̄, p̄), we can choose any continuous and

monotonic extension such that ûf (ω̃, pω̃) ≥ uf (ω̃, pω̃). By Claim 4, [Ψ̄, p̄] is a

buyer-optimal equilibrium for (ûf , u−f ). Iterating for all f ∈ F ′, [Ψ̄, p̄] is a buyer-

optimal equilibrium under û := (ûF
′
, u−F ). Note however that by construction of

û, for each f ∈ F ′ we have Ψ̃f ∈ D̂f (p̃). Thus [Ψ̃, p̃] is an equilibrium under û

with ûf (Ψ̃, p̃) > ûf (Ψ̄, p̄) for each f ∈ F ′. This contradicts the buyer-optimality

of [Ψ̄, p̄] under (ûF
′
, u−F ).
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C Proofs for Section 4

Proof of Lemma 5

Proof. First we show the result for non-negative prices. Let p, p′ ∈ RΩf

+ . Define

q, q′ ∈ RX
+ by

qx :=

minω∈Ω→f :x(ω)=x pω, for x /∈ Xf ,

maxω∈Ωf→:x(ω)=x pω, for x ∈ Xf ,
q′x :=

minω∈Ω→f :x(ω)=x p
′
ω, for x /∈ Xf ,

maxω∈Ωf→:x(ω)=x p
′
ω, for x ∈ Xf .

By construction we have

Df (p) = {Ψ ⊆ Ωf : Xf (Ψ) ∈ D̃f (q), pω = qx(ω) for ω ∈ Ψ},

Df (p′) = {Ψ′ ⊆ Ωf : Xf (Ψ
′) ∈ D̃f (q′), p′ω = q′x(ω) for ω ∈ Ψ′}.

If pω = p′ω for ω ∈ Ωf→ and pω ≤ p′ω for ω ∈ Ω→f , then for Ψ′ ∈ Df (p′) there

is, by gross substitutability a Y ∈ D̃f (q) with {x ∈ Y : q′x = qx} ⊆ Xf (Ψ
′). Thus,

if x ∈ Y \ Xf and q′x = qx, then x ∈ Xf (Ψ
′), and if x ∈ Xf \ Xf (Ψ

′), then, as

q′x = qx, we have x ∈ Xf \ Y . Therefore there is a Ψ ∈ Df (p) with

{ω ∈ Ψ→f : p′ω = q′x(ω) = qx(ω) = pω} ⊆ Ψ′→f , Ψ′f→ ⊆ Ψf→.

Similarly, by the law of aggregate demand, there is a Y ∈ D̃f (q) such that |Y | ≥
|Xf (Ψ

′)|. Then there is a Ψ ∈ Df (p) with Y = Xf (Ψ). But then

|Ψ→f | − |Ψf→| = |Y \Xf | − |Xf \ Y | = |Y | − |Xf |

≥|Xf (Ψ
′)| − |Xf | = |Xf (Ψ

′) \Xf | − |Xf \Xf (Ψ
′)| = |Ψ′→f | − |Ψf→|.

An analogous argument shows that Df satisfies the second part of the SSS

condition, the second part of the CSC condition, and LAS.

Next we establish FS and LAD/LAS on RΩf . Let p, p′ ∈ RΩf and define

q, q′ ∈ RX as previously. Moreover, define p0 := (max{pω, 0}ω∈Ω) ∈ RΩf and

(p′)0 := (max{p′ω, 0}ω∈Ω) ∈ RΩf . By construction of uf and the assumption that

ũf (Y, t) ≤ ũf (Y ′, t) for Y ⊆ Y ′, we have

Df (p) = {Ψ ∈ Df (p0) : {x ∈ X : qx < 0} ⊆ Xf (Ψ), pω = qx(ω) for ω ∈ Ψ},

Df (p′) = {Ψ′ ∈ Df ((p′)0) : {x ∈ X : q′x < 0} ⊆ Xf (Ψ
′), p′ω = q′x(ω) for ω ∈ Ψ′}.
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In particular, for Ψ′ ∈ Df (p′) we have Ψ′ ∈ Df ((p′)0) and by FS for non-negative

prices, there is a Ψ̃ ∈ Df (p0) with

{ω ∈ Ψ̃→f : (p′)0
ω = p0

ω} ⊆ Ψ′→f , Ψ′f→ ⊆ Ψ̃f→.

We can find a Ψ ∈ Df (p), such that {ω ∈ Ψ̃ : qx(ω) = q′x(ω)} ⊆ Ψ. Now let

ω ∈ Ψ→f and p′ω = pω. Then q′x(ω) = p′ω = pω = qx(ω) and ω ∈ Ψ̃. Moreover,

(p′)0
ω = p0

ω and therefore ω ∈ Ψ′→f . Similarly, for all ω ∈ Ωf→ we have p′ω = pω. If

pω = p′ω < q′x(ω) = qx(ω) then ω /∈ Ψ and ω /∈ Ψ′. If pω = p′ω = q′x(ω) = qx(ω), then

ω /∈ Ψ→f implies ω /∈ Ψ̃→f . Moreover, (p′)0
ω = p0

ω and therefore ω /∈ Ψ′→f .

To establish LAD, let Ψ′ ∈ Df (p′). Since Ψ′ ∈ Df ((p′)0) and by LAD for

non-negative price vectors, there is a Ψ̃ ∈ Df (p0) and hence a Ψ ∈ Df (p) with

Xf (Ψ) = Xf (Ψ̃) ∪ {x ∈ X : qx < 0} such that

|Ψ→f | − |Ψf→| = |Xf (Ψ) \Xf | − |Xf \Xf (Ψ)| ≥ |Ψ̃→f | − |Ψ̃f→| ≥ |Ψ′→f | − |Ψ′f→|.

An analogous argument shows that Df satisfies the second part of the SSS

condition, the second part of the CSC condition, and LAS.

Proof of Corollary 3

Proof. For the first part, consider price vectors in the induces trading network

q, q′ ∈ RΩ
+ defined by qω := px(ω) and q′ω := p′x(ω) for each ω ∈ Ω. By Proposition 2,

q and q′ are equilibrium prices in the induced trading network. By Lemma 5,

utility functions in the induced trading network satisfy FS, LAD and LAS. Thus,

by Theorem 1, price vectors q̄, q ∈ RΩ
+ with

q̄ω = max{qω, q′ω}, q
ω

= min{qω, q′ω},

are equilibrium prices in the trading network. By construction of q and q′, for

each ω, ω′ ∈ Ω with x(ω) = x(ω′) we have qω = px(ω) = qω′ and q′ω = p′x(ω) = q′ω′ .

Therefore,

p̄x = max
ω∈Ω,x=x(ω)

q̄ω and p
x

= max
ω∈Ω,x=x(ω)

q
ω
,

and, by Proposition 2, p̄ and p are equilibrium price vectors.

For the second part, define q and q′ as before and let

Ψ := {ω ∈ Ω : x(ω) ∈ Yb(ω) ∩Xs(ω)}.
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As shown in the proof of Proposition 2, [Ψ, q] is an equilibrium of the trading

network. By the second part of Theorem 1, there is a Ψ′ ⊆ Ω such that [Ψ′, q′] is

an equilibrium of the trading network with

|Ψ→f | − |Ψf→| = |Ψ′→f | − |Ψ′f→|.

Let Y ′ = (Y ′f )f∈F with Y ′f := Xf (Ψ
′). As shown in the proof of Proposition 2,

[Y ′, p′] is an equilibrium of the exchange economy. Moreover,

|Yf | = |Yf \Xf | − |Xf \ Yf |+ |Xf | = |Ψ→f | − |Ψf→|+ |Xf |

= |Ψ′→f | − |Ψ′f→|+ |Xf | = |Y ′f \Xf | − |Xf \ Y ′f |+ |Xf | = |Y ′f |.

For the third part, we first show that the set of equilibrium price vectors in the

induced trading network, E(u) is compact. The same argument as in the proof of

Theorem 2 establishes that the surplus function Z : RΩ
+ → R is continuous and

hence E(u) ⊆ RΩ
+ is closed. To show that E(u) is bounded, note that by the full

range assumption there exists a K > 0 such that for each f ∈ F and Y ⊆ X we

have ũf (Y,−K) < ũf (Xf , 0). For each equilibrium [Ψ, p] in the trading network

and each f ∈ F , we have

uf (Ψ, p) = ũf (Xf (Ψ), pf (Ψ)) ≥ ũf (Xf , 0) = uf (∅),

and therefore by monotonicity of utility in transfers pf (Ψ) > −K. Moreover,∑
f∈F pf (Ψ) = 0. Thus, pf (Ψ) < |F | · K for each f ∈ F . By the full range

assumption, there is a K̃ > 0 such that for each f ∈ F and Y ⊆ X, we have

ũf (∅, K̃) > ũf (Y, |F | · K). Note that for each equilibrium [Ψ, p] of the trading

network, each f ∈ F and each Ψ′ ⊆ Ωf with Xf (Ψ
′) = ∅, we have

ũf (∅,
∑
ω∈Ψ′

pω) = uf (Ψ′, p) ≤ uf (Ψ, p) = ũf (Xf (Ψ), pf (Ψ)) < ũf (Xf (Ψ), |F |·K) < ũf (∅, K̃).

Thus
∑

ω∈Ψ′ pω < K̃ and, as pω ≥ 0 for each ω ∈ Ω, we have 0 ≤ pω < K̃ for each

ω ∈ Ψ′. Now note that for each ω ∈ Ω, there exists a Ψ′ ⊆ Ωs(ω) with X(Ψ′) = ∅
and ω ∈ Ψ′. Thus for each ω ∈ Ω we have 0 ≤ pω < K̃. Thus E(u) is compact

and by Propositions 2 non-empty. Moreover, by Theorem 1, E(u) is a sublattice of

RΩ. Since E(u) is a non-empty, compact sublattice of RΩ, there exist p̄, p ∈ E(u)

such that for each p ∈ E(u) we have p
ω
≤ pω ≤ p̄ω for each ω ∈ Ω. By the first
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part of Proposition 2, the vectors q, q̄ ∈ RX
+ defined by

q
x

:= max
ω∈Ω,x=x(ω)

p
ω
, q̄x := max

ω∈Ω,x=x(ω)
p̄ω

are equilibrium price vectors in the exchange economy. Now let q ∈ RX
+ be an

equilibrium price vector in the exchange economy. By the second part of Propo-

sition 2, the price vector p ∈ RΩ
+ defined by pω := px(ω) for each ω ∈ Ω, is in E(u).

Let x ∈ X. Let ω ∈ Ω with x = x(ω) and q
x

= p
ω
. Then q

x
= p

ω
≤ pω = qx.

Similarly, let ω ∈ Ω with x = x(ω) and q̄x = p̄ω. Then q̄x = p̄ω ≥ pω = px. Thus

q̄, q are the desired price vectors.
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