
              

City, University of London Institutional Repository

Citation: Wang, J., Ma, Q. & Yan, S. (2021). On Extreme Waves in Directional Seas with 

Presence of Oblique Current. Applied Ocean Research, 112, 102586. doi: 
10.1016/j.apor.2021.102586 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/26473/

Link to published version: https://doi.org/10.1016/j.apor.2021.102586

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Highlights

On Extreme Waves in Directional Seas with Presence of Oblique
Current

Jinghua Wang, Qingwei Ma, Shiqiang Yan

• The phase-resolved fully nonlinear numerical simulations of directional
seas with presence of opposing and oblique current on large spatiotem-
poral scale are carried out.

• This study reports some new findings about how the fully nonlinear
wave-current interactions modify the extreme wave properties in direc-
tional seas subject to current from different incident angles.

• The study also discusses whether the NewWave model is sufficient for
describing the average shape of extreme waves induced by fully nonlin-
ear wave-current interactions in directional seas.
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Abstract

This paper will address two questions: i) How the fully nonlinear wave-
current interactions modify the extreme wave statistics, spectrum character-
istics and average shape of extreme waves in directional seas with presence of
current with different incident angles; ii) Whether the NewWave model is ad-
equate to describe the average shape of nonlinear extreme waves in directional
seas with presence of opposing and oblique current. This study employs fully
nonlinear numerical simulations, and the results demonstrates that current
can enhance the wave crest exceedance probability at distribution tail and
kurtosis, broaden the spectra, and cause severe vertical and horizontal asym-
metry of extreme wave profiles depending on the incident angle and initial
steepness. The assessment on the NewWave models reveals that they fail
to predict the reduction of the crest width with increasing current incident
angle and significantly underestimate the asymmetry parameters for large
steepness waves.

Keywords: Wave-current interactions, NewWave, Large-scale simulations,
Phase-resolved wave modelling, Fully nonlinear potential model

1. Introduction

Extreme waves have been intensively studied in coastal and ocean engineering
for decades. Their precise meaning is slightly different in different contexts.
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They are sometimes referred to the most probable maximum in a sea state
(Tayfun and Fedele, 2007a), or sometimes to an exceptional large and high
wave (i.e., rogue waves) (Pelinovsky et al., 2008), while in design practice
they are referred to the maximum wave with a return period, e.g. 100 years
(Tucker and Pitt, 2001). No matter what their special meaning is, their
appearance is indicated by high kurtosis of free surface about mean water
level and high tail values of wave crest exceedance probability distributions,
and their kinematic and dynamic properties are reflected by their shapes
and spectra. Therefore, many researchers have studied the kurtosis, crest
exceedance probability, spectral properties and average shapes of extreme
waves. Some studies were well documented in Dysthe et al. (2008), Kharif
et al. (2009), Adcock and Taylor (2014) and Fedele et al. (2016). The follow-
ing will summarize some key findings relevant to the topic of this study, which
are categorized as those with or without considering current in unidirectional
and directional (or spreading) seas.

In unidirectional seas (long-crest waves) without considering current, ran-
dom wave field can be regarded as a superposition of many sinusoidal wave
components with constant amplitude by assuming the waves to be small
and described by a linear wave theory. The surface elevation can be rep-
resented by a Gaussian distribution, and the wave height follows Rayleigh
distribution, while the kurtosis equals to about 3 (Longuet-Higgins, 1963,
1980). In addition, the NewWave theory (also known as the Slepian model
(Lindgren, 1970) or Quasi-Determinism (QD) theory of large crest (Boccotti,
1983, 1989)) indicates that the average shape of the extreme waves is propor-
tional to the scaled auto-correlation function, and the theory has been widely
adopted to fit extreme wave profiles observed in field measurements, or repro-
duce extreme waves in numerical simulations or laboratory (Tromans et al.,
1991; Boccotti et al., 1993; Boccotti, 2000; Christou and Ewans, 2014). How-
ever, the limitations of linear wave theories have been pointed out in many
studies, e.g., the Rayleigh distribution underestimates the probabilities of ex-
treme waves (Slunyaev and Sergeeva, 2012; Nørgaard and Andersen, 2016),
neither can the linear NewWave model well describe the average shape of
extreme waves featuring a sharper crest and shallower trough (Walker et al.,
2004). To overcome such limitations, the second-order theories are intro-
duced leading to improved wave crest exceedance probability comparing to
field observation (Longuet-Higgins, 1963; Tayfun, 1980; Tayfun and Lo, 1990;
Forristall, 2000). Besides, a second-order corrected NewWave profile was able
to provide a reasonable approximation to the average extreme wave profiles
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as observed from field data (Whittaker et al., 2016; McAllister, 2017), though
it is arguable that the apparent asymmetry of the recorded profiles in the
field might indicate that the groups were not at the focusing point (Bene-
tazzo et al., 2017). Nevertheless, the second-order theories underestimate
the probability of extreme waves of heights greater than twice the significant
height (which is now widely accepted as the criterion of rogue waves) and
the kurtosis when wave steepness is large according to results collected from
field and laboratory (Skourup et al., 1997; Onorato et al., 2004, 2006; Baschek
and Imai, 2011). Later, the third-order Tayfun distribution considering the
Stokes bound contribution for narrowband waves (Tayfun and Fedele, 2007b)
was suggested to describe the wave height exceedance probability, which was
shown in good agreement with the field observation (Fedele et al., 2016).
Besides, the third-order effects on kurtosis for narrowband waves is investi-
gated theoretically (Janssen, 2003, 2009; Onorato et al., 2008; Fedele, 2015),
and the link between kurtosis and extreme wave probability was established
while the wave height exceedance probability in terms of the third-order kur-
tosis was shown in good agreement with experiments for cases of kurtosis up
to 3.62 (Mori and Janssen, 2006). Moreover, in contrast to the stationary
spectrum described by the linear and second-order theories, the widening of
the spectral bandwidth and downshift of the spectral peak was also pointed
out in Janssen (2009)’s theoretical study and observed in the numerical sim-
ulation by using the modified nonlinear Schrödinger equation (MNLSE) that
considered fourth-order wave nonlinearities (Dysthe et al., 2003), as well as
in laboratory experiments (Slunyaev and Sergeeva, 2012). It also shows that
the MNLSE produces improved estimation of the kurtosis than the second-
order theories (Zhang et al., 2016). However, it was pointed out the results
obtained by using MNLSE underestimated the exceedance probability of ex-
treme waves, kurtosis and broadening of the spectral bandwidth through
comparing with experiment results for modelling random waves based on a
Gaussian spectrum (Slunyaev and Sergeeva, 2012). On the contrary, for a
more general case based on JONSWAP spectrum, the MNLSE was shown
to overestimate the kurtosis and probability of extreme waves (Toffoli et al.,
2010; El Koussaifi et al., 2018). Nevertheless, the fully nonlinear approach
can lead to improved results despite overestimating the statistics (Toffoli
et al., 2010; Zhang et al., 2016). This is due to the narrow-bandwidth and
small steepness assumptions adopted by the Schrödinger-type equations may
not always be true (Xiao et al., 2013) and it becomes less accurate when
spectral bandwidth and wave steepness are large (Wang et al., 2017). In ad-
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dition, the NewWave model considering fifth-order Stokes-type corrections
may be able to reproduce the New Year Wave reasonably well close to the
peak with slightly overestimating the depth of the troughs (Walker et al.,
2004). Though the adequacy of the NewWave model to represent the shape
of large steepness waves has been demonstrated in many studies and prop-
erly accounting for nonlinear effects improves on the prediction (Jensen, 2005;
Tayfun and Fedele, 2007a,b; Fedele and Tayfun, 2009; Alkhalidi and Tayfun,
2013), it cannot explain the group asymmetry, i.e., the so-called ‘wall of
water’ or ‘hole in the ocean’-like wave profile as observed in the ocean, lab-
oratory and fully nonlinear numerical simulations (Gibbs and Taylor, 2005;
Lindgren, 2006; Adcock et al., 2015; Cattrell et al., 2018; Tang et al., 2019).

In directional seas (short-crest waves) without considering current, the
studies based on experiments in laboratory and weakly/fully nonlinear nu-
merical simulations systematically investigated the effects of directionality
on extreme wave statistics (Onorato et al., 2009; Waseda et al., 2009; Toffoli
et al., 2010). They suggest that the changes in extreme wave probability,
kurtosis, broadening spectral bandwidth and downshifting of the spectral
peak with spreading angle less than 12o basically agree with the findings for
unidirectional seas according to the fully nonlinear numerical simulation re-
sults (Xiao et al., 2013; Slunyaev and Kokorina, 2020). However, the increase
of spreading angles can lead to a significant reduction of extreme wave prob-
ability and kurtosis as confirmed in theoretical studies (Janssen and Bidlot,
2009; Fedele, 2015), numerical simulations by using the MNLSE (Socquet-
Juglard et al., 2005) and fully nonlinear models (Bateman et al., 2001; Xiao
et al., 2013). Thus, the second-order theory is sufficient to accurately pre-
dict the kurtosis and wave crest exceedance probability in directional seas
(Fedele et al., 2016). This is due to the fact that the directionality can result
in a transition to a weak non-Gaussian state, despite that the modulational
instability still persists, albeit weak (Fadaeiazar et al., 2018, 2020). Besides,
the NewWave model incorporating the directional spreading and a second-
order Stokes-type correction can successfully describe the contraction of the
crestedness of the extreme wave profile, which well agreed with field mea-
surement (Jonathan and Taylor, 1997; Fedele et al., 2016; Benetazzo et al.,
2017). Nevertheless, it was reported that the probability of gathering ex-
treme waves within an in-situ space-time wave field is at least one order of
magnitude higher than that obtained by restricting the analysis to time only
(Benetazzo et al., 2017), implying that the second-order theory may underes-
timate the probability of extreme waves in space-time wave field. In addition,
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the broadening of spectrum were observed in the numerical simulation by
using the MNLSE (Socquet-Juglard et al., 2005) and fully nonlinear model
(Xiao et al., 2013), whereas the former overpredicts the spectral bandwidth
especially for initially broader spreading cases (Xiao et al., 2013).

On the other hand, it has been widely recognized that the superposition
of waves and current can provoke extreme waves (Lavrenov, 1998; White and
Fornberg, 1998; Lavrenov and Porubov, 2006; Cattrell et al., 2018). Many
studies have focused on unidirectional waves interaction with current and in-
dicated that (i) wave height amplification around a caustic is caused by refrac-
tion (White and Fornberg, 1998; Janssen and Herbers, 2009) and enhanced
by nonlinear wave-current interactions (Moreira and Peregrine, 2012), and
(ii) wave-current interaction may induce modulational instability (Bakhanov
et al., 1996; Stocker and Peregrine, 1999; Nwogu, 2009; Toffoli et al., 2011;
Ruban, 2012; Ma et al., 2013; Manolidis et al., 2019). The latter is also
associated with vertically shearing current (Choi, 2009; Thomas et al., 2012;
Touboul and Kharif, 2016; Guyenne, 2017; Kharif et al., 2017; Liao et al.,
2017). It has been found that the Rayleigh distribution significantly under-
estimates the extreme wave probability with presence of opposing current by
the numerical simulations using a Schrödinger-type equation (Onorato et al.,
2011) and by laboratory tests (Toffoli et al., 2015). Specifically, an opposing
current yields the maximum extreme wave probability of one order greater
than that based on the Rayleigh distribution and the maximum kurtosis
larger than 4.5 (Toffoli et al., 2015). The deviation from the Gaussian state
can be explained based on the current-modified NLSE, which shows that the
coefficient of nonlinear term increases as the waves enter the current region.
As a result, the increasing nonlinearities can excite the modulation insta-
bility that destabilizes the wave packet, and the concurrent intensification
of the maximum wave growth depends on the ratio of current velocity over
wave group speed (Onorato et al., 2011; Toffoli et al., 2013). Meanwhile, to
describe the average shape of extreme waves, the NewWave theory incorpo-
rating uniform current is proposed, which suggests that an opposite current
can enhance the significant height and peak frequency, and the enhancement
is more remarkable if the velocity becomes greater (Arena et al., 2005).The
second-order Stokes contribution is subsequently introduced to the NewWave
model with superimposed current (QD theory of large crest-to-trough height
to be precise), and it is found that the waves becomes higher in crest and
flatter in trough than in absence of current (Nava et al., 2006). However,
a forward tilting extreme wave front due to nonlinearities characterized by
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group asymmetry are observed in laboratory, which cannot be described by
using the linear or second-order NewWave theories (Wu and Yao, 2004; Ma
et al., 2013).

Some studies have also been carried out on interaction between direc-
tional waves and opposing (or adverse) current. Janssen and Herbers (2009)
investigated the evolution of spreading waves over an opposing shearing cur-
rent by employing a frequency-angular spectrum model accounting for cubic
nonlinear dynamics and indicated that directionally spread wave fields gen-
erally maintained near-Gaussian statistics but behaved locally with strongly
non-Gaussian statistics. The laboratory results (Toffoli et al., 2015) revealed
that the maximum kurtosis of spreading wave fields subjected to opposing
current can reach 3.5, higher than the linear value but lower than that of uni-
directional wave fields subjected to opposing current. The publication also
revealed that the presence of an opposing current made large waves occur
more often and lifted the tail of the distribution, even with relatively weak
current (0.15 times wave-group velocity). However, the study on spread-
ing wave fields propagating over an oblique current is rare. More recently, a
third-order nonlinear probability distribution model accounting for the space-
time drifting effects is proposed and results showed that larger drift speed
yields larger probability of encountering extreme waves compared with an-
chored vessel, while the probability increases in proportion to the drifting
time (Fedele et al., 2017). Toffoli et al. (2011) carried out laboratory tests
on the cases for current crossing the main direction of waves at the incident
angles of 110o and 120o. They found that when the directional spreading
broadens, the kurtosis preserves slightly higher values than that without cur-
rent and can achieve a maximum increment by 15% compared to the cases
without current. Nevertheless, relevant study on extreme waves induced by
current from various incident angles in directional seas using fully nonlinear
numerical models has not been carried out so far. Moreover, the average
shape of extreme waves in directional seas with presence of current has not
been investigated.

The studies above have made important contributions to perceiving the
extreme wave properties. Nevertheless, the following two issues are still re-
maining unaddressed. Firstly, how does the nonlinear wave-current interac-
tions modify the extreme wave statistics, spectrum characteristics and aver-
age shape of extreme waves in directional seas with presence of current at a
range of incident angles? Secondly, whether can the NewWave model be em-
ployed to describe the average shape of extreme waves in directional seas with
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presence of opposing and oblique current, in particular for strong nonlinear
cases? As aforementioned, the numerical model based on fully nonlinear po-
tential theory can provide reliable statistical and deterministic descriptions
about the extreme waves. Therefore, this study will aim to answer the two
questions by using results derived from phase-resolved numerical simulations
of directional random seas in presence of current at different incident angles
and initial wave steepness based on the fully nonlinear ESBI model (Wang
et al., 2018). Besides, the results from the model will also be used as bench-
marks for verification against the NewWave models in order to examine their
accuracy.

The paper is organized in the following way. Firstly, the formulations
regarding different methodologies employed in this study are introduced in
Section 2, i.e., the current-modified NewWave model based on linear theory,
the nonlinear NewWave model considering the Stokes-type corrections and
the ESBI model based on fully nonlinear potential flow theory. Section 3
presents the theoretical and numerical results for the cases with different
incident angles between waves and current and discusses the current effects
on the crest exceedance probability, kurtosis, spectral properties and average
shapes of extreme waves. Moreover, the suitability of the NewWave model for
describing the average shape of extreme waves in directional seas subject to
current will be discussed both qualitatively and quantitatively in Section 4.
Lastly, concluding remarks are given in Section 5. This study will contribute
to an insight of the statistical properties of extreme waves induced by fully
nonlinear wave-current interactions in directional seas subject to current with
different incident angles and shed light on the fact that the NewWave model
does not adequately describe the shape, and so the kinematics, of extreme
waves when there exists strong interaction of spreading waves with current.

2. Methodologies

In this section, descriptions will be given on all the models that are used for
studying the properties of extreme waves in directional seas with presence
of current. These include the ones based on linear theory, second-order the-
ory and fully nonlinear theory. Note that this study has assumed that the
horizontal velocity of the current is independent of the vertical coordinate,
which is a reasonable approximation to the current field in region where the
characteristic time and length scale of the oceanic current is large compared
with wind-generated waves (Peregrine, 1976). Nevertheless, the variation of
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its vertical structure can become important when considering wind driven
surface current (Nwogu, 2009), which however is not the focus of this study.

2.1. Current-modified NewWave model based on linear theory

The NewWave model describes the average shape of the extreme waves with
the given spectrum of sea states. It should be noted that the NewWave
theory can be employed to either examine the average shape of extreme
waves in time domain at specified location using the time histories of free
surface elevation or frequency spectrum (Boccotti, 2000), or investigate their
average shape in space domain based on the wavenumber spectrum (Gibbs
and Taylor, 2005). This study will adopt the latter to explore the average
shape of extremes in space subject to opposed or oblique current. In other
words, with the wave spectrum known in advance, the free surface elevation
of the averaged extreme wave profile can be obtained by (Gibbs and Taylor,
2005)

η
(0)
NW (xxx) =

a0

m0

∫
S0 (kkk) cos (kkk · xxx) dkkk (1)

where η
(0)
NW denotes to the profile of the NewWave, a0 is the desired crest

height of the NewWave and m0 is the zeroth moment of S0 (kkk), S0 (kkk) repre-
sents the corresponding wavenumber spectrum without effects of current, xxx =
(x, y) and kkk = (kx, ky) are the horizontal spatial coordinates the wavenumber
vectors, respectively. Following Boccotti (1989) and Arena et al. (2005), the

NewWave profile with presence of current η
(c)
NW can be expressed by

η
(c)
NW (xxx) =

ac

m
(c)
0

∫
S (kkk) cos (kkk · xxx) dkkk (2)

where ac is the desired crest height, m
(c)
0 is the zeroth moment of S (kkk) and

S (kkk) is the spectrum considering current effects. Now the problem is reduced
as how to determine S (kkk) . For this purpose, we follow the suggestion for
general wave spectra of directional waves in presence of current by Lavrenov
(1998, 2003), i.e.,

Ŝ (ω, θ) =
16Ŝ0 (ω, θ0)√

1 + u′ cos (ϕ− θ)
[
1 +
√

1 + u′ cos (ϕ− θ)
]4 (3)

8



where Ŝ0 (ω, θ0) and Ŝ (ω, θ) represent the directional spectra without and
with current, respectively, θ0 and θ denote the direction of wave propagation
before and after encountering the current as shown in figure 1. In equation
(3), u

′
= 4ωu/g where u = |uuu| is the magnitude of the current speed, g is the

gravitational acceleration, and ω is the frequency measured in an immovable
coordinate system, which can be different from the frequency σ measured
in the moving frame with the current. The two frequencies are connected
through

ω = σ + uuu · kkk (4)

where uuu = (u cosϕ, u sinϕ) and ϕ is the incident angle of the current.
To make use of equations (3) and (4) for approximating the NewWave pro-

file, the wavenumber spectrum S (kkk) can be derived from the directional spec-
trum Ŝ0 (ω, θ0) and by Ŝ (ω, θ) using the following transformation (Tucker
and Pitt, 2001)

S0 (kkk) = Ŝ0 (ω, θ0)
∂ (ω, θ0)

∂ (kx, ky)
= Ŝ0 (ω, θ0)

g

2ωk
(5)

S (kkk) = Ŝ (ω, θ)
∂ (ω, θ)

∂ (kx, ky)
= Ŝ (ω, θ)

(
k
∂k

∂ω

)−1

(6)

Note that equation (3) can be further written as a formulation in terms of the
wave amplitude, which then becomes the one suggested by Nwogu (1993).
As well-known, one can express Ŝ0 (ω, θ0) as Ŝ0 (ω, θ0) = Ŝ (ω)G (θ0) with
the spreading function G (θ0) given by

G (θ) =
Γ (N/2 + 1)√
πΓ [(N + 1) /2]

cosN (θ) (7)

where Ŝ (ω) is the spectrum for unidirectional waves (note that the frequency-
dependent spreading function can be selected for a more realistic simulation).
For unidirectional irregular waves, integrating equation (3) with respect to
θ gives the expression obtained by Huang et al. (1972), while the current-
modified NewWave model of equation (2) reduces to the version for long-
crested waves (Arena et al., 2005). Further replacing Ŝ (ω) with the wave
amplitude, one obtains the well-known relationship of wave amplitude and
current suggested by Longuet-Higgins and Stewart (1961). Readers may refer
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Figure 1: Sketch of the problem in plan view.

to Appendix A and the aforementioned literature for more details about
deriving the formulations of the current-modified NewWave model.

In this study, the directional spectrum before interacting with current
and the spatial distribution of the current velocity field are specified. Thus,
the average shape (η

(c)
NW ) of extreme waves in presence of current, based on

the linear theory, can be estimated by employing equations (2)∼(6).

2.2. Current-modified NewWave models considering nonlinear effects

In addition to the model established above using the linear theory, two other
models through involving nonlinear effects are formulated. The first one is
to employ the directional spectrum in presence of current collected from the
fully nonlinear numerical simulations (to be discussed in the next subsection)
and then to use equation (2) to directly convert the spectrum into the average
shape of extreme waves. In this method, the average shape contains both
nonlinear and current effects through the wave spectrum but is still based on
linear relationship of equation (2). The results obtained by this method will

be denoted as η
(c1)
NW hereafter.

Alternatively, the NewWave profile with some nonlinear effects may be
formed through the Stokes-type correction up to the second order as sug-
gested by Walker et al. (2004), which is expressed as

η
(c2)
NW = ηL + η2 +O

(
ε3
)

(8)

where ηL is the linear part that can be replaced with ηL = η
(c)
NW in section

2.1, η2 is the second-order correction term and can be estimated by using the
formula

10



η2 =
kp
2

(
η2
L − η2

LH

)
(9)

where ηLH is the Hilbert transform of ηL and kp the peak wavenumber. Note
that an alternative approach is to use the MNLSE formulation or the ex-
act second-order interaction kernal that calculates the wave-wave interaction
components for all possible pairs of linear wave components as demonstrated
in Jensen (2005) and Tayfun and Fedele (2007a) in absence of current and
in Nava et al. (2006) with presence of current. However, it has been pointed
out that the estimation based on equation (9) agree very well with those by
using the exact second-order theory (Dean and Sharma, 1981; Dalzell, 1999)
for describing the profiles of New Year Wave in directional seas without pres-
ence of current (Walker et al., 2004). Therefore, the robustness of equation
(9) should be sufficient for investigating the second-order nonlinear effects on
the average shape of extreme waves in directional seas in presence of current.
Note that although Stokes-type correction leads to a better description for
sharper crest and shallower trough, a drawback is that it produces a sym-
metrical wave profile (Lindgren, 2006), which will be addressed later in this
study.

On the other hand, for the strongest nonlinear case considered in this
study (as later show in Section 3 with largest initial wave steepness and 180o

opposed current), it is found that the magnitude of the nonlinear contribu-
tions decreases rapidly as the order increases. For instance, the maximum
contribution of the third-order correction to the peak of NewWave profile is
about 3.7%. Heuristically, for other cases in this study, the resulted con-
tributions from the third-order correction part will be less than this case.
Therefore, the nonlinear NewWave model considering the Stoke-type correc-
tions up to the second-order is employed, which is sufficient regarding the
purpose of this study. Therefore, if the NewWave model with the nonlinear
correction described in this section still cannot well model the extreme waves,
its deficiency may be due to the lack of considering nonlinearities beyond the
Stokes-type corrections (Lindgren, 2006).

2.3. Method for fully nonlinear simulations

In this study, the Enhanced Spectral Boundary Integral (ESBI) method for
modelling fully nonlinear wave-current interactions (Wang and Ma, 2015;
Wang et al., 2018) is employed to simulate directional waves subject to cur-
rent with different incident angles. The details of the method are well doc-
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umented in Wang and Ma (2015) and Wang et al. (2018). Only some key
equations are briefed here for completeness.

All the variables used in the ESBI have been non-dimensionalized, e.g.,
those in length are multiplied by peak wavenumber kp, i.e., (XXX,Z) = kp (xxx, z),
those in time by peak wave frequency ωp, i.e., T = ωpt, velocity potential
by k2

p/ωp and velocity by kp/ωp, and the dispersion relation is given by ωp =√
gkp . The still water level is specified at Z = 0, while the free surface and

velocity of the water can be split into two parts, i.e.,

ζ = η + η (10)

−→
U =

−→
U + (∇, ∂Z)φ (11)

where ∇ = (∂X , ∂Y ) is the horizontal gradient operator,
−→
U = (UUU,W ) and η

are the current velocity and current induced surface elevation in absence of
waves, respectively; φ and η are the velocity potential and deflection of the
free surface involving the contribution from waves and wave-current interac-
tions. Then the free surface boundary conditions based on the fully nonlinear
potential theory can be reformulated as

∂T
−→
M + A

−→
M =

−→
N (12)

where

−→
M =

(
KF{η}
K3/2F{φ̃}

)
, A =

[
0 −K1/2

K1/2 0

]
and
−→
N =

(
KF{G1}
K3/2F{G2}

)
, (13)

φ̃ denotes the values at the surface, F{∗} =
∫
∗e−iKKK·XXXdXXX is the Fourier

transform and F−1{∗} denotes the inverse transform, the wavenumber K =
|KKK| , and formulations of G1 and G2 can be found in Appendix B. Equation
(12) will be used as the prognostic equation for updating the free surface and
velocity potential in time domain and its solution can be given by

−→
M (T ) = e−A(T−T0)

[∫ T

T0

eA(T−T0)−→NdT +
−→
M (T0)

]
(14)

where
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eA∆T =

[
cosK1/2∆T − sinK1/2∆T
sinK1/2∆T cosK1/2∆T

]
. (15)

Equation (14) can be solved by using the fifth-order Runge-Kutta method
with adaptive time step. An energy dissipation model suggested by Xiao et al.
(2013) is also introduced to the ESBI to handle breaking waves, of which the
efficiency has been demonstrated and confirmed by direct comparison against
laboratory measurements.

To update the φ̃ and η in time domain, the vertical velocity V requires to
be calculated each time step. The evaluation of V can be achieved by using
the boundary integral equation, and it can be split into four parts in terms
of different degrees of nonlinearities, i.e., V = V1 + V2 + V3 + V4, where the
formulations for each part can be found in Appendix B. For more details
about the numerical scheme, readers can refer to Wang et al. (2018).

Wang et al. (2018) carried out necessary verification by comparing results
from the above method with analytical solutions, and also validation by com-
paring with experimental data in several cases that include two-dimensional
focusing waves on a uniform current, two-dimensional regular waves interact-
ing with spatially-varying current and three-dimensional interactions of hor-
izontally varying current with spreading ocean waves and modulated waves
generated by superimposing two-sideband wave components onto a carrier
wave component. Their studies showed that the numerical results from the
method are almost the same as the analytical solutions when the wave steep-
ness is sufficient small, and in particular, showed that their numerical results
agree quite well with experimental data in all the cases they studied. On
the basis, this paper will not present results related to the validation on the
numerical method, rather focus on discussing the outcome of modelling ex-
treme waves in directional seas interacting with opposing and oblique current.
Readers can refer to Wang et al. (2018) for the results of validations.

3. Results and discussion

3.1. Wave condition, current field and numerical setups

For the purpose of this paper, the cases with different parameters of wave
and current are studied. Specifically, the waves are generated by using the
JONSWAP spectrum and spreading function of equation (7) with γ = 9,
peak frequency ωp = 1.17rad/s (a peak wave length, Lp, of about 45m), and
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N = 24. Two values of wave steepness for the spectrum are specified, i.e.,
(kpHs)0= 0.01 and 0.15; hereafter they are called initial steepness. The usage
of JONSWAP spectrum with γ = 9 is a good approximation of a swell spec-
trum restricted to a narrow bandwidth (Goda, 1983), while the selected large
wave steepness (kpHs)0= 0.15 is not unusual as similar values were observed
during ship accidents due to bad weather conditions (Toffoli et al., 2005).
The selected bandwidth parameter and steepness yields a BFI of 0.16, which
is similar to the sea state where the Killard wave is observed (Fedele et al.,
2016). To consider relatively smaller BFIs, two steepness (kpHs)0= 0.05 and
0.1 are also used for simulating the cases with a fixed current incident angle
of 150o. In numerical simulations, the spectrum is cut-off at 1.55ωp, corre-
sponding to 1% of the spectral peak value. Computational setup is sketched
in figure 2. Although the spectral components with frequency higher than
1.55ωp are ignored for wave generation, the components with higher frequen-
cies will be produced leading to a broader-band spectrum (with γ < 9) during
the fully nonlinear simulations in the area away from the wave generation
zone due to fully nonlinear wave-wave and wave-current interactions, which
is also known as weak wave turbulence (Fadaeiazar et al., 2018, 2020).

The current is specified according to the equation below

|UUU | =

{ 0, X/Lp ≤ 2
UmH ((4−X/Lp) /2) , 2 < X/Lp ≤ 4

Um, X/Lp > 4
(16)

as shown in figure 2. To explore the effects of different current incident
angles, a series of angles ranging from ϕ = 90o, 110o, 135o, 150o and 180o are
selected whereas the current magnitude is fixed to Um = 0.3 cg, where cg is
the wave group velocity. The selection of the wave parameters and current
magnitude is consistent with the representative wave and current condition
for studying current induced extreme waves in Agulhas region (Lavrenov,
1998), and other areas globally, e.g., South China Sea (Fang et al., 1998; Li
et al., 2016).

The computational domain is selected to be 50Lp × 50Lp as shown in
figure 2, and is resolved into 2048×1024 collocation points in X - and Y -
direction, respectively, where Lp is the non-dimensionalized peak wavelength
without current in presence. Based on the relevant studies by Wang et al.
(2018), the size of the domain is large enough for the wave-current interac-
tion to become established and the resolution is fine enough for the results
to converge. Pneumatic directional wavemaker (Clamond et al., 2005) is in-
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Figure 2: Plan view of the computational domain used in the simulations.

stalled along the Y -direction with 10Lp away from the left boundary and
the domain in the region of 40Lp×50Lp on the right-hand side is used for ef-
fective wave field. The pneumatic wavemaker is implemented by prescribing
a dynamic pressure distribution at the surface that is localized in space (as
indicated by the shaded strip in Figure 2) and oscillates in time based on a
linear wave generation theory. The waves excited by the oscillating pressure
will then propagate towards the far field and nonlinear components will be
generated through wave-wave interactions immediately after the waves mov-
ing away from the wavemaker (Clamond et al., 2005). Absorbing boundaries
are employed to damp outgoing waves. To explore the extreme wave (defined
in time domain) statistics, the surface time histories are collected by gauges
deployed every 3Lp and 3.5Lp in X - and Y -direction, respectively, which is
12×11 = 132 in total number. This will avoid the issue that using a single
point observation is insufficient to investigate the extreme wave ensembles
(Benetazzo et al., 2017). Regarding the average shape of extreme waves, they
are defined in space domain and more details are reported in section 3.4.

For each case with a given initial wave steepness (kpHs)0 and current
incident angle ϕ, four realizations are performed with different sequences of
random numbers used in computing the phases of wave components. Note
that the random phase approach is employed, which is equivalent to the ran-
dom amplitude approach for generating random waves as sufficient number of
components (≈ 2×103) have been used in the numerical simulations (Tucker
et al., 1984). Each simulation lasts for 500 peak periods to represent a typical
sea state. The first 100 peak periods are used for waves ramp-up to ensure
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all the interesting spectral components to interact with the current and reach
the absorbing boundary at the other end. Therefore, the free surface records
from 100∼500 periods are used for analysis, which means that about 5×104

waves are collected from the probes in each simulation and it is sufficient
for achieving reliable statistical analysis (Toffoli et al., 2011) and building
up the nonlinear spectra to steady state (Nwogu, 1993). For example, the
error of estimated kurtosis reduces in time and becomes less than 5% after
400 periods, indicating that the selected time range is sufficient for achieving
stabilized statistics. In addition, the free surface spatial distribution at ev-
ery peak period is saved to files for estimating the wavenumber spectra and
average shape of extreme waves. Some snapshots of the non-dimensional free
surface elevation η at the end of the simulations are displayed in figure 3(b-d)
for the case with (kpHs)0 = 0.15 and different current incident angles. Figure
3(a) gives corresponding results without current. It can be seen from this
figure that the number of large waves for the cases with current is signifi-
cantly larger than the cases without current, implying that the presence of
the current has direct impacts on the surface deflection in directional seas,
as well as the appearance of extreme wave events. Further discussions will
be presented in the following subsections.

3.2. Current effects on exceedance probability and kurtosis

Firstly, the effects of wave-current interactions on the two aspects of extreme
wave statistics will be investigated. One is the wave crest exceedance prob-
ability and the other is the kurtosis. Both are used by many researchers as
statistical indicators of the extreme waves. The discussions will be based
on the results of free surface time sequence collected from the wave gauges
deployed in the numerical simulations by the ESBI method.

3.2.1. Wave crest exceedance probability

For a Gaussian sea, the exceedance probability of wave crest can be repre-
sented by the Rayleigh distribution, given by Kharif et al. (2009)

PR = exp
(
−8χ2

)
(17)

where χ = Hc/Hs and Hc is the crest height (vertical distance from mean
water level to crest peak, different from the wave height defined above).
Equation (17) is only accurate for describing the statistics for small steepness
waves where the second-and higher-order nonlinear effects are insignificant.

16



(a) No current (b) ϕ = 90o

(c) ϕ = 135o (d) ϕ = 180o

Figure 3: Selected free surface snapshot at the end of simulation for (kpHs)0 = 0.15.
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To consider nonlinear effects, the Tayfun distribution was suggested, which
describes the contribution from the nonlinearities up to the second-order for
narrow-band nonlinear ocean waves (Tayfun, 1980). It is found that the
prediction by Tayfun distribution agrees very well with both the real-world
measurement and fully nonlinear numerical simulation by using HOS method
without presence of the current (Fedele et al., 2016). Its mathematical form
is given as

PT = exp

[
−
(
−1 +

√
8σχ+ 1

)2

2σ2

]
(18)

where σ is 1/3 of the skewness of the free surface elevation. Note that the
third-order Tayfun distribution becomes dependent on the excess kurtosis
(Tayfun and Fedele, 2007b), which requires an accurate estimation of the
kurtosis in priori. A detailed investigation of the kurtosis will be carried out
in the subsequent section, therefore it is not employed here. Note that Fedele
et al. (2017) has suggested a methodology to approximate the drifted spectral
moments for estimating the nonlinear space-time statistics. Instead, we em-
ploy the surface elevation time histories collected from the probes deployed
in the fully nonlinear simulations to estimate the spectral moments, which
already considered the current effects. The exceedance probabilities of wave
crests according to wave elevation obtained by the fully nonlinear numeri-
cal simulations based on ESBI method are presented in figure 4 for different
current incident angle and wave steepness, together with the prediction from
equations (17) and (18). The figure shows that the exceedance probability
for the small steepness waves by the numerical simulations agrees generally
well with the Rayleigh distribution for the cases with and without the cur-
rent (except the case ϕ = 180o where the measured probability is slightly
higher than the theoretical prediction at the tail). However, for larger steep-
ness waves, the Rayleigh distribution leads to a significant underestimation
of fully nonlinear results. In contrast, the Tayfun distribution successfully
predicts the wave crest exceedance probability for the case with larger steep-
ness and without the current, as shown in figure 4(a). However, the Tayfun
model significantly underestimates the exceedance probability of nonlinear
waves interacting with current, interestingly even when the incident angle is
90o. For the case of 90o incident angle, the current is only normal to the
main direction waves but not to other wave components in directional seas.
Thus, it is reasonable to see the difference in figure 4(b).
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To examine the effects of current incident angle on the wave crest ex-
ceedance probability, the results obtained from the numerical simulations
are displayed in figure 5. In figure 5(a), it can be found that the curves
representing the exceedance probability of the cases with small wave steep-
ness with different current incident angles match with each other very well,
which again confirms the validity of the Rayleigh distribution for modelling
the wave crest exceedance probability for small steepness waves, no mat-
ter the current is in presence or not. On the contrary, figure 5(b) depicts
a totally different scenario for the cases with larger wave steepness, where
it is found the presence of the current enlarges the wave crest exceedance
probability for Hc/Hs > 0.6, indicating higher probability of extreme wave
occurrence than the situation without current. When the current incident
angle increases from ϕ = 90o to ϕ = 135o, the exceedance probability gradu-
ally grows in magnitude. However, when the current incident angle is larger
than 135o, the exceedance probability does not significantly grow anymore,
though slightly drops in the range Hc/Hs >1.2. The reduction of the proba-
bility in range Hc/Hs >1.2 for the cases ϕ = 150o and 180o is because that
the maximum wave crest heights are limited due to wave breaking, as indi-
cated by the Type 4 probability distribution (Adcock and Taylor, 2014). It
is noted that Toffoli et al. (2015) presented the wave height (not crest height)
probability in directional seas subjected to opposing current and indicated
the similar phenomenon that the current can lift the tail of the distribution.
However, their results did not show such big difference as observed in figure
4(f) and figure 5(b). We simulated their cases and analyzed the wave height
probability in the same way as they did and found that our numerical results
are very close to theirs. As these results just confirm those in the reference
and do not add any new thing, they are not presented here.

In summary, the presence of current will significantly enhance the wave
crest exceedance probability for the cases with strong nonlinear interaction
between waves and current. The extent of enhancement depending on the
incident angle of current. The maximum enhancement occurs at the incident
angle of 135o but not at 180o, in the cases studied. Under the conditions, the
Tayfun distribution gives better prediction than the Rayleigh distribution,
but it still significantly underestimates the probability, particularly at its
tail. The largest difference between Tayfun distribution and fully nonlinear
results is observed also at the current incident angle of 135o.
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Figure 4: Exceedance probability of the wave crest in comparison with the Rayleigh and
Tayfun distribution.
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Figure 5: Exceedance probability of the wave crest for (a) small and (b) large steepness
waves.

3.2.2. Kurtosis

Another effective way to investigate the probability of extreme waves is
to examine the kurtosis of the surface elevation. The estimation of kurtosis
depends on the wave theory assumed. When the wave steepness is small, it
can be approximated by the linear theory, and thus the kurtosis is a con-
stant, i.e., κ1 = 3. For moderate waves, formulas were suggested to estimate
the kurtosis to consider nonlinear effects up to the third order including a
dynamic part and Stokes bound contribution, of which the former requires to
estimate the wave steepness, spectral bandwidth and angular width in pri-
ori (Janssen and Bidlot, 2009; Fedele, 2015; Janssen and Janssen, 2019). In
particular, the estimation of the width of observed frequency spectra is not
a trivial task, while the usual approach will not always provide the sharpest
estimate of directional width near the peak. Since discussion on the ineffi-
cacy of the approach for estimating kurtosis is not the focus of this study,
for simplicity, the formula of kurtosis for a steady narrowband wave train
considering third-order Stokes contribution is adopted (Mori and Janssen,
2006), i.e.,

κ2 = 3 + 24k2
pm0 (19)

where m0 is the total spectral energy. Thus, equation (19) allows the user
to estimate the kurtosis for a given spectrum that, in presence of current,
can be obtained by equations (3)∼(6). For general nonlinear waves, one can
adopt the formula
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κ3 = m4/m
2
2 (20)

to directly estimate the kurtosis, where m2 and m4 are the second and fourth
moment of the surface elevation and obtained by integrating the wave time
history, respectively, which are collected in the fully nonlinear numerical sim-
ulations. This way for estimating the kurtosis corresponds to the ensemble-
averaged approach employed by Janssen (2003), where he had used time his-
tories of surface elevation at arbitrary locations collected in a large number
of Monte Carlo simulations by using the Zakharov equation.

The kurtosis estimated by using equation (20) based on the results of
the fully nonlinear numerical simulation, together with the predictions based
on the linear and the third-order theory, i.e., κ1 = 3 and equation (19),
are presented in figure 6. It can be observed in this figure that the linear
prediction, and the kurtosis based on equations (19) and (20) with using the
value of m0 , m2 and m4 for the waves with smaller initial steepness agree
generally well, which approximately equal to 3. In the cases with smaller
steepness, the inclusion of current doesn’t affect the magnitude of kurtosis.
However, for the cases with larger wave steepness, the estimation of the
kurtosis using equations (19) and (20) becomes much larger than 3 depending
on the current incident angles. Equation (19) based on the third-order theory
predicts that the current in perpendicular direction does not increase the
kurtosis comparing with the case without current while the kurtosis from the
equation grows with the increase of the current incident angle and becomes
stabilized at around 3.08 when ϕ ≥150o. In contrast, the kurtosis given
by equation (20) based on the results of fully nonlinear simulations is much
larger compared with the third-order predictions in particular at the large
incident angles. which is not surprising as equation (19) has not considered
the dynamic part accounting for the nonlinear resonant interactions, which
usually gives rise to a much larger contribution to the kurtosis (Mori and
Janssen, 2006). Specifically, when there is no current, the estimated kurtosis
based on equation (20) is slightly larger, which is due to nonlinearity of waves
and is in line with those shown in figure 4(a) that the wave crest exceedance
probability obtained by the numerical results is relatively larger than the
Tayfun distribution based on the second-order theoretical prediction. For
the cases with the incident angle of current from ϕ = 90o to ϕ = 135o, the
kurtosis estimated by equation (20) increases to the maximum value of 3.23
then reduces to 3.18 as the angle towards ϕ = 180o. The observation of
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the reduction of the kurtosis for the two cases ϕ = 150o and 180o are in
consistence with the dropping of wave crest exceedance probability in the
range Hc/Hs > 1.2 as depicted in figure 5(b). As restated, the up-limit of
the wave height is bounded by the wave breaking for the cases of ϕ = 150o

and 180o, leading to the decrease of the kurtosis relative to the maximum
value.

Overall, the deviations of wave crest exceedance probability at the dis-
tribution tail and kurtosis from the Gaussian sea for the larger steepness
case basically corroborate that the current-induced increase of wave steep-
ness triggers effects related to the modulational instability that compensates
for the suppression of non-Gaussian behaviour due to large directional width
(Toffoli et al., 2011). With increasing current incident angle, the component
of the current speed in the mean wave direction becomes larger leading to
further compression of the wavelength and enhancement of the wave steep-
ness. As a consequence, the compensation effects become more significant
so that these statistical properties exhibit more evident non-Gaussian be-
haviour. However, in contrast to Toffoli’s speculation, stronger opposition or
larger incident angle of ambient current does not necessarily produce higher
kurtosis, e.g., ϕ = 150o and 180o, which is attributed to that the enhance-
ment of the wave steepness is bounded by the wave breaking. In addition, as
shown in Figure 4(e) and Figure 6(b), given a fixed current incident angle,
the increasing wave steepness can also enhance the crest exceedance probabil-
ity and kurtosis. The larger the initial steepness is, more evident deviations
are observed between the numerical results and the Gaussian sea. This is
because larger steepness implying enhanced BFI will lead to stronger nonlin-
earities associated with modulational instability, which destabilizes the wave
packet and facilitates the formation of extreme waves. Note that even cases
of relatively small initial steepness (kpHs)0=0.05 exhibit non-Gaussian sea
behaviours. This is due to the enhancement to the wave steepness induced
by current, which will be discussed in the next subsection.

3.3. Changes in wave spectral properties due to current

Next, it is important to look at the changes in the spectral properties due
to wave-current interactions, as some fundamental features of the sea state,
i.e., spectral shape, total energy and peak wavenumber, will be modified sig-
nificantly due to the presence of current. We study the wavenumber spectra
by their averaged shapes, which are estimated through performing Fourier
transform to the free surface spatial distribution and calculating the mean
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Figure 6: Kurtosis versus (a) current incident angle and (b) wave steepness.

value within 100∼ 500 peak periods for each case. The spectra of the first 100
periods are ignored so that only those of steady state are used for estimating
the average shape. This has allowed sufficient time for the nonlinear wave-
current interactions to reshape the spectra. For convenience, we use S̃0 (k)

and S̃ (k) to denote the estimated average spectral shape from numerical
simulation results without and with presence of current, respectively.

3.3.1. Spectral shape and spreading

The spectra based on the linear theory model in equations (3)∼(6), i.e. S0 (kkk)

and S (kkk), and these based on the numerical simulation results, i.e., S̃0 (kkk) and

S̃ (kkk), corresponding to different current incident angles ϕ and initial wave
steepness (kpHs)0 for the cases without current or with current of Um/cg ≈
0.3 are displayed in figure 7. In the figure, the wavenumbers in both directions
are normalized by the peak wavenumber. It is found that without current,
the wavenumber spectra are symmetrical with respect to ky = 0 , as shown
in figure 7(a), in which the contour of a spectrum with significant values
is an ellipse with its major axis in ky-direction. When the ambient current
is ϕ ≥ 90o, the spectra are skewed in anti-clockwise direction around the
peak wave number and becomes asymmetrical with respect to ky = 0 . This
is because the wave components of ky < 0 (lower half, e.g., in figure 7(d-
f)) propagate obliquely against the current. Thus, its wavelength will be
compressed and correspondingly the wavenumber becomes larger. On the
other hand, the wavelength of components of ky > 0 will be stretched by
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the current, reducing their wavenumbers. At ϕ = 180o, as shown in figure
7(p-r), the spectrum recovers to its symmetrical form, which however extends
in kx -direction compared with that without current, or in other words the
major axis of the ellipse with the significant values of a spectrum is in kx-
direction. In addition, if one looks at the spectral peaks, their positions
are almost unchanged for the cases with ϕ = 90o as they are for the cases
without current. However, for the cases with ϕ > 90o , the spectral peak
shifts towards the higher wavenumber along the kx-direction, e.g., in figure
7(g)(j)(m).

The nonlinear effects on the spectra with the presence of current need
more discussions. Firstly, the nonlinearity itself does not visibly shift the
position of the spectral peaks in the cases without current. With the presence
of current, the nonlinearity tends to reduce the shift of the peak position, as
clearly shown in figure 7(p-r), which will be discussed further in later section
in a quantitative manner. Secondly, the nonlinearity tends to broaden the
spectra near peaks when the current presents, as one can see from, e.g., figure
7(n) and (o), in particular with increase of incident angle. The broadening
effect is consistent with what has been pointed out in many studies that when
the wave steepness is large, the nonlinear interaction between wave modes
generates a transfer of energy that modifies the wave spectrum and leads
to the broadening of the directional spectrum towards high wavenumbers
(Dysthe et al., 2003; Onorato et al., 2009).

The broadening effects can be quantified by the formula below (Hwang
et al., 2000),

σ2 (k) =

√√√√∫ π/2−π/2 θ
2D (k, θ) dθ∫ π/2

−π/2D (k, θ) dθ
(21)

where D (k, θ) is the normalized distribution of the wavenumber spectrum
and it can be evaluated by

D (k, θ) =
S (k, θ)

max{S (k, θ)}
(22)

Note that σ2 is a function of k, therefore, to compare the spreading in terms
of different current incident angles, the mean value of σ2 around the peak
wavenumber over the range k/kp = 0.8 ∼ 1.2 is employed (Hwang et al.,
2000), which is denoted by σm and is estimated by using the formula
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(a) (theo.) (b) ε0=0.01(num.) (c) ε0=0.15(num.) (d) (theo.) (e) ε0=0.01(num.)

(f) ε0=0.15(num.) (g) (theo.) (h) ε0=0.01(num.) (i) ε0=0.15(num.) (j) (theo.)

(k) ε0=0.01(num.) (l) ε0=0.15(num.) (m) (theo.) (n) ε0=0.01(num.) (o) ε0=0.05(num.)

(p) ε0=0.1(num.) (q) ε0=0.15(num.) (r) (theo.) (s) ε0=0.01(num.) (t) ε0=0.15(num.)

Figure 7: Comparison of renormalized wavenumber spectra in terms of different current
incident angles for Um/cg ≈ 0.3. In the figure, (theo.) denotes the theoretical results and
(num.) represents the numerical methods.(a-c): no current; (d-f): ϕ=90o; (g-i): ϕ=110o;
(j-l): ϕ=135o; (m-q): ϕ=150o; (r-t): ϕ=180o
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σm =
1

(1.2− 0.8) kp

∫ 1.2kp

0.8kp

σ2 (k) dk. (23)

As shown in figure 8, the mean value σm obtained by using the numeri-
cal results for the case (kpHs)0 = 0.01 agrees very well with the theoretical
predictions, where the maximum error is about 2.3% . It indicates that the
numerical simulation of the small steepness waves successfully captured the
variation of the spectral spreading due to the wave-current interactions when
the nonlinearities are insignificant. The reduction of σm with increasing ϕ is
also consistent with the observation in figure 7, where the presence of current
stretches the spectra in the X -direction, thus reduces the directionality of the
spectra when its incident angle increases. It is more interesting, however, to
see that the spreading of the spectra becomes greater for the case (kpHs)0 =
0.15 with the current incident angle being larger than 110o. The increment
of the difference is more evident with the increase of ϕ . This also confirms
the observation in figure 7, where the nonlinearities contribute to broadening
the spectra, and the broadening effects are more significant for larger current
incident angle. For example, the measurement of the spreading σm is en-
hanced by 15.6% for the case ϕ = 180o due to the nonlinearities. Meanwhile,
for fixed current incident angle ϕ = 150o, it is not surprising that the same
trend of broadening is observed with increasing initial wave steepness. This
confirms that the broadening effects are associated with the wave steepness,
which will be further discussed in section 3.3.3.

3.3.2. Total spectral energy

When the waves propagate against an adverse or obliquely opposed current,
the wave amplitudes will be enhanced. Since the spectral energy is associated
with the square of the wave amplitude, the spectral energy will also grow as
a result. Therefore, it is interesting to examine the effects of the current
on the variation of the total spectral energy. To do so, we use the ratio of
total spectral energy with presence of current over that without current, i.e.,
E(c)/E(0), to represent the enhancement of the energy due to current. The
total spectral energy E(c) with current and E(0) without current based on
the numerical simulation results can be estimated by using the wavenumber
spectra obtained in section 3.3.1. It can be found in figure 9 that the ratio
E(c)/E(0) for the case (kpHs)0 = 0.01 are perfectly consistent with the theo-
retical predictions, and that the curve grows monotonically with the increase
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Figure 8: Magnitude of spreading versus current incident angle.

of the current incident angle. At the current of ϕ = 180o, the total spectral
energy can be 3 times larger than that with waves only.

For larger steepness waves, however, the curve representing the enhance-
ment of the total spectral energy sits well below the theoretical predictions
due to the nonlinear effects as shown in the figure. This finding is in fact
consistent with the observations of unidirectional waves by Hjelmervik and
Trulsen (2009), where it is reported that the nonlinearities can reduce the
enhancement of the significant wave height, which approximately equals to
four times the square root of the total spectral energy. Therefore, it is shown
in figure 9 that E(c)/E(0) for (kpHs)0 = 0.15 exhibits a deceleration when ϕ
increases, whereas it can only be enhanced by 2 times when the current inci-
dent angle reaches ϕ = 180o. In addition, the reduction to the total spectral
energy is found to be associated with initial wave steepness as indicated by
the results for fixed current incident angle ϕ = 150o. Larger steepness leads
to reduced enhancement to the total spectral energy and such changes due
to nonlinearities will be explained in section 3.3.3.
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Figure 9: Spectral energy ratio with respect to the current incident angle.

3.3.3. Shift of the peak wavenumber

As indicated above during the discussion for figure 7, the peak wavenum-
ber is shifted due to the wave-current interactions. The shift of the peak
wave number for linear waves can be quantified by the following equation
(Lavrenov, 2003)

kp
kp0

=
4[

1 +
√

1 + U ′ cosϕ
]2 (24)

where kp0 and kp are peak wavenumbers before and after shift, respectively.
It indicates that for a non-zero current speed, when the current incident angle
ϕ increases, the peak wavenumber will shift to the higher end, which implies
that the waves will become shorter. However, equation (24) only applies to
small steepness waves as it is derived based on the linear theory. To examine
the effects of nonlinearities on the shift of the peak wavenumber, one needs
to look at the results obtained from the fully nonlinear simulations of larger
steepness waves. These ratios of kp/kp0 extracted from the wavenumber spec-
tra of fully nonlinear simulations given in section 3.3.1 are shown in figure 10
together with the theoretical predictions of kp/kp0 based on equation (24).
It can be found in figure 10 that the results for small steepness waves based
on the fully nonlinear simulations agree very well with the theoretical pre-
dictions based on equation (24). It is also found that with the increase of
the current incident angle, the peak wavenumber becomes larger and can be
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amplified by a factor of 1.53 when ϕ =180o. For larger steepness waves, three
points should be discussed. Firstly, the peak wavenumber is down shifted by
about 3% without the presence of current compared with its linear coun-
terpart. This is because the nonlinear interactions between the wave modes
redistribute the spectral energy, which has been pointed out in many studies
(Onorato et al., 2002; Dysthe et al., 2003; Toffoli et al., 2010). Secondly, with
the increase of the current incident angle, the peak wavenumber is enhanced,
but the enhancement is much below the linear predictions and seems to sta-
bilize after ϕ exceeding 135o. For example, the amplification to the peak
wavenumber reaches the maxima of kp/kp0 ≈ 1.25 when ϕ = 135o and 150o,
while slightly reduces to kp/kp0 ≈ 1.22 when ϕ = 180o. Lastly, it also implies
that the reduction in the enhancement of the peak wavenumber due to non-
linearities becomes more evident when the current incident angle increases
for large steepness waves. Meanwhile, this reduction of enhancement is also
observed with increasing initial steepness for a fixed current incident angle ϕ
= 150o. Note that the reduction relative to the linear cases can reach 20.3%
in presence of current with incident angle of ϕ = 180o, which is significantly
larger than 5% as reported in Toffoli et al. (2010) without considering the
current.

Furthermore, the amplification of wave steepness, i.e., the ratio kpHs/(kpHs)0,
against the current incident angle is presented in figure 11, where the signif-
icant wave height is estimated by using Hs = 4

√
m0 where m0 equals to the

total spectral energy obtained in section 3.3.2. It can be found that the ratio
kpHs/(kpHs)0 obtained by using the numerical results agree very well with
the theoretical predictions, and can reach to 2.6 for ϕ = 180o for the cases
with small wave steepness. For the cases with larger steepness, the enhance-
ment of the ratio is less than the linear waves, with the maximum enhance-
ment observed for ϕ = 180o being kpHs/(kpHs)0 ≈ 1.8. And this reduction
of enhancement is more evident with increasing initial steepness for a fixed
current incident angle. However, one may notice the ratio of the steepness
of nonlinear waves to that of linear wave will be (kpHs)nonlinear/(kpHs)linear =
(0.15×1.8)/(2.6×0.01) ≈ 10.4, which indicate that the nonlinear waves are
much steeper than the linear ones.

In general, the spreading of the spectra is reduced when current incident
angle increases, and the reduction is less evident for larger steepness waves.
The latter is due to the nonlinear energy transfer to higher wavenumber
components(Dysthe et al., 2003; Onorato et al., 2009) and known as the
weak wave turbulence (Fadaeiazar et al., 2018, 2020), which broadens the
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spectra leading to mitigated reduction to the spreading. On the other hand,
with increasing current incident angle, the total spectral energy (or significant
wave height), peak wavenumber and wave steepness are enhanced, while the
extent of the enhancement is suppressed for the larger steepness cases due
to nonlinearities. The reasons can be summarized as follows. Firstly, it is
understandable that the strength of the wave nonlinearities indicated by the
BFI is associated with the wave steepness for a given bandwidth. It implies
that the nonlinearities become stronger when initial steepness increases for
a fixed current angle, or when incident angle increases for a given initial
steepness. The latter is attributed to the current-induced compression to the
incoming waves. Secondly, it is known that the nonlinearities play important
role in downshifting the peak wavenumber in strong nonlinear cases causing
the reduction of the enhancement to the peak wavenumber in presence of
current. Consequently, the enhancement to the total spectral energy will
also be reduced based on the conservation law of wave action. The changes
to the peak wavenumber and total spectral energy(or significant wave height)
lead to decelerated growth of wave steepness with increasing nonlinearities.
In addition, the enhancement to the total spectral energy is also bounded
by wave breaking for initially large steepness waves, thus the enhancement
cannot be as arbitrarily large as predicted by linear theory.

3.4. Average shape of extreme waves with presence of current

In this subsection, the average shape of the extreme waves in directional seas
subject to different current incident angles will be examined. To approxi-
mate the average shape of extreme waves, the criterion, i.e., H/Hs > 2 and
Hc/Hs > 1.2 , where H and Hc are the total (crest to trough) height and
crest height (Kharif et al., 2009), is employed to detect a rogue wave. Dur-
ing the numerical simulation, we monitor the variation of the free surface in
time within the whole computational domain for rogue wave occurrences. If
an individual wave meets this criterion, its instant surface profile will be ex-
tracted and added to the database of samples, which are used for estimating
the average shape after the sampling is completed and are denoted by η

(ca)
NW .

Note that the average shape derived in such a way can contain the effects of
fully nonlinear wave-wave and wave-current interactions.

3.4.1. Qualitative examination on the averaged extreme wave profiles

To demonstrate the effects of current incident angles on the average shape,
results of η

(c)
NW based on NewWave theory, i.e., given by equations (2)∼(6),
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and η
(ca)
NW for both the cases (kpHs)0 = 0.01 and 0.15 are presented in figure

12, where the origins of the horizontal axes are centered at the central crest
peak. In general, it is observed that the contours of the average shape of
numerical results for the cases of (kpHs)0 = 0.01 are visually very similar to

η
(c)
NW . It can also be found that when there is no current the three peaks of

the preceding, central and following waves are on a straight line, which is
largely aligned with the X -direction. When the waves are subject to current,
the relative position of the three peaks depends on its incident angle and the
steepness. For the waves of smaller steepness ((kpHs)0 =0.01) on current,
the three peaks are also on a line, though the relative direction of the line
to X -direction are anti-clockwise rotated, depending on the current incident
angle. When the waves are subject to the current with 90o incident angle, the
three peaks are still on a line, which is rotated anti-clockwise. Such changes
of the average shape can be attributed to the refraction as the current can
refract the waves towards the current direction (Nwogu, 1993). For the waves
of the larger steepness ((kpHs)0 =0.15) on current with an angle of ϕ = 110o,
135o or 150o, the relative positions of the three peaks are very different from
other cases. They do not stay on a line but on a curve, whose curvature
at the central peaks depends on the current incident angle, and the largest
one occurs at ϕ = 135o. For ϕ = 180o and (kpHs)0 =0.15, the preceding
peak is split into two small peaks, and thus one sees 4 peaks which appear
as ‘Y’ shape, as shown in figure 12(r). This group asymmetry depicted by
the disappearance of the preceding peak is due to nonlinear evolution of the
prominent crest moving towards the front of the group at the focusing time
(Gibbs and Taylor, 2005), which will be further discussed below.

On the other hand, by looking at the width of the contours near the
central peak, one finds that with the increase of current incident angle, the
width of the contours in X -direction becomes narrower. This is consistent
with the discussions about the peak wavenumber in section 3.3.3, where
the peak wavenumber is enhanced with larger current incident angle, thus
the wave lengths are compressed consequently rendering a narrower crest.
Furthermore, for the waves with larger steepness, the nonlinear effects of
wave-wave and wave-current interactions yield a significant different average
shape of extreme waves. Firstly, the width of the contours is much narrower
than those for the smaller steepness. In addition, the preceding waves before
the central crest for the larger steepness are significantly suppressed, com-
pared with those for smaller steepness under the same current, as shown,
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e.g., in figure 12(n) and (o). This change in the average shape of extreme
waves cannot be predicted by using the linear theory, therefore it is caused by
the nonlinear wave-wave and wave-current interaction. This will be further
discussed below.

To have a better visualization of the average shape of extreme waves, we
examine the sectional wave profiles in X - and Y -direction, respectively. The
wave profiles along Y = 0 and X = 0 are extracted from the results in figure
12, and they are plotted in figure 13. For the cases with smaller steepness, as
can be seen from figure 13(a-d), numerical profiles are very similar to these
predicted by the linear theory. Basically, they are symmetrical with respect
to X = 0 and Y = 0, though the wavelength decreases with increase of current
incident angle, being consistent with the observation by Gibbs and Taylor
(2005) for simulating the directional focusing of a Gaussian shape wave group
without current.

More interesting features can be observed in figure 13(e-f) for the cases
with larger steepness. Firstly, the symmetry of the profiles for ϕ > 90o about
Y =0 does not exist anymore. More specifically, the profile on X>0 (right)
side is steeper than on the X<0 (left) side; the trough on the right is shallower
than on the left in particular for ϕ =135o∼ 180o; and the trough point on
the right is closer to X =0 than that on the left. This asymmetry feature
will be quantified and discussed in the next subsection. Secondly, the peaks
on the right side, also for ϕ > 90o, are much smaller, i.e., the waves being
much flatter for the cases with the larger incident angle. Thirdly, the profiles
in Y -direction (right column in figure 13) becomes significantly narrower
for the cases with ϕ > 90o. The above three phenomena can be caused
by wave nonlinearity as indicated by Gibbs and Taylor (2005). However,
the new finding here is that the nonlinear interaction between waves and
current with incident angle ϕ > 90o can also cause the phenomena, even
the wave nonlinearity is not strong. This is evidenced by what is shown in
figure 13, in which one has found that the phenomena are not very visible
for the cases with larger steepness but without current or current of ϕ= 90o

neither for the cases with smaller steepness and with current, but only found
in the cases with larger steepness and current of ϕ > 90o. In addition, it
is noted that more evident asymmetry of the wave profile is observed not
only with increasing current incident angle, but also with the larger initial
steepness, as illustrated in figure 13 (g) and (h). Such nonlinear changes
of the average shape are the results of combined third-order near-resonant
and resonant processes (Gibbs and Taylor, 2005). As the strength of these
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Figure 12: Comparison between the averaged extreme wave contours. (a∼c) No current,
(d∼f) ϕ =90o, (g∼i) ϕ =110o, (j∼l) ϕ =135o, (m∼q) ϕ =150o, (r∼t) ϕ =180o.
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Figure 13: Average extreme wave profiles along X - and Y -direction.
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Figure 14: Illustration of the horizontal asymmetry parameters.

processes are strongly associated with the BFI, it is understandable that the
enhanced steepness and reduced spreading with increasing current incident
angle or initial steepness will produce a larger BFI. Thus, it is prone to trigger
these nonlinear processes leading to stronger nonlinear evolution of the wave
groups and more apparent asymmetry of their average shapes.

3.4.2. Quantification of the asymmetrical wave profiles

To quantify the asymmetry of the average extreme wave profiles, we now
introduce the following parameters

ξ1 =
H1

H2

, ξ2 =
λ1

λ2

and ξ3 =
λ3

λ4

, (25)

where the parameters H1, H2, λ1, λ2, λ3 and λ4 are defined in figure 14, in
which λ3 and λ4 are the partial width of the wave crest in the Y -direction
measured at the half crest height. From this figure, one can see that ξ1 and
ξ2 denote the asymmetry of the wave profiles in X -direction (Y =0) while ξ3

is the indicator of the asymmetry of the wave profiles in Y -direction (X =0).
The values of ξ1 , ξ2 and ξ3 are estimated based on the wave profiles in

figure 13. They are summarized in table 1 and plotted in figure 15. It can
be found in figure 15 that for all the cases with smaller steepness waves,
ξ1 ≈ 1 , ξ2 ≈ 1 and ξ3 ≈ 1, no matter the current is in presence or not.
However, for the cases with larger steepness waves, the different parameters
have different behaviors depending on the current direction. Without current
or with current at an incident angle of 90o, the value ξ1 ≈ 0.97 as seen in
figure 15(a). When the angle increases, in particular ϕ > 110o, the value of
ξ1 becomes much smaller, as low as 0.90 at ϕ > 180o. As for ξ2 shown in
figure 15(b), it equals to about 1 for all the cases of smaller wave steepness
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Initial steepness (kpHs)0 = 0.01 (kpHs)0 = 0.15

ξ1 ξ2 ξ3 ξ1 ξ2 ξ3

No current 1.0000 1.0000 1.0000 0.9664 1.0000 0.9934
φ = 90o 0.9917 0.9908 1.0000 0.9739 1.0000 1.1181
φ = 110o 0.9916 1.0000 1.0000 0.9598 0.9422 1.1498
φ = 135o 0.9934 0.9944 1.0000 0.9214 0.9344 1.1031
φ = 150o 0.9946 1.0000 1.0000 0.9101 0.7350 1.0500
φ = 180o 0.9988 0.9943 1.0000 0.9033 0.7135 0.9972

Table 1: Summary of the horizontal asymmetry parameters for η
(ca)
NW .

or for the cases with current at the incident angle of 90o. However, its value
can be reduced to 0.7 for the cases with the larger wave steepness and with
current at an incident angle of 150o or 180o. One more interesting point is
that the ratio of the local steepness of the profile on X > 0 part to that of X
< 0 part, (H1/λ1)/(H2/λ2) = ξ1/ξ2 is about 1.24 and 1.27 corresponding to
ϕ=150o and ϕ =180o, respectively, for the cases of (kpHs)0=0.15, indicating
that the right profile is much steeper than the left one. The reduced ξ1

and ξ2 with increasing incident angle render a steeper right-half profile in
mean wave direction for large steepness cases, which indicates the formation
of ”wall of water” due to the nonlinear evolution as explained earlier. As
for ξ3 shown in figure 15(c), its largest value, 1.15, occurs at ϕ =110o of
current for (kpHs)0=0.15, among the cases studied, and it is equal about 1
for all the cases with smaller steepness and with ϕ =180o. On the other
hand, as shown in figure 15(d), these asymmetry factors deviate from 1 more
apparently with increasing initial steepness when the current incident angle
is fixed. The asymmetry becomes noticeable for the case (kpHs)0=0.05 with
ξ1 less than 1, which depicts a shallower preceding trough (H1 < H2).

4. Discussions on suitability of NewWave theory

As demonstrated in section 3.4, the average profile η
(c)
NW based on NewWave

theory cannot well reflect the changes in the shape of extreme waves when
wave steepness is large, in particular when incident angle of current is larger
than 135o. To further investigate this issue, another two methods for ap-
proximating the average shape of extreme waves based on NewWave theory
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Figure 15: Comparison of the asymmetry parameters against current incident angle.

considering a certain degree of nonlinearity will be employed. These models
have been introduced in section 2 and now are summarized again as below:

1. η
(c)
NW : the average shape of the extreme waves in space obtained di-

rectly by applying equation (2) to the spectrum based on equations
(3)∼(6), which is based purely on the linear theory and neglects any
nonlinearities.

2. η
(c1)
NW : the average shape obtained by applying equation (2) to the spec-

trum from the fully nonlinear simulations, in which the spectrum is
a more accurate representation of the fully nonlinear wave-wave and
wave-current interactions in comparison with method (i) but the con-
version from spectrum to average shape is based on the linear theory.

3. η
(c2)
NW : obtained by equations (8) and (9) that consider second-order

Stokes-type corrections to η
(c)
NW and thus includes nonlinear bound wave

effects up to the second-order.

The models (i) ∼ (iii) of approximating the average shape of extreme

waves are known as the NewWave theory. They will be compared with η
(ca)
NW ,

which is the average shape of extreme waves estimated by using the results
of fully nonlinear simulations as explained in the beginning of section 3.4.

4.1. On predicting the average extreme wave profiles

The sectional profiles of the average shape of extreme waves obtained by us-
ing methods (i)∼ (iii) with η

(ca)
NW are depicted in figure 16. One may find that

for small steepness waves, the profiles of η
(c)
NW (very close to η

(c2)
NW which is

not presented) and η
(ca)
NW agree very well in both X - and Y -direction, which

indicates that the models (i)∼ (iii) based on NewWave theory can be suc-
cessfully employed to predict the average shape of extreme waves when the
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wave steepness is small with or without current. However, for the waves
with larger steepness, the profiles of model (i)∼ (iii) based on the NewWave
theory start to exhibit their inefficacy. To be more specific, their limitations
are summarized below:

1. Model (i), i.e., η
(c)
NW does not well predict the features of the average

shape induced by nonlinear interaction, such as the wavelength contrac-
tion (or peak wavenumber enhancement), asymmetry, the reduction of
the crest width in both X - and Y -direction, the elevation of the wave
trough and the suppression of the preceding wave with increasing cur-
rent incident angle.

2. Model (ii), i.e., η
(c1)
NW , does not greatly improve the results of η

(c)
NW ,

which means that the major cause of difference in the average shape of
extreme waves is the relation between the spectrum and wave shapes,
i.e. equation (2), but not the spectrum used in that equation.

3. Method (iii), i.e., η
(c2)
NW , gives the average shapes which are closer to

η
(ca)
NW than the other two models, in particular in Y -direction, though

significant difference between η
(c2)
NW and η

(ca)
NW for large steepness waves

can still be observed. Again, this method cannot sufficiently reveal the
asymmetrical profile in X -direction or the suppression of the preceding
wave, as well as other features caused by nonlinear interaction between
waves and current.

To show the sensitivity of the accuracy of the NewWave models on wave
steepness, the sectional profile in X -direction of (kpHs)0 =0.05 and 0.1 for
ϕ =150o are presented in figure 17. It shows that the deviation between the
theoretical predictions and numerical results becomes more significant with
increasing wave steepness, which is understandable as the NewWave models
become less accurate for stronger nonlinear cases. Nevertheless, it is noted
that though η

(c2)
NW leads to better approximation of the average profile, it still

cannot describe the asymmetry feature which is already noticeable from the
simulated profile regarding the case (kpHs)0 =0.05.

4.2. On predicting the vertical asymmetry factor

To quantify the asymmetry features of wave profiles, Soares et al. (2003) had
introduced a parameter that calculates the ratio between the extreme crest
height and the nearest trough depth. They pointed out that observations
during storm sea state in the North Sea indicates that this ratio is scattered
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Figure 16: Comparisons of the average extreme wave profiles. “x”: η
(c)
NW , “–––”: η

(c1)
NW

for (kpHs)0= 0.01; “- · - · -”: η
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Figure 17: Average extreme wave profiles of various steepness for ϕ=150o.

42



90 110 135 150 180

1

1.5

2

2.5

3

3.5

4

(a) Fixed (kpHs)0 = 0.15

0.01 0.05 0.1 0.15

1

1.5

2

2.5

3

3.5

4

(b) Fixed ϕ= 150o

Figure 18: Vertical asymmetry indicator versus (a) current incident angle and (b) initial
wave steepness.

around 2.2 regardless whether current is in presence. Inspired by that, we
introduce two parameters to represent the asymmetry features of average
shapes of the extreme waves given by different models, i.e.,

r1 =
Hc

Htf

and r2 =
Hc

Htb

(26)

where Htf and Htb denote the trough height (vertical distance from the lowest
point to mean level) in the preceding and following sides of the central crest,
respectively, which are extracted from figure 12. The values of r1 and r2

are calculated by using the averaged shape of the extreme waves for the
case (kpHs)0=0.15 and the results are presented in figure 18(a), also with the
observation by Soares et al. (2003), i.e., r1,2 = 2.2. Since it has been observed
in figure 16 that for small steepness waves, the values of r1 and r2 by using
models (i)∼ (iii) are expected to be very similar to that obtained by fully
nonlinear simulations, only the cases for larger initial steepness are presented
in the figure. While the results for fixed current incident angle considering
varying initial steepness are displayed in figure 18(b).

In general, for fixed initial steepness, the values of r1 and r2 indicated by
the lines denoting η

(ca)
NW grow rapidly as current incident angle increases, with

a minimum of r1 = 1.67 and r2 = 1.60 for ϕ = 90o, while they can reach
the maxima of r1 = 3.43 and r2 = 2.50 for ϕ = 180o. The vertical asym-
metry factors scattering around 2.2 agrees reasonably well with the in-situ
observation, indicating that the nonlinear numerical simulations successfully
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captured the vertical asymmetry features of the extreme waves. It should be
noticed that in the cases, the curve of r1 is higher than r2, which is because
the preceding trough is relatively shallower than the following one, as shown
in figure 13(e). It is also noted that the big value of r1 indicates that the
wave is more like a wall of water for a viewer in front of it as observed in re-
ality (Gibbs and Taylor, 2005; Lindgren, 2006). On the other hand, for fixed
current incident angle, the values of r1 and r2 grow as the initial steepness
increases with the minimum of r1 = r2 = 1.5 appearing at (kpHs)0=0.01.
The two curves deviate from each other with r1 being slightly larger as the
initial steepness increases.

Though models (i)∼ (iii) based on the NewWave theory predict the grow-
ing trend of r1 and r2 with increasing ϕ , but they do not reflect the fact
of r1 6= r2 . This limitation of the NewWave models has been reported by
Walker et al. (2004) that even included nonlinear Stokes-type corrections to
the fifth order. Moreover, the models (i) and (ii) significantly underestimate
the values for r1 and r2 . For the current in adverse direction, i.e., ϕ = 180o,
they underpredict r1 and r2 by 55% and 38% , respectively, in comparison
with those for η

(ca)
NW , despite that they only provide accurate approximation

for the cases of small steepness (kpHs)0=0.01. The model (iii) is slightly
better. For instance, the difference in the values of r1 and r2 predicted by
using the model (iii) and those for η

(ca)
NW becomes 43% and 22% , respectively

for the case ϕ = 180o. In addition, the values of the asymmetrical factors
given by all the three models are lower than 2.2 in all the cases, inconsistent
with the observation in reality; thus, they should not be used to predict the
vertical asymmetry parameters when the nonlinearity in the wave-current
interaction is strong.

5. Conclusion

This paper presents a study on the properties of extreme waves in directional
seas subjected to current in different directions using fully nonlinear numeri-
cal simulations. The spatiotemporal scale is quite large to allow the nonlinear
interaction between waves and current to well develop. For each case with
a given initial wave steepness and current incident angle, four realizations
are performed with different sequences of random numbers in computing the
phases of wave components. Each simulation lasts for 500 peak periods,
and about 5×104 waves are collected from the probes in each simulation
for achieving reliable statistical analysis. A broad range of extreme wave
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properties are analyzed and investigated, including how the current affects
the kurtosis, crest exceedance probability, spectral properties and average
shapes of extreme waves. The study is also extended on the suitability of
three models established by using the NewWave theory which is widely em-
ployed to describe the average shape of extreme waves. Some interesting
findings are summarized as below.

For the waves with strong nonlinearity, the nonlinear wave-current in-
teractions have significant impacts on the wave statistics and spectral prop-
erties. These include that 1) current significantly enhances the wave crest
exceedance probability at distribution tail, which is much larger than the pre-
diction of the existing second-order models and that the extent of enhance-
ment depends on the incident angle of current. The maximum enhancement
occurs at the incident angle of 135o but not at 180o, in the cases studied; 2)
the maxima of the kurtosis occurs perhaps at a current incident angle less
than 180o, being 135o in the cases studied in this paper, implying that the
probability of rogue waves occurrence may be high under the condition; 3)
current with its incident angle being larger than 110o broadens the spectra;
4) current causes the severe vertical and horizontal asymmetry of extreme
wave profiles, such as different steepness on two sides of an extreme wave
peak, and different wave crests and different troughs before and after the
extreme wave; 5) these non-Gaussian behaviours in wave statistics and spec-
tral properties are more evident with increasing initial wave steepness when
current incident angle is fixed. It is interesting to notice that the nonlinear
wave-current interaction can make the crest much higher than surrounding
surface, which becomes more evident for larger current incident angle, show-
ing the possibility of the ‘wall of water’ nature of rogue waves in reality
(Gibbs and Taylor, 2005).

To study the suitability of the NewWave theory for describing the aver-
age shape of extreme waves in directional seas with current, three methods
based on the theory are established and investigated. Method (i) employs the
linearly predicted spectra and a linear spectrum-to-wave profile conversion
theory (i.e., equation (2)); Method (ii) uses the spectra obtained from the
fully nonlinear numerical simulations and equation (2); Method (iii) adopts
the linearly predicted spectra but a nonlinear spectrum-to-wave profile con-
version theory considering the Stokes-type corrections (i.e. equation (8)).
It is found that all three methods can successfully predict the average ex-
treme wave profiles no matter if the current presents or not when the initial
wave steepness is small (i.e., initial wave steepness (kpHs)0 = 0.01 in this
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paper). This confirm that these methods are robust under weak or moderate
wave-current interaction. However, they become incapable to give accept-
able results for the cases of large steepness waves with presence of current,
though the Method (iii) gives the results closer to the full nonlinear results
than Method (i) and (ii). More specifically, Method (i) fails to predict the
wavelength contraction, the reduction of the crest width in both X - and
Y -direction, the elevation of the wave trough and the disappearance of the
preceding wave with the increasing current incident angle. Method (ii) fails to
describe the reduction of crest width, elevation of the trough in X -direction,
and the disappearance of the preceding wave. Method (iii) cannot reveal
the asymmetrical profile in X -direction or the suppression of the proceeding
wave. All the methods significantly underestimate the vertical asymmetry
parameter represented by equation (26), e.g., by 43% ∼ 55% in the adverse
current case.

It is expected that the above new findings enrich our understanding on the
properties of extreme waves and also on the occurring mechanism of rogue
waves when current presents. Nevertheless, the above conclusions are derived
for a given spreading angle of directional waves and current speed, i.e., N =
24 and Um/cg ≈ 0.3, though the cases are quite typical in reality. Further
investigations on current with different speeds in oblique directions will be
carried out in the future to shed more light on the properties of extreme waves
encountering current. In addition, broader spectral bandwidth for the initial
spectrum will be taken into consideration in the future study to investigate
the effects of oblique current on initially broadband seas. Moreover, there
has been growing interest recently in the waves interacting with current jet
(Hjelmervik and Trulsen, 2009) or vertically sheared current of arbitrary
vorticity (Nwogu, 2009; Ellingsen and Li, 2017; Yang and Liu, 2020). This
could have significant implications in developing a better understanding of
the dynamics of extreme waves in the region subject to strong wind driven
surface current, which will be studied in the future.
Acknowledgements. The authors gratefully acknowledge the financial sup-
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Appendix A. Spectrum of directional waves with presence of cur-
rent

Lavrenov (1998, 2003) pointed out that the spectral density of the energy
wave action is preserved along the ray, i.e.,

N (kkk) = N0 (kkk0) (A.1)

where

S (ω, θ)

σ
= N (kkk)

∂ (kx, ky)

∂ (ω, θ)
(A.2)

Therefore, the following equation can be derived

S (ω, θ) =
∂k2

∂ω
σ

(
∂k2

0

∂ω0

σ0

)−1

S0 (ω0, θ0) =
kσ

k0σ0

∂k/∂ω

∂k0/∂ω0

S0 (ω0, θ0) (A.3)

It should be noted that in the case of non-uniform stationary current,
the frequency remains constant along the wave propagation rays, i.e., ω =
ω0. While to determine the wavenumber in terms of the current speed, the
solution to the equation (3) and (4) can be given by

k =
4ω2

g
[
1 +
√

1 + U ′ cos (ϕ− θ)
]2 (A.4)

Differentiating equation (3) and (4) with respect to ω and incorporating
equation (A.4) yields

∂k

∂ω
=

4ω

g
√

1 + U ′ cos (ϕ− θ)
[
1 +
√

1 + U ′ cos (ϕ− θ)
] (A.5)

Substitute equations (A.4) and (A.5) into equation (A.3) leads to equation
(3).

Appendix B. Formulations of the ESBI

The formulations of G1 and G2 are given as

F {G1} = F {V } −KF
{
φ̃
}
− F {µ} (B.1)
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F {G2} =
1

2
F


(
V +∇ζ · ∇φ̃

)2

1 + |∇ζ|2
− |∇φ̃|2

− F {ψ} (B.2)

where (
µ

ψ

)
=

(
∇η · U + η (∇ ·UUU)

∇φ̃ ·UUU − η (∇η ·UUU)∇ ·UUU + 1
2

(η∇ ·UUU)2

)
(B.3)

In addition, each part of the vertical velocity can be calculated by using

V1 = F−1
{
KF

{
φ̃
}}

(B.4)

V2 = −F−1 {KF {ζV1}} − ∇ ·
(
ζ∇φ̃

)
(B.5)

V3 = F−1

{
K

2π
F

{∫
φ̃′

[
1− 1

(1 +D2)3/2

]
∇′ ·

[
(ζ ′ − ζ)∇′ 1

R

]
dXXX ′

}}
(B.6)

V4 = F−1

{
K

2π
F

{∫
V ′

R

(
1− 1√

1 +D2

)
dXXX ′

}}
(B.7)

where D = (ζ ′ − ζ) /R, R = |RRR| = |XXX ′ −XXX|, the variables with the prime
indicate those at source point (XXX ′, Z ′), the variables without the prime are
those at field point (XXX,Z). Note that V3 and V4 can be further written into
convolutions up to seventh order, i.e.,

V3 = V
(1)

3︸︷︷︸
4th convolution

+ V
(2)

3︸︷︷︸
6th convolution

+ V3,I︸︷︷︸
integration

(B.8)

V4 = V
(1)

4︸︷︷︸
3rd convolution

+ V
(2)

4︸︷︷︸
5th convolution

+ V
(3)

4︸︷︷︸
7th convolution

+ V4,I︸︷︷︸
integration

(B.9)

where the convolution parts of V3 are given by
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F
{
V

(1)
3

}
= − K

6

[
KiKKK · F

{
ζ3∇φ̃

}
− 3F

{
ζF−1

{
KiKKK · F

{
ζ2∇φ̃

}}}
+ 3F

{
ζ2F−1

{
KiKKK · F

{
ζ∇φ̃

}}}
+ F

{
ζ3F−1

{
K3F

{
φ̃
}}}]

(B.10)

F
{
V

(2)
3

}
= − K

120

[
iKKKK3 · F

{
ζ5∇φ̃

}
− 5F

{
ζF−1

{
iKKKK3 · F

{
ζ4∇φ̃

}}}
+ 10F

{
ζ2F−1

{
iKKKK3 · F

{
ζ3∇φ̃

}}}
− 10F

{
ζ3F−1

{
iKKKK3 · F

{
ζ2∇φ̃

}}}
+ 5F

{
ζ4F−1

{
iKKKK3 · F

{
ζ∇φ̃

}}}
+ F

{
ζ5F−1

{
K5F

{
φ̃
}}}]

(B.11)

and the integration part

F {V3,I} =
K

2π
F

{
35

16

∫
φ̃′∇′ ·

[
(ζ ′ − ζ)∇′ 1

R

]
D6dXXX ′

+

∫
φ̃′
[
1−

(
1 +D2

)−3/2 − 3

2
D2

+
15

8
D4 − 35

16
D6
]
∇′ ·

[
(ζ ′ − ζ)∇′ 1

R

]
dXXX ′

}
(B.12)

Meanwhile, the convolution parts of V4 are given by

F
{
V

(1)
4

}
= − K

2

[
KF

{
ζ2V

}
− 2F

{
ζF−1 {KF {ζV }}

}
+ F

{
ζ2F−1 {KF {V }}

} ]
(B.13)

F
{
V

(2)
4

}
= − K

24

[
K3F

{
V ζ4

}
− 4F

{
ζF−1

{
K3F

{
V ζ3

}}}
+ 6F

{
ζ2F−1

{
K3F

{
V ζ2

}}}
− 4F

{
ζ3F−1

{
K3F {V ζ}

}}
+ F

{
ζ4F−1

{
K3F {V }

}} ]
(B.14)
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F
{
V

(3)
4

}
=

−K
720

[
K5F

{
V ζ6

}
− 6F

{
ζF−1

{
K5F

{
V ζ5

}}}
+ 15F

{
ζ2F−1

{
K5F

{
V ζ4

}}}
− 20F

{
ζ3F−1

{
K5F

{
V ζ3

}}}
+ 15F

{
ζ4F−1

{
K5F

{
V ζ2

}}}
− 6F

{
ζ5F−1

{
K5F {V ζ}

}}
+ F

{
ζ6F−1

{
K5F {V }

}} ]
(B.15)

and the integration part

F {V4,I} =
K

2π
F

{∫
V ′

R

(
1− 1√

1 +D2
− 1

2
D2 +

3

8
D4 − 5

16
D6

)
dXXX ′

}
(B.16)

The integration terms are insignificant thus can be neglected when the wave
steepness is small but will be included in the calculation automatically when
wave steepness becomes sufficiently large. More details about the derivation
of the formulations can be found in Wang et al. (2018).
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