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“Σε κάθε όνειρο παλιό, καινούργιο πάνω χτίζω 

έμαθα φως μου στη ζωή, απλά να συνεχίζω” 

 

-Mantinada: is the most common form of folk song and 

is widespread across Crete.  
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Abstract 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease which is 

clinically characterized by cognitive impairment and memory loss. 

Anatomically, AD initially affects specific structures within the Medial 

Temporal Lobe (MTL), which are essential for declarative memory. A definitive 

diagnosis of AD relies on post-mortem biopsy therefore, clinical assessment 

and cognitive tests are currently used. However, these tests are not sensitive to 

detect AD in an early stage. 

 

The aim of this research was to investigate the usefulness of quantitative 

Magnetic Resonance Imaging (MRI) and specifically of texture features in the 

assessment of Mild Cognitive Impairment (MCI) which is the pre-dementia 

stage and AD. Firstly, two types of magnetic fields where investigated in order 

to examine whether, a stronger MR magnetic field would benefit quantitative 

imaging analysis derived from texture features. Secondly, texture features were 

extracted from the entorhinal cortex and evaluated in the diagnosis and 

prediction of MCI and AD. To the best of our knowledge this is the first 

research that investigated how the MR field strength affects texture features 

and used entorhinal cortex texture features on the assessment of AD.  

 

The main results of this PhD showed that (1) texture features could provide 

more sensitive measures when they are extracted from stronger MRI magnetic 

field, such as 3T, compared to 1.5T. From a disease classification and prediction 

perspective, (2) entorhinal cortex texture features provide better classification 

between Normal Controls (NC), MCI and AD subjects, and (3) better prediction 

of the conversion from MCI to AD. In conclusion, this research has shown for 

the first time in the literature that entorhinal cortex texture features from MRI 

could contribute towards the early classification of AD. 
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1 
Introduction 

1.1 Overview 

Alzheimer's disease (AD) is the most common type of dementia that affects 

memory, thinking and behavior in elderly people. It represents almost 80% of 

dementia cases. Usually, age of 65 and older, is the greatest known risk factor, 

however, early-onset AD was noticed also in patients under the age of 65 [1]. 

By 2050, one new case of AD is expected to develop every 33 seconds [2]. 

Unfortunately, even nowadays, there is no cure to halt the progressive 

neurodegeneration of AD, but only to slow the worsening of dementia 

symptoms. Usually these symptoms include disorientation, confusion and 

behavior changes, whereas, in advance subjects there is difficulty in speaking, 

walking even swallowing, therefore, these subjects require 24/7 care.  

The diagnosis of the disease relies on clinical and neuropsychological tests [3], 

[4] which evaluate memory and language abilities. Therefore, a subject is 

categorized as a patient with “probable” AD and only post-mortem material 

will confirm the disease. The motivation of this research, derives from a major 

disadvantage of clinical assessment, where structural changes within the brain 

occur several years before the first clinical symptoms appear [5], [6]. As a 

consequence, when a patient is diagnosed with AD by using only clinical and 

psychometric or cognitive assessment, the brain tissue has already undergone 

widespread and irreversible synaptic loss [7]. Most importantly, Mild 

Cognitive Impairment (MCI) which is the pre-dementia stage cannot be 
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identified easily by cognitive tests, as these subjects do not have major memory 

problems which will affect their daily routine, therefore they cannot be 

detected. 

 

Problem statement: Due to the fact that only histological confirmation at post-

mortem biopsy will identify the disease, there is a great interest in the role of 

neuroimaging biomarkers, especially of those derive from structural Magnetic 

Resonance Imaging (MRI). Although amyloid markers such as  cerebrospinal 

fluid (CSF) Αmyloid β (Aβ1-42) and Aβ Positron Emission Tomography (PET) 

could detect changes in an earlier stage of the disease, both techniques begin to 

plateau at the MCI stage where the disease becomes evident [8]. Furthermore, 

PET studies are not accessible for all subjects, due to several factors such as cost, 

radiopharmaceutical limitations (availability, targeting amyloid or tau 

proteins) and most importantly, the exposure to ionizing radiation.  

On the other hand, structural MRI changes become more pronounced in the 

MCI stage, which is the most critical stage of the disease because an MCI subject 

might convert to AD. However, the human vision cannot identify these subtle 

changes and computational analysis is required. Although it is well known that 

Neurofibrillary Tangles (NFTs), are a fundamental neuropathological hallmark 

of AD which affect and damage the neuronal tissue and cause dementia, 

however, these plaques cannot be detected with the conventional MRI methods 

such as volumetry.  

 

Motivation: Texture analysis is a method not usually used in the assessment of 

AD and studies the statistical properties of the image intensities. The ability to 

detect dementia-specific textural patterns in the brain tissue and to 

discriminate these from the texture of normal healthy brain tissue may provide 

a valuable and complementary MRI-based biomarker of the disease. Moreover, 

it is likely that an MRI marker based on texture will be able to detect in an 
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earlier stage the disease than markers that target larger scale changes in the 

brain, such as atrophy. The establishment of such biomarkers, will allow the 

identification of MCI individuals in an earlier stage thus, these subjects will 

have the opportunity to prevent the conversion to AD. 

Most extensively used MRI measurements include Region Of Interest (ROI) 

volume measurements such as hippocampal and cortex volume or whole-brain 

atrophy measurements. Although hippocampus represents the most 

established ROI used in the assessment of AD, the earlier involvement of the 

entorhinal cortex was proved by many studies. Furthermore, although 

volumetry represents the most commonly used method to date for the 

assessment of AD, the study by Sørensen et al [9], found that hippocampal 

texture was superior to volume reduction for the disease prediction. Therefore, 

it is hypothesized that through the earlier involvement of entorhinal cortex and 

by using texture analysis, it is likely to detect microscopic alterations of the 

disease before atrophy spreads and perhaps these represent changes due to 

NFTs and Aβ plaques.   

1.2 Aims and Objectives 

Many studies have been investigating the complex heterogeneity of AD, trying 

to understand how the disease initiates and from which region of the brain. 

Although only post mortem biopsy will confirm the disease, imaging 

biomarkers are currently being used for its early detection. In the literature 

there are several structural quantitative imaging methods used and each one of 

them provides different information regarding the disease. Many methods, 

evaluate the volume of specific structures or regions and seek for atrophy, other 

methods use the brain cortex thickness and other texture characteristics of the 

image.  

The first aim of the present thesis was to review the literature and evaluate the 

regions of the brain successively affected by the disease (Chapter 2). Also, in 
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Chapter 2 a review to the state-of-the-art research in precision medicine is made 

to specifically highlight the fundamental challenges in the emerging fields of 

radiomics and radiogenomics and their value in AD. The second aim was to 

evaluate the MRI methods used in quantitative imaging. Therefore a 

comparison of the several MR structural methods derived from volume, 

thickness, voxel based morphometry (VBM) and texture were performed to 

assess their performance in detecting and predicting the disease (Chapter 3).  

Currently, in both literature and clinical practice, two types of MRI field 

strengths are being used, the 1.5 Tesla (T) and 3T. Some studies have compared 

how the magnetic field strength could influence quantitative volumetric 

imaging. However, no study has evaluated before, how texture features are 

affected by a stronger magnetic field. Therefore, the third aim of this thesis was 

to evaluate how the MRI magnetic field strength could affect texture features 

in their ability to classify AD subjects in comparison with volumetric and 

thickness features (Chapter 5). 

In the literature, most of the studies have been using hippocampus in their 

analysis, because it is highly associated with AD as is the region responsible for 

declarative memory. However, entorhinal cortex, is recognized as a region 

severely affected by AD pathology and is reported to be the most heavily 

damaged cortex in AD. Furthermore, entorhinal cortex atrophy is predicted to 

occur prior to hippocampal damage and is one of the earliest signs of disease 

manifestation. However, no study used extracted entorhinal cortex texture 

features before in the assessment of AD. Therefore, the fourth aim of this thesis 

is to evaluate the diagnostic and predictive ability of entorhinal cortex texture 

features in the assessment of AD (Chapter 6). 

1.3 Contribution (Novelty) 

Through a literature review this thesis will evaluate and detect the brain 

regions successively being affected by the AD and compare the MR imaging 
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quantitative methods currently being used for the assessment of AD. The 

findings of the literature review will determine the regions affected in the initial 

stages and the methods to be used for further analysis.  

The first novelty of this research is the fact that there is no published study that 

compared texture features extracted from both 1.5T and 3T MR field strengths 

as most of the studies have been using volumetric measures. For this 

comparison the hippocampus which is the most frequently used ROI for the 

assessment of AD will be used. Specifically, it will be evaluated, if hippocampal 

texture features extracted from 1.5T and 3T images are statistically different 

and if a stronger magnetic field could provide better results in the classification 

of subjects. 

The second novelty of this research is the fact that although entorhinal cortex 

is the region being affected in the very early stages of the disease, even before 

hippocampus, no study has used texture analysis on this region before. 

Textural features were used before but on ROIs that are affected in a later stage, 

therefore,  it will be evaluated if entorhinal cortex texture features extracted 

from T1-weighted MR images could be used as a new biomarker for the 

assessment of AD and perhaps provide an earlier detection of the disease, 

especially of the MCI subjects.  

1.4 Thesis Structure 

Chapter 2 describes the pathophysiology of AD and the areas of the brain 

which are affected in an early stage. Then, chapter 2 concentrates on the 

diagnosis of the disease describing the main method used which is the 

neuropsychological assessment and its major disadvantages. Apart from the 

cognitive tests, this chapter also refers to the fluid biomarkers currently being 

used in the diagnosis of the disease and it ends with the imaging biomarkers 

such as from PET and MRI.  



 

24 
 

Chapter 3 describes the use of medical imaging and the necessity of 

quantitative imaging in the assessment of AD. Specifically, it tabulates the 

methods that are currently being used with structural MRI such as: : i) Voxel-

based Morphometry (VBM), ii) volumetric measurements in specific ROIs, iii) 

cortical thickness measurements, iv) shape analysis and v) texture analysis. The 

aforementioned methods are being used in both classification and prediction 

of the disease and this chapter describes both their advantages and 

disadvantages. 

Chapter 4 describes the pre-processing methods and tools used for the data 

preparation of this research. 

Chapter 5 compares hippocampal texture features extracted from both 1.5T 

and 3T MRI systems of AD subjects. It is hypothesized that higher magnetic 

fields will provide better differentiation between the texture characteristics of 

the NC, MCI and AD subjects.  

Chapter 6 represents the main chapter of the thesis and it refers to texture 

analysis of the entorhinal cortex and compares it with the “gold standard” 

method, which is the hippocampal volumetry in both classification and 

prediction of AD.   

Chapter 7 describes the major conclusions, contributions and the future scope 

of this work. 
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2 
The Alzheimer's Disease 

2.1 Introduction  

Alzheimer’s disease (AD) represents the most common form of dementia and 

one of the major causes of disability in later life. Alois Alzheimer (Figure 1) first 

described it in 1907 [10] and as a neurodegenerative disorder, it is characterized 

by loss of cognitive functions. Other common types include vascular dementia, 

Lewy body dementia and frontotemporal dementia (FTLD) [11]. In the UK 

alone, there are over 850.000 people with dementia and this number is projected 

to rise to 1.6 million by 2040. This year, approximately 225.000 people will 

develop dementia, that’s one every three minutes (www.alzheimers.org.uk). In 

2019 Alzheimer’s Disease International (ADI) estimates that there are over 50 

million people living with dementia globally, a figure set to increase to 152 

million by 2050 [12]. 

 

 

Figure 1: Alois Alzheimer (1864-1915) 

Unfortunately, due to the complex neuropathology of the disease there is no 

cure for it, apart from the treatment taken to slow its progressive manifestation. 

http://www.alzheimers.org.uk/
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Furthermore, there is no definitive diagnosis as only post-mortem biopsy will 

confirm the disease, thus, a patient is classified with probable AD. However, 

by using specific imaging techniques, it is now feasible to detect AD several 

years before clinical symptoms arise and perhaps modifying treatment could 

be more beneficial. Advances in medical imaging, genetics, bio-specimen and 

clinical data give this opportunity to the research community especially when 

the aforementioned data are combined. 

This chapter will concentrate on the pathophysiology of AD, the methods 

currently being used in the assessment of AD and the biomarkers that have 

been used in the literature and to improve the diagnosis of a probable AD 

subject. 

 2.2 The disease physiology 

There are still many unsolved issues regarding the pathophysiology of this 

highly heterogeneous disease and the exact pathogenesis is not yet fully 

understood. However, the greatest risk factors for AD are age (over 65), family 

history and the presence of Apolipoprotein e4 (ApoE4) gene [13]. According to 

Braak and Braak [14], the most evident change is the progressive deposition of 

abnormal proteins Αβ(1-42), that trigger the formation of senile plaques and 

NFTs, which  affect and damage the neuronal tissue and cause dementia 

(Figure 2). The analysis of CSF showed that Αβ(1-42) concentration was less in 

AD subjects rather than in NC [7-8]. 

It seems that Aβ oligomers in the brain seem to be responsible for that reduced 

levels of Αβ(1-42) [15]. Ultimately, it is these Aβ oligomers that become large Aβ 

fibrils that concentrate to form insoluble deposits in extracellular space, 

including diffuse plaques and dense-core plaques. 
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Figure 2: AD hallmarks: a) tissue-level representation, showing the presence of amyloid 

(senile) plaques and neurofibrillary tangles; b) late-stage AD brain, showing marked 

shrinkage in comparison with a healthy brain. 

 

According to Metaxas and Kempf [16], “NFTs are a fundamental 

neuropathological hallmark of AD and have been characterized by loss of 

cytoskeletal microtubules and tubulin-associated proteins. Although the exact 

molecular mechanisms linking the loss of cytoskeletal elements to NFT 

development remain unclear, signal transduction pathways involving protein 

phosphorylation and de-phosphorylation are likely to play a main role in the 

formation of neurofibrillary lesions”. 

In the Braak staging system [5] it was shown that  NFTs appear initially in the 

trans-entorhinal region of the temporal lobe, spreading to limbic areas such as 

the hippocampus, the amygdala and the  parahippocampal gyrus [17]–[19], and 

ultimately affecting large areas of the neocortex. However, although these 

patterns of pathology spread through the brain for a long protracted pre-

clinical stage (~10-15 years) [20], when first clinical symptoms become 

apparent, there is already an inevitable progression of atrophy. Atrophy 

initially affects the Medial Temporal Lobe (MTL) (Figure 3) [21]–[23] a region 

which includes anatomically related structures that are essential for declarative 

memory [18]. With the disease progression, these regions lose neuronal tissue 

with consequent brain atrophy [24]. 
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Figure 3: The medial temporal lobe: It consists of the hippocampal formation (blue-green) 

superiorly and the parahippocampal gyrus inferiorly. The entorhinal (brown) and perirhinal 

(yellow) cortices form the medial and lateral components, respectively, of the anterior 

portion of the parahippocampal gyrus, while the parahippocampal cortex (off-white) forms 

the posterior portion. Figure adapted from Purves, et al. 2008 [25]. 

 

Within MTL, entorhinal cortex, is recognized as a region severely affected by 

AD pathology and is reported to be the most heavily damaged cortex in AD 

[26]. Entorhinal cortex atrophy is predicted to occur prior to hippocampal 

damage and is one of the earliest signs of disease manifestation. The rate of 

atrophy in the entorhinal cortex correlates with severity of cognitive symptoms 

[27] and is considered predictive of conversion from MCI to AD [28]. 
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2.4 Clinical Symptoms 

Clinically, AD affects memory, language, and other cognitive skills and 

eventually leads to an inability of everyday activities. In the early stages, the 

most common symptom is difficulty in remembering recent events, while 

advanced AD patients often suffer from loss of the ability to take care of 

themselves, communicate with others or even recognize their family members. 

Eventually these subjects require day-to-day support and personal care. As the 

condition of the patient worsens with the disease progression, eventually it 

leads to death. In a majority of cases (>95%) the onset of AD is sporadic, and is 

usually classified by its age of onset (>65 years). On the other hand, 1-5% of 

cases exhibit an earlier onset, typically in the late 40s or early 50s (so-called 

early-onset AD). These predominate two forms of AD are clinically 

indistinguishable; however, early-onset AD is generally more severe and is 

associated with a rapid rate of progression. Figure 4 shows a theoretical 

timeline for the progression of AD. 

 

 

Figure 4: This figure shows a theoretical timeline for the progression of AD-related 

neuropathology and clinical changes, with changes in amyloid and tau pathology occurring 

years before the onset of AD. The grey, blue, and red shaded bars reflect time points at which 

different types of potential interventions may be beneficial (grey, preventative; blue, disease 

modifying; red, symptomatic). Figure adapted from Shaw et al., 2007 [29]. 
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 2.5 Disease Diagnosis 

According to the National Institute on Aging (NIA) and the Alzheimer's 

Association, the disease progression consists of three stages: the pre-clinical 

stage, the pre-dementia stage called MCI and the AD or dementia stage. MCI 

represents the transitional stage between normal ageing and AD, and MCI 

subjects experience memory impairment as the most prominent feature. These 

subjects may have decreased memory function beyond the normal level based 

on a given person’s age and education; however, they do not fulfill the criteria 

for dementia, as their cognitive function is comparable to NC subjects. Most of 

the MCI subjects will remain stable even after 10 years of follow-up [30] and 

only a small percent (10%-15%) will progress to AD [31]. Distinguishing MCI 

subjects is of great importance and much effort has been put into identifying 

the MCI subjects that will eventually convert to AD. 

The diagnosis of the disease still remains probable and only post-mortem 

biopsy will confirm AD as it reveals deposits of Aβ plaque deposition and NFTs 

in the brain tissue [32]. Thus, clinical diagnosis for ‘’probable AD’’ cannot be 

given until the patient have affected memory and cognitive skills and 

unfortunately, by that time the brain tissue will already undergone widespread 

and irreversible synaptic loss [7]. 

2.6 Cognitive tests 

Nowadays, the diagnosis of AD is based on the clinical features of the disease, 

with a presence of a memory disorder and an impairment in at least one other 

cognitive domain, both of which interfere with social function or activities of 

daily living. Mini Mental State examination (MMSE) [3] (see Table 1 in 

Appendix A) and Clinical Dementia Rating (CDR) [4] are two of the most 

commonly used tests in clinical practice for the assessment of AD.  
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2.7 MMSE and CDR scores 

MMSE consists of a series of clinical and psychometric assessment through 

neuropsychological tests, which assess language and memory abilities, and the 

ability of solving problems. The maximum MMSE score is 30 points. A score 

less than 12 indicates severe dementia, 13 to 20 recommends moderate 

dementia, 20 to 24 suggests mild dementia and 24 to 30 represents NC [3].  

In parallel, CDR is used to describe memory, orientation, judgment, and 

problem solving, home and hobbies and personal care. A score of 0, represents 

normal controls, 0.5, very mild dementia, 1, mild dementia, 2, moderate 

dementia and 3, severe dementia [4].  

Unfortunately, cognitive assessment is not objective as they might be affected 

from external factors, e.g. from the psychological condition of the patient. This 

leads to a large variability in the definition especially of the MCI subjects. Thus, 

the research community has driven a search for diagnostic imaging markers. 

The revised criteria for the diagnosis of AD were proposed in 2007 by the 

National Institute of Neurological Disorders and Stroke–Alzheimer Disease 

and Related Disorders working group [33]. According to these criteria,  the 

clinical assessment should include at least one supportive feature: (i) MTL 

atrophy as seen in structural MRI, (ii) Temporoparietal hypometabolism as 

seen in PET, due to neuronal death the brain is not absorbing the 18F-FDG 

radiotracer, (iii) Positivity on amyloid imaging as seen in PET and iv) Abnormal 

neuronal CSF markers (tau and/or Aβ).  

2.8 Fluid Biomarkers in AD 

In medicine, a biomarker or a “biological marker” represents an indicator of a 

particular disease or state which can be reproduced and measured accurately. 

Furthermore, in order to identify a good biomarker with diagnostic utility it 

must be sensitive, specific, and easy to administer to patient populations. 
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Especially in the case of AD, where biopsy is unavailable and the diagnosis of 

the disease is made postmortem, diagnostic biomarkers are very important. 

Furthermore, apart from AD which is the most common form of dementia, an 

ideal biomarker should be able to distinguish other forms of dementia such as 

Lewy-body dementia, vascular dementia. Although significant advances in 

neuroimaging techniques could provide both anatomical, functional and 

metabolic information regarding the disease physiology, CSF and plasma 

studies represent a more direct and convenient means to study the disease 

progression. 

2.9 Core Cerebrospinal Fluid Biomarkers  

Biochemical biomarkers of the disease derived from CSF, a fluid which 

occupies the subarachnoid space. Lumbar puncture is an invasive procedure to 

collect CSF, therefore, it stands as a major drawback in this in vivo method.  CSF 

biomarkers are related to the three main pathological changes that occur in the 

brain: Aβ deposition into extracellular Αβ plaques, intracellular formation of 

NFTs and neuronal loss [34].  

There are three major proteins constituents of AD pathology which are the 

leading diagnostic and prognostic biomarkers of the disease. These are (1) Aβ(1-

42), (2) Total Tau (T-tau), and (3) phosphorylated tau (P-tau) derived by enzyme-

linked immunosorbent assays (ELISA’s). However, CSF sample is required, 

therefore, the patient has to go through the invasive lumbar puncture 

procedure for CSF collection. So far, there are no studies reporting biomarkers 

in peripheral blood and perhaps this could be a new field of research.  

Compared to other body fluids, CSF is considered an important source for AD 

biomarkers as it is in direct contact with the extracellular space of the brain and 

as a result it allows the evaluation of chemical changes occur in the brain. There 

are 42 amino acids in the β-amyloid peptide which are highly insoluble and 

aggregates into extracellular Aβ deposits in the brain of AD subjects. As a 
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result, there is a decrease of Aβ(1-42) (~40%) concentrations in the CSF of AD 

subjects [35]. On the other hand, P-tau and T-tau concentrations increase in the 

cytosol of neurons where there are attached to microtubules. In AD subjects, 

tau and p-tau proteins are detached from microtubules and they accumulated 

into NFT. During this process, these proteins are also released into extracellular 

space and they are detected in higher concentrations in the CSF sample [36]. 

Therefore elevated levels of p-Tau in AD can be exploited as a predictive 

biomarker. 

The combination of Aβ(1-42), T-tau, and P-tau provides high diagnostic power in 

the classification of AD with sensitivity and specificity reaching 92% and 89%, 

respectively [37]. 

2.10 Genetic Risk Factors  

• The following text is part of a journal paper by Panayides et al., 2018 - 

(Radiogenomics for Precision Medicine With A Big Data Analytics Perspective,” 

IEEE J Biomed Health Informatics, volume 23, Issue 5, pp. 2063-2079, December 

2018. DOI: 10.1109/JBHI.2018.2879381) 

Genetic data have been essential in understanding the complex 

pathophysiology of AD. According to Error! Reference source not found. the 

presence of mutations in amyloid precursor protein (APP), presenilin 1 

(PSEN1) or presenilin 2 (PSEN2) can determine the early development of the 

disease. Furthermore, APOE is included in the well-established genes for AD. 

The APOE gene is found in human body as three polymorphic alleles: ε2, ε3 

and ε4 with a worldwide frequency of 8.4%, 77.9% and 13.7%, respectively. 

However, in an AD patient the ε4 allele could increase up to ~40% Error! 

Reference source not found.. Today, APOE gene represents the strongest 

major genetic risk for both early-onset AD (EOAD) (<65 years) and late-onset 

AD (LOAD) (≥65 years), the latter representing the majority of cases, with ε4 

allele being the most descriptive factor Error! Reference source not found..  

https://doi.org/10.1109/jbhi.2018.2879381
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Research relying on genome wide association studies (GWAS) and whole 

exome and whole genome sequencing data, have identified a significant 

number of genes that are correlated to AD. GWAS investigate single nucleotide 

polymorphisms (SNPs) throughout the genome to identify genetic variants of 

a disease which might lead to a more precise therapy. In Error! Reference 

source not found., nine additional genes /loci have been identified for LOAD, 

namely CR1, BIN1, CLU, PICALM, MS4A4/MS4A6E, CD2AP, CD33, EPHA1 

and ABCA7. A comprehensive overview of GWAS in AD appears in Error! 

Reference source not found.. Furthermore, quantitative MCI phenotypes for 

genetic or genome-wide association studies using data from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database [38] (published 2009-2012) 

are summarized in Error! Reference source not found.. 

Typically, AD studies investigate imaging biomarkers, and in particular 

longitudinal structural MRI data studies are the most frequent. For a review on 

quantitative MRI brain studies in MCI and AD, the reader is referred to Error! 

Reference source not found.. However, the combination of several AD 

biomarkers, such as MRI scans, PiB scans, and measurements of CSF Aβ and 

tau or APOE allele status, significantly add predictive value to the clinical 

diagnosis and the evaluation of the treatment efficacy. Towards this direction, 

a brief overview of emerging radiogenomics methods for the assessment of AD 

is provided next, and tabulated in Table 2. 

In Error! Reference source not found., 742 ADNI participants were examined 

to map the 3D profile of the MTL volume differences. It was found that 

rs10845840 SNP located in GRIN2B gene, was significantly associated with 

greater atrophy of the temporal lobe bilaterally. In addition, Enhancing Neuro 

Imaging Genetics through Meta-Analysis (ENIGMA’s) first project Error! 

Reference source not found. was a GWAS study trying to identify the genome 

associated with hippocampal volume. Hippocampal formation is the most 
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frequently used biomarker for the assessment of AD as is the structure 

responsible for learning and memory. It was found that, intergenic variant 

rs7294919 was associated with hippocampal volume and rs10784502 with 

intracranial volume. Similarly, GWAS on 33,536 individuals (the largest study 

up to date) from the ENIGMA database was performed in Error! Reference 

source not found.. They discovered 4 novel loci associated with hippocampal 

volume, three of them lie within genes (ASTN2, DPP4 and MAST4) and the 

fourth is found 200 kb upstream of the sonic hedgehog. Hippocampal subfield 

analysis was also performed and it was shown that a locus within the MSRB3 

gene might could affect the dentate gyrus, subiculum, CA1 and fissure. 

In Error! Reference source not found., they used a Bayesian method to identify 

indirect genetic associations between AD and NC using image phenotypes. 

Associations between imaging and disease phenotype were captured 

simultaneously with the correlation from genetic variants and image features 

in a probabilistic model. In their model brain regions not associated with AD 

were not included even if they were strongly modulated by genetics. In 

addition to the APOE variants, more SNPs are suggested for further 

investigation (see table 2). 

In Error! Reference source not found. Error! Reference source not found. 

Error! Reference source not found., the authors showed that the combination 

of imaging, genetics and neuropsychological tests could provide better 

accuracy in the prediction to AD conversion compared to single modality 

classifiers. Combined CSF, MRI, PET and genomics were used in Error! 

Reference source not found. to investigate the shapes of trajectories of AD 

biomarkers as a function of MMSE, demonstrating that a sigmoidal shape over 

time is followed. Brain metabolism and gray matter (GM) density combined 

with GWAS to identify the genetic influences on NC, MCI and AD subjects was 
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investigated in Error! Reference source not found. and Key findings linked 

most gene’s effects with the disease stage.  

APOEs is the strongest genetic predictor of AD and toward this direction, the 

study in Error! Reference source not found. revealed that specific alleles in 

APOE ε4 carriers, correlated with a more severe cortical thickness and MTL 

atrophy.  Moreover, APOE ε4 carriers who had a high Αβ PET imaging, were 

more affected by cognitive decline as depicted in Error! Reference source not 

found., Error! Reference source not found.. Their results were correlated with 

Error! Reference source not found. where subjects with negative β- amyloid 

peptide scan had less temporoparietal hypometabolism, less severe MTL 

atrophy, and low APOE ε4 gene. In a longitudinal study Error! Reference 

source not found. the authors followed a whole brain approach using MRI and 

PET and showed that ε4 allele carriers had faster rates of cortical loss especially 

in the area of MTL, and increased longitudinal accumulation of amyloid-β 

pathology on their cortex. The study suggested that APOE gene influences on 

AD could be detected in middle age. Similarly, longitudinal MRI and PET also 

used in Error! Reference source not found. and APOE ε4 was strongly related 

to baseline Aβ and to greater memory decline and hippocampal atrophy in Αβ+ 

subjects. 

Moreover, in Error! Reference source not found., it was shown that lower 

baseline FDG PET can predict subsequent cognitive decline while APOE ε4 

allele was more frequent in AD compared to MCI and NC subjects. A reduction 

in glucose metabolism was also seen in APOE ε4 allele carriers in AD-signature 

ROIs in Error! Reference source not found.. The author in Error! Reference 

source not found., compared baseline regional cerebral metabolic rate for 

glucose (CMRgI) using FDG PET in mildly affected AD subjects and 142 

amnestic MCI subjects to those from NC. As expected, compared to NC, AD 

and amnestic MCI subjects had significantly lower CMRgI bilaterally (in 
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posterior cingulate, precuneus, parietotemporal and frontal cortex) which was 

correlated with MMSE scores and APOE ε4 allele. The results were correlated 

with the study in Error! Reference source not found.. 

Diffusion tensor imaging (DTI) is a MRI technique that allows the assessment 

of the microstructural integrity of White Matter (WM) based on fractional 

anisotropy (FA) and mean diffusivity. It was found that the microstructural 

integrity of WM tends to follow an anterior to posterior path with MCI and AD 

subjects having more damage in posterior regions Error! Reference source not 

found.. Furthermore, the authors in Error! Reference source not found. used 

DTI to measure FA and revealed a reduction in cingulum fibers in the 

parahippocampal and posterior cingulate regions of MCI and AD subjects. In 

Error! Reference source not found., structural MRI and DTI was used to assess 

the cortical GM thickness and fractional anisotropy. Their analysis indicated 

that RORA, NARG2, and ADAM10 influences GM thickness and WM-FA 

values. In Error! Reference source not found., DTI-MRI and neurite orientation 

dispersion and density imaging (NODDI) with tract-based spatial statistics was 

used to investigate APOE ε4 modulation of WM damage in subjects with young 

onset AD. Interestingly, different WM changes in pre-symptomatic stages of 

AD were detected”. 
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Table 1: ADNI-Based Radiogenomics Studies in Mild Cognitive Impairment and 

Alzheimer’s disease 

STUDY GENETIC & 
IMAGING DATA BIOSTATISICAL METHODS DESCRIPTION/ KNOWLEDGE ADVANCEMENT 

2010- 
Error! 
Reference 
source 
not found. 

GWAS, SMRI 
Regression analysis, 

Permutation test 
SNP (rs10845840) located in GRIN2B gene, was significantly associated with the atrophy of both 
temporal lobes 

2012- 
Error! 

Reference 
source 

not 
found. 

GWAS, SMRI 
Fixed-effects, 

Random-effects, 
Haplotype analysis 

Intergenic variant rs7294919 associated with hippocampal volume, an HMGA2 locus rs10784502 
associated with intracranial volume, and a suggestive association with total brain volume at 
rs10494373 within DDR2 

2017- 
Error! 

Reference 
source 

not 
found. 

GWAS, SMRI 
Regression coefficients, 
Mixed-effects models, 

Quantile–Quantile plots 

Four novel genome wide loci (rs11979341, rs7020341, rs2268894 and rs2289881) were 
associated with hippocampal volume 

2016- 
Error! 

Reference 
source 

not 
found. 

GWAS ,SMRI 

Pearson correlation, Logistic 
regression, 

sRRR regression, 
T- test 

Left entorhinal cortex average thickness, was associated with APOE variants, and SNPs such as 
re59776273, rs113814152, rs79079416 and rs147030865 are suggested for further analysis Left 
hippocampal volume was associated with APOE variant and rs293169 SNP 

2016-
Error! 

Reference 
source 

not 
found. 

APOE, Cognitive 
evaluation, sMRI, FDG 

PET, AV45-PET 

ANOVA, Chi-square test, t-
tests 

The combination of imaging, genetics and/or cognitive biomarkers better predicts MCI to AD 
conversion phenotype. This combination provided a 87% accuracy in the prediction of the 
disease compared to 76% of glucose PET as a single biomarker 

2014-
Error! 

Reference 
source 

not 
found. 

Plasma proteins and sMRI 

Parallel independent 
component analysis, 
Pearson correlation 

coefficients 

This combination can provide a better prognosis and prediction of the disease. Specifically, VBM 
and TBM where combined with the changes in BMP6, Eselectin, MMP10 and NrCAM. In the 
classification of the disease a 93% sensitivity and 92% specificity was achieved. In the prediction 
from MCI to AD a 94% accuracy was reached 

2016-
Error! 

Reference 
source 

Cognitive evaluation, sMRI, 
APOE and TOMM40, CSF, 

plasma 

Receiver operating 
characteristic analysis 

The combination of specific plasma markers and CSF only provided 80% accuracy, 88% 
sensitivity and 70% specificity in predicting progression from MCI to AD 
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not 
found. 
2012-
Error! 

Reference 
source 

not 
found.a 

APOE, Cognitive 
evaluation, PET, FDG PET, 

sMRI, CSF 

Linear mixed effect models, 
Concordance correlation 

coefficient 

Each biomarker follows a sigmoid shaped trajectory and is affected by interactions with age and 
APOE status 

2016-
Error! 

Reference 
source 

not 
found. 

GWAS, sMRI, FDG-PET 

Linear regression analysis, t-
tests/ 

Chi-square tests with two-
sided P-values 

Gray matter density: No genetic influence in NC. In MCI subjects the SLC24A4/RIN3 rs10498633 
and ZCWPW1 rs1476679 genes showed significant effects. Furthermore, ABCA7 rs3752246, 
EPHA1 rs11771145, and INPP5Drs35349669 genes were associated for AD patients.Brain 
metabolism: Significant associations were only seen in NC groups for 
SLC24A4/RIN3rs10498533, NME8 rs2718058, and CD2AP rs9349407 genes 

2012-
Error! 

Reference 
source 

not 
found. 

APOE, sMRI 
Logistic regression analysis, 
Independent-sample t-tests 

In APOE ε4 carriers, the V and A alleles (I405V and C-629A) of the cholesteryl ester transfer 
protein gene were associated with greater baseline cortical thickness and less 12-month atrophy 
in the MTL 

2014-
Error! 

Reference 
source 

not 
found.b 

Neuropsychological 
evaluation, APOE, β-
amyloid (Ab) imaging 

Linear regression analysis, 
Wilcoxon rank sum tests 

There is a strong correlation between Aβ and APOE ε4 in cognitive decline. Greater cognitive 
decline was present in high Aβ/APOE ε4+ participants compared to all other groups (low 
Aβ/APOE ε4-, low Aβ/APOE e4+, and high Aβ/APOE e4-) 

2018-
Error! 

Reference 
source 

not 
found.c 

Neuropsychological 
evaluation, APOE,  β-
amyloid (Ab) imaging 

ANOVA 
Μemory decline in β-amyloid–positive adults may accelerate with older age and that this increase 
in acceleration may be associated with the APOE ε4 allele 

2017-
Error! 

Reference 
source 

not 
found. 

APOE, sMRI, FDG-PET, 
CSF 

Linear models or Logistic 
regression analysis 

MTL atrophy was less severe in subjects who had a negative β-amyloid. This was correlated with 
the patient’s disproportionately low APOE ε4 and disproportionately high APOE ε2 carrier 
prevalence 

2018-
Error! 

Reference 
source 

not 
found. 

APOE, sMRI, β-amyloid 
(Ab) imaging 

MCMC Bayesian & GB 
convergence analyses 

APOE ε4 carriers had increased longitudinal accumulation of amyloid-β pathology and more 
atrophy in the area of MTL 

2018-
Error! 

Reference 
source 

not 
found. 

APOE, β-amyloid (Ab) 
imaging 

Polygenic risk scores APOE ε4 linked to greater memory decline and hippocampal atrophy in Aβ+ subjects 

2011-
Error! 

Reference 
source 

not 
found. 

APOE, FDG-PET 
ANOVA and post-hoc two-

sample t-tests 
Longitudinal FDG-PET is associated with concurrent cognitive decline. AD subjects had higher 
frequency of the APOE ε4 allele gene compared to MCI and NC subjects 

2014-
Error! 

Reference 
source 

not 
found. 

APOE, FDG-PET 
Linear regression, Wald tests, 

t-test 
APOE ε4 carriers had significant declines in FDG ratio 

2009-
Error! 

Reference 
source 

not 
found. 

APOE, FDG-PET 
t-test, Linear regression 

analysis 
Lower CMRgI correlated with APOE ε4 allele where AD and amnestic MCI groups had higher 
proportion of subjects with one or two copies of the APOE ε4 allele 

2012-
Error! 

Reference 
source 

not 
found. 

APOE, FDG PET- MRI Univariate analyses High APOE ε4 gene subjects were associated with lower CMRgl and lower GM volume 

2011-
Error! 

Reference 
source 

GWAS, sMRI, DTI Correlation analysis 
A potentially significant association observed for the rs2456930 polymorphism reported as a 
significant GWAS finding in AD. RORA, NARG2, and ADAM10 influence GM thickness and WM-
FA values 
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not 
found. 

2017- 
Error! 

Reference 
source 

not 
found. 

APOE, sMRI (DTI and 
NODDY) 

Fisher’s exact test, t-test, 
Wilcoxon rank sum test 

Subjects with the APOE ε4 gene had more widespread WM disturbance whereas in non ε4 allele 
carriers the disruption was more focal 

aDatabase(s): ADRC: Mayo Alzheimer’s Disease research center; MCSA: Mayo Clinic study of aging; AIBL: Australian Imaging, Biomarkers and Lifestyle; HABS: Harvard Aging Brain Study; ADNI: 
Alzheimer’s Disease Neuroimaging Initiative; MCI: Mild Cognitive Impairment; AD: Alzheimer’s disease; sMRI: structural MRI; VBM: Voxel Based Morphometry; TBM: Tensor Based Imaging; CSF: 
Cerebrospinal fluid; FDG-PET: Fluorodeoxy glucose- Positron Emission Tomography; AV45-PET (florbetapir); rs-fcMRI:  resting state functional connectivity MRI; TOMM40:  Translocase of Outer 
Mitochondrial Membrane 40 homolog; NODDI: Neurite Orientation Dispersion and Density Imaging; GWAS: Genome-wide Association Studies; ANOVA: Analysis of Variance; MCMC: Markov Chain 
Monte Carlo, GB: Gelman-Rubin convergence; sRRR: Bonferroni correction Row-sparse reduced-rank regression  

2.11 Chapter main findings 

1. The disease diagnosis still remains probable and only post mortem 

biopsy will identify it. 

2. Clinical assessment and cognitive tests will reveal the disease after 

structural changes have occurred within the brain.  

3. MTL is the region whereas the disease initiates and more specifically 

entorhinal cortex is the first region affected followed by the hippocampus, the 

amygdala and the parahippocampal gyrus.  

4. Research relying on genome wide association studies (GWAS) and 

whole exome and whole genome sequencing data, have identified a significant 

number of genes that are correlated to AD. 
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3 

Quantitative MRI in AD Detection 

3.1 Abstract 

This chapter represents a review of the literature where structural MRI 

quantitative methods used in the assessment of AD are presented. Most of the 

studies reviewed in this chapter, have been concentrating in the MTL of the 

brain where the disease initiates. Within MTL entorhinal cortex is affected in 

an earlier stage compared to hippocampus, however, the majority of the studies 

have been using hippocampus perhaps due to the fact that hippocampus is 

responsible for long-term memory. Furthermore, hippocampal measurements 

are more feasible due to hippocampus shape and size which allows its easier 

segmentation compared to other regions. 

Additionally this chapter will discuss the advantages and disadvantages of the 

several MR quantitative methods used in AD and determine which method is 

better to be used in the several stages of the disease. Furthermore, it will 

evaluate the accuracy, sensitivity and specificity of these methods in the 

classification of NC from MCI and AD subjects and which one offers better 

prediction possibilities.  
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As structural changes in the early stages of the disease, initiate from the MTL 

and entorhinal cortex and hippocampus are the main ROIs used in the 

assessment of AD, this chapter will conclude which of the two ROIs is better to 

be used in the assessment of AD and in which stage. 

This chapter concludes that in the earlier stages of the disease the entorhinal 

cortex is better to be used for both classification and prediction of AD. It was 

seen that the limited number of research articles that used texture analysis, had 

better results compared to other quantitative methods, probably because it 

detects subtle neurodegenerative changes better compared to the other 

methods. In the more advanced stages of the disease, where atrophy is more 

widely developed within MTL and the rest of the cortex, volume 

measurements could provide equal results to texture. Undoubtedly, entorhinal 

cortex is the region to be preferred when comes to the prediction of the disease. 

Although texture analysis seem to provide equal and even better results 

compare to other quantitative methods, there is lack of research regarding its 

use in the assessment of AD. 

3.2 Introduction 

Neuroimaging biomarkers have transformed the assessment of 

neurodegenerative diseases as they can detect structural changes before the 

manifestation of the clinical symptoms. Imaging biomarkers represent a non-

invasive method to assess AD. Two main categories are currently being used: 

(1) molecular techniques, such as from PET, where metabolically changes 

within brain can be captured and (2) structural methods, such as from MRI, 

where structural changes of the brain cortex can be detected.  

Although, nuclear medicine techniques are beyond the scope of this thesis, a 

brief review of these methods follows. 



 

43 
 

3.3 Molecular Neuroimaging in AD 

PET is a sensitive neuroimaging technique were radionuclide isotopes are 

injected intravenous and according to the tracer used it allows the assessment 

of molecular biology and neuropathology of the disease. In contrast with MRI 

were structural changes are detected, PET imaging allows the in vivo 

assessment of brain function. In PET imaging, there are several radionuclide 

compounds that are currently used in AD in order to measure:  

1. the metabolic and neurochemical processes of the brain such as FDG,  

2. amyloid Aβ pathology imaging 

3. Tau PET where cerebral tau burden is assessed. 

3.4 18F-fluorodeoxyglucose (18F-FDG) PET 
18F-FDG PET was the most widely used tracer for measuring brain function of 

neuronal activity at the tissue level. Decreased uptake of 18F-FDG and therefore, 

hypometabolism of the brain has been associated with AD and it follows a 

characteristic topographic pattern which affects the medial parietal and lateral 

temporoparietal cortex [39]. PET FDG captures this cerebral metabolic rates of 

glucose (CMRgIc) within the neurons and provides support to differential 

diagnosis. Therefore, 18F-FDG PET has been included in the diagnostic criteria 

of AD [33]. Interestingly, MCI subjects revealed a pattern of hypometabolism 

in the posterior cingulate and hippocampus [40]. In other studies, 

hypometabolism in these areas was also found to predict subsequent clinical 

conversion to probable AD [41] though distinguishing MCI converters from 

non-converters has been less successful than structural MRI measurements 

[42]. 

3.5 PET amyloid imaging - 11C- PiB “Pittsburgh compound B” 

Recent developments of molecular imaging have allowed, in vivo, amyloid 

deposits in the brain by using PET. 11C-PiB is the most commonly used in vivo 
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amyloid PET tracer  [43] and a study by Nordberg et al., 2013 [44] showed that 

AD subjects had higher [11C]PIB retention in the neocortical and subcortical 

brain regions compared to NC, where MCI subjects had intermediate retention 

(Figure 5).  Interestingly, none of the MCI PIB-negative patients converted to 

AD, and thus PIB negativity had a 100% negative predictive value for 

progression to AD [44]. Furthermore, MCI ApoE ε4 carriers had also higher 

[11C]PIB retention compared to MCI ApoE ε4 non carriers [44]–[46].  However, 

due to amyloid deposition rate which is increased in the early signs of the 

disease and before any signs become more specific, it might be difficult to 

identify the disease severity. Jack et al., 2013 [47] revealed that some MCI cases 

reached a plateau, therefore, it has been suggested that amyloid rate might not 

be the most accurate method to be used in the prediction of conversion from 

MCI to AD. Furthermore, it is currently debated whether cognitively normal 

subjects with a positive amyloid-PET scan represent prodromal AD cases who 

will eventually develop AD dementia or rather will remain stable [48], [49].   

 
Figure 5: Representative PET scans of healthy controls, patients with MCI and patients 

with AD. Figure adapted from Nordberg et al., 2012. 
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Limitations of amyloid PET include the fact that it cannot distinguish specific 

AD syndromes [50], [51], as most studies show a non-specific pattern of 

amyloid burden distributed throughout the entire cortex across diseases [52], 

[53].  However, it was shown that it can give slightly better results from 18-

FDG [54]. Perhaps, the most important limitation of amyloid PET is the fact that 

amyloid positivity dramatically increases with age in cognitively normal 

individuals and in non-AD subjects, especially after 70 years of age [55], [56].  

3.6 Tau PET - tau PET agent (18)F-AV-1451 

The Tau protein is predominantly found in brain cells, the neurons, and it has 

been associated with several brain diseases. In the case of AD is well known 

that due to abnormal tau protein, neurofibrillary tangles are accumulated and 

spread through the brain. In contrast with beta amyloid accumulation which is 

completed at an earlier stage (MCI?), tau accumulation continues throughout 

the disease progression. As these neurofibrillary tangles are spread they cause 

“dysfunction” of a structure called synapse, which allows the nerve cells to 

communicate together through electrical or chemical signals. Due to the fact 

that tau protein is constantly builds up with the disease progression, tau PET 

imaging could serve as an in vivo biomarker for the evaluation of AD-related 

tau pathology and monitoring disease progression [57]. Recent studies 

suggested that tau PET was able to recapitulate the neuropathological Braak 

staging [58], therefore, the introduction of tau-PET method has set new 

boundaries in the evaluation of AD, whereas amyloid PET remains 

controversial. However, there are several areas of criticisms regarding tau PET 

as well, which are beyond the scope of this research, therefore the reader is 

referred to [59], [60]. 
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3.7 Structural Neuroimaging - MRI 

MRI is a non- invasive imaging modality, which provides high spatial 

resolution images. This modality uses strong magnetic fields and 

radiofrequency (RF) pulses in order to produce the images in comparison with 

others techniques which use ionized radiation. Although the first MR images 

were acquired in 1976, MRI was approved for clinical use almost 10 years later 

[61]. MRI was mainly used to image anatomical changes due to cancerous 

tumors and neurological disorders such as brain atrophy related to Alzheimer’s 

disease.  

Due to its high spatial resolution (~1mm) and contrast between the tissues 

which derives through the various sequences such as T1-weighted imaging 

(WI), T2-WI, Fluid Attenuation Inversion Recovery (FLAIR) and others one can 

observe the different tissues within the brain. The gray matter (GM), also called 

cortex, is layer of 2-3mm thickness and corresponds to the synapses and 

neuronal cell bodies, neuropil, glial cells and capillaries. The white matter 

(WM) corresponds to the myelinated axons of the neurons and is found deep into 

the brain. Brain is surrounded by CSF which surrounds the brain and separates 

is from the skull (see Figure 6). 

 

 
Figure 6: T1-WI image in coronal plane showing the GM, WM (light gray) and CSF (dark) 

between the skull and the brain in Normal, MCI and AD subject 

Currently, in the literature, the pathophysiological process of AD initiates 

several years before the clinical symptoms arise and most of the literature is 
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searching for diagnostic imaging markers especially of those derived from 

quantitative T1-WI MRI. It represents a widely established method for regional 

and global brain volumes in-vivo and its importance in the assessment of AD 

was underlined by its inclusion in the new diagnostic criteria [33]. Structural 

MRI uses a no-ionizing radiation, which makes it suitable for longitudinal 

investigation. However, in the case of structural MRI, radiologists cannot 

perceive subtle changes of neurodegeneration with “naked” eye, and even if 

they could, they could never predict the conversion from MCI to AD. 

A theoretical representation of the biomarker trajectories during different 

stages of AD pathogenesis can be seen in Figure 7 and Table 2. This illustration 

demonstrates that some markers may be more useful for detecting the 

pathological changes in AD during different stages of development. For 

instance, some markers may be useful for early diagnosis, whereas others may 

have more prognostic potential in tracking disease progression. Amyloid 

markers (CSF Aβ(1-42) and Aβ PET) represent the earliest detectable changes in 

AD, but begin to plateau at the MCI stage. Functional and metabolic markers 

(FDG-PET measurements of hypometabolism and functional MRI methods) 

become abnormal at the MCI stage and progressively change well into the 

dementia stage. Changes on structural MRI become abnormal during the MCI 

stage, often following a temporal pattern of changes that correspond to tau 

pathology in the brain. Most extensively used measurements included 

hippocampal and entorhinal volume, as well as measurements of whole-brain 

atrophy.  
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Figure 7: Dynamic biomarker trajectories of AD pathophysiology. Figure adapted from 

Frisoni et al [8]. Abbreviations: AD, Alzheimer’s Disease; MCI, Mild Cognitive Impairment; 

NINCDS-ADRDA, National Institute of Neurological and Communicative Disorders and 

Stroke-Alzheimer’s Disease and Related Disorders Association 

Table 2: Overview of the different biomarkers based on the neuropathological changes in 

AD 

Pathological change Biomarker category Biomarker(s) 

Aβ deposition = early 

marker 

Biochemical (CSF) 

Molecular imaging 

CSF Aβ1-42 or Aβ1-42/Αβ1-

40 

PET with amyloid-specific 

probes 

NFT formation Biochemical (CSF) CSF P-tau181 

Neuronal injury = 

downstream 
Biochemical (CSF) 

CSF T-Tau 

18F-FDG PET 

MTL atrophy on MRI 

 

Abbreviations: Aβ amyloid-β, Aβ 1-42 β-amyloid peptide of 42 amino acids, CSF cerebrospinal 

fluid, FDG fluorodeoxyglucose, HCV hippocampal volume, MTL medial temporal lobe, MRI 

magnetic resonance imaging, PET positron emission tomography, P-tau 181 phosphorylated 

tau at threonine 181, SPECT single photon emission computed tomography, T-tau total tau 

protein. Table adapted from Niemantsverdriet, et al., 2017  [35]. 

 

MRI-derived biomarkers of AD are an active research area, which can reveal 

the cerebral atrophy and can be applied to measure in-vivo cortical changes.  
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The following section explores the several quantitative MR methods and 

advanced pattern analysis techniques used in the assessment of AD such as: i) 

VBM which describes global changes or atrophy of the deep cerebral structures, 

ii) volumetric measurements in specific ROIs, iii) cortical thickness 

measurements, iv) shape analysis and v) texture analysis. Volumetry remains 

the most popular technique to assess AD especially in the area of MTL [17], 

[62]–[64]. Apart from the MTL, other studies chose to assess the whole brain 

[65], [66], although the cortex is affected in later stage [5]. Furthermore, 

multimethod studies [67]–[69] combine biomarkers for the better 

understanding of the disease pathophysiology. 

3.8 Quantitative MRI Brain Studies in Mild Cognitive Impairment and 

Alzheimer’s disease: A Methodological Review  

The following text is part of a journal paper (Quantitative MRI Brain Studies in Mild 

Cognitive Impairment and Alzheimer’s disease: A Methodological Review) published 

in: 2018 IEEE Reviews in Biomedical Engineering - 

DOI: 10.1109/RBME.2018.2796598 

3.8.1 Introduction 

As a consequence of the AD, structural changes initiate within the MTL of the 

brain [22], a region which includes anatomically related structures that are 

essential for declarative memory [18]. Many post mortem studies [5], [14], [70] 

have implicated entorhinal cortex and the transentorhinal region as early sites 

of involvement in MCI and in AD subjects. It was shown that the degenerative 

process, initiates from the entorhinal cortex, followed by the hippocampus, the 

amygdala and the  parahippocampal gyrus [17]–[19]. With the disease 

progression, these regions lose neuronal tissue with consequent brain atrophy 

[24].  

A definite diagnosis of AD relies on histological confirmation at post-mortem 

biopsy [33] and brain inaccessibility has driven a search for diagnostic imaging 

https://doi.org/10.1109/rbme.2018.2796598
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markers. Imaging, plays an important role in improving our understanding of 

AD, as it can provide an image of the brain of living patient which are affected 

by AD. Furthermore, imaging biomarkers, can be used for differential 

diagnosis due to the uncertainty of clinical tests in differentiating other 

subtypes of dementia such as FTLD [71], [72]. The entorhinal cortex and the 

hippocampus (Figure 8), are the two most common ROIs used in both in vivo 

and post-mortem investigations on the pathophysiology in AD. However, a 

visual qualitative assessment of MRI is not enough to estimate the rate of the 

tissue loss in the areas affected by the disease, and quantitative measures are 

essential for the assessment of the disease. Furthermore, the human eye cannot 

perceive the minimum degree of atrophy and without quantitative 

measurements, image evaluation is subjective. On the other hand, by using 

only MMSE tests, MCI, which represents a transitional period between normal 

ageing and clinical probable AD, cannot be easily identified through cognitive 

tests, mainly because these subjects do not have severe memory problems [33]. 

As the size of the MRI datasets increases and manual tracing is much more time 

consuming, Computer-Aided Diagnosis (CAD) systems can outline the areas 

of interest, usually by automated or semi-automated techniques, and can 

provide quantitative measurements.  

   
(a)                                              (b)                                         (c) 

Figure 8:  Hippocampus and entorhinal cortex. (a) The hippocampus. (b) The CA1 area 

within the hippocampus. (c) The entorhinal cortex with the hippocampus. 

This review describes the overall results, including accuracy, specificity, and 

sensitivity of the image-processing methods that assess AD as observed in 

structural MRI. Additionally, it describes the effectiveness of these methods in 
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the prediction of conversion from MCI to AD. The rest of this review is 

organized as follows: Section 3.3 presents the CAD system pipeline and Section 

3.4 the Classification methods. Sections 3.5 and 3.6 describes the use of CAD 

systems in the diagnosis and prognosis of the disease, respectively. Section 3.7 

concludes which methods and structures are suggested for both diagnosis and 

prognosis of AD. 

3.8.2 Computed-aided Diagnosis System Pipeline 

The objective of CAD systems is to assist the radiologist in the interpretation of 

medical images as a supporting tool. Furthermore, CAD provide quantitative 

information for ROIs to produce accurate and complete pathology reports. In 

medical image analysis, the following steps: (i) image acquisition and pre-

processing, (ii) ROI segmentation, (iii) feature extraction, (iv) classification and 

(v) interpretation,  are usually carried out to provide quantitative 

measurements of biomedical images. Medical image analysis steps and 

techniques used for the development of CAD systems for the assessment of 

dementia, are analyzed in this section. 

3.8.3 Datasets and Preprocessing 

In AD research, many investigators obtain their data from online databases 

(Table 3). These databases provide researchers with study data to define the 

progression of AD. One of the most comprehensive databases is the ADNI 

database [38], an ongoing, longitudinal, multicenter study. The ADNI was 

launched in 2003 as a public-private partnership, led by Principal Investigator 

Michael W. Weiner, MD. The primary goal of ADNI has been to test whether 

serial MRI, PET, other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of MCI and early AD.  

The ADNI image processing pipeline includes post-acquisition correction of 

gradient warping (Gradwarp) [73], B1 non-uniformity correction [74] 
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depending on the scanner and coil type, and phantom based scaling correction 

[75]. For up-to-date information, see www.adni-info.org. Apart from ADNI, 

(see Table 3)  the Australian Imaging Biomarker and Lifestyle flagship study of 

aging (AIBL) (http://aibl.csiro.au), has already enrolled 1100 participants and 

collected over 4.5 years’ worth of longitudinal data. The Open Access Series of 

Imaging Studies (OASIS) [76] provides data to be used in the determination of 

diagnostic markers for the assessment of AD and the data are divided in 2 sets. 

The cross-sectional MRI data in young, middle aged, non-demented and 

demented older adults and the longitudinal MRI data in non-demented and 

demented older adults. AddNeuroMed [77] is a cross European, public/private 

consortium developed for AD biomarker discovery. It combines modalities and 

it uses animal models in biomarker research. 

Furthermore, two large dementia challenges where research groups could test 

and compare their algorithms in the AD assessment are the CADDEMENTIA 

[78] (http://caddementia.grand-challenge.org) and the Alzheimer’s Disease Bid 

Data (ADBD) DREAM challenge (http://dreamchallenges.org). 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Open Source Imaging Data for Aging 

http://www.adni-info.org/
http://aibl.csiro.au/
http://caddementia.grand-challenge.org/
http://dreamchallenges.org/
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Name Subjects Data 

Alzheimer’s Disease Neuroimaging Initiative (ADNI)  
http://adni.loni.usc.edu/ 

483 NC, 
300 

eMCI, 
300 

lMCI, 
550 MCI, 
350 AD 

Clinical and cognitive assessments, MRI, 
PET, Genetic, Biospecimen 

Australian Imaging Biomarker and Lifestyle flagship 
(AIBL) 

https://aibl.csiro.au/ 

768 NC, 
133 MCI, 
211 AD 

Clinical and cognitive assessments, MRI, 
PET, Biospecimen, Dietary/lifestyle 

assessment 

Open Access Series of Imaging Studies (OASIS) 
http://www.oasis-brains.org/ 

73 NC, 
14 ADc, 
64 AD 

MRI 

AddNeuroMed 
https://consortiapedia.fastercures.org/consortia/anm/ 

232 NC, 
225 MCI, 
259 AD 

Clinical and cognitive assessments, Blood, 
MRI 

Abbreviations: NC: Normal Controls; eMCI: early Mild Cognitive Impairment; lMCI: Late Mild 

Cognitive Impairment; MCI: Mild Cognitive Impairment; AD: Alzheimer’s disease; ADc: 

Subjects who converted to AD; MRI: Magnetic Resonance Imaging; PET: Positron Emission 

Tomography 

3.8.4 Region of Interest / Segmentation 

The role of segmentation in medical imaging is to separate an image into 

regions to study anatomical structures, to identify ROIs or to measure the 

volume of a tissue. For the automatic segmentation of gray matter (GM), white 

matter (WM) and CSF from MR images, three methodologies have been 

proposed: (i) statistical-based segmentation methods, (ii) learning-based 

segmentation methods and (iii) atlas-based segmentation methods. Atlas based 

segmentation methods are the most frequently used in medical image 

segmentation.  In atlas-based segmentation, an intensity template is registered 

non-rigidly to a target image and the resulting transformation is used to 

propagate the tissue class or anatomical structure labels of the template into the 

space of the target image [79]. The study by Babalola et al. [80] compared atlas-

based and model based segmentation techniques and was tested on 270 

subjects. The two atlas-based methods, classifier fusion and labelling (CFL) and 

expectation-maximization segmentation (EMS) using a dynamic brain atlas, 

performed significantly better than the model based methods, profile active 

http://adni.loni.usc.edu/
https://aibl.csiro.au/
http://www.oasis-brains.org/
https://consortiapedia.fastercures.org/consortia/anm/
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appearance models and Bayesian appearance models (BAM). Factors that affect 

accuracy in multi-atlas segmentation are presented in [79].  

Based on the aforementioned segmentation methods, several software 

"pipelined" image analysis   packages for automated brain tissue segmentation 

have been developed (Table 4). These packages usually contain skull stripping, 

intensity non-uniformity correction and automated segmentation. FreeSurfer 

[Martinos Center for Biomedical Imaging, Harvard-MIT, Boston USA] [81] is 

an open source software suite for processing and analyzing brain MRI images. 

It represents one of the most commonly used software in image analysis and it 

segments MRI scans automatically using a Bayesian approach [82]. Morey et al. 

[83] compared automated segmentation methods and hand tracing of the 

hippocampus and it was shown that Freesurfer is preferable compared to 

FSL/FIRST [Functional MRI Brain - FMRIB Software Library, abbreviated as 

FSL - FMRIB Integrated Registration and Segmentation Tool, Oxford 

University, Oxford UK] [84]. The Statistical Parameter Mapping (SPM) 

software (Wellcome Trust Centre for Neuroimaging, Institute of Neurology, 

UCL, London UKis a freely available suite of MATLAB used for segmentation, 

normalization, registration, volume measurements and other useful image 

analysis steps.   

The LONI Pipeline [85] is a graphical workflow environment which allows grid 

utilization and provides a significant library of computational tools. It was built 

to be used in complex neuroimaging analysis which requires deep knowledge 

about the input/output requirements of algorithms. The LONI Pipeline could 

be used to design, execute, validate, and deliver complex heterogeneous 

computational protocols.  
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Table 4: Selected Brain Segmentation Software Packages 

Name Description Studies 

FreeSurfer 
Open source software suite for processing and analyzing 
(human) brain MRI images 
https://surfer.nmr.mgh.harvard.edu/ 

[67], [81], [83], [86], 
[86]–[90] 

Statistical 
Parameter 

Mapping (SPM) 

MATLAB software package implementing statistical methods 
for analysis of functional and structural neuroimaging 
http://www.fil.ion.ucl.ac.uk/spm/ 

[65], [91]–[100] 

LONI Pipeline 
Includes workflows that take advantage of all widely used tools 
available in neuroimaging, genomics, bioinformatics, etc. 
http://pipeline.loni.usc.edu/ 

[85], [87], [101]–[103] 

3.8.5 Feature Extraction 

Thus, through feature extraction it is possible to retrieve important data that 

can assist the characterization of a pathology. Feature extraction methodologies 

analyze objects or images to extract the most prominent features that are 

representative of the various classes of objects.  

Table 5 lists selected methods that are currently used in the assessment of AD 

as described in [67], where these methods were compared. According to 

Cuingnet et al. [67], these approaches can be divided into three categories, 

depending on the type of features extracted from the MRI: (i) Voxel-based if the 

features derive from GM, WM or CSF, (ii) Vertex-based if the features derive 

from the cortical surface such as thickness measurements and (iii) ROI-based if 

the features are derived from ROIs. However, apart from the hippocampus, it 

should be noted that the entorhinal cortex is also a structure currently used by 

many studies for the assessment of AD. In this review, structural MRI features 

derived from Voxel Based Morphometry (VBM), cortical thickness, volume, 

shape and texture are described.  

In the assessment of AD, VBM has the advantage examining the whole brain 

and not a particular structure.  Specifically, it detects differences in the local 

composition between different brain tissue types such as GM and WM [104]. 

First, the brain images are segmented into their three main tissue components, 

GM, WM and CSF and then are spatially normalized to the same stereotactic 

https://surfer.nmr.mgh.harvard.edu/
http://www.fil.ion.ucl.ac.uk/spm/
http://pipeline.loni.usc.edu/
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space. This allows different brains to be compared directly through a voxel-

wise statistical analysis over the entire brain. For technical and methodological 

information about VBM the reader is referred to [105]. Nowadays, VBM is used 

to examine the whole volume of the brain and to detect differences or 

similarities in images for two populations [106]. Furthermore, it is also used to 

calculate cortical thickness changes on the entire cortex. A limitation of 

thickness measurements is that they cannot detect changes on subcortical 

structures such as WM or CSF therefore it is only used to detect the regional 

distribution of cortical atrophy. In general, some of the limitations of VBM 

include systematic registration errors during spatial normalization [107] and 

difficulties in detecting WM changes in T1 MRI sequences or pathologies that 

are not common in the majority of a population [108]. 

Volumetric techniques are used to measure the volume of a structure; however, 

a major weakness of volume analysis is that the thickness or shape of a 

structure might change before its volume. According to [109] global 

hippocampal volumetry might not be always sensitive enough to follow 

changes within a single population, which may reflect conversion from a 

healthy state or disease progression. In differential diagnosis, VBM showed 

higher accuracy from volume measurements, in the ability to differentiate AD 

from FTLD [71], [72]. 

Shape analysis, is used in digital geometric models of surfaces and/or volumes 

of objects-of-interest in order to detect similarities or differences between the 

objects [110]. It examines the shape of a structure which gives not only more 

sensitivity to follow the progression of the atrophy, but also allows its 

evaluation in different subfields. Among the many techniques [110] used to 

obtain shape features of the human brain, Corresponding Spherical Harmonic 

Description (SPHARM), deformation-based morphometry and deformable 

models are the methods mainly used, mainly due to alignment factors.   

Texture is an indistinct concept often attributed to human perception of 
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variation of the colour/intensity of a surface, quantifying properties such as 

smoothness, coarseness and regularity. It could be argued that texture refers to 

the spatial and statistical relationship of pixel values in an ROI. The early stage 

of AD is associated with small-scale changes in terms of Neurofibrillary 

Tangles (NFT’s) and amyloid-β (Aβ) plaque deposition [32]. According to 

Castellano et al. [111] these small-scale changes, are able to form certain  

textural patterns in MRI images recognizable by extracting texture descriptors 

from the image. In AD, texture analysis is less used than the other methods. 

However, the information provided by texture analysis cannot be visible 

through volume and shape properties [91], thus, it may have the advantage of 

detecting earlier, microscopic alterations [111]. Broadly, the approaches used to 

describe texture features in neuro MRI can be split into syntactic, statistical and 

spectral [112]. 

Statistical based approaches (Table 6), are mostly used and they  represent the 

texture indirectly by non-deterministic properties that prescribe the 

distributions and relationships between grey levels of an image [112]. 

According to Kovalev et al. [113] 3D texture features contain more spatial 

information, higher sensitivity and specificity compared to 2D techniques. 3D 

texture features include the use of Law filters [114], Run Length Matrix (RLMs) 

[115], sub-band [116], [117], Gaussian-Markov Random Fields (GMRF) and a 

combination of co-occurrence matrices and Gabor filters [116]. For a review on 

3D texture, the reader is referred to [118]. 
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Table 5: Summary of Structural MRI Features Based on [67]  
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Category Subcategory Tissue Description Studies 

Voxel 
based 

Direct 
GM 

GM+WM+CSF 
Probability maps of voxels of the tissue directly 
as features in the classification 

[92] 
[93] 

STAND-
score 

GM, WM, and 
CSF tissue 
probabilities 

Selection steps and a sequence of feature 
aggregation is used to reduce dimensionality. 

Atlas based 
Mean tissue 
probabilities 

Uses labelled atlas to group the voxels into 
anatomical regions 

COMPARE 
GM 

GM+WM+CSF 

Creates homogeneously discriminative regions, 
in which the voxel values are aggregated to 
form the features of the classification 

Cortical 
Thickness 

Direct - 
Consists cortical thickness values at every 
vertex directly as features 
 

[92] 
[86], 
[119] 
[86] 

Atlas based - 
Vertices are grouped into anatomical regions 
using an atlas 

ROI 

Hippocampus, 
entorhinal cortex, 

supramarginal 
gyrus 

Measures the cortical thickness in specific 
areas 

Volume 
and 

Shape 

Hippocampus 
and 

Entorhinal 
cortex 

- 
Discriminative power of the hippocampus and 
entorhinal cortex only 

[16], 
[39], 
[40], 
[49]– 
[53] 
[41], 
[54]– 
[56] 

Abbreviations: STAND: Structural Abnormality Index; ROI: Region of Interest; GM: Gray 

Matter; WM: White Matter; CSF: Cerebrospinal Fluid 

 

Table 6: Selected 2D Texture Features in the Evaluation of MCI and AD 

Category Subcategory Tissue Description Features Studies 

Statistical 

1st order 
gray-level 

- 

Contain information 
related to the gray-
level distribution of an 
image.  

Variance, Skewness, 
Kyrtosis, Mean, Gradient 

[128] 

2nd order  
Co-

occurrence 
matrix 

(GLCM) 

Whole Brain, 
Hippocampus, 

Entorhinal 
cortex 

Describe how often 2 
pixels with different 
values appear in the 
field of view separated 
by a distance d in 
direction θ (0°, 45°, 
90° and 135°)  

Angular second moment, 
Contrast, Correlation, Sum of 
squares, Inverse different 
moment, Sum average, Sum 
variance, Sum entropy, 
Entropy, Difference variance, 
Information measures of 
correlation. 

[9], 
[91], 

[129]–
[135] 

2nd order  
Run-length 

matrix 
(RLM) 

- 

Contain information 
about spatial 
relationships between 
groups of pixels 
having similar gray 
level values. 

Short runs emphasis, Long 
runs emphasis, Gray-level 
non-uniformity, Run-length 
non-uniformity, Run 
percentage 

[130], 
[134]–
[136] 
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3.8.6 Classification methods 

Classification is used for the identification of patterns features of interest into 

the classes they belong. Moreover, machine-learning techniques have the 

potential to classify MR features without requiring a priori hypotheses from 

where this information may be coded in the images [137]. When classifiers are 

used, image samples are divided into two sets, training and testing [138]. The 

most popular statistical techniques used in CAD, include Discriminant 

Analysis (DA), Logistic Regression (LR), neural networks and Support Vector 

Machine (SVM). These techniques are presented in Table 7. 

When the sample size is large, linear DA and LR have similar results, whereas 

in smaller samples DA performs better. Furthermore, DA is faster compared to 

LR. Regardless of the data distribution, LR performs well, and it should be used 

as the first choice to classify data [139]. On the other hand, DA is preferred 

when the variables are categorized and as long the assumptions are met. 

Furthermore, DA is preferred when the number of categories is big enough to 

let the estimated mean and variance be close to the population values of the 

continuous explanatory variables [139].  

SVMs were developed by Vapnik [140] and they represent pattern recognition 

algorithms, based on training, testing and performance evaluation. Compared 

to DA which is a more generative method as it focuses on all data points 

whereas, SVMs are more discriminative as they concentrate on the points that 

are difficult to classify. They can be used when the data have an unknown 

distribution [141] and one of their strongest advantages is that they provide 

excellent results in pattern recognition and good generalization performance. 

Furthermore, they offer a possibility to train generalizable, nonlinear classifiers 

in high-dimensional spaces using a small training set [142].  

Neural networks can be used as an alternative to LR. ANNs benefit from the 

availability of multiple training algorithms, they require less statistical training 
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and they perform well in predicting medical outcomes. Limitations of ANNs 

include computational load, restricted potential to unmistakably detect 

possible causal relationships and overfitting suffering [143]. 

Table 7: Classification Techniques Used in CAD MCI and AD Systems 

Classifier Description Studies 

Discriminant Analysis [142] 
[144] 

Predict classification in a group based on continues 
variables 

[62], [63], [86], [119], 
[121], [129], [145] 

Logistic Regression [146] 
It examines relationships between a categorical Y 
and a continuous X variable 

[9], [147] 

Neural Networks 
Fit nonlinear models using nodes and layers. Could 
be very good predictors 

[130] 

Support Vector Machines 
[140], [148] 

Supervised, multivariate learning methods used for 
classification, as well as regression 

[66], [87], [91]–[93], [95], 
[96], [127] 

3.8.7 Computer aided Systems for the Diagnosis of AD 

Table 8 tabulates CAD systems for the classification of MCI and AD. 

Quantitative MRI studies tabulated below are based on amyloid, volume, 

thickness, shape and texture analysis that are described in the following 

subsections. For each study the main author, ROI, data type, number of subjects 

and classification accuracy, sensitivity, and specificity are given. 

3.8.8 Quantitative MRI studies based on VBM 

VBM describes global changes or atrophy of deep cerebral structures. Evans et 

al. [149] revealed a mean Standard Deviation (SD) whole brain loss at 1.5% per 

year in AD patients compared to 0.5% per year in NC. On the other hand, MCI 

subjects had an intermediate rate of 1.1% loss per year. Interestingly in this 

study it was noticed that MCI patients who converted to AD had brain atrophy 

twice more than the MCI patients who did not progress to AD. 

Busatto et al. [150] used a fully automated VBM technique to evaluate GM 

abnormalities over the entire area of the temporal lobe in the classification of 

NC subjects from AD patients. Their results confirmed the findings of previous 
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ROI-based studies [17], [151], [152], where significant GM loss was detected 

bilaterally in the MTL region in AD patients. The entorhinal cortex was found 

to be the primary region where the neurodegenerative changes initiate in the 

earliest stages of AD.  

Karas et al. [89] used VBM and apart from the earlier findings in the atrophy of 

the hippocampus, they demonstrated global reduced GM volume including the 

cerebellum, medial thalamus and head of the caudate nucleus as well of the 

cingulum, in AD patients. Their findings collated with the histopathological 

staging of Braak et al. [5], [153]. Another study by Karas et al. [154] analyzed 

the patterns of GM loss in order to examine what characterizes MCI and what 

determines the differences with AD by using VBM methods. Apart from 

quantifying the extent of GM loss between MCI subjects and AD patients, the 

authors wanted to investigate if the hippocampal volume still changes in 

patients who converted to AD. The results of the study showed that MCI 

patients had GM loss in the MTL area, where the parietal and cingulate cortices 

were areas more related to AD patients. Whitwell et al. [97] compared the 

pattern of GM loss in MCI patients who progressed to AD within a fixed time 

of period (18 months from baseline scan), with the subjects who remained 

stable. Compared to NC, the subjects that progressed to AD, had bilateral GM 

loss in specific regions of the brain. Interestingly, the non-progressed MCI 

patients had no areas of GM loss when compared to the NC. Thus, VBM 

method might not be the most sensitive technique for the classification of 

normal and MCI patients. However, when the two groups (stable and 

progressed MCI) were directly compared, the progressed group showed more 

GM atrophy.  

Klöppel et al. [92] used a voxel based SVM approach to analyze the gray matter 

of NC and AD patients through modeling two different anatomical areas: in 

the first model they used data from the whole brain and on the second they 



 

63 
 

used data from a hippocampus-centered ROI. Their method reached an 

accuracy of 90% when evaluated on 20 NC and 20 AD subjects. 

3.8.9 Quantitative MRI studies based on volume analysis 

Several studies, used hippocampal volumetric measurements and confirmed 

that hippocampal atrophy, can constitute a useful diagnostic biomarker. The 

studies that used AD patients and NC from the ADNI database, reported that 

the hippocampal volumes were varying between 1600 mm3 [155] and 3000 mm3 

[156]. According to the study by Schuff et al. [155], the hippocampal loss was 

accelerated by 26.5 ± 4.5 mm3/year2 in AD and 12.1 ± 3.2 mm3/year2 in MCI, 

equivalent to −1.6 ± 0.2%/year2 and 0.6 ± 0.2%/year2, respectively, relative to 

baseline volume. 

One of the first studies where MRI was used  to investigate if volumetric 

measurements in MTL could provide information for the classification of NC 

and AD patients took place in 1997, by Jack et al. [157]. Their study included 

126 NC subjects and 94 probable AD patients, where they estimated volume 

measurements of hippocampus, parahippocampal gyrus, and the amygdala. 

Their results showed a parallel structure decline with increasing age in control 

subjects for both women and men and in each case MTL volume in AD patients 

was significantly smaller compared to NC subjects (p<.001). The MTL structure, 

which performed better for this classification, was the hippocampus. In 2001, 

Galton et al. [120] confirmed that hippocampal atrophy is a useful diagnostic 

biomarker and they showed that there was a 50% hippocampal atrophy in AD 

patients. 

In [94], Colliot et al. used hippocampal volume to distinguish NC from MCI 

and AD patients. The technique used, was previously used by Chupin et al., 

[158], and it was fully automated where both the hippocampus and amygdala 

were segmented at the same time. The results of their study revealed significant 
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hippocampal volume reductions in all groups of patients. Specifically, there 

was a 32% volume reduction between AD and NC, a 19% reduction between 

MCI and NC and finally, a 15% reduction between AD and MCI. 

Apart from hippocampus, other structures such as entorhinal cortex is used for 

the assessment of AD. However, because its controversial whether entorhinal 

cortex or hippocampus is more affected with the disease progression, the study 

by Juottonen et al. [121], used volumetric MRI on AD patients and NC subjects 

to investigate which of the two structures was more affected. Both structures 

had the ability to differentiate AD patients from NC subjects and no essential 

difference was found between the discriminative power of entorhinal cortex 

and hippocampal volumes. Specifically, the volume of entorhinal cortex in AD 

patients was 38% less on the right and 40% less on the left side, compared to 

NC subjects. Similar pattern of atrophy was noticed on the hippocampal 

volume where it was 33% less on the right and 35% less on the left side 

compared to NC subjects. Obviously, in the late states of the disease, both 

structures have similar atrophy rate. 

According to Pennanen et al. [62] the appropriate ROI selection should depend 

on the classification group. Thus, they investigated which structures of the 

brain can be used to best classify the three different study groups. Their results 

showed that entorhinal cortex atrophy was more severe, in comparison with 

hippocampus volume, in MCI subjects, whereas in AD patients the 

hippocampal atrophy was more pronounced. Specifically, the best overall 

classification (66%) between MCI and NC subjects was achieved with 

entorhinal cortex, whereas the best overall classification (82%) between MCI 

and AD patients and between NC and AD patients (91%) was achieved with 

hippocampal volume. Similar to [121] the left hippocampal atrophy appear to 

be more severe for all the subjects. 
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3.8.10 Quantitative MRI studies based on thickness analysis 

Desikan et al. [86] carried out automated structural measurements of entorhinal 

cortex and supramarginal gyrus thickness in order to differentiate MCI subjects 

and AD patients from normal patients. They used baseline volumetric scans 

from two independent cohorts where images obtained from the OASIS [76] and 

the ADNI database [159]. Hippocampal volume, entorhinal cortex and 

supramarginal gyrus thickness indicated an average Area Under Curve (AUC) 

of 0.91 in the training cohort and an AUC of 0.95 in the validation cohort. It 

should be mentioned that their results were comparable or even more accurate 

from nuclear medicine techniques such as Fluorodeoxyglucose (FDG)- PET 

[40], [160]  or  amyloid-binding  PET  studies [161], [162]. Furthermore, 

discrimination accuracy of MCI subjects in this study was comparable to  one  

prior  PET  study  utilizing  a radioactive  amyloid  and  tau  protein  tracer  

[162] and  two MRI  studies [63], [163].  

Lerch et al. [145] used an automated method to measure the cortical thickness 

across the entire brain and detect differences between AD patients and NC. 

Cortical thickness was declined in many areas of the brain; however, the 

parahippocampal gyrus and the medial temporal lobes were the areas most 

affected. Similarly with other studies [62], [121] it was found that the left side 

of the brain was more severely affected. Therefore, according to this study, 

cortical atrophy in the early stages of AD is not related only with MTL but with 

limbic system, the lateral temporal lobes and cortex as well. 

3.8.11 Quantitative MRI studies based on shape analysis 

Gerardin et al. [96] used hippocampal shape features instead of volume 

analysis and specifically, SPHARM coefficients were used to model the 

hippocampal shape. Their results revealed that shape analysis can detect local 

atrophy on the hippocampus, before it starts losing volume. Therefore, this 

technique may be more sensitive and in particular at the MCI stage. Shape 
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analysis can be used to reveal atrophy on local and non-global areas of the 

hippocampus, and according to the authors, the classification accuracy 

between AD patients and NC subjects, was superior to studies that used 

volume analysis where classification accuracy was ranging from 80% to 90%. 

Furthermore, when MCI patients were involved in volume studies, the 

discriminative power was even lower, ranging from 60% to 74%. However, 

these results were reported in volume studies where manual and not 

automated segmentation was used. 

Chetelat et al. [98] conducted a longitudinal study where MCI subjects were 

followed for 18 months. Their purpose was to project possible atrophy maps 

onto a 3D surface view of the hippocampus between MCI patients who 

converted or not to AD, compared to the profile of GM loss across normal 

aging. Their results showed that atrophy was more significant in converters 

than in non-converters, and this effect was more marked at follow-up. 

Interestingly, for both converters and non-converters the hippocampal atrophy 

was more evident on the superior-lateral part of the hippocampus, called CA1. 

Histopathological studies [164] also agreed that there was a relatively higher 

degree of atrophy in that specific hippocampal subfield. Similar results, were 

observed by Apostolova and colleagues [126]. On the other hand, GM loss with 

increasing age, was more severe on the inferior part of the hippocampus 

corresponding to the subiculum, something that was reported by Frisoni et al. 

[165] as well. Ferrarini et al. [127] used hippocampal shape-based markers in 

the CA1 region and by using SVMs on either one or both hippocampi, they 

discriminated AD patients from NC subjects with an overall accuracy of 90%, 

and stable MCI subjects from MCI converters with 80% accuracy. 
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3.8.12 Quantitative MRI studies based on texture analysis 

Freeborough and Fox [129] used texture analysis for the classification of AD 

patients from NC. They extracted features by using GLCM for offset angles of 

0o, 45o, 90o, and 135o. From each matrix, they derived 13 features and the mean 

and range of each feature over the four offset angles were completed. They 

indicated that texture analysis can reveal significant different values between 

NC and AD patients. 

Zhang et al. [130] used 3D texture features to identify NC from AD patients. 

Over 100 texture features were extracted from spherical ROIs placed within the 

area of the hippocampus and the entorhinal cortex, using image histograms, 

gradients, co-occurrence matrices and RLM. To investigate the impact on the 

ROI selection, they placed 3D ROIs in three ways. The ROI that performed 

better included the regions of hippocampus and entorhinal cortex and part of 

CSF. The selection of a larger ROI which in this case included a part of the CSF, 

generated a higher classification accuracy. They achieved the highest accuracy 

mentioned in the literature, maybe due to the fact that they used severely 

affected AD subjects. 

Oliveira et al. [131] applied texture analysis on MCI subjects. In their analysis, 

they choose to use the thalamus and calossal due to their anatomic 

heterogeneity which is more suitable for texture analysis. The analysis was 

carried out separately for the two ROIs using manual segmentation and the 

MaZda tool [166] to extract the features. According to the authors, this method 

was more reliable than other techniques [129], [167], [168], where the whole 

brain texture was analyzed. The objective of their study was to classify NC from 

amnestic MCI subjects and mild AD patients and through their analysis they 

revealed differences between the thalamus and corpus callosum which 

differentiated the two groups of subjects. 
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Simoes et al. [91] used a whole-brain approach by applying local statistical 

texture maps for the classification of MCI subjects from NC. Through SVM they 

achieved a mean accuracy of 87%. However, their sample was small (N=30). In 

the study by Sørensen et al. [9], the classification capabilities of hippocampal 

texture were evaluated using Receiver Operating Characteristic (ROC) curves 

with the corresponding AUC as performance measure. Texture analysis had an 

AUC of 0.912 in discriminating NC vs AD and 0.764 between NC vs MCI. For 

the same groups the AUC curves for volume analysis, were 0.909 and 0.784 

respectively. To the best of our knowledge, this is the only study that evaluated 

if there is a correlation between texture and the volume of the hippocampus, in 

MCI subjects.  Regarding prognosis, it was shown that hippocampal texture is 

superior rather than volume measurements with an AUC of 0.74 vs 0.67, 

respectively and their results were correlated with FDG-PET. 
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Table 8: Selected Quantitative MRI Studies in the Classification of MCI and AD Subjects 

Abbreviations: Acc: Accuracy; Se: Sensitivity; Sp: Specificity; AUC: area under curve; NC: 

Normal Controls; MCI: Mild Cognitive Impairment; MCI-non-c: MCI non-converters; AD: 

Alzheimer’s disease; GM: Gray matter; CSF: Cerebrospinal Fluid; Hip: Hippocampus; Erc: 

Entorhinal Cortex; VBM: Voxel Based Morphometry 

 

 

 

 

 

 

 

Study ROI Data type Subjects Classification Acc. Se. Sp. 

Klöppel et al.  
[92] 

GM VBM 20 NC, 20 AD NC vs AD 90% 85% 95% 

Colliot et al. [94] Hip. Volume 
25 NC, 24 

MCI, 25 AD 

NC vs AD 
NC vs MCI 
MCI vs AD 

84% 
66% 
82% 

84% 
66% 
83% 

84% 
65% 
83% 

Juottonen et al. 
[121] 

Hip. & Erc. Volume 32 NC, 30 AD NC vs AD 

Hp.: 
86% 
Erc.: 
87% 

80% 
80% 

91% 
94% 

Pennanen et al. 
[62] 

Hip. & Erc. Volume 
48 AD, 65 

MCI, 59 NC 

NC vs AD 
NC vs MCI 
MCI vs AD 

91% 
66% 
82% 

88 
% 

66% 
81% 

93% 
65% 
83% 

Desikan et al. 
[86] 

Erc. 
Supramarginal 

gyrus 
Thickness 

49 NC, 48 
MCI 

94 NC, 57 
MCI 

NC vs AD NA 
74% 
90% 

94% 
91% 

Lerch et al. 
[145] 

Entire cortex 
Parahippocampal 

Gyrus 
Thickness 17 NC, 19 AD NC vs AD 

75% 
94% 

79% 
94% 

71% 
95% 

Gerardin et al. 
[96] 

Hip. Shape 
23 NC, 23 

MCI  25 AD 
NC vs AD 
NC vs MCI 

94% 
83% 

96% 
83% 

92% 
84% 

Ferrarini et al. 
[127] 

Hip. Shape 

50 NC, 15 
MCI-c, 15 

MCI-non-c, 
50 AD 

NC vs AD 
MCI vs AD 

90% 
80% 

92% 
80% 

NA 
NA 

Freeborough 
and Fox [129] 

Whole brain Texture 40 NC, 24 AD NC vs AD 91% 79% 100% 

Zhang et al. 
[130] 

Hip., Erc. & CSF Texture 17 NC, 17 AD NC vs AD 
64% 

- 
96% 

NA NA 

Simoes et al. 
[91] 

Whole brain 
Statistical 

texture 
maps 

15 NC, 15 
MCI 

NC vs MCI 87% 85% 95% 
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3.8.13 Prediction of conversion from MCI to AD  

Recently, the task of predicting conversion from MCI to AD has received a lot 

of attention, mainly because, nowadays, large multi-center studies, such as the 

ADNI, provide longitudinal data to the research community. The MCI term 

was first introduced in the literature by Reisberg et al. [169]  in 1988  and two 

decades later, Farias et al. [31] showed that a 10%-15% rate of MCI subjects will 

progress to dementia. The biggest challenge in AD assessment is to predict if a 

patient will develop the disease. The identification of these patients is of great 

importance as they will be provided earlier with possible preventive 

pharmaceutical (or nonpharmaceutical) interventions. Currently, many studies 

investigate the prediction of the conversion from MCI to AD using feature sets 

similar to the ones used for the classification of subjects. A selection of these 

studies can be found in Table 9. 

3.8.14 Prediction based on VBM 

Davatzikos et al. [163] used high-dimensional image analysis and pattern 

classification methods, and proved that there was a subtle, distributed, 

structural pattern change in MCI subjects which could be identified and 

measured before clinical symptoms. Their analysis included a number of MTL 

structures, the cingulate and parts of the orbitofrontal cortex. Similar to [52] 

and [109] the CA1 area, appeared to be more affected and it showed more 

diagnostic accuracy from the total hippocampal volume. In contrast to [62], 

[121], [122] where lateralized hippocampal atrophy was mainly observed, the 

study by Davatzikos et al. [163] indicated bilateral hippocampal atrophy. When 

the results were cross-validated, the analysis showed a 90% predictive power. 

One more recent study by Davatzikos et al. [99] where VBM was used, a lower 

classification accuracy (56%) was achieved  maybe due to the fact that the SVM 

was trained on NC and AD patients. In [66], Misra and colleagues used VBM 

analysis to evaluate the volume of WM and GM in 103 MCI subjects which they 
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were followed up for 15 months in order to predict which individuals will 

convert to AD. They evaluated their results via cross-validation and achieved 

a classification accuracy of 82%. However, the number of progressive MCI 

patients was low (N=27) thus, the results of this study are not directly 

comparable to other studies that used the ADNI image set. Plant et al. [65], used 

3 different classifiers including SVM, Bayes, and voting feature intervals. When 

the anterior cingulate gyrus and orbitofrontal cortex were included in the 

measurements, the best predictive accuracy obtained was 75%. Duchesne et al. 

[170] used only MTL in their VBM analysis and their results were better 

compared to other studies (see Table 9) that used the whole brain.  

Koikkalainen et al. [171] used Tensor-Based Morphometry (TBM) to classify 

stable from progressive MCI subjects. They selected ROIs using statistical maps 

of differences on their test set, and they achieved an overall accuracy of 72%. 

However, their results may be biased as the training and testing were not 

completely independent. Chetelat et al. [100] longitudinally assessed (for 18 

months) the possible structural changes in MCI patients and then compared 

these changes between the non-converter and converter subjects. A fully 

automated VBM analysis was carried out and results were similar to the 

changes observed by other VBM studies such as [154]. Interestingly, (perhaps 

due to methodological issues) in contrast with most of the ROI volume studies, 

they did not detect any hippocampal volume differences between AD and MCI 

patients, suggesting a plateau has been reached.  

3.8.15 Prediction based on volume analysis 

Chupin et al. 2009 [95] used an automated segmentation technique of the 

hippocampus and amygdala and  hippocampal volume was calculated to 

predict the conversion from MCI to AD. An overall classification accuracy of 

64% was achieved, indicating that global hippocampal volume evaluation may 
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not be an accurate measure for prognosis, mainly due to the fact that 

hippocampal volume is variable in young and older adults, which in turn may 

have implications on the final results [172]. 

The study by Tapiola et al. [173] used MCI patients who were followed-up for 

34 months to investigate the predictive value of different methods on 

conversion from MCI to AD. They used MRI-derived volumes of MTL 

structures, WM lesions, MMSE scores and APOE genotype. Interestingly, their 

results revealed that only MTL volume was able to predict the patients at high 

risk for developing the disease.  Similar results were observed in the study by 

deToledo-Morrell et al. [147] where hippocampal and entorhinal cortex 

volumes were compared to determine which of the two regions could 

differentiate stable from progressive subjects. Twenty-seven MCI patients were 

followed after baseline diagnosis for 36 months and 10 of them converted to 

AD. The results showed that both hippocampus and entorhinal cortex could 

make the prediction, however, the entorhinal cortex was the best predictor with 

a rate of 93.5%. However, the study included a very small sample and judged 

it at high risk of bias for patient selection and index test. Sensitivity and 

specificity of entorhinal cortex were 0.50 and 1.00 respectively. 

Killiany et al. [19] investigated the most frequent ROIs used in volume analysis 

for the assessment of AD, the hippocampus and the entorhinal cortex. Patients 

with mild AD at baseline were included as well. The measures between the two 

ROIs were different for each of the pairwise comparisons between the groups. 

The entorhinal cortex volume was able to differentiate the subjects that will 

probably develop the disease with an accuracy of 84%, whereas the 

hippocampal volume could not. The study suggested that more neuronal 

changes occur within the entorhinal cortex during the preclinical phase of AD, 

and as the disease spreads, atrophic changes develop within the hippocampus 

as well. Similarly to the study by Pennanen et al. [62] the hippocampal volume 
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loss in MCI subjects was 8% whereas in entorhinal cortex volume loss was 

almost double. 

Devanand et al. [174] measured hippocampal and entorhinal cortex atrophy for 

the prediction of conversion from MCI to AD. In this large longitudinal study, 

163 MCI patients and 63 NC subjects were followed for 5 years. Their results 

confirmed most of the findings of other studies that used smaller samples [19], 

[175] where hippocampal and entorhinal cortex had more atrophy in MCI 

converters to AD compared to NC and MCI non-converters. Specifically, 

entorhinal cortex volume in converters was 17% lower than in non-converters 

and 29% lower than in NC. For hippocampal volume, the percentages were 

11% and 14% respectively.  Interestingly, it was observed that when both 

regions were used together with cognitive scores, the prediction accuracy was 

improved to 87.7%. Both hippocampal and entorhinal cortex volumes, 

contributed to the prediction, however, the entorhinal cortex remained highly 

significant even after controlling for age and cognitive measures. On the other 

hand hippocampal volume correlated with cognitive measures and thus, less 

significant for prediction.   

Killiany et al. [63] found that entorhinal cortex and superior temporal sulcus 

including the anterior cingulate gyrus (which is not yet known at which stage 

of the disease starts to involve), were the most useful regions for prediction of  

conversion to AD.  These areas were used to determine if quantitative MRI 

measures at baseline could be used to determine whether subjects in the 

prodromal phase of the disease could be accurately identified before they 

develop AD. A discrimination accuracy of 93% between NC and the subjects 

with memory difficulty who eventually developed the disease was achieved. 

The discrimination accuracy of the subjects with memory difficulty who did 

not developed the disease, between the NC and the converters was 85% and 
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75% respectively. Entorhinal cortex and the superior temporal sulcus ROIs 

were the best discriminators when NC were included. 

3.8.16 Prediction based on thickness analysis 

Querbes et al. [119] used baseline normalized thickness index on a large sample 

of patients for the prediction of conversion from stable MCI to AD and 

compared it to the predictive values of the main cognitive scores at baseline.  

Their results showed that subtle structural changes could be detected and used 

to predict the outcome even 2 years before the clinical symptoms appear with 

a predictive value of 73%. This study, had the advantage of using a cross 

validation procedure. However,  according to Eskildsen et al, [176] the results 

of the study, most likely show an overestimated accuracy as some subjects are 

used both for training and testing. Bakkour et al. [90] investigated the 

abnormalities of the cortex on patients with questionable AD and tried to detect 

which neocortical measures were better for early diagnosis and predictive 

power. A total of 49 questionable AD patients were longitudinally followed-up 

for 2.5 years and according to their results 20 patients converted to mild AD 

while 29 remained stable. The MTL cortical thickness achieved the best 

performance.  

In a very similar study [176], patterns of cortical thickness measurements were 

used for the prediction of AD. It was observed that atrophy patterns differed 

with the disease progression, thus by learning these differences, the prediction 

accuracies could be improved. MCI subjects who had scans at 6, 12, 18, 24 and 

36 months prior to the diagnosis of AD were selected from the ADNI database 

and they were grouped into time-homogenous groups of progressive MCI. 

Then, these patients where compared with MCI subjects who remained stable 

during their longitudinal study period. Interestingly, it was noted that even at 

36 months prior to the AD diagnosis, the hippocampus could not be used for 

prediction of the disease. On the other hand, the entorhinal cortex was the area 
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affected first, followed by hippocampus. In other studies, such as [66], [68], [95], 

[99], [119], the baseline data for analysis were not homogeneous with respect 

to the “time to conversion”, since the progressive MCI patients would convert 

anytime over the course of 6 months to 4 years follow-up. According to the 

authors, such heterogeneity may conceal the neurodegenerative processes that 

could be attributed to the different sub-stages of AD. For example, the pattern 

of atrophy could differ one year before diagnosis compared to the pattern two 

years earlier. 

The study by Desikan et al. [177] identified MCI patients who converted to AD 

within two years after baseline with an overall accuracy of 91%. They used 

automated MRI-based software tools to compute measurements of MTL cortex 

thickness and volume on 64 ROIs among the two hemispheres of 324 MCI 

subjects. Furthermore, they compared their results with CSF samples and PET 

measures and remarkably, they showed that structural MRI could better 

predict the disease progression. In a comparable study by Vemuri et al. [178] 

where structural MRI and CSF biomarkers on 399 subjects were used, the 

results were similar. It was found that the Structural Abnormality Index 

(STAND) score [93], could predict with higher accuracy the time to conversion, 

compared to CSF. 

3.8.17 Prediction based on shape analysis 

Costafreda et al. [87] used an automated procedure to extract 3D hippocampal 

shape morphology. In their prediction model, only hippocampus was used 

which, achieved a predictive performance comparable or superior to other 

studies [65], [66], [170] that employed a multi-region or whole brain approach. 

This was similar to the accuracy achieved using other predictive models based 

on non-automated techniques. Similarly to [73] and [131], where morphometric 

pattern analysis was used, the results were significantly better from studies that 
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suggested that 3D shape analysis is better for the disease prognosis. 

Furthermore, this study and others [179]–[181] suggested that hippocampal 

head atrophy may be an early sign of risk and could be used to predict if a 

subject will develop the disease. 

3.8.18 Multimethod studies 

Cuingnet et al. [67] compared most of the aforementioned methods used for 

classification. They obtained data from the ADNI database and they used 

volume and shape analysis, VBM and cortical thickness methods to predict the 

conversion to AD. By using SVM they achieved predictive accuracies between 

58%-71%. In a similar pattern, Wolz et al. [68] used baseline scans from the 

entire MCI population of the ADNI cohort. Several methods were used for 

prediction obtaining accuracies in the range of 56%-68%. When using the same 

subject groups with [67], they obtained better classification accuracies.  

3.8.19 Prediction using texture features 

Sørensen et al. [9], tried to detect the accumulated effects caused by NFTs and 

Aβ plaques, on the hippocampus as changes in the statistical properties of the 

images intensities. Furthermore, they tested the capability of hippocampal 

texture in the detection of early cognitive decline and whether texture analysis 

could reflect changes in hippocampal glucose metabolism in FDG-PET. Texture 

appeared to have higher but not significantly different AUC compared to 

hippocampal volume for the prediction of MCI to AD within 12 months. 

However, hippocampal texture was significantly better compared to volume, 

for the prediction of MCI to AD within 24 months, showing an AUC of p=0.005 

and p=0.002 respectively. Interestingly, structural texture changes, correlated 

to a reduction of glucose metabolism and the function of the hippocampus.  
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Table 9: Selected Quantitative MRI Studies in the Prediction of Conversion from MCI to 

AD 

Study ROI Data type 
Follow-up 
(months) 

Converters/Total MCI Acc. Se. Sp. 

Davatzikos et 
al. [99] 

Whole brain VBM 0-36 69/239 56% 95% 38% 

Misra et al. 
[66] 

Whole brain VBM 0-36 27/103 82% NA NA 

Plant et al. 
[65] 

Whole brain VBM 0-30 9/24 75% 56% 87% 

Duchesne et 
al. [170] 

MTL VBM 0-28 11/31 81% 70% 100% 

Koikkalainen 
et al. [171] 

Whole brain TBM 0-36 154/369 72% 77% 71% 

Chupin et al. 
[95] 

Hip. & Amygdale Volume 0-18 76/210 64% 60% 65% 

deToledo-
Morrell et al. 

[147] 
Hip. & Erc. Volume 0-36 10/27 93% NA NA 

Killiany et al. 
[19] 

Erc. Volume 0-36 13/73 84% NA NA 

Devanand et 
al. [174] 

Hip. & Erc. Volume 0-36 37/139 88% 83% NA 

Killiany et al. 
[63] 

Erc., STS Volume 0-36 19/79 93% 95% 90% 

Querbes et 
al. [119] 

Cortex Thickness 0-24 72/122 73% 75% 69% 

Eskildsen et 
al. [176] 

Cortex Thickness 0-36 - 67%-76% NA NA 

Bakkour et al. 
[90] 

Cortex Thickness 0-30 20/49 NA 83% 65% 

Desikan et al. 
[177] 

Neocortex 
Thickness & 

Volume 
0-36 

TC: 60/162 
VC: 58/162 

AUC: 0.82 
AUC: 0.84 

74% 
87% 

84% 
66% 

Ferrarini et al. 
[127] 

Hip. 
Volume 

3D Shape 
0-33 15/30 

73% 
80% 

63% 
80% 

77% 
80% 

Costafreda et 
al. [87] 

Hip. 3D Shape 0-12 22/103 80% 77% 80% 

Cuingnet et 
al. [67] 

Whole brain VBM - 
- 
 

71% 77% 78% 

- Hip. Atlas based 0-18 76/210 67% 62% 69% 
- Cortex Thickness - - 70% 32% 91% 

Wolz et al. 
[68] 

Whole brain TBM - - 64% 65% 62% 

- Whole brain 
Manifold-

based 
learning 

- - 65% 64% 66% 

- Hip. Atlas based 0-48 167/405 65% 63% 67% 
- Cortex  Thickness - - 56% 63% 45% 
- Combination Combination - - 68% 67% 69% 

Sørensen et 
al. [9] 

Hip. 
Texture 

Texture & 
Volume 

0-12 
0-24 

- 
AUC: 0.74 
AUC: 0.74 

NA NA 

Abbreviations: ROI: Region of interest; MCI: Mild Cognitive Impairment; VBM: Voxel Based Morphometry; TBM: Tensor 

Based Morphometry; Acc: Accuracy; Se: Sensitivity; Sp: Specificity; MTL: Medial Temporal Lobe; Hip.: Hippocampus; Erc.: 
Entorhinal Cortex; STS: Superior Temporal Sulcus; TC: Training Cohort; VC: Validation Cohort; AUC: Area Under Curve 
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3.8.20 Results 

Cerebral atrophy, as captured in structural MRI, is a promising biomarker in the assessment 

of early AD. Many studies [17], [62]–[64] proved that MTL is an area which showed atrophy 

even in the preclinical stage of the disease. Although hippocampal formation might be the 

most frequently used structure for the assessment of AD, the earlier involvement of the 

entorhinal cortex was proved by many studies [19], [120], [121], [147], [150], [173], [182].  

The necessity of quantitative MRI image processing and visualization, derives from the fact 

that the human eye cannot perceive the subtle anatomical changes affecting the structures of 

the brain, thus it detects atrophy after the brain has already undergone irreversible synaptic 

loss. All the aforementioned studies agree that medical image analysis is essential in the 

assessment of AD and can be used either for classification between subjects or for the 

prediction of conversion from MCI to AD. 

3.8.21 Classification of MCI and AD versus NC subjects 

Comparison of Hippocampus and entorhinal cortex in NC versus AD group: Overall, it 

appears that both entorhinal cortex and hippocampal volume classification accuracy is 

comparable in distinguishing NC subjects from AD patients. Both structures have similar 

reduction in atrophy. Furthermore, for this group, whole brain approaches such as VBM and 

thickness, remained competitive with hippocampal-based approaches, due to the fact that in 

the advance stages, atrophy is more widespread. 

Shape analysis also gave very good results, comparable to GM VBM for the classification 

between NC subjects and AD patients. However, the best classification accuracy (96.4%) for 

this group, was reported by Zhang et al. [130] for texture analysis. 

Comparison of hippocampus and entorhinal cortex in NC versus MCI group: Both the 

hippocampus and entorhinal cortex can be used for the classification of patients between NC 

and MCI subjects. However, entorhinal cortex can provide better classification as it 
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deteriorates earlier than hippocampus which is consistent with many studies [5], [32], [70], 

[124], [173]. According to Gomez-Isla et al. [183] some entorhinal cortex layers can undergo 

40% to 60% neuronal depopulation even in the earlier phase of AD. Indeed, the study by 

Pennanen et al. [62] revealed that the entorhinal cortex degenerated twice more rather than 

the hippocampus between NC and MCI. Thus, when AD patients are not included in the 

classification group, entorhinal cortex is the suggested structure to be used. All methods 

appear to have lower classification accuracy in this group of patients, because in MCI subjects 

the changes are difficult to be identified. Shape analysis appears to be a better technique 

compared to volume analysis, with similar results to voxel based methods. However, to the 

best of our knowledge, the best classification accuracy (87%) mentioned in the literature, 

between NC and MCI patients was achieved by Simoes et al. using texture features on the 

whole brain [91]. 

Comparison of Hippocampus and entorhinal cortex in MCI versus AD group: Both 

hippocampus and entorhinal cortex have the potential to discriminate MCI subjects from AD 

patients [123]. The study by  Du et al. [62] suggested than the entorhinal cortex does not 

provide  any further advantages for this classification. The study by Pennanen et al. [62] used 

hippocampal volume, but  when they included entorhinal cortex to their model, the overall 

classification was not improved. 

Shape analysis and voxel based morphometry studies appear to have similar results for the 

classification between AD patients from NC and MCI versus AD. It is suggested that in the 

advanced stages of the disease, the atrophy is more widespread, thus apart from ROI methods, 

whole-brain methods should be considered as well. 

3.8.22 Prediction of conversion from MCI to AD 

Most of the studies [19], [120], [121], [147], [150], [173], [182]  have been using quantitative MRI 

measures within the area of MTL to determine if a subject will develop the disease and the 

results agree that  entorhinal cortex is a better predictor compared to other structures such as 
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the hippocampus. The best discrimination accuracy between normal and patients with 

memory difficulty, who eventually developed the disease, was achieved by two volume 

studies of deToledo-Morrell [147] and Killiany et al. [63], with an overall predictive accuracy 

of 93.5% and 93% respectively.  

In the prediction of progression of the disease, the highest accuracies were achieved when both 

entorhinal cortex and hippocampus were combined in the analysis. VBM methods and cortical 

thickness gave lower accuracy compared to the other methods, and, there is ‘lack of research’ 

regarding the use of texture analysis in the prediction of progression from MCI to AD.  

3.8.23 Conclusion 

In conclusion, entorhinal cortex can provide better results in the classification of NC from MCI 

subjects, as the atrophy is more severe compared to the hippocampus in the early stages of the 

disease. For the discrimination accuracy of AD patients from NC, and AD patients from MCI 

subjects, volumetric measurements of the hippocampus seem to be preferred mainly because 

entorhinal cortex is a very small region that is difficult to delineate when it is atrophied. 

Furthermore, image artifacts and/or anatomic ambiguities can obscure the boundaries of the 

entorhinal cortex. However, the hippocampus segmentation is more specific and it provides 

more robust and accurate results for these two groups. On the other hand, entorhinal cortex is 

a better predictor of conversion from MCI to AD. 

3.9 Chapter main findings 

1. In-vivo biomarkers derive from imaging such as from PET and structural MRI could 

detect neurodegenerative changes before the onset of the AD symptoms. 

2. Volumetry represents the most frequently used method in the assessment of AD, however, 

atrophy represents a larger scale change and when it is detected it means that the disease has 

already affected the brain. 
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3. The entorhinal cortex is more affected by atrophy in MCI and AD subjects and it should 

be preferred for a better diagnosis of AD. 

4. Although hippocampal formation is the most frequently used structure for the 

assessment of AD, the earlier involvement of the entorhinal cortex was proved by many 

studies, both in-vitro and in-vivo. Furthermore, it was seen that it is more affected by atrophy 

in MCI and AD subjects and it should be preferred for a better diagnosis of AD. 

5. Texture analysis is not used as frequently as the other quantitative methods, however, this 

method could detect smaller scale changes within the tissue, before they become evident from 

other larger scale methods such as volumetry, and therefore it could provide an earlier 

diagnosis of the disease. 
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4 
Materials and Pre-processing Methods 

4.1 Introduction 

This Chapter describes the database where the data for this research were obtained and all the 

pre-processing methods and tools used to prepare the final data. The ROIs used in the analysis 

of this research were chosen after a comprehensive literature review analysis.  Two basic 

regions within MTL were chosen, hippocampus and entorhinal cortex due to their early 

involvement in AD. However, before the extraction of texture features, a volumetric analysis 

was made in the aforementioned ROIs in order evaluate if the data were consisted with other 

studies as well.  The results of this analysis can be found below in section 4.2. 

 

The description of the database used in this research is described in section 4.3 along with the 

patient inclusion criteria. Then, the MRI protocol is described in section 4.4 and the image pre-

processing steps in section 4.5. In section 4.6, segmentation algorithm and volumetry is 

described and finally, the texture features extraction along with their equations in sections 4.7 

and 4.8 respectively. 

4.2 Structural changes within Medial Temporal Lobe  

The following text is part of a conference paper (Hippocampal and Entorhinal cortex volume changes in 

Alzheimer’s disease patients and Mild Cognitive Impairment Subjects) published in: 2018 IEEE EMBS 

International Conference on Biomedical & Health Informatics (BHI) - DOI: 10.1109/BHI.2018.8333412 

  

https://doi.org/10.1109/BHI.2018.8333412
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At the very early stage of the disease there is an inevitable progression of atrophy which 

initially affects the MTL [22] followed by progressive neocortical damage. The entorhinal 

cortex and hippocampus are two of the most common ROIs used in both in vivo and post 

mortem investigations for the detection of AD. In vivo structural MRI studies [18], [19], seems 

to agree with post mortem studies [14], [70], and indicate that the degenerative process, 

initiates from the entorhinal cortex, followed by hippocampus, amygdala and 

parahippocampal gyrus. With the disease progression, atrophy expands in temporal, parietal 

and frontal neocortices [184], [185] and as a consequent to the rest of the brain.  

The objective of this study was to investigate how the volume of the hippocampus and 

entorhinal cortex ROIs, are affected in AD and MCI subjects.  

4.2.1 MRI Acquisition and Participants 

All the subjects had a standardized protocol on 1.5-T MRI units from Siemens Medical Solutions 

and General Electric Healthcare. MR protocols included high-resolution (typically 

1.2×1.25×1.25 mm3 voxels) volumetric T1-weighted, inversion recovery prepared, structural 

images obtained in sagittal plane. The data had undergone gradwarp-corrected for (i) 

distortion due to gradient non-linearity [73], and (ii) corrected for image intensity non-

uniformity using N3 [186], and B1 non-uniformity [187] and (iii) scaling-corrected based on 

phantom measures.   

Overall, 218 NC, 349 MCI and 165 AD subjects were included in this study. However, 74 MCI 

subjects converted within 48 months from their baseline scan to AD thus, MCI converters 

(MCIc) group was added to the analysis. 

 

4.2.2 Measurements extraction 

T1-weighted volumetric 3D sagittal magnetization prepared rapid gradient-echo (MPRAGE) 

scans were collected for each subject. Volume measures of the hippocampus and entorhinal 
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cortex were reconstructed using FreeSurfer v5.3 software, Martinos Center for Biomedical 

Imaging, Harvard-MIT, Boston USA [188]. Freesurfer is based on Surface-based Analysis (SBA) 

and derives morphometric measures from geometric models of the cortical surface. It uses a 

probabilistic atlas derived from a manually labeled training set of expert measurements and 

automatically performs subcortical and cortical segmentation of the brain.  

Briefly, the Freesurfer surface-based pipeline stages include: (i) volume registration using 

MNI305 atlas [189], (ii) voxel intensity allocation and classification as White Matter (WM) or 

other tissue, (iii) separation of both hemispheres and exclusion of the cerebellum and brain 

stem, (iv) surface generation (for each hemisphere) by tiling the outside of the WM mass for 

that hemisphere, (v) this surface is refined to follow the intensity gradients between the WM 

and GM (this is referred to as the white surface) and (vi) white surface is nudged to follow the 

intensity gradients between the GM and CSF (pial surface) [190]. 

The Freesurfer subcortical-based pipeline consists of 5 stages which label subcortical tissues 

and calculates their volumes. These stages are: (i) affine registration with MNI305, (ii) initial 

volumetric labeling, (iii) intensity variation correction, (iv) dimensional nonlinear volumetric 

alignment to the MNI305 atlas, and (v) label atlas is built from a training set. For more details 

of Freesurfer streams, the reader is referred to [188], [191]. 

4.2.3 Results 

Table 10 tabulates the volume differences between the hippocampus and the entorhinal cortex 

between the 3 groups (from their baseline scan) through ANOVA statistics. Although there 

was a difference on the data sample between the groups, all the parameters were assessed 

before the analysis and none of them was violated. STATA V14 was used and the level of 

significance was α=0.05.  
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Table 10: Volumes (mean) (SD)) of entorhinal cortex and hippocampus in baseline scans 

Group N Left ERC (mm3) Right ERC (mm3) Left Hip. (mm3) Right Hip. (mm3) 

NC 218 1944 (367) 1935 (411) 3290 (435) 3323 (458) 

MCI 349 1667 (457)* 1689 (455)* 2873 (501)* 2910 (526)* 

AD 165 1437 (406)*† 1438 (441)*† 2549 (502)* 2598 (549)*† 

Values in parentheses are SD NC=Normal cognition; MCI=mild cognitive impairment; AD=Alzheimer’s disease; 

* P<0.001 for MCI Vs NC, and AD Vs NC 

† P<0.001 for AD Vs MCI 

Table 11 illustrates the percentage of volume reduction of hippocampus and entorhinal cortex 

between the 3 groups from the baseline scans.  

Table 11: Volume reduction (%) of entorhinal cortex and hippocampus between the 3 groups in baseline 

scans 

Group Left ERC (%) Right ERC (%) Left Hip. (%) Right Hip (%) 

AD Vs NC -26.08* -25.68* -22.52* -21.82* 

MCI Vs NC -14.25* -12.71* -12.69* -12.45* 

AD Vs MCI -13.80* -14.86* -11.28* -10.69* 

Abbreviations: NC=Normal cognition; MCI=mild cognitive impairment; AD=Alzheimer’s disease; ERC: Entorhinal cortex; Hip.: 

Hippocampus. 

*p<0.05 

 

Figure 9 shows the percentage changes of the mean volumes for the two regions for all subjects. 

According to Table 10 the mean left entorhinal cortex volume of all NC was 1944 (SD 367) mm3 

and 1936 (SD 411) mm3 for the right. These values were significantly reduced for the MCI 

subjects, to 1667 (SD 457) mm3 and 1689 (SD 455) mm3 for left and right entorhinal cortex 

respectively. For the same groups, the hippocampal volumes were reduced from 3290 (SD 435) 

mm3 and 3323 (458) mm3 to 2873 (SD 501) mm3 and 2910 (SD 526) mm3 for the left and right 

hippocampus respectively. 



  

86 
 

 
Figure 9: Hippocampal and entorhinal cortex volume changes, between the 4 groups. 

 

Figure 10 represents the longitudinal volume changes between the two structures for the MCI 

and MCIc groups. 

 
Figure 10: Hippocampal and entorhinal cortex volume changes between MCI and MCIc. 
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4.2.4 Discussion 

From all the biomarkers used in AD, hippocampal atrophy  as assessed on high-resolution T1-

weighted MRI images is the best established and validated biomarker [152], [192]. 

Hippocampal measurements are more feasible due to hippocampus shape which allows easier 

segmentation and thus, it can be evaluated with more accuracy rather than other MTL 

structures such as entorhinal, perirhinal and parahippocampal cortices [8]. However, the 

earlier involvement of the entorhinal cortex was proved by many MR quantitative studies [28], 

[150], [173] and this was correlated with our results where entorhinal cortex was more affected 

by atrophy rather than the hippocampus. 

Juottonen et al. [121], used volume measurements on both entorhinal cortex and the 

hippocampus in NC and AD subjects and both regions had similar results on the classification 

between NC and AD subjects. Both regions appear to have similar pattern of atrophy. Similar 

to our results, the entorhinal cortex was more affected rather than the hippocampus in AD 

patients, however, both structures had similar discriminative power. 

Pennanen et al. [62] noticed that entorhinal cortex in MCI subjects was the region with the 

more severe volume loss providing an accuracy of 66% for the classification of NC from MCI 

subjects. On the other hand, the hippocampus appeared to be more affected in AD subjects 

which was not correlated with our findings were entorhinal cortex was found to be more 

affected by atrophy. More severe atrophy of the entorhinal cortex was also reported by Du et 

al. [193]. 

4.2.5 Study major findings 

• Both entorhinal cortex and hippocampal volumes were significantly reduced in MCIc 

group compared to NC subjects. 

• Compared to hippocampus, entorhinal cortex seems to be the region with the more 

severe volume loss in MCI converters and AD subjects. 
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• The atrophy rate between entorhinal cortex and hippocampus was correlated for both 

MCI and MCIc groups.  

• Entorhinal cortex was more affected in the MCIc group and it should be preferred more 

for the disease prognosis. 

In conclusion, the entorhinal cortex is more affected by atrophy in MCI and AD subjects and 

it should be preferred for a better diagnosis of AD. Furthermore, the more severe involvement 

of the entorhinal cortex could provide a more accurate prediction of the disease. 

4.3 The ADNI Database 

In the 1990s, the development of structural and functional imaging as provided by MRI and 

FDG PET respectively, have led to the expansion of knowledge regarding the AD. Many 

studies after the development of these diagnostic modalities were assessing how the atrophy 

of medial, basal and lateral temporal lobe and medial parietal cortex as seen in structural MRI 

could lead to the diagnosis of AD. Other researches were using PET imaging in order to 

evaluate the deposition of brain Aβ protein or the decreased 18F-FDG uptake in temporo-

parietal cortex [194]. Furthermore, many studies were concentrated in biological fluids such 

as, the cerebrospinal and the changes on its proteins, Αβ and tau [195]. All that knowledge 

obtained by the many researchers and the methods used for the assessment of the disease led 

to confusion especially when the methods were compared. That led to the need for the 

development of a large ongoing, longitudinal, multicenter study in which all these methods 

and results could be included and compared. A cohort with that concept, could link all these 

data for further analysis and unite the general scientific community around the globe; to 

develop technical standards for imaging in longitudinal studies; to determine the optimum 

methods for acquiring and analysing images; to validate imaging and biomarker data by 

correlating these with concurrent psychometric and clinical assessments; and to improve 

methods for clinical trials in MCI and AD [186].  
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Michael W. Weiner, M.D., Medical Centre and University of California, was the principal 

investigator for the initiation of a large cohort and in 2005, called the Alzheimer's disease 

Neuroimaging Initiative (ADNI). The ADNI database (www. http://adni.loni.usc.edu/) was 

launched by the National Institute on Aging (NIA), the National Institute of Biomedical 

Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations. The primary goal of ADNI was to 

recruit NC, MCI and AD subjects to test whether structural MRI, 18F-FDG PET, and other 

biological markers such as urine, serum and CSF, as well as clinical and neuropsychological 

assessment can be combined to measure the progression of MCI and early AD. However, to 

be useful from a clinical point of view, an imaging marker should be effective across sites and 

scanners. Therefore, the evaluation of this marker should be performed on data acquired over 

a range of sites and scanners. The ADNI has made such multi-site data publicly available, and 

thus has enabled the comparison of predictive accuracy of different methods under similar 

circumstances [196]. 

4.3.1 The ADNI Standardized datasets: ADNI-1, ADNI-GO and ADNI-2 

With numerous researchers working with the same data from the ADNI database, there is the 

potential for direct comparisons of the various endpoints of brain structures as well as the 

algorithms and preprocessing steps used to extract these structural measures. To ensure these 

comparisons are meaningful, ADNI defined standardized datasets that multiple researchers 

can use for making methodological comparisons, thereby mitigating the risk that some of the 

observed differences in algorithm performance are an artifact of the use of different input data. 

In order to ensure meaningful methodological comparisons of structural MRI endpoints, the 

ADNI MRI-Core [197] recommended that all researchers should be using only image data that 

have passed the quality control assessments conducted at the Aging and Dementia Imaging 

http://www.loni.ucla.edu/ADNI
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Research Laboratory at the Mayo Clinic (see [186] and http://adni.loni.usc.edu/methods/mri-

analysis/adni-standardized-data/). 

ADNI-1 launched in 2005 and consists of approximately 200 NC individuals to be followed for 

3 years, 400 MCI subjects to be followed for 3 years, and 200 AD patients to be followed for 2 

years. All the subjects were scanned with 1.5 T MRI at each time points and half of them with 

also be scanned with FDG PET.  Subjects not assigned to the PET arm of the study were eligible 

for 3T MRI scanning. Apart from the MR imaging data, ADNI-1 was also consisted of fluid 

biomarkers such as CSF which was collected from half of the patients. Sampling varied by 

clinical group: Healthy NC were sampled at 0, 6, 12, 24, and 36 months, subjects with MCI 

were sampled at 0, 6, 12, 18, 24, and 36 months and AD subjects were sampled at 0, 6, 12, and 

24 months [186]. 

In 2009, toward the end of ADNI-1 study, ADNI-GO (GO stands “Grand Opportunity”, a type 

of stimulus grant from the NIH) was secured in order to continue the original ADNI-1 study 

for 2 more years with both longitudinal studies of the existing cohort and the enrolment of a 

new cohort. Specifically, 200 early MCI (eMCI) patients were included to investigate how the 

biomarkers are related to the early stage of MCI. In ADNI-GO, imaging was performed at 3T 

using the same sequence (MP-RAGE) and parameters as in ADNI 1. Furthermore, new 

modalities such as Functional MRI (fMRI) and MR sequences (FLAIR, T2*GRE, DTI) were 

added into ADNI-GO cohort.  

In September 2011, ADNI-2 launched and included the existing ADNI-1 and ADNI-GO cohort 

plus, 150 elderly controls, 100 eMCI, 150 MCI and 150 AD patients and lasted for 5 years. 

Scanning protocols for newly enrolled subjects, in both ADNI-GO and ADNI-2 were identical 

and ADNI-2 exams were acquired exclusively at 3T MRI scanners [186], [197], [198] . ADNI-3 

began in 2016 and was done exclusively on 3T scanners. Between 1070-2000 participants were 

enrolled: approximately 700-800 rollover participants from ADNI2 and 370-1200 newly 

http://adni.loni.usc.edu/methods/mri-analysis/adni-standardized-data/
http://adni.loni.usc.edu/methods/mri-analysis/adni-standardized-data/
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enrolled subjects. Clinical, cognitive, imaging, biomarker and genetic characteristics were 

assessed across three cohorts: Cognitively normal, MCI and mild AD dementia. In addition to 

all biomarkers used in ADNI 2, in ADNI 3 the researcher is also provided with londitudinal 

tau PET scans with AV 1451, amyloid PET using Florbetaben, CSF amyloid and tau using a 

new immunoassay platform, MR 3D ASL perfusion and biology approaches to understand 

better AD genetics. 

4.3.2 Patient inclusion criteria 

According to the ADNI inclusion criteria, enrolled subjects were all between 55 and 90 years 

of age and spoke either English or Spanish. Each subject was willing, able to perform all test 

procedures described in the protocol and had a study partner able to provide an independent 

evaluation of functioning. Inclusion criteria for CN were: MMSE scores between 24 and 30; 

CDR [4] of zero; absence of depression, MCI and dementia. Inclusion criteria for MCI were: 

MMSE scores between 24 and 30; CDR of 0.5; objective memory loss, measured by education 

adjusted scores on Wechsler Memory Scale Logical Memory II [199]absence of significant 

levels of impairment in other cognitive domains; absence of dementia. Inclusion criteria for 

AD were: MMSE scores between 20-26; CDR of 0.5 or 1.0; NINCDS/ADRDA criteria for 

probable AD [33], [200]. Detailed description of inclusion/exclusion criteria can be found in 

the ADNI protocol (https://adni.loni.usc.edu/wp-

content/uploads/2017/09/ADNI_D_Procedures_Manual_2.15.17.pdf)  

All subjects selected for this study were from standardized data collections ( 

http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/ ) and specifically from the ADNI-1 

Complete 2 and 3 year 1.5 Tesla datasets. All data acquired as part of this study are publicly 

available (http://adni.loni.usc.edu/). Enrolled subjects were all between 55 and 90 years of age 

and each subject was willing, able to perform all test procedures described in the protocol and 

had a study partner able to provide an independent evaluation of functioning. 

https://adni.loni.usc.edu/wp-content/uploads/2017/09/ADNI_D_Procedures_Manual_2.15.17.pdf
https://adni.loni.usc.edu/wp-content/uploads/2017/09/ADNI_D_Procedures_Manual_2.15.17.pdf
http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/
http://adni.loni.usc.edu/
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4.3.3 Cognitive measures 

All subjects underwent through clinical and cognitive assessment at the time of baseline scan 

to determine their diagnosis. Inclusion criteria for NC were: MMSE scores between 24 and 30; 

CDR of zero; absence of depression, MCI and dementia. Inclusion criteria for MCI were: 

MMSE scores between 24 and 30; CDR of 0.5; objective memory loss, measured by education 

adjusted scores on Wechsler Memory Scale Logical Memory II [199], absence of significant 

levels of impairment in other cognitive domains and absence of dementia. Inclusion criteria 

for AD were: MMSE scores between 20 and 26; CDR of 0.5 or 1.0; National Institute of 

Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and 

Related Disorders Association (NINCDS/ADRDA) criteria for probable AD [33], [200]. 

Definitive autopsy-based diagnosis of AD was not possible and detailed description of 

inclusion/exclusion criteria can be found in the ADNI protocol 

(http://adni.loni.usc.edu/methods/documents/). 

4.4 MRI Protocol 

In 2004, the MRI Core and external advisors, met together in order to choose the final protocol 

to be used for the execution phase of ADNI. The evaluation group selected the 3D MP-RAGE 

sequence acquired by 1.5T scanners (General Electric Healthcare, Philips Medical Systems or 

Siemens Medical Solutions) at multiple sites from the ADNI website. The sequence was 

repeated back-to-back in ADNI-1 to increase the likelihood of acquiring at least one good 

quality MPRAGE scan and to permit signal averaging if desired. The whole brain was covered 

without image wrap using voxel size of 1mm3 with a maximum of 1.5mm in any one direction. 

The T1-weighted MP-RAGE sequence provides a high tissue contrast and as a consequence it 

enables accurate structural neuroimaging analysis. Compared to other sequences, MP-RAGE 

sequence was found to be of better quality with superior gray/white contrast to noise.  

The range of parameters of the sequence were TR = 2400ms, TI = 1000ms, TE = 3.5ms, flip angle 

= 8°, field of view = 240 × 240mm and 160 sagittal 1.2mm-thick-slices and a 192 × 192 matrix 

http://adni.loni.usc.edu/methods/documents/
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yielding a voxel resolution of 1.25 × 1.25 × 1.2 mm3, or 180 sagittal 1.2mm-thick-slices with a 

256 × 256 matrix yielding a voxel resolution of 0.94 × 0.94 × 1.2 mm3 [186].  

The ADNI MR protocol fulfills a number of principles that were selected by scientists in the 

field of MR imaging in order to minimize research burden for the scientists participating in 

ADNI. The final format of the protocol that was used in the execution phase of ADNI-1 dataset 

is consisted of:  

1. A standard pre-scan and scouting procedure recommended by the manufacturer 

2. A sagittal 3D MP-RAGE 

3. A sagittal 3D MP-RAGE repeat 

4. A sagittal B1-calibration scan (phased array) 

5. A sagittal B1-calibration scan (body coil) 

6. An axial proton density T2 dual contrast FSE/TSE. 

For the implementation of this research, only MP-RAGE sequence was used. Regarding 

sequences 4 and 5, they are used to correct for B1-intensity variation of the phased array 

receiver coil. These steps will be described in the Pre-processing section among with the 

measurements used to monitor the scanner’s performance over time. All the subjects had a 

standardized protocol on 1.5-T MRI units from Siemens Medical Solutions and General Electric 

Healthcare. MR protocols included high-resolution (typically 1.25×1.25×1.25 mm3 voxels) T1-

weighted volumetric 3D sagittal MPRAGE scans. MRI data acquisition techniques were 

standardized across different sites according to ADNI protocol 

(http://adni.loni.usc.edu/methods/documents/mri-protocols/). 

4.5 Image Pre-processing 

For the implementation of this thesis raw unprocessed 1.5 T T1-weighted MRI images derived 

from the MP-RAGE sequence were downloaded from the standardized datasets 

(http://adni.loni.usc.edu/methods/mri-analysis/adni-standardized-data/) of the ADNI 

http://adni.loni.usc.edu/methods/documents/mri-protocols/
http://adni.loni.usc.edu/methods/mri-analysis/adni-standardized-data/
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database. MRI scans were kept in raw data form so we have control of what is happening to 

the data. 

4.5.1 Image normalization and inhomogeneity correction 

According to Materka, 2004 [201], some of the higher-order texture parameters, especially 

those derived from the co-occurrence matrix, show correlation to first-order parameters, such 

as the mean intensity and variance. Therefore, in order to avoid this unwanted phenomenon, 

prior to feature extraction, image normalization was performed on all images using Freesurfer 

in two steps, before and after skull stripping.  

Correction of non-uniformity artifacts in MRI is recommended as a preprocessing step [202]. 

A problem that occurs in quantitative texture analysis of MRI is that there are intra-scan and 

inter-scan image intensity variations due to the MRI instrumentation, therefore, image 

intensity normalization methods should be applied prior to further image analysis. These 

(inhomogeneity artifacts), often appear in MRI and they interfere with texture analysis and as 

a result lead to errors in tissue description. As a result, prior to texture analysis, image spatial 

non-uniformity was performed as an image preprocessing step to reduce those errors. This 

step is part of the Freesurfer pipeline (description below in section 4.6.1 and in Figure 11) 

which conforms the MRI scans to 1 x 1 x 1 mm3 resolution and corrects image intensity using 

the non-parametric non-uniform intensity normalization (N3) algorithm [74] which is the most 

popular method found in texture literature [203], [204].  
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Figure 11: Processing stream overview of the FreeSurfer recon-all function. Image adapted from [205] 

4.6 Segmentation algorithm and Volumetry 

ROI segmentation was performed using the Freesurfer v6.0 image analysis suite 

(Massachusetts General Hospital, Boston, MA), which is documented and freely available for 

download online (https://surfer.nmr.mgh.harvard.edu/) for the study of cortical and 

subcortical anatomy. Nowadays, Freesurfer is the most commonly used software in 

quantitative neuroimaging and represents an automated technique which provides 

segmentation by assigning a neuroanatomical label to each voxel in the MR image volume. A 

probabilistic atlas is used to produce segmentations with a Bayesian inference algorithm from 

a manually labelled training set. This probabilistic algorithm can also be used to define 

curvature information of the cerebral cortex into gyri-based neuroanatomical regions that 

represent standard measures of cortical thickness and surface area. 

4.6.1 The T1-freesurfer-cross-sectional pipeline  

The pipeline used in Freesurfer, (http://www.clinica.run/doc/Pipelines/T1_FreeSurfer/), is a 

wrapper of different tools and the technical details of these procedures were described in prior 

publications [73], [188], [190], [191], [206], [206]–[212]. The Freesurfer pipeline, conforms the 

MRI scans to an isotropic voxel size of 1 mm3, and the MRI intensity was normalized using the 

https://surfer.nmr.mgh.harvard.edu/
http://www.clinica.run/doc/Pipelines/T1_FreeSurfer/
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automated N3 algorithm [74] followed by skull stripping and neck removal. Details of these 

have been discussed in previous publications [188], [191].  

In brief, this multistep pipeline includes motion correction, automated Talairach 

transformation, first normalization of voxel intensities, removal of the skull, linear volumetric 

registration, intensity normalization [74], nonlinear volumetric registration, volumetric 

labeling, second normalization of voxel intensities and white matter segmentation. Output 

includes segmentation and volumes of the most important subcortical structures (see Table 

12) and extraction of cortical surfaces, cortical thickness (in mm) estimation and volume (in 

mm3), spatial normalization onto the FreeSurfer surface template (FsAverage), and 

parcellation of cortical regions. FreeSurfer morphometric procedures have been demonstrated 

to show good test-retest reliability across scanner manufacturers and across field strengths 

[212], [213]. Cy-Tera supercomputer of the Cyprus Institute was used to run FreeSurfer as each 

subject required approximately 13 hours of processing. 

Table 12: Freesurfer subcortical structures 

Lateral ventricle Putamen 
Corpus callosum, 

posterior part 
4th ventricle 

Inferior part of the 

lateral ventricle 
Pallidum 

Corpus callosum, 

middle posterior part 

5th ventricle (CSF sometimes found in 

the septum pellucidum) 

Cerebellum white 

matter 
Hippocampus 

Corpus callosum, 

central part 
Brain stem 

Cerebellum cortex 
Entorhinal 

cortex 

Corpus callosum, 

middle anterior part 
CSF, White Matter, Gray Matter 

Thalamus Amygdala 
Corpus callosum, 

anterior part 
Choroid plexus 

Caudate Accumbens 3rd ventricle Ventral diencephalon 
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4.7 Texture feature extraction  

Figure 14, shows a schematic view of the proposed texture working hypothesis in AD. NFTs 

inside the neurons and Aβ plaques between neurons spread throughout the brain, causing 

neuronal death. Changes in the statistical properties of the image intensities due to the 

accumulated effect of NFTs and/or Aβ plaques may be reflected as certain textural patterns 

prior to atrophy.  

 

Figure 12: Schematic view of the proposed texture working hypothesis in AD. Image adapted from Cai et al.,  

[214]. 

Texture features used in this thesis were extracted using GLCM texture method, a way of 

extracting second order statistical texture features from gray-level images. Texture features 

were calculated using KNIME Analytics platform [215]. The following Haralick texture 

features [216] were computed: Angular Second Moment (ASM), Contrast, Corelation, 

Variance, Sum Average, Sum Variance, Entropy and Cluster shade and their average in four 

directions (0°, 45°, 90°, 135°) was used (see Figure 13) and the separation distance between 

pixels was set to 1. This distance was chosen to reflect the degree of correlation between 

adjacent pixels short range neighborhood connectivity, mainly because the ROIs used were 

very small (see Figure 13 a, b). 

 
Figure 13: Directionality of GLCM 
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Figure 14 a, b: Entorhinal cortex (a) and the hippocampus (b) in 2D images. Entorhinal cortex measures 

approximately 14x13 pixels and hippocampus 21x10 pixels 

4.7.1 GLCM Texture Features 

According to [217] GLCM is a matrix where the number of rows and columns is equal to the 

number of quantized gray levels, Ng, in the image. The matrix element p(i, j) is the set of second 

order statistical probability values for changes between gray level i and j at a particular 

displacement distance (d) and angle (θ). To illustrate this method, suppose an image to be 

analyzed has Nx columns and Ny rows. The gray level appearing at each pixel is quantized to 

Ng levels. Let Lx = {1, 2, . . . , Nx} be the columns, Ly = {1, 2, . . . , Ny} be the rows, and Gx = {0, 1, . 

. . , Ng − 1} be the set of Ng quantized gray levels. The image can be represented as a function 

that assigns some gray level in G to each pixel or pair of coordinates in Ly × Lx; Ly × Lx → G. The 

texture-context information is specified by the matrix of a relative frequency C(i, j). C(i, j) 

represents the number of occurrences of gray levels i and j within the window, at a certain (d, 

θ) pair.  The probability measure can be defined as 

Pro(x) = {p(i, j )|(d , θ )}, 

where p(i, j) is defined as 

𝑝(𝑖, 𝑗) =
C(i, j)

∑  ∑ 𝐶(𝑖, 𝑗)
𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

The sum in the denominator thus represents the total number of gray level pairs (i, j) within the window 

and is bounded by an upper limit of Ng × Ng. 

The means for the columns and rows of the matrix are, respectively, defined as: 

𝑢𝑥 = ∑ ∑ 𝑖. 𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0
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𝑢𝑦 = ∑ ∑ 𝑗. 𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

The standard deviations for the columns and rows of the matrix are, respectively, defined as: 

𝜎𝑥 = ∑ ∑ (𝑖 − 𝑢𝑥)2. 𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

𝜎𝑦 = ∑  

𝑁𝑔−1

𝑖=0

∑  

𝑁𝑔−1

𝑗=0

(𝑗 − 𝑢𝑦)2. 𝑝(𝑖, 𝑗) 

4.7.2 Texture features description 

Specifically, in this study, eight textural features were used to quantitatively evaluate textural 

characteristics of the entorhinal cortex and hippocampus. Most of these features were describe 

also by Cal et al [214] and can be seen in Table 13. 

Angular Second Moment (ASM) 

Also known as Uniformity or Energy and measures uniformity of pixel intensity relationships 

within a region of interest. ASM is high when image has very good uniformity or when pixels 

are very similar. 

𝐴𝑆𝑀 = ∑ ∑ 𝑝(𝑖, 𝑗)2

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

Contrast 

Contrast measures the quantity of local variations within pixel intensity relationships within 

an image. If there is a large amount of variation in an image, the contrast will be high. 

𝐶𝑜𝑛 = ∑ 𝑘2 

𝑁𝑔−1

𝑘=0

{ ∑ ∑ 𝑝(𝑖, 𝑗)||𝑖 − 𝑗| = 𝑘

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

} 
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Correlation 

Correlation measures a potential connection between a pixel and its local neighborhood of 

pixels, reflecting the image gray level correlation. It indicates local gray-level dependency on 

the texture image; higher values can be obtained for similar gray-level regions. 

𝐶𝑜𝑟 =
∑ ∑ (𝑖𝑗). 𝑝(𝑖, 𝑗) − 𝑢𝑥𝑢𝑦

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

𝜎𝑥𝜎𝑦
 

Variance 

Variance puts relatively high weights on the elements that differ from the average value of p 

(i, j). It refers to the gray-level variability of the pixel pairs and is a measurement of 

heterogeneity. Variance increases when the gray-scale values differ from their means. Unlike 

contrast, variance has no spatial frequency. 

𝑉𝑎𝑟 = ∑ ∑ (𝑖 − 𝑢𝑥)2.  𝑝 (𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

+ ∑ ∑ (𝑖 − 𝑢𝑦)
2

.  𝑝 (𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

Sum Variance 

Sum average is the variance of normalized grey-tone image and it measures the dispersion 

(with regard to the mean) of the gray level sum distribution of the image 

𝑆𝑢𝑚 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ⌈ ∑ 𝜾𝟐𝒑𝒙+𝒚(𝒊)

𝟐𝑵𝒈−𝟐

𝒊=𝟎

⌉ − 𝑆𝑢𝑚 𝐴𝑣𝑒𝑟𝑎𝑔𝑒2 

Sum Average 

Sum Average is the average of normalized grey-tone image and it measures the mean of the 

gray level sum distribution of the image. 

𝑆𝑢𝑚 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ 𝒊 𝒑𝒙+𝒚 (𝒊)

𝟐𝑵𝒈−𝟐

𝒊=𝟎

 

Entropy 

 Entropy measures disorder of pixel intensity relationships within a region of interest. Entropy 

is the highest when all the probabilities p(i, j) are equal, and smaller when the entries in p(i, j) 
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are unequal. Therefore, a homogeneous image will result in a lower entropy value, while an 

inhomogeneous (heterogeneous) region will result in a higher entropy value. 

𝐸𝑛𝑡 = − ∑  

𝑁𝑔−1

𝑖=0

∑ 𝑝(𝑖, 𝑗)log (𝑝(𝑖, 𝑗))

𝑁𝑔−1

𝑗=0

 

Cluster shade 

Cluster shade is a measure asymmetry in gray-level values. A new “i + j” image is created, 

having a range of integer intensities from 0 to 2 (𝑁𝑔 − 1). The 𝑢𝑖  + j value is computed and 

stored for the first neighborhood of the image, and is subsequently updated as the 

neighborhood is moved by one pixel. When the cluster shade is high, the image is asymmetric. 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑆ℎ𝑎𝑑𝑒 = − ∑  

𝑁𝑔−1

𝑖=0

∑ (𝑖 + 𝑗 −  𝑢𝑥 − 𝑢𝑦) 3 (𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

 

Table 13:  Gray-level Co-occurrence Matrix Texture Features. Table adapted by Cai et al [214]. 

GLCM Feature Qualitative Description 

Entropy GLCM Measures disorder of pixel intensity relationships within a region of interest 

Energy GLCM Measures uniformity of pixel intensity relationships within a region of interest 

Contrast Measures the quantity of local variations within pixel intensity relationships within an image 

Correlation Measures a potential connection between a pixel and its local neighborhood of pixels, 

reflecting the image gray level correlation 

Inverse different moment Measures the smoothness (homogeneity) of the gray level distribution of the image 

Homogeneity Measure the closeness of distribution in the co-occurrence matrix to the matrix diagonal 

Cluster shade Measure asymmetry in gray-level values 

Abbreviations: GLCM: Gray-level Co-Occurrence Matrix. 

4.8 Texture feature examples and texture variability 

Table 14 tabulates the mean (SD) entorhinal cortex volume and texture features computed for 

all MRI slides for one subject for each subject category (also illustrated in Figure 16 and Figure 

17). As expected, there is a volume reduction between the subjects due to atrophy progression. 

Higher ASM values were seen for AD subjects and higher values in an image represent pixels 

with similar values. Indeed, in AD subjects the variation of pixel values is less compared to 

NC (see Figures 18 and 20). Higher contrast values was also seen for AD subjects and this was 

also seen on their images (Figure 20). On the other hand, an image with high correlation 
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represents similar pixel values and as it can be seen in Figure 18, NC subjects had more regions 

with similar grey levels compared to AD. Sum average and variance seem to be similar 

between the subjects, whereas, sum variance is higher for NC subjects. Entropy, show 

information content of an image and higher values, represent more homogeneity. As it can be 

seen in Table 14, NC subjects have greater values, thus, similar degree of pixel intensity. This 

is also illustrated in Figure 18.  

The mean differences and the statistically significant differences between the groups for the 

aforementioned texture features and volume, can be found in Table 24 (Chapter 6). 

Table 14: Examples of entorhinal cortex measures for one NC, one MCI, one MCIc and one AD subjects. 

Feature values (Mean ±SD) are given for volume, ASM, contrast, correlation, sum average, entropy, variance 

and cluster shade. 
 NC MCI MCIc AD 

Volume (mm3) 1930 (284) 1720 (384) 1544 (338) 1417 (348) 

Correlation 0.51 (0.038) 0.49 (0.046) 0.48 (0.047) 0.46 (0.047) 

Contrast 217 (19.2) 224.6 (23.7) 232.0 (24.6) 241.2 (23.3) 

Sum Variance 672.3 (33) 660 (37) 657.8 (34) 644.6 (39) 

Entropy 3.0 (0.192) 2.94 (0.21) 2.88 (1.18) 2.86 (0.20) 

Sum Average 30.8 (3.2) 30.2 (3.2) 29.4 (3.0) 29.3 (3.2) 

Variance 222.5 (9.5) 221.4 (9.6) 222.4 (10.3) 222.3 (10.7) 

Cluster shade 13136 (9746) 15510 (9314) 10910 (6935) 12127 (8682) 

ASM 0.214 (0.045) 0.224 (0.048) 0.231 (0.041) 0.230 (0.049) 

In order to identify the most important features, random forests (RF) models with 5000 trees 

were built to measure the mean Decrease Gini index. Gini Index [218] is an impurity splitting 

method. It was observed that feature selection based on the Gini index increases the overall 

performance of the RF models [219]. The 9 most promising features between NC and AD 

subjects are shown in Figure 15. However, in this study the usefulness of rule extraction in the 

assessment of AD using decision trees (DT) and RF algorithms for the entorhinal cortex was 

not investigated. In Figure 15, the decrease Gini index for entorhinal cortex texture features is 

lower compared to volume, however, the inclusion of MCI subjects could provide different 

results and this will be study comprehensively in the continuation of this research.  

 
Figure 15: The 9 most promising features. 
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Figure 16: Entorhinal cortex volume (mm3) changes (mean ±SD) between subjects.  

 

 
Figure 17: Entorhinal cortex texture features charts (mean ±SD) based on Table 14.  
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Figure 18: Selected MRI slides (approx. 14x13 pixels) of the entorhinal cortex of an NC subject. 

 

Figure 19: Selected MRI slides (approx. 14x11 pixels) of the entorhinal cortex of an MCI subject. 
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Figure 20: Selected MRI slides (approx. 11x7 pixels) of the entorhinal cortex of an AD subject. 
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5 
Comparison of 1.5T and 3T MRI hippocampus 

texture features in the assessment of 

Alzheimer's disease 

5.1 Abstract 

Many studies evaluated how the MR field strength affects the effectiveness to detect 

neurodegenerative changes of AD, derived from atrophy or thickness. To the best of our 

knowledge, no study evaluated before how tissue texture changes are affected by the MR field 

strength. In this Chapter, hippocampal texture features were extracted from 1.5T and 3T MRI 

and evaluated how they are affected on stronger magnetic fields.   

In the literature, other studies compared the two magnetic fields strength in the assessment of 

AD, but on volumetric measures [220]. This is the first study that compared texture features 

extracted from 1.5T and 3T images and we hypothesized that higher magnetic fields will 

provide better differentiation between the texture characteristics of the NC, MCI and AD 

subjects mainly due to the higher image quality and resolution provided by stronger magnetic 

fields MRIs [221]. 

MR imaging data from 14 NC, 14 with MCI, 11 MCIc and 10 AD subjects scanned at 1.5T and 

3T were included. Haralick's texture features were extracted from the hippocampus, along 

with hippocampal and amygdala volumes and cortical thickness. One-way ANOVA, paired-
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samples and Wilcoxon signed t-tests were used to evaluate if there were significant differences 

between the features. 

The results showed that 3T MRI texture features were significantly different for NC vs AD, 

NC vs MCI and MCI vs AD, whereas, 1.5T for MCI vs AD only. Amygdala and hippocampal 

volumes, showed significant differences for NC vs AD for both MRI strengths, whereas 

cortical thickness for MCI vs MCIc for the 3T. Paired sample t-test and Wilcoxon signed-rank 

test revealed significant differences for Angular Second Moment (ASM), contrast, correlation, 

variance, sum variance and entropy, the amygdala volume and cortical thickness. Between 

NC vs MCI, 3T texture revealed higher AUC. 

Furthermore, 3T texture revealed significant differences for more features compared to 1.5T, 

whereas, atrophy and thickness had similar results. As expected, 3T texture changes provided 

earlier diagnosis compared to 1.5T volume or texture changes. 

5.2 Introduction 

Theoretically, increasing the magnetic field strength from 1.5T to 3T, roughly doubles the 

signal-to-noise ratio (SNR), and provides a higher contrast to noise ratio (CNR), per unit scan 

time, to better differentiate gray/white matter and other tissues. Therefore, the boundaries 

between grey and white matter are better seen in 3T images and as a result the delineation is 

easier. However, the higher magnetic field of 3T comes with a cost of  increased level of 

artifacts  [221] which might affect the features extracted from the images. However, due to the 

physical origin of these artifacts, the Radiologic Technologists and MR Physicists manage 

these artifacts through specific pulse sequences parameters (minimum repetition time or flip 

angle) and image protocol design. Furthermore, some commercial scanners use corrections for 

some artifacts such as constant level appearance (CLEAR), phased-array uniformity 

enhancement (PURE), and prescan-normalization [221].   Furthermore, with stronger fields, 

the magnetic field inhomogeneity increases as well due to susceptibility increase in spatial 
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variations [222]. Currently, most MRI studies are conducted at 1.5T [67], [129], [223], [224]; 

however, some studies investigated a stronger magnetic field, such as from 3T as tabulated in 

Table 15, investigating whether 3T MRI strength fields can provide better atrophy detection 

compared to 1.5T [79], [220], [225]–[227]. Overall, 1.5T and 3T scans did not significantly differ 

in their power to detect neurodegeneration from atrophy. 

Table 15: Volumetric studies comparing 1.5T and 3T MRI features in the assessment of AD 

Main Author Region of 
Interest 

Data 
Type 

Subjects Description 

Briellmann et al., 
2001, [225] 

Hippocampus Volume NC 
Control hippocampal volume measurements obtained at 1.5T and at 3T 
were not different. 

Chow et al., 
2015, [220] 

Hippocampus Volume 
NC, MCI, 

AD 
3T images, with their higher contrast and higher signal-to-noise ratio, 
may enhance the topographic localization of atrophy. 

Ho et al., 2010  
[226] 

Whole brain 
Volume AD, MCI 

1.5T and 3T scans did not significantly differ in their power to detect 
neurodegenerative changes. 

Macconald et 
al., 2014, [227] 

Hippocampus Volume NC, AD 
Hippocampal volume and atrophy rates discriminated well between 
controls and AD subjects, and there was no evidence of a difference in 
predictive ability between 1.5T and 3T. 

Lötjönen et al., 
2011, [79] 

Hippocampus Volume 
NC, MCI, 

AD 
When comparing hippocampus volume extracted from 1.5T and 3T 
images, the absolute value of their difference was low (equal to 3.2%). 

Abbreviations: NC: normal controls; MCI: mild cognitive impairment; AD: Alzheimer's disease; T: Tesla. 

 

The main objective of this chapter is to evaluate if smaller scale tissue changes in AD derived 

from texture are more easily detectable in 3T which could lead to an earlier diagnosis. 

Specifically, texture features were extracted from the hippocampus of normal NC, MCI and 

AD subjects in order to evaluate how well each magnetic field strength detects textural 

differences between these groups. To the best of our knowledge, this is the first study that 

compared texture features extracted from 1.5T and 3T images for the hippocampus. However, 

for comparison, we included larger scale changes as well, such as volumetric features derived 

from hippocampus and amygdala, plus, cortical thickness which also represents a well-known 

AD biomarker [119], [228]–[230]. In this study, it is hypothesized that through texture features, 

stronger magnetic fields could provide better differentiation between the aforementioned 

groups. 
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The following text is part of a journal paper (Comparison of 1.5T and 3T MRI hippocampus texture 

features in the assessment of Alzheimer's disease) published in: 2020 Biomedical Signal Processing and 

Control, August 2020 - DOI: https://doi.org/10.1016/j.bspc.2020.102098   

5.3 Data Preparation 

For the preparation of this article data were obtained from the ADNI database 

(http://adni.loni.usc.edu/). The ADNI was launched in 2003 as a public-private partnership, 

led by principal investigator Michael W. Weiner, MD. The primary goal of ADNI was to test 

whether serial MRI, positron emission tomography (PET), other biological markers and 

clinical and neuropsychological assessment can be combined to measure the progression of 

MCI and early AD. 

5.3.1 Subjects 

Baseline scans of a total of 49 subjects were included in the study (14 NC, 14 MCI, 11 MCIc and 

10 AD subjects) who underwent both 1.5T and 3T MR imaging. Inclusion criteria for NC were: 

MMSE scores between 24 and 30; CDR of zero; absence of depression, MCI and dementia. 

Detailed description of inclusion/exclusion criteria can be found in the ADNI protocol 

(adni.loni.usc.edu/methods/documents/).  

All the subjects had a standardized protocol on both 1.5T and 3T MRI units from 3 MR imaging 

vendors (GE Healthcare, Milwaukee, Wisconsin; Philips Healthcare, Best, the Netherlands; or 

Siemens, Erlangen, Germany) with a standardized protocol developed to evaluate 3D T1-

weighted sequences for morphometric analyses. T1-weighted volumetric 3D MPRAGE 

baseline scans collected for each subject. The 1.5T and 3T scanning protocols used a 3D sagittal 

volumetric sequence. The typical 1.5T acquisition parameters were TR = 2400 ms, minimum 

full TE, TI = 1000 ms, flip angle = 8°, FOV = 24 cm, with a 256 × 256 × 170 acquisition matrix in 

the x-, y-, and z-dimensions, yielding a voxel size of 1.25 × 1.25 × 1.2 mm3. For 3T scans, the 

typical parameters were a TR = 2300 ms, minimum full TE, TI = 900 ms, flip angle = 8°, FOV = 

https://doi.org/10.1016/j.bspc.2020.102098
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/methods/documents/
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26 cm, with a 256 × 256 × 170 acquisition matrix in the x-, y-, and z-dimensions, yielding a voxel 

size of 1.0 × 1.0 × 1.2 mm3. 

5.3.2 Data Analysis 

FreeSurfer v6.0 software (Martinos Center for Biomedical Imaging, Harvard-MIT, Boston 

USA) [188] was used for the segmentation and volumetric representations of the subcortical 

brain regions were used in this study (the hippocampus and the amygdala) and the surface-

based estimation of cortical thickness. Both intensity and continuity information from the 

segmentations and deformation procedures are used to produce representations of the cortical 

borders. Cortical thickness is calculated as the closest distance from the GM/WM boundary to 

the GM/CSF boundary at each vertex on the tessellated surface [190]. FreeSurfer is currently 

the most commonly used software for cortical thickness analysis in AD. 

Hippocampal texture features were calculated using KNIME Analytics platform [215]. The 

following Haralick texture features [216] were computed: Angular Second Moment (ASM), 

Contrast, Correlation, Variance, Sum Average, Sum Variance and Entropy. Their average was 

calculated in four directions (0°, 45°, 90°, 135°) with the distance between adjacent pixels set to 

1. 

5.3.3 Statistical Analysis 

Baseline score differences for cognitive tests, volume, thickness and texture were examined 

between the 4 groups through one-way ANOVA and statistical significance was p< .05. One-

way ANOVA with post hoc Bonferroni correction was also used to examine the between-

group differences. Then a paired-samples t-test was used for normally distributed data for a 

direct comparison between 1.5T versus 3T texture, volume and thickness measures. In the 

cases where the assumption of normality as assessed by Shapiro-Wilk’s test was not met, a 

Wilcoxon signed-rank test was used.  Furthermore, through a logistic regression model 

receiving operating characteristic (ROC) curves, we determined the performance of both 
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systems and their ability to distinguish NC from MCI subjects. Statistical analysis was 

performed with IBM SPSS Statistics Version 24 (IBM Corp. Released 2011. IBM SPSS Statistics 

for Windows, Version 20.0. Armonk, NY: IBM Corp.) 

5.4 Results 

5.4.1 Baseline demographics for baseline measures 

Baseline demographics including gender, age and MMSE scores are tabulated in Table 16. As 

expected, the NC subjects had the highest MMSE score compared to the other groups. 

Furthermore, there were significant differences for sex and MMSE score variables but not for 

age. 

Table 16: Demographics data 

Variables at Baseline NC (n=14) MCI (n=14) MCIc (11) AD (n=10) p value 

Sex (M/F) 4/10 10/4 8/3 3/7 .030 

Age (mean ± SD) 74.9 (5.2) 71.8 (8.1) 74.4 (6.6) 75.0 (7.5) .588 

MMSE Score (mean ± SD) 29 (1.1) 27 (1.4) 26 (1.4) 23 (2.2) .000 

Abbreviations: NC: normal controls; MCI: mild cognitive impairment; MCIc: MCI converters; AD: Alzheimer’s 

disease; MMSE: mini mental state examination; SD: standard deviation. 

 

In Table 17, features extracted from 1.5T showed no statistical significant differences among 

the groups, except for hippocampal entropy (p= .035), and hippocampal and amygdala 

volumes, (p= .004 and p= .006 respectively). On the other hand, features extracted from 3T 

images, revealed statistical significant differences among all groups for all texture features 

including hippocampal and amygdala volumes. Cortical thickness was also statistically 

significant between the groups for both 1.5T and 3T, p= .031 and p= .015 respectively 
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Table 17: Texture, volumetric and thickness features for the NC, MCI, MCIc and AD groups for 1.5T and 3T 

MRI systems. 

Features 

Mean (SD) 

NC MCI MCIc AD p value 

1.5T 3T 1.5T 3T 1.5T 3T 1.5T 3T 1.5T 3T 

Hippocampal Texture features  

ASM 
.102 

(.035) 
.070 

(.021) 
.105 

(.043) 
.095 

(.037) 
.105 

(.023) 
.102 

(.024) 
.121 

(.032) 
.112 

(.033) 
.616 .009 

Contrast 
166 

(20.0) 
150 

(14.9) 
169 

(15.0) 
173 (9.9) 

179 
(19.8) 

180 
(14.0) 

180 
(19.5) 

177 
(17.8) 

.209 .000 

Correlation .54 (.07) .46 (.09) .52 (.083) .47 (.10) .54 (.043) .54 (.03) .53 (.055) .54 (.022) .805 .024 

Variance 
190 

(33.3) 
154 

(21.6) 
184 

(25.5) 
172 

(30.5) 
204 

(10.3) 
189 

(22.8) 
201 (9.0) 205 (9.1) .181 .000 

Sum Average 41 (4.2) 43 (3.1) 39 (5.3) 41 (5.3) 39 (2.5) 38 (2.3) 38 (4.3) 37 (4.2) .487 .010 
Sum 

Variance 
593 (123) 463 (84) 567 (100) 517 (120) 619 (64) 584 (73) 622 (32) 638 (29) .466 .000 

Entropy 3.7 (.21) 3.9 (.16) 3.7 (.08) 3.7 (.18) 3.7 (.14) 3.7 (.24) 3.5 (.17) 3.6 (.14) .035 .009 

Volumetric Features (mm3) 

Hippocampus   
3685 
(380) 

3709 
(365) 

3388 
(598) 

3299 
(557) 

3041 
(344) 

3217 
(684) 

3038 
(463) 

3148 
(421) 

.004 .040 

Amygdala 
1461 
(163) 

1625 
(189) 

1298 
(243) 

1364 
(288) 

1292 
(235) 

1392 
(304) 

1113 
(146) 

1227 
(341) 

.006 .009 

Thickness (mm) 

Cortex 
2.32 

(.056) 
2.34 

(.030) 
2.31 

(.068) 
2.34 

(.073) 
2.24 (.12) 

2.28 
(.076) 

2.24 (.07) 
2.29 

(.064) 
.031 .015 

Abbreviations: SD: standard deviation; NC: normal controls; MCI: mild cognitive impairment; MCIc: MCI 

converter; AD: Alzheimer's disease; MMSE: mini mental state examination; ASM: Angular second moment. 

5.4.2 Between-group comparisons 

A one-way ANOVA with post hoc Bonferroni correction was conducted on baseline scans to 

determine if there were significant texture characteristics differences between the four groups. 

Subjects were classified into four groups NC vs AD, NC vs MCI and MCI vs AD. Texture 

features were extracted from the hippocampus and data were normally distributed, as 

assessed by Shapiro-Wilk's test (p> .05) and statistical significance was defined as p< .05. There 

were no outliers in the data, as assessed by boxplot inspection, and all data are presented as 

mean ± standard deviation (SD).  
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As seen in Table 18, 1.5T hippocampal texture features, showed significant difference for 

entropy only in the MCI vs AD group. Furthermore, hippocampal and amygdala volume 

showed significant differences between NC vs AD group.  

On the other hand, 3T hippocampal texture features, revealed significant differences in more 

cases. Specifically, for NC vs AD group, all texture features (except correlation) showed 

significant differences. Furthermore, significant differences were also seen for NC vs MCI and 

MCI vs AD. Similarly to 1.5T, volumetric measures of hippocampus and amygdala showed 

significant differences between NC vs AD group only, whereas, cortical thickness between 

MCI vs MCIc subjects for the 3T. 

Table 18: Hippocampal texture, volume and thickness differences at 1.5T and 3T MRI systems 

 

Mean Difference (SE) 

NC vs AD NC vs MCI MCI vs MCIc MCI vs AD 

1.5T 3T 1.5T 3T 1.5T 3T 1.5T 3T 

Texture features 

ASM 
-.018  
(.01) 

-.0420 
(.01)* 

-.002 
(.01) 

-.023  
(.01) 

.000  
(.01) 

-.008  
(.01) 

.016 
 (.01) 

-.018  
(.01) 

Contrast 
-13.40 
(7.7) 

-26.84 
(5.9)* 

-2.93 
(7.0) 

-22.73 
 (5.5)* 

-9.07 
(7.5) 

-6.71 
 (5.9) 

-10.45 
 (7.7) 

-4.10  
(5.8) 

Correlation 
-.007  
(.02) 

-.076  
(.03) 

-.020 
(.02) 

-.003  
(.03) 

-.024 
(.02) 

-.069  
(.03) 

-.013 
 (.03) 

-.073  
(.03) 

Variance 
-11.3 
(10.7) 

-50.9 
(10.4)* 

-5.7  
(9.1) 

-17.6  
(8.9) 

-19.8 
(10.0) 

-17.5 
 (9.5) 

-17.1 
 (10.7) 

-33.3 (10.4)* 

Sum Average 
-2.78  
(1.7) 

-5.18 (1.6)* 
-1.16 
(1.6) 

-1.80  
(1.5) 

-.352 
(1.7) 

-2.68 
 (1.6) 

-1.61 
 (1.8) 

-3.38  
(1.66) 

Sum Variance 
-28.9 
(41.6) 

-174.5 
(39.5)* 

-25.9 
(35.4) 

-54.3  
(33.7) 

-51.6 
(37.8) 

-66.9 (36.0) 
-54.9 

 (41.6) 
-120.1 
(39.5)* 

Entropy 
-.135  
(.06) 

-.274 (.01)* 
-.080 
(.06) 

-.192  
(.07) 

-.080 
(.07) 

-.026 
 (.07) 

-.21 
 (.07)* 

-.082  
(.080) 

Volumetric Features (mm3) 

Hippocampus  
-646 

(193)* 
-561 (214)* 

-296 
(176) 

-410  
(195) 

-347 
(200) 

-81  
(208) 

-350  
(193) 

-150  
(214) 

Amygdala 
-347  
(92)* 

-398 (115)* 
-162  
(79) 

-261  
(105) 

-6.0  
(83) 

-28  
(112) 

-184  
(91) 

-136  
(115) 

Thickness measures (mm) 

Cortex -.082 (.03) -.052 (.02) 
-.007 
(.032) 

-.003 (.024) 
-0.70 
(.034) 

.069 
(.025)* 

-.070 (.034) -.056 (.026) 

Abbreviations: SE: Standard error; ASM: Angular Second Moment; NC: Normal controls; MCI: Mild cognitive 

impairment; MCIc: MCI converter; AD: Alzheimer's disease. *. The mean difference is significant at the .05 level 
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5.4.3 Comparison between 1.5T and 3T MRI 

A paired-samples t-test was used to determine whether there was a statistically significant 

mean difference between the two magnetic fields for both hippocampal texture, volumes and 

thickness. Data inspection, revealed no extreme outliers, thus, all data were kept in the 

analysis. 

Hippocampal ASM, contrast and sum average, hippocampal and amygdala volume and 

cortical thickness met the assumption of normality, as assessed by Shapiro-Wilk’s test (p> .05), 

therefore, the paired-samples t-test was used. Statistically significant differences between the 

two systems were seen for hippocampal ASM, amygdala volume and cortical thickness (Table 

19). Within diagnostic groups, significant texture differences from paired-samples t-test (p<  

.05) were seen in the NC group for hippocampal ASM (t= 3.440, p= .004), contrast (t= 2.284, p= 

.041) and amygdala volume (t= 3.873, p= .002). There were no significant differences within the 

MCI or AD groups. 

 

Table 19: Hippocampal Paired-Sample t-test for normally distributed texture, volume and thickness features 

between 1.5T and 3T MRI systems 

1.5T – 3T 

Paired Differences 

Mean  

(SD) 
95% CI  t df Sig. 

Texture features 

ASM .015 (.029) .007 - .024 3.730 47 .001 

Contrast 3.98 (20.75) -2.17 – 10.15 1.303 45 .199 

Sum Average .93 (4.14) -2.13 – .270 1.559 47 .126 

Volume measures (mm3) 

Hippocampus 10.8 (188) -44.4 - 66.1 .396 46 .695 

Amygdala 112.5 (171)  61.5 – 163.5 4.47 46 .000 

Thickness Measures (mm) 

Cortex .031 (.076) .009 - .053 2.862 47 .006 

Abbreviations: SD: Standard deviation; CI: Confidence Interval; ASM: Angular Second Moment. 
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Four of the hippocampal texture features (corelation, variance, sum variance and entropy) 

violated the assumption of normality, as assessed by Shapiro-Wilk’s test (p< .05), therefore, the 

Wilcoxon signed-rank test was used. As seen in Table 20, there were statistically significant 

median difference for all four texture features. Within diagnostic groups, statistically 

significant differences (p< .05) were seen for NC group in all four-texture features: corelation 

(z= 2.354, p= .019), variance (z= 2.542, p= .011), sum variance (z= 2.542, p= .011) and entropy (z= 

2.551, p= .011). In the MCI group only correlation showed statistically significant difference (z= 

2.040, p= .041), whereas in the AD group, there was statistically significant difference for 

variance (z= 2.366, p= .018) and sum variance (z= 2.028, p= .043). 

Table 20: Hippocampal Wilcoxon signed-rank test for not-normally distributed texture features between 1.5T 

and 3T MRI systems 

 
Medians (Inter Quartile range - IQR) 

 
1.5T MRI 3T MRI 

Features Texture features z p value 

Corelation .550 (.090) .526 (.103) 2.98 .003 

Variance 201 (23.4) 185 (57.3) 2.27 .023 

Sum Variance 622 (113.6) 574 (.207.5) 2.15 .031 

Entropy 3.70 (.273) 3.66 (.304) 2.45 .014 

5.4.4 Classification modelling 

Furthermore, we compared the classification power between the two systems for NC and MCI 

subjects. We chose this comparison, as MCI subjects do not fulfil the criteria for dementia, as 

their cognitive function is comparable to NC subjects and we wanted to explore if through 3T 

images their differentiation would be more pronounced. Specifically, we calculated a binary 

logistic regression model for each individual texture, volume and cortical thickness variable 

and by using ROC curves, we determined their AUC (Table 21). The combination model 

included raw MRI biomarker scores as well as age and gender as covariates. 
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Table 21: Classification of NC from MCI subjects through textural, volumetric and thickness features 

extracted from 1.5T and 3T MRI systems 

Texture Features 

1.5T 3T 
p value 

AUC 95% CI AUC 95% CI 
1.5T 3T 

Texture features 

ASM 0.806 0.629 - 0.983 0.837 0.691 - 0.982 0.006 0.002 

Contrast 0.816 0.652 - 0.981 0.941 0.848 - 1.000 0.004 0.000 

Correlation 0.806 0.631 - 0.981 0.816 0.645 - 0.987 0.006 0.004 

Variance 0.811 0.638 - 0.985 0.827 0.671 - 0.982 0.005 0.003 

Sum Average 0.796 0.621 - 0.970 0.827 0.668 - 0.985 0.008 0.003 

Sum Variance 0.816 0.645 - 0.987 0.827 0.673 - 0.980 0.004 0.003 

Entropy 0.839 0.683 - 0.996 0.824 0.663 - 0.985 0.004 0.003 

Volume measures (mm3) 

Hippocampus 0.867 0.721 - 1.0 0.893 0.764 - 1.0 0.001 0.000 

Amygdala 0.907 0.778 – 1.0 0.918 0.813 – 1.0 0.000 0.000 

Thickness measures (mm2) 

Cortex 0.824 0.658 – 0.990 0.802 0.622 – 0.982 0.004 0.008 

Abbreviations: AUC: area under curve; CI: confidence interval; ASM: Angular Second Moment, ICV: Intracranial 

Volume 

 

Overall, features extracted from both 1.5T and 3T systems were statistically significant for the 

classification of this group. However, in all cases higher AUC values were seen from features 

extracted from 3T and ranged between 0.816 - 0.941 compared to 1.5T ranges (0.796 - 0.907). 

5.5 Discussion 

The main objective of this study was to evaluate whether a higher magnetic field, such as from 

a 3T MRI, could capture more significant differences on MCI and AD subjects from a 1.5T MRI. 

Specifically, smaller scale changes derived from hippocampal texture, and larger scale changes 
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derived from hippocampal and amygdala volume and cortical thickness were extracted from 

both 1.5T and 3T systems and their values between NC, MCI and AD subjects were compared. 

As seen in Table 21, texture features extracted from 3T, revealed statistically significant 

differences among the groups in more cases compared to 1.5T which showed statistically 

significant difference only for entropy in MCI vs AD group. Similar findings were also 

reported in the study by Macdonald et al., [227] where it was also documented that the 3T 

system was able to detect more changes that were not apparent at the 1.5T system. This finding 

can be attributed to the fact that due to the higher SNR of the 3T images, degenerative changes 

are more easily detectable [220]. Furthermore, both systems had the same results regarding 

volumetric measures, revealing statistically significant results for NC vs AD group only, for 

both hippocampus and amygdala. It seems that both hippocampal and amygdala atrophy 

magnitude is comparable and this was also seen in another study [230]. In general, it seems 

that both magnetic strengths do not significantly differ in their power to detect atrophy 

changes and this finding is consistent with the study by Ho et al., 2010 [231]. 

The finding of capturing more statistically significant changes with texture compared to 

volume, suggests that texture changes occur earlier than atrophy and they can be captured 

from structural MRI. This finding is also supported by a recent study by Lee et al., [232] and 

Sørensen et al., [9], where it was found that MRI hippocampal texture features predicted 

progression to AD earlier than hippocampal volume. Probably, this explains the fact that no 

volumetric changes were seen for the groups where MCI subjects were included as their 

neurodegeneration is not as advanced as in AD subjects; however, their neurodegenerative 

changes were captured by texture features. 

In the between systems comparison, the paired-samples t-test and Wilcoxon signed-rank test 

(Table 19 and Table 20) revealed statistically significant differences between 1.5T and 3T, in 

five of the seven texture features, whereas hippocampal volume did not. No hippocampal 

volume differences between 1.5T and 3T were also reported by Macdonald et al., [227], for both 
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automated and manual hippocampal segmentations. Similar hippocampal atrophy patterns 

between the 1.5T and 3T MRI systems were also reported by Chow et al., [220]. Amygdala 

volume and cortical thickness also revealed statistically significant differences between the 

two magnetic strengths. 

Higher AUC values were seen from the features extracted from the 3T system in the 

classification of NC from MCI subjects. We investigated specifically this group, as is of great 

importance to detect accurately MCI subjects instead of AD subjects, in order to provide them 

with the appropriate cure before converting to AD. Similar to other studies [220], [227], the 

discriminative ability was similar between the two systems, although, AUCs in 3T were also 

higher. 

In this study, Haralick features generated from the Gray Level Co-occurrence Matrix (GLCM) 

to determine the group differences were computed. Haralick texture features were also used 

in both PET [233] and structural MRI [129], [223], [234] studies. One of the first studies that 

used Haralick features was the study by Freeborough and Fox, 1998 [129] where it was found 

that MRI texture features could aid in the diagnosis and tracking of the Alzheimers disease. 

Haralick features were also used in the recent study by Luk., et al, (2018) [223] MRI were 

texture features were extracted from the whole brain and their AUCs ranged between 0.722 – 

0.866 in the discrimination between NC and AD subjects. Furthermore, the study by Gao et al., 

2018 [234] showed that the addition of texture features effectively improved the classification 

of AD and the prediction of MCI conversion to AD. However, texture is not a frequently used 

method compared to others such as volumetry, perhaps, due to its difficulty in understanding 

its concept and terms. 

5.6 Limitations 

One major limitation of this study is the small sample size.  Furthermore, we had access only 

to 1.5T and 3T data. Nowadays, MRI systems with higher magnetic fields are also available 
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such as 7T and perhaps they could reveal more statistically significant differences between 

texture characteristics and superior possibilities for detecting between-group differences. 

However, higher magnetic fields are more susceptible to chemical shift artifacts, and this could 

be also an area of research on how this artifact affect quantitative imaging compared to 1.5T. 

Perhaps, another limitation could be the fact that the ADNI 3T protocol was designed in such 

way in order the tissue contrast would match the 1.5T scans [235]. This could affect the 

comparison between the two systems or even the effectiveness of the 3T system. Future studies 

could include longitudinal analysis between the two systems and evaluate if 3T systems could 

capture more changes with time. 

5.7 Chapter main findings 

1. Structural MRI texture features were extracted from both 1.5T and 3T images of NC, 

MCI and AD subjects. This is the first study in the literature that compared texture features 

from both 1.5 T and 3 T systems. 

2. 3T texture features revealed statistically significant differences for more features 

compared to 1,5T, whereas for volume and cortical thickness the two systems appear to have 

similar results.  

3. These findings, suggest that 3T images, seem to enhance brain neurodegeneration as 

captured by texture analysis, perhaps due to higher CNR and SNR provided by stronger 

magnetic fields.  

4. The added value in the literature from this study is the fact that through texture features 

extracted from a 3T MRI, it is possible to detect even more changes in texture features 

compared to texture features extracted from a 1.5T, which could lead to an even earlier 

diagnosis. 
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6 
Assessment of Alzheimer’s disease Based on 

Texture Analysis of the Entorhinal Cortex 

6.1 Abstract 

This Chapter represents the main part of this PhD where entorhinal cortex texture features 

were used for the first time in the literature for the assessment of AD in both classification 

and prediction. Texture analysis was chosen for this research because it could detect smaller 

scale changes of neurodegeneration compared to other methods such as volumetry which 

detects larger scale changes. On the other hand, entorhinal cortex deteriorates in an earlier 

stage, compared to hippocampus, within the disease progression. Therefore, through this 

chapter it was evaluated if entorhinal cortex texture features could provide better results in 

both classification and prediction of the disease compare to hippocampal volumetry which 

is the most frequently used method.  

Texture features extracted from 194 NC, 200 MCI, 84 MCI who converted to AD (MCIc) and 

130 AD subjects. Receiving operating characteristic (ROC) curves, determined the 

performance of the various features in discriminating the groups, and a predictive model 

was used to predict conversion of MCIc subjects to AD. An AUC of 0.872, 0.710, 0.730 and 

0.764 was seen between NC vs AD, NC vs MCI, MCI vs MCIc and MCI vs AD subjects, 

respectively. Including entorhinal cortex volume improved the AUCs to 0.914, 0.740, 0.756 

and 0.780, respectively. For the disease prediction, binary logistic regression was applied on 
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five randomly selected test groups and achieved on average AUC's of 0.760 and 0.764 on the 

training and validation cohorts, respectively. Entorhinal cortex texture features were 

significantly different between the four groups and in many cases provided better results 

compared to other methods such as volumetry. 

6.2 Introduction 

Due to the aforementioned limitations of cognitive assessment in AD diagnosis, the research 

community has been actively searching for diagnostic imaging biomarkers especially the ones 

derived from quantitative T1-weighted MRI. However, radiologists cannot perceive subtle 

changes of neurodegeneration, especially in the early stages of the disease by the naked eyes 

observation. Even if they could, without any quantitative measurements, it would be 

impossible to predict the patient’s progress.  

Volumetry, remains the most established methods used in the assessment of AD, however, the 

accumulation of NFTs and Aβ plaques is present prior to atrophy and these plaques could 

affect image intensity structure and distribution. Texture analysis investigates the statistical 

properties of the image intensities which might represent changes in MRI image pixel intensity 

due to NFTs and Aβ plaques. Furthermore, MRI biomarkers based on texture might be able to 

detect earlier stages of AD than biomarkers that use larger scale changes, such as thickness or 

atrophy. The establishment of such biomarkers will allow the identification of individuals with 

MCI at an earlier stage which could lead to a better management of the MCI group targeting 

in slower progression or even prevention to conversion to AD. 

Although hippocampus represents the most established ROI used in the assessment of AD, 

the earlier involvement of the entorhinal cortex was proved by many studies [19], [120], [121], 

[147], [150], [173], [182]. In two comprehensive reviews [236], [237] the authors concluded that 

structural changes in the early stages of the disease are more pronounced in the entorhinal 

cortex. Table 22 tabulates studies that used entorhinal cortex in the assessment of AD. 

Furthermore, for the disease prediction, entorhinal cortex provided better predictive 



  

122 
 

accuracies compared to hippocampus. Although volumetry represents the most commonly 

used method to date, there is lack of research in the assessment of AD using texture analysis.  

The study of Sørensen et al [9],  found that  hippocampal texture was superior to volume 

reduction for the disease prediction. Therefore, we hypothesized that through the earlier 

involvement of entorhinal cortex and by using texture, it is likely to detect microscopic 

alterations of the disease before atrophy spreads. 

The main objective in this chapter is to determine whether MRI entorhinal cortex texture 

features could detect early cognitive decline in MCI and AD subjects. In addition, a 

comparison of entorhinal cortex texture to the gold standard method, hippocampal volume, it 

is made to evaluate which method could provide the best results. Finally, it is evaluated if 

entorhinal cortex texture features can be used in the prediction of conversion from MCI to AD. 
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Table 22: Selected quantitative MRI studies where entorhinal cortex was used for the classification of AD and 

the prediction of conversion from MCI to AD. 

Author Data type Classification ROI Acc. Se. Sp.  Description 

Classification Studies 

Juottonen et al. 

[121] 
Volume NC vs AD 

Hip. 

Erc. 

86% 

87% 

80% 

80% 

91% 

94% 

Both hippocampus and entorhinal cortex had the 

same discriminative power. 

Pennanen et al. 

[62] 
Volume NC vs MCI 

Hip. 

Erc. 

60% 

66% 

57% 

65% 

62% 

70% 

Between NC and MCI subjects entorhinal cortex 

atrophy was more pronounced and provided 

better classification. 

Ryo et al [238] Volume SMI vs NC 
Hip 

Erc. 
NA 

67% 

78% 

85% 

93% 

Subjects with SMI had lower Erc. volumes than 

NC, whereas no differences in Hip. volume were 

seen 

Prediction of conversion from MCI to AD 

Killiany et al. [19] Volume 
0 vs 36 

months 

Hip. 

Erc. 

NA 

84% 
NA NA 

Entorhinal cortex differentiated MCI subjects that 

developed AD whereas hippocampus did not. 

deToledo-

Morrell et al. 

[147] 

Volume 
0 vs 36 

months 

Hip. 

Erc. 

NA 

93% 
NA NA 

Entorhinal cortex provided better predictive 

accuracy from hippocampus  

Devanand et al. 

[174] 
Volume 

0 vs 36 

months 

Hip. 

Erc. 

79% 

80% 

61% 

63% 
NA 

Entorhinal cortex had more atrophy rates than 

hippocampus for MCIc. 

Bakkour et al. 

[90] 
Thickness 

0 vs 36 

months 
Cortex NA 83% 65% 

Entorhinal cortex volume may be a better 

predictor in people with MCI rather than 

hippocampal volume. 

Eskildsen et al. 

[176] 
Thickness 

0 vs 36 

months 
Cortex 

67%-

76% 
NA NA 

Longitudinal measures in MCI subjects showed 

that entorhinal cortex was affected first, followed 

by hippocampus 

Abbreviations: SMI: subjective memory impairment; NC: normal controls; MCI: mild cognitive impairment; 

MCIc: mild cognitive impairment converter; AD: Alzheimer’s disease; ROI: region of interest; Acc.: accuracy; Se: 

sensitivity; Sp: specificity. 
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6.3 Data Preparation 

6.3.1 The Alzheimer's Disease Neuroimaging Initiative 

Data were acquired from the ADNI (http://adni.loni.usc.edu/). The ADNI was launched in 2003 

by the National Institute on Aging, the National Institute of Biomedical Imaging and 

Bioengineering, the Food and Drug Administration, private pharmaceutical companies and 

non-profit organizations as a public-private partnership. 

6.3.2 Subjects 

All subjects selected for this study were from standardized data collections (see 

http://adni.loni.usc.edu/methods/mri-analysis/adni-standardized-data/) and specifically from 

the ADNI-1 Complete 2 and 3 year 1.5 Tesla datasets. All data acquired as part of this study 

are publicly available (http://www.loni.ucla.edu/ADNI/). Enrolled subjects were all between 

55 and 90 years of age and each subject was willing, able to perform all test procedures 

described in the protocol and had a study partner able to provide an independent evaluation 

of functioning. Overall, 455 subjects were included in the study: 153 NC (73 males and 80 

females), 141 MCI (95 males and 46 females), 77 MCI subjects that converted to AD (MCIc) (43 

males and 34 females) and 84 AD (40 males and 44 females).  

6.4 Data Analysis 

6.4.1 Segmentation Algorithm and Volumetry 

ROI segmentation was performed using the Freesurfer image analysis suite (Massachusetts 

General Hospital, Boston, MA), which is documented and freely available for download online 

(http://surfer.nmr.mgh.harvard.edu/). The Freesurfer pipeline, conforms the MRI scans to an 

isotropic voxel size of 1 mm3, and the MRI intensity of all T1-weighted scans analysed in this 

thesis was normalized using the non-parametric non-uniform intensity normalization (N3) 

algorithm of Sled et al. 1998 [74] followed by skull stripping and neck removal. Details of these 

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/methods/mri-analysis/adni-standardized-data/
http://www.loni.ucla.edu/ADNI/
http://surfer.nmr.mgh.harvard.edu/
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have been discussed in previous publications [188], [191]. In brief, this multistep pipeline 

includes motion correction, automated Talairach transformation, first normalization of voxel 

intensities, removal of the skull, linear volumetric registration, intensity normalization, 

nonlinear volumetric registration, volumetric labeling, second normalization of voxel 

intensities, and white matter segmentation (Figure 21). Output includes segmentation of 

subcortical structures, extraction of cortical surfaces, cortical thickness estimation, spatial 

normalization onto the FreeSurfer surface template (FsAverage), and parcellation of cortical 

regions. Hippocampal and entorhinal cortex volumes were computed using Freesurfer 

segmentations given that this is an established method. Cy-Tera supercomputer of the Cyprus 

Institute was used to run FreeSurfer.  

 

Figure 21: FreeSurfer volumetric segmentations and cortical delineation 

Texture features were calculated using KNIME Analytics platform [215]. The following 

Haralick texture features [216] were computed: Angular Second Moment (ASM), Contrast, 

Corelation, Variance, Sum Average, Sum Variance, Entropy and Cluster shade and their 

average in four directions (0°, 45°, 90°, 135°) was used. 
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6.4.2 Statistical Analysis 

Demographic data along with cognitive tests, texture and volume features of subjects at 

baseline scans were compared with one-way ANOVA to determine statistical differences 

between the groups (NC, MCI, MCIc, AD). Then, post hoc tests using the Bonferroni correction 

were applied to determine if there were significant differences in texture features between the 

groups. There were no outliers in the data, as assessed by inspection of a boxplot. 

Texture features and volume were combined as predictor variables in a logistic regression 

model in order to investigate the potential of combined value of the two MRI biomarkers. 

Backwards elimination methods was used to select the most suitable variables. Apart from 

texture and volume, we included age and gender as covariates. Through ROC curves, we 

determined the performance of the various variables, and their ability to discriminate NC from 

MCI and AD subjects, as well as to classify the conversion status. The resulting AUC was used 

to determine the capability for diagnosis. The significance of an AUC was determined using 

DeLong, Delong and Clarke–Pearson’s test [239]. 

Then, through a repeated measures ANOVA we compared entorhinal cortex and hippocampal 

volume changes with texture changes within 18 months and evaluated if there were significant 

texture changes during follow-up period. Data were checked for outliers and normal 

distribution, as assessed by boxplot and Shapiro-Wilk test (p > 0.05). When sphericity was 

violated, as assessed by Mauchly’s test, the Greenhouse-Geisser correction was applied. Then, 

Post hoc tests using the Bonferroni correction was used to compare the volume and texture 

changes. 

To evaluate the prognostic power of our model, we also used AUC curves on MCI and MCIc 

subjects. Specifically, the MCI group was randomly divided into both a training set (~70% of 

the participants) and a trial set (~30%) of the participants. This was iterated 5 times to provide 

5 unique training and test groups. The training sets were used to fit two binary logistic 

regression models: the first model included entorhinal cortex volume, MMSE scores, age and 
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gender as covariates and the second model had the same features, plus entorhinal cortex 

texture to determine if the addition of texture based metrics could improve the accuracy. For 

a more robust prediction model the collinearity between the predictor variables was evaluated 

and only those for which the collinearity was acceptable were included in the final model. The 

estimated logistic regression model was then applied to the validation cohorts.  

Statistical analysis was performed with IBM SPSS Statistics Version 24 (IBM Corp. Released 

2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.) or MedCal 

Version 19 (MedCalc Software bvba, Ostend, Belgium; https://www.medcalc.org; 2019). The 

significance level of all statistical test was set at P < 0.05. 

6.5 Results 

Baseline demographics including gender, age, MMSE scores are shown in Table 23. All 

baseline variables (except the age) were significantly different between the four groups based 

on one-way ANOVA. Estimations of hippocampal and entorhinal cortex volumes are in cubic 

millimeter (left and right averaged). As expected, AD patients had smaller volumes than MCI 

subjects and both had smaller volumes than NC subjects. 

Table 23: Baseline demographics, hippocampal and entorhinal cortex volume. 

Variables at baseline 
(mean ± SD) 

Diagnosis Group 
P 

value 
NC 
(n=194) 

MCI 
(n=200) 

MCI_c 
(n=84) 

AD 
(n=130) 

Sex (M/F) 96 / 98 127 / 73 49 / 35 60 / 70 .003 
Age 76.17 (5.20) 74.74 (7.18) 74.88 (7.30) 76.01 (7.35) .111 

MMSE Score 29 (1.0) 27 (1.82) 26 (1.84) 
23 
(2.16) 

<.001 

CDR 0.0 (.00) 0.50 (.04) 0.50 (.00) 0.75 (.25) <.001 
Entorhinal cortex Volume (mm3) 1930 (284) 17191723 (384) 154410 (338) 1417 (348) <.001 
Hippocampal Volume (mm3) 3539 (413) 3243 (461) 2941 (461) 2892 (474) <.001 

Abbreviations: NC: normal controls; MCI: mild cognitive impairment; MCIc: mild cognitive impairment 

converter; AD: Alzheimer’s disease; MMSE: mini-mental status examination; CDR: clinical dementia rating; SD: 

standard deviation. 

https://www.medcalc.org/
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6.5.1 Between groups differences 

A one-way ANOVA was conducted to determine if there were significant texture features 

between the groups for baseline scans (Table 24). For NC vs AD and NC vs MCI groups, 

entorhinal cortex revealed statistically significant differences in more features compared to 

hippocampus. Specifically, hippocampus did not show any significant changes for NC vs MCI 

group, apart for volume. However, hippocampal texture revealed statistical significant 

differences in more features between MCI vs MCIc group. Between MCI vs AD, both 

structures had similar results with entorhinal cortex showing statistically significant 

differences in the texture features contrast, correlation, sum variance and entropy, whereas 

hippocampus for the texture features ASM, sum average and entropy. 

Table 24: Mean differences at baseline scans for entorhinal cortex and hippocampus 

 
Mean Difference (SE) 

Entorhinal cortex Hippocampus 

Group NC vs AD NC vs MCI 
MCI vs 

MCIc 
MCI vs AD NC vs AD NC vs MCI 

MCI vs 

MCIc 

MCI vs 

AD 

Texture Features  

ASM 
-.017* 

(.005) 

-.01 

(.004) 

-.007 

(.006) 

-.006 

(.005) 

-.013* 

(.004) 

-.008 

(.004) 

-.023* 

(.005) 

-.023* 

(.005) 

Contrast 
-24.3* 

(2.60) 

-7.73* 

(2.27) 

-7.36 

(2.93) 

-16.60* 

(2.60) 

-2.0 

(2.36) 

-3.61 

(2.11) 

-4.62 

(2.70) 

-5.60 

(2.32) 

Corelation 
-.051* 

(.005) 

-.017* 

(.004) 

-.013 

(.005) 

-.034* 

(.005) 

-.0004 

(.005) 

-.0004 

(.005) 

-.016 

(.007) 

-.001 

(.005) 

Variance 
-.201 

(1.14) 

-1.11 

(1.01) 

-.780 

(1.30) 

-.910 

(1.14) 

-2.40 

(2.80) 

-4.90 

(2.46) 

-13.0* 

(2.20) 

-7.30 

(2.77) 

Sum Average 
-1.44* 

(.365) 

-.590 

(.324) 

-.821 

(.414) 

-.853 

(.361) 

-1.64* 

(.560) 

-.823 

(.498) 

2.40* 

(.640) 

-2.47* 

(.556) 

Sum Variance 
-27.70* 

(4.15) 

-12.28* 

(3.68) 

-2.18 

(4.80) 

-15.41* 

(4.14) 

-6.30 

(10.0) 

-15.20 

(8.80) 

-41.0* 

(11.3) 

-21.5 

(9.80) 

Entropy 
-.137* 

(.023) 

-.058* 

(.020) 

-.060 

(.026) 

-.080* 

(.023) 

-.103* 

(.028) 

-.034 

(.024) 

-.113* 

(.030) 

-.138* 

(.026) 

Cluster Shade 
-471 

(350) 

-260 

(312) 

-118* 

(414) 

-730 

(342) 

-1009 

(1038) 

-2373 

(927) 

-4600* 

(1182) 

-3383 

(1026) 

Volumetric 

Features 
 

Volume 
-513* 

(39.1) 

-211* 

(34.8) 

-174* 

(45.0) 

-301* 

(38.7) 

-646* 

(52.4) 

-295* 

(42.7) 

-302* 

(60.0) 

-351* 

(51) 

Abbreviations: SE: standard error; ASM: angular second moment; NC: normal controls; MCI: mild cognitive impairment; MCIc: mild 

cognitive impairment converter; AD: Alzheimer’s disease. 

* The mean difference is significant at the 0.05 level. 
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6.5.2 Texture differences between groups – Classification 

To determine the classification between the groups, a binary logistic regression model was 

calculated for each individual variable and by using ROC curves we determined their AUC. 

The combination model included raw single MRI variable scores as well as age and gender as 

covariates. In most of the cases all eight texture features revealed significant differences 

between groups (see Tables 25 to 28). Then, all the variables were combined together and the 

backward elimination method selected the more important predictor variables. 

For NC vs AD group, the AUC for entorhinal cortex texture values ranged from 0.540 to 0.824 

(Table 25).  When texture features were combined into a single classification model, the AUC 

reached 0.872 which was similar to hippocampal volume (AUC 0.869) and entorhinal cortex 

volume (AUC 0.888). When entorhinal cortex texture and volume were combined the AUC 

reached 0.914. 

Table 25: Entorhinal cortex texture and volume in classifying NC vs AD 

NC vs AD 
ROC Analysis 
AUC 

95% CI 
P  
value 

Entorhinal cortex 

Texture Features  

 ASM 0.592 0,529-.656 .005 
Contrast 0.794 0.743-0.845 <.001 
Corelation 0.824 0.776-0.872 <.001 
Variance 0.524 0.458-0.590 .475 
Sum Average 0.620 0.555-0.681 <.001 
Sum Variance 0.713 0.653-0.770 <.001 
Entropy 0.685 0.625-0.744 <.001 
Cluster Shade 0.540 0.475-0.604 .238 

Volume and Thickness  

Erc. Volume 0.888  0.847-0.925 <.001 

Erc. Thickness 0.809 0.755-0.863 <.001 

Features Combination  

Texture  
(ASM, Correlation, Variance, Sum Average & Cluster shade) 

0.872 0.828-0.916 <.001 

Texture + Erc. Volume 0.914 0.879-0.950 <.001 

Hippocampus 

Hippocampal Volume 0.869 0.827-0.912 <.001 

Abbreviations: NC: Normal Controls; AD: Alzheimer’s disease; ROC: receiver operating characteristic; AUC: area 

under curve, CI: confidence interval; ASM: angular second moment; Erc: entorhinal cortex. 
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Between NC and MCI subjects, features combination showed a lower AUC (0.710) compared 

to entorhinal and hippocampal volume (Table 26). The entorhinal cortex texture and volume 

combination raised the AUC to 0.740. 

Table 26: Entorhinal cortex texture and volume in classifying NC vs MCI 

NC vs MCI 
ROC Analysis 
AUC 

95% CI P value 

Entorhinal cortex 

Texture Features  

 ASM 0.618 0.563-0.674 <.001 
Contrast 0.664 0.611-0.718 <.001 
Corelation 0.671 0.617-0.725 <.001 
Variance 0.604 0.548-0.660 <.001 
Sum Average 0.618 0.562-0.674 <.001 
Sum Variance 0.641 0.586-0.695 <.001 
Entropy 0.632 0.577-0.687 <.001 
Cluster Shade 0.608 0.551-0.666 <.001 

Volumetric and Thickness  

Erc. Volume 0.735 0.686-0.784 <.001 

Erc. Thickness 0.659 0.604-0.713 <.001 

Features Combination  

Texture  
(ASM, Correlation, Variance, Sum Average & Cluster 
shade)  

0.710 0.656-0.762 <.001 

Texture & Erc. Volume 0.740 0.689-0.791 <.001 

Hippocampus 

Hippocampal Volume  0.762  0.715-0.809 <.001 

Abbreviations: NC: normal controls; MCI: mild cognitive impairment; ROC: receiver operating characteristic; 

AUC: area under curve, CI: confidence interval; ASM: angular second moment; Erc: entorhinal cortex. 

 

 

 

 

 



  

131 
 

Between MCI and MCIc subjects, features combination provided a higher AUC (0.730), 

compared to entorhinal cortex and hippocampal volume (Table 27). The entorhinal cortex 

texture and volume combination raised the AUC to 0.756. 

Table 27: Entorhinal cortex texture and volume in classifying MCI vs MCIc 

MCI vs MCIc 
ROC Analysis 
AUC 

95% CI 
P  
value 

Entorhinal cortex 

Texture Features  

 ASM 0.565 0.494-0.637 0.85 
Contrast 0.583 0.510-0.657 .028 
Corelation 0.580 0.505-0.654 .038 
Variance 0.531 0.458-0.604 .037 
Sum Average 0.591 0.520-0.662 .036 
Sum Variance 0.527 0.451-0.603 .475 
Entropy 0.593 0.522-0.662 .014 
Cluster Shade 0.696 0.632-0.759 .032 

Volume and Thickness  

Erc. Volume 0.642  0.573-0.711 <.001 

Erc. Thickness 0.670 0.603-0.737 <.001 

Features Combination  

Texture  
(ASM, Correlation, Variance, Sum Average & Cluster 
shade)  

0.730 0.665-0.795 <.001 

Texture & Erc. Volume 0.756 0.692-0.820 <.001 

Hippocampus 

Hippocampal Volume 0.685 0.617-0.753 <.001 

Abbreviations: MCIc: mild cognitive impairment converter; ROC: receiver operating characteristic; AUC: area 

under curve, CI: confidence interval; ASM: angular second moment; Erc: entorhinal cortex. 
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Between MCI and AD subjects, features combination showed a higher AUC of 0.764 compared 

to entorhinal cortex and hippocampal volume, (Table 28). The entorhinal cortex texture and 

volume combination raised the AUC to 0.780. 

Table 28: Entorhinal cortex texture and volume in classifying MCI vs AD 

MCI vs AD 
ROC Analysis 
AUC 

95% CI P value 

Entorhinal cortex 

Texture Features  

 ASM 0.627 0.565-0.690 <.001 
Contrast 0.704 0.646-0.763 <.001 
Corelation 0.725 0.668-0.783 <.001 
Variance 0.624 0.560-0.688 <.001 
Sum Average 0.649 0.587-0.711 <.001 
Sum Variance 0.658 0.596-0.720 <.001 
Entropy 0.656 0.594-0.718 <.001 
Cluster Shade 0.645 0.583-0.706 <.001 

Volume and Thickness  

Erc. Volume 0.726 0.670-0.781 <.001 

Erc. Thickness 0.702 0.642-0.762 <.001 

Features Combination  

Texture  
(ASM, Correlation, Variance, Sum Average & 
Cluster shade) 

0.764 0.710-0.818 <.001 

Texture + Erc. Volume 0.780 0.728-0.833 <.001 

Hippocampus 

Hippocampal Volume 0.711  0.652-0.771 <.001 

Abbreviations: MCI: mild cognitive impairment; AD: Alzheimer’s disease; ROC: receiver operating characteristic; 

AUC: area under curve, CI: confidence interval; ASM: angular second moment; Erc: entorhinal cortex. 

6.5.3 Measures between different MRI scan Intervals 

A one-way repeated measures ANOVA was conducted to determine whether there were 

statistically significant differences in entorhinal cortex (texture and volume) over the 18 

months observation (baseline, 6, 12 and 18 months). For comparison, hippocampal volume 

was also included in this analysis. At each time point, a diagnosis was made based on the 

NINCDS-ADRDA Alzheimer’s Criteria to identify conversion of MCI to probable AD and vice 

versa and only MCI and MCIc subjects were included in this part of the analysis. Specifically, 

longitudinal data of 141 MCI and 77 MCIc subjects were included in this analysis. The means 

and standard deviations for volume are presented in Table 29 and for texture in Table 30. We 
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reported the F-statistic from the repeated measures ANOVA test as F (dftime, dferror)= F-value, P 

= P-value. 

Table 29: Statistically significant difference in entorhinal cortex and hippocampal volume over a 18-month 

intervention 

Within Subjects 

Effects 

Entorhinal cortex volume 

Mean (SD) mm3 

Hippocampal volume 

Mean (SD) mm3 

MCI MCIc MCI MCIc 

Baseline 1733 (390) 1504 (293) 3263 (483) 2906 (439) 

6m 1712 (389) 1449 (278) 3213 (487) 2860 (423) 

12m 1693 (393) 1424 (269) 3168 (496) 2819 (432) 

18m 1657 (411) 1384 (269) 3129 (487) 2781 (436) 

F-ratio 

(Time) 

F(2.837, 383)= 45.62,  

P < .0005 

F(3, 186)= 45.06,  

P < .0005 

F(2.748, 376)= 41.8, 

 P < .0005 

F(3, 195)= 21.74,  

P < .0005 

Abbreviations: MCI: mild cognitive impairment; MCIc: mild cognitive impairment converters; SD: standard 

deviation. 

 

For entorhinal cortex volume in both MCI and MCIc subjects, there was a significant effect for 

time, [F (2.837, 383.0)= 45.62, P < 0.0005] and [F(3, 186)= 45.06, P < 0.0005], respectively. 

Furthermore, the mean difference was statistically significant at the 0.05 level between all-time 

points for both MCI and MCIc subjects with the exception of 12-18 time point for MCIc 

subjects. Post hoc tests using the Bonferroni correction showed that entorhinal cortex volume 

in the MCI subjects was reduced by an average of 20 ± 6.9mm3 6 months after the baseline scan, 

then by an additional 19 ± 6.0mm3 between 6-12 month time and 36 ± 6.1mm3 between 12-18 

month time. As expected, the entorhinal cortex degeneration was more pronounce in the MCIc 

subjects. Their entorhinal cortex volume was reduced by an average of 55 ± 10.5mm3 6 months 

after the baseline scan, then by an additional 25 ± 9.5mm3 between 6-12 month time and 40 ± 

10.3mm3 between 12-18 month time. 

For hippocampal volume in both MCI and MCIc subjects, there was significant effect for time, 

[F (2.748, 376.4)= 41.8, P < 0.0005] and [F(3, 195)= 21.74, P < 0.0005] respectively. Furthermore, 

the mean difference was statistically significant at the 0.05 level between all-time points for 
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both MCI and MCIc subjects with the exception of 12-18 time point for MCIc subjects. 

Interestingly, hippocampal volume reduction in the MCIc subjects was similar to MCI stable 

subjects. Specifically, post hoc tests using the Bonferroni correction revealed that hippocampal 

volume in the MCI subjects was reduced by an average of 49 ± 12.6mm3 6 months after the 

baseline scan, then by an additional 45 ± 11.5mm3 between 6-12 month time and 38 ± 11.3mm3 

between 12-18 month time. Similar pattern was seen in MCIc subjects as well, as hippocampal 

volume reduction was 45 ± 15.8mm3 after 6 months from the baseline scan, and then reduced 

by an additional 40 ± 14.0mm3 between 6-12 month time and additional 38 ± 16.6mm3 between 

12-18 month time. 

Remarkably, repeated measures ANOVA in the entorhinal cortex texture features of MCIc 

subjects, revealed that there was significant effect for time for all features (except for cluster 

shade), whereas, in stable MCI subjects, there was significant effect for time only for sum 

variance and entropy. 
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Table 30: Statistically significant difference in entorhinal cortex texture over a 18-month intervention 

MCI stable 

Entorhinal Cortex Texture features - Mean (SD) 

ASM Contrast Corelation Variance 
Sum 
Average 

Sum Variance Entropy Cluster shade 

Baseline .226 (.047) 220 (22.38) .498 (.043) 659.4 (38.0) 220 (9.49) 659 (38.0) 2.92 (.216) 1838 (3218) 

6m .228 (.046) 223 (20.95) .495 (.041) 659.2 (38.5) 221 (9.90) 659 (38.5) 2.90 (.221) 1198 (2986) 

12m .230 (.047) 223 (19.34) .494 (.043) 656.0 (38.1) 220 (9.50) 655 (41.9) 2.89 (.212) 1276 (3086) 

18m .234 (.047) 222 (24.71) .493 (.049) 654.0 (38.1) 219 (10.7) 654 (44.3) 2.89 (.212) 1300 (2989) 

F-ratio 

(Time) 

F(3, 417)=  

2.45 

P = 0.620 

F(3, 384)= 
1.05   

P = 0.370 

F(3, 375)= 
1.14 

P = 0.332 

F(3, 411)=  

2.17 

P = 0.09 

F(3, 411)= 
1.44 

P = 0.230 

F(3, 411)= 2.17 

P = 0.091 

F(3, 414)= 
2.65  

P = 0.048 

F(3, 396)= 
2.49  

P = 0.060 

   

MCI 
converters 

ASM Contrast Corelation Variance 
Sum 
Average 

Sum Variance Entropy Cluster shade 

Baseline .230 (.041) 230 (26.6) .480 (.046) 655.4 (35.0) 221 (10.5) 655 (35.0) 2.87 (.179) -296.7 (1860) 

6m .237 (.039) 238 (27.4) .468 (.043) 650.0 (40.5) 222 (11.4) 650 (40.5) 2.82 (.185) -388.4 (2363) 

12m .235 (.040) 237 (28.5) .468 (.047) 647.4 (42.0) 222 (12.0) 637 (42.0) 2.82 (.186) -385.0 (2394) 

18m .243 (.043) 238 (28.8) .459 (.047) 637.8 (44.3) 219 (12.7) 647 (44.3) 2.79 (.156) -557.1 (2032) 

F-ratio 

(Time) 

F(2.72, 
179.5)= 
3.86 

P = 0.013 

F(3, 201)= 
5.80   

P < .0005 

F(3, 192)= 
6.82 

P < .0005 

F(3, 201)= 7.45 

P < .0005 

F(3, 198)= 
3.55 

P < .0005 

F(3, 201)= 7.45 

P < .0005 

F(3, 204)= 
7.30  

P < .0005 

F(3, 162)= 
0.23  

P = 0.874 

Abbreviations: MCI: mild cognitive impairment; ASM: angular second moment; SD: standard deviation. 

6.5.4 Prediction of Conversion to AD within 18 months 

To evaluate entorhinal cortex texture in the prediction of conversion from MCI to AD all the 

MCI subjects, were divided into two categories: the MCI subjects who remained stable and 

did not convert to AD within 18 months (n=200) versus the MCIc subjects who converted to 

AD within 18 months (n=84). First, we run a prediction model which included entorhinal 

cortex volume, MMSE scores and gender with age as covariates. Then, a second model was 

run where entorhinal cortex texture features (contrast and cluster shade) were included as 
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well, to evaluate if texture metrics could improve accuracy. The selected variables were also 

evaluated for collinearity between them and their degree of correlation was acceptable. 

Then, the MCI group was divided into a training set (~70) and a trial set (~30%). We randomly 

generated 5 of these sets, with each training set having a total of n=133 MCI and n=55 MCIc, 

whereas the trial set had total of n=67 MCI and n=29 MCIc. Independent sample t-test and chi-

square analysis showed no statistical difference between the baseline demographics in the 

training and trial sets in each iteration. For each of the 2 models, 5 binary logistic regression 

models were determined, corresponding to one for each training set (Table 31). The model 

including texture performed better and achieved AUCs of 0.795, 0.725, 0.745, 0.786, and 0.750 

respectively. Then, the logistic regression coefficients from the final model developed from the 

training cohorts were applied to the validation cohorts and AUCs of 0.780, 0.780, 0.790, 0.735 

and 0.735 were seen. 

Table 31: Area under curve in five trials of randomly splitting training (70%) and trial data (30%). 

 Entorhinal cortex Volume Entorhinal cortex Volume and Texture 

Trial 

Training Cohort Validation Cohort Training Cohort                               Validation cohort 

ROC 
Analysis 
AUC 

(95% 
CI) 

P 
value 

ROC 
analysis 
AUC 

(95% 
CI) 

P 
value 

ROC 
Analysis 
AUC 

(95% 
CI) 

P 
value 

ROC 
analysis 
AUC 

(95% 
CI) 

P 
value 

1 0.760 
0.690-
0.830 

.000 0.700 
0.583-
0.814 

.000 0.795 
0.728-
0.862 

.000 0.780 
0.662-
0.898 

.000 

2 0.673 
0.595-
0.751 

.001 0.688 
0.573-
0.804 

.005 0.725 
0.649-
0.801 

.000 0.780 
0.674-
0.886 

.001 

3 0.663 
0.580-
0.746 

.04 0.658 
0.538-
0.778 

.005 0.745 
0.770-
0.820 

.000 0.790 
0.680-
0.903 

.001 

4 0.662 
0.582-
0.742 

.000 0.635 
0.500-
0.772 

.005 .786 
0.712-
0.860 

.000 0.735 
0.621-
0.848 

.001 

5 0.647 
0.565-
0.730 

.001 0.709 
0.591-
0.827 

.003 0.751 
0.675-
0.827 

.000 0.735 
0.627-
0.843 

.001 

Abbreviations: ROC: receiver operating characteristic; AUC: area under curve, CI: confidence interval. 

6.6 Discussion 

The main objective of this study was to evaluate entorhinal cortex texture as a new biomarker 

of AD from T1-weighted MR images. To the best of our knowledge, this is the first study that 

used texture analysis on the entorhinal cortex for the assessment of AD. Thus, our results are 
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not directly compared to the same method and ROI previously used in other AD studies, but 

mainly to hippocampal volume, which represents the most frequently used method in the 

assessment of AD. In the analysis, apart from entorhinal cortex texture features, we calculated 

also its volume and we combined them in a binary logistic regression model which included 

age and gender as covariates.  

For entorhinal cortex, one way-ANOVA showed that contrast, corelation and volume were the 

features that showed statistical significant differences between all groups and for 

hippocampus were sum average, cluster shade and volume (see Table 24). For the NC vs MCI 

group, one way ANOVA showed that were statistically significant differences in more features 

for the entorhinal cortex compared to hippocampus, whereas, hippocampus showed 

significant differences in more features between MCI vs MCIc group. Perhaps, these 

differences are correlated with the fact that entorhinal cortex is the region affected first by the 

disease [19], [120], [121], [147], [150], [173], [182] whereas, hippocampus is involved in a later 

stage.  

In the literature, entorhinal cortex and hippocampus have shown a significant role in the 

assessment of AD [236]. Similarly, in the present study results of the ROC curve analysis 

showed that for the entorhinal cortex there were significant differences between NC subjects 

and AD patients. Specifically, there were significant texture changes in six texture features 

(apart from variance and clustershade) and their combination provided an AUC of 0.872 (P < 

0.001) for the discrimination between NC and AD subjects (Table 25). This was similar to 

entorhinal cortex or hippocampal volume, which showed an AUC of 0.888 (P < 0.001) and 0.869 

(P < 0.001), respectively. When entorhinal cortex texture features and volume were combined 

into the same model, the diagnostic result was improved, showing an AUC of 0.914 (P < 0.001). 

Compared to a study that used hippocampal texture such as from Zhang et al., [130] their 

classification accuracy reached 96.4%. However, their dataset included severely affected AD 

subjects (MMSE 5.53 ± 4.47 compared to 23±1.9 for the ADNI data in the present study). 
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Compared to the study of Sørensen et al., [9] which also used the ADNI dataset, their 

hippocampal texture achieved an AUC of 0.912 in discriminating NC from AD. On the other 

hand, the study of Luk et al., [223] used texture features on the whole brain and the 

combination of hippocampal texture features and volume provide an AUC of 0.924 which was 

close to our combined model. 

Compared to other ADNI volumetric studies where hippocampus was used, NC subjects were 

classified from AD patients with AUC levels of 0.750 to 0.887 [240] and 0.810 to 0.895 when 

hippocampal subfields only were used [241]. This is comparable to our hippocampal volume 

results (AUC 0.869) and close to entorhinal cortex texture (AUC 0.888). In other studies [94], 

[121], where both hippocampal and entorhinal cortex volume were used, the classification 

accuracy ranged between 84%-86%. In the study of Pennanen et al., [62] the combination of 

hippocampal and entorhinal cortex volume provided an accuracy of 91%. 

Between NC vs MCI subjects, the combination of entorhinal cortex texture features in the 

logistic regression model provided an AUC of 0.710 and their combination with entorhinal 

cortex volume, raised the AUC to 0.740 (Table 26). This is  comparable to the AUC (0.764) in 

the study of Sørensen et al. [9] where hippocampal texture was used. In the study of Hwang et 

al., 2016 [242] where voxel based 3DT1W was used on the whole brain, their AUC ranged 

between 0.682 to 0.713 which was close to our single ROI method. The study by Simoes et al. 

[91] used whole brain texture maps reached a classification accuracy of 87% (Se. 85%, Sp. 95%), 

however, their analysis was based on 3 Tesla (T) images. Compared to other studies [62], [94] 

that used hippocampal volume for the discrimination between NC vs MCI, a classification 

accuracy close to 66% was achieved. 

Between MCI and MCIc subjects, the combination of entorhinal cortex texture features and 

volume provided an AUC of 0.756 whereas entorhinal cortex or hippocampal volume 

provided lower AUCs of 0.642 and 0.685 respectively (Table 27). Our result for this group was 

similar to the study of Chincarini et al. [243] where texture features were extracted from 
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defined volumes of interest, mainly from the MTL, and through random forest classifiers they 

achieved an AUC of 0.740. These findings suggest that the entorhinal cortex texture changes 

precede neuronal atrophy of the hippocampus which is consistent with the most widely used 

staging scheme proposed by Braak and Braak in 1991 [5]. Specifically, Stage I is associated with 

NFTs deposition in the entorhinal-perirhinal cortex and in Stage II, the NFTs become more 

prominent and the entorhinal cortex is eventually involved. In Stage III, the entorhinal cortex 

is fully involved whereas between Stage III-IV NFTs appear in the hippocampus. Eventually, 

in stages V-VI apart from the MTL NFTs are also widely distributed in the isocortex. 

Between MCI and AD subjects, the combination of entorhinal cortex features showed better 

diagnostic capability (AUC of 0.764) compared to entorhinal cortex and hippocampal volume 

(AUCs of 0.726 and 0.711 respectively). The combination of entorhinal cortex texture and 

volume raised the AUC to 0.780 (Table 28). For this group, other studies [62], [94], [127] 

achieved a classification accuracy between 80%-82% using volumetric or shape characteristics 

of the hippocampus and entorhinal cortex.  

In the one-way repeated measures ANOVA, the entorhinal cortex volume reduction was more 

pronounced in the MCIc subjects whereas, hippocampal volume atrophy rate was similar in 

both MCI and MCI subjects. Similar finding was seen in the study of  Devanand et al. [174] 

where it was shown that  entorhinal cortex had more severe atrophy rates, compared to 

hippocampus, in MCIc subjects. Regarding entorhinal cortex texture features (Table 30) the 

one-way repeated measures ANOVA showed significant effect for time (for all texture 

features) in MCIc subjects, whereas, in MCI stable subjects there was no statistically significant 

difference (apart from entropy). Perhaps, this finding indicates that through entorhinal cortex 

texture features we could identify MCI subjects that in the future they could develop the 

disease. 

Furthermore, we determined whether entorhinal cortex texture could be used to predict 

conversion of MCI to AD within 18 months. For the discrimination of stable MCI from MCIc 
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subjects, our prediction model including entorhinal cortex features, volume, MMSE scores, 

age and gender performed better rather than volume alone and demonstrated an average AUC 

of 0.760 in the training cohort and an AUC of 0.764 in the validation cohort. In this study, the 

combination of texture and volume features improved the prediction of conversion from MCI 

to AD and this was also the finding as well by two recent studies by Gao et al., [234] and Luk 

et al., [223]. Compared to other studies that followed their subjects for the same time period, 

such as from [67], [95] and hippocampal volume was used, the classification accuracy between 

MCI and MCIc was 67% and 64% respectively. Sørensen et al. [9], compared hippocampal 

volumetry and texture in the differentiation between stable MCIs and MCI  converters within 

24 months and AUCs of 0.670 and 0.740 respectively, were achieved.  In the study from Misra 

et al., [66] where a VBM method on the whole brain was used to consider the conversion within 

12 months an accuracy of 81.5% was obtained. In a recent study by Lee et al., [232] texture 

analysis was also used for the prediction of the disease in subjects from the ADNI database. In 

their analysis texture of the hippocampus, precuneus and posterior cingulate cortex were 

included and their model ranged between AUCs of 0.79 to 0.82 whereas, our one structure 

only analysis ranged between 0.735-0.790. 

6.7 Limitations 

There are some limitations in the present study. First, the ADNI cohort cannot be generalized 

to the normal population given the patient recruitment was targeted toward clinical trials in 

patients with AD. The baseline demographics of these sample patients do not fit with the 

actual demographics of the broader population. For example, female / male ratio is poor with 

almost twice as many males as females especially for MCI subjects. Furthermore, ADNI study 

does not provide postmortem pathological confirmation of the clinical status. Therefore, the 

stable MCI subjects we selected for the present study although, did not progress to AD within 

the followed-up period, they might have developed the disease or other types of dementia in 

a later stage. Therefore, as in any AD study involving in vivo data, the diagnosis of the disease 
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remains probable. Thus, MRI patterns of neurodegeneration found in studies like the present 

may have uncertainties. 

6.8 Chapter main findings 

1. This is the first study published in the literature that run texture analysis on the 

entorhinal cortex for the assessment of AD. 

2. Entorhinal cortex texture features (ASM, Contrast, Correlation, Variance, Sum Average, 

Sum Variance, Entropy, Cluster shade) were used for the classification and prediction of the 

disease. 

3. Entorhinal cortex features revealed significant differences between the four groups (NC 

vs AD, NC vs MCI, MCI vs MCIc and MCI vs AD). Furthermore, entorhinal cortex texture 

features provided better results in the classification of NC vs AD, MCI vs MCIc, MCI vs AD 

subjects compared to hippocampal volume or entorhinal cortex volume and thickness. 

4. For the prediction of the disease the inclusion of entorhinal cortex texture and volume 

along with clinical measures of age, gender and cognitive scores, achieved better results 

compared to volumetric methods. 

5. The aforementioned findings, suggest that the deposition of NFTs in the area of 

entorhinal cortex may precede the development of atrophy in the hippocampus. 
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7 
Conclusions and Future Scope of Work 

 

7.1 Introduction 

Cognitive, clinical and neuroimaging measures have been shown to be sensitive to AD and 

their efficiency as single biomarkers (or in combination) has been proved by many studies. In 

this study, structural MRI images from 1.5T and 3T systems were used to extract volumetric, 

thickness and texture features from the entorhinal cortex and the hippocampus to evaluate 

and compare their ability in the classification and prediction of the disease.  

The key aims of the present thesis were: (1) to evaluate the disease progression and detect the 

brain structures affected in the earliest stage of AD and to be used in the analysis. Post mortem 

studies were considered as well to choose the most appropriate structures. Furthermore, the 

major disadvantages of the clinical, cognitive assessment used to evaluate an MCI or AD 

patient are also reported (Chapter 2). (2) To evaluate how the two main structures, entorhinal 

cortex and hippocampus, are dynamically affected by the disease and compare the several 

quantitative methods used in the assessment of AD derived from structural MRI (Chapter 3). 

(3) To evaluate how the MR magnetic field strength could affect volumetric, thickness and 

texture features in their ability to classify MCI and AD from NC subjects (Chapter 5) and (4), 

to test the diagnostic and predictive ability of entorhinal cortex texture features in the 

assessment of MCI and AD (Chapter 6).  
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7.2 Major Conclusions and Contributions 

Chapter 3 represents a review of the literature of the assessment of AD based on quantitative 

MRI. In this Chapter, most of the freely available databases that are currently being used from 

many investigators are described, along with the most frequently used brain segmentation 

software packages which are necessary for MR quantitative imaging. In addition, Chapter 3 

focuses on the quantitative methods derived from MRI images that are currently being used 

in the assessment of AD. Overall, the results of 30 studies are tabulated in Tables 8 and 9, 

where 11 studies investigated the classification of the disease and 19 studies evaluated 

quantitative MRI role in the prediction of the disease, respectively. All the studies agreed that 

quantitative MRI is essential in the assessment of AD because of the fact that the human eye 

cannot perceive the subtle anatomical changes affecting the small structures of the brain as 

seen in non-quantitative MRI. 

The findings of this literature review [244] suggested that in the early stages of the disease 

methods that evaluate the whole brain, such as VBM, is better to be avoided, as in the early 

stages neurodegeneration initiates from specific regions within the MTL and more specifically 

the entorhinal cortex. Whole brain methods, could be used in the more advance stages of the 

disease where atrophy spreads outside the MTL. Texture analysis appears to be a promising 

method to assess brain, however, its use is very limited as most of the studies preferred 

volumetric measures. Perhaps, one reason that texture is not so frequently used, relies on the 

fact that it is more difficult to perceive its meaning compared to other methods such as volume 

or thickness which are terms that are daily used by the radiologists to describe several 

pathologies. 

Regarding ROI selection, it is suggested that entorhinal cortex is better to be used in the early 

stages of the disease as it deteriorates more severely compared to hippocampus, whereas, in 

the more advanced stages, both structures could be used. However, hippocampus represents 

the most widely used structure in the assessments of AD, perhaps because it is a larger 
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structure with more specific boundaries and therefore, it’s easier to be segmented and used in 

quantitative analysis. Furthermore, one other reason that hippocampus is preferred, might be 

its direct relationship to the clinical manifestation of the disease, meaning that when cognitive 

assessment will detect the disease, hippocampal atrophy will be detected in structural MRI as 

well.  In conclusion, Chapter 3, suggested that texture analysis is better to be used in the early 

stages of the disease and entorhinal cortex texture features should be evaluated for the disease 

prediction and classification. To the best of our knowledge, no study in the literature used this 

combination before.  

In Chapter 5, it was evaluated whether hippocampal texture features extracted from 1.5T and 

3T images are statistically different and if a stronger magnetic field could provide better results 

in the classification of subjects. This comparison was also an innovation in this thesis, as apart 

from studies that compared volumetric measures, e.g. from hippocampus, there was no other 

study that compared texture features before derived from different magnetic fields.  

The between 1.5T and 3T texture features comparison of this work research [245] showed that 

texture features extracted from 3T revealed statistically significant differences for more 

features between the groups (NC vs AD, NC vs MCI, MCI vs AD). However, for the larger 

scale changes such as volume and cortical thickness the two systems appeared to have similar 

performance which was consistent with previous volumetric studies that used volumetric 

measures [220], [235]. One explanation for this finding is that due to higher CNR and SNR 

provided by stronger magnetic fields systems, enable the brain neurodegeneration to be 

captured more efficiently from texture analysis rather than volume changes which occur in a 

later stage. Furthermore, in the classification between NC vs MCI group, higher AUC’s were 

achieved for 3T for hippocampal ASM, contrast, correlation, variance, sum average, sum 

variance, hippocampal and amygdala volume and cortical thickness. 

The results from this study suggested that the use of texture analysis on 3T images could lead 

to the earlier diagnosis compared to texture features extracted from 1.5T. Apparently, 
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nowadays with even stronger magnetic fields such as 7T or 11T systems it would be interesting 

to investigate what kind of quantitative information could be captured from texture at these 

magnetic fields.   

To address the literature ‘’gap’’ mentioned in Chapter 3, (no study used before texture analysis 

on the entorhinal cortex for the assessment of AD) in Chapter 6, entorhinal cortex texture 

features were extracted and tested if they could be used in the assessment of AD, in both 

classification and prediction. Although there is a limited number of studies that used texture 

before in the classification and prediction of AD, this is the first study [246] that extracted 

texture features from the entorhinal cortex in the assessment of AD.  

Specifically, the main objective in Chapter 6, was to evaluate if entorhinal cortex texture 

features extracted from T1-weighted MR images could be used as a new biomarker for the 

assessment of AD. Specifically, it was investigated if entorhinal cortex texture changes could 

provide better results compared to the hippocampal atrophy which remains the “gold 

standard” method in the assessment of AD. Consistent with a number of previous studies, our 

results were comparable to studies that used hippocampal texture [9], [242] and volumetric 

measures from the MTL region [243]. In general, the results showed that the combination of 

entorhinal cortex texture features provided better results in the classification of NC vs AD, 

MCI vs MCIc, MCI vs AD subjects compared to hippocampal volume or entorhinal cortex 

volume and thickness. This finding suggests that entorhinal cortex texture changes precede 

neuronal atrophy of the hippocampus. Furthermore, it was observed that when entorhinal 

cortex texture features were combined with its volume, AUCs were improved even more.  

For the prediction of the disease the inclusion of entorhinal cortex texture and volume along 

with clinical measures of age, gender and cognitive scores, achieved better results compared 

to volumetric methods. Therefore, the combination of several biomarkers can improve results 

and this is consistent with other studies as well [223].  
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Concluding, this thesis, evaluated if the magnetic field strength could affect texture features 

in quantitative imaging. Furthermore, it investigated the usefulness of texture features derived 

from the entorhinal cortex in the assessment of AD. From a disease classification and 

prediction perspective, it was shown that (1) texture features could provide more statistically 

significant differences when extracted from stronger magnetic field MRIs, such as 3T, 

compared to 1.5T, (2) compared to volumetric studies, entorhinal cortex texture features 

provide (a) better classification between NC, MCI and AD subjects, (b) better prediction of the 

conversion from MCI to AD. 

7.3 Future Scope of Work 

This section suggests a number of topics for future scope of work which arise from both this 

thesis and from gaps that were found in the literature.  

7.3.1 Datasets and longitudinal studies 

Perhaps the most popular dataset currently used in the assessment of AD is the ADNI dataset. 

Other studies have been used from many researches as well, such as the European 

AddNeuroMed [77] cohort (https://consortiapedia.fastercures.org/consortia/anm/) or the 

Australian, Imaging, Biomarkers and Lifestyles (AIBL) study (https://aibl.csiro.au/) (see Table 

3 in Chapter 3). Open Access Series of Imaging Studies (OASIS) (www.oasis-brains.org.) is 

also a project aimed at making neuroimaging data sets of brain freely available to all the 

researchers. In order to have a more representative sample of the general population it is 

suggested that future studies should combine in their analysis subjects from several datasets 

for robust validation. Furthermore, standardisation of methods still remain a significant 

challenge, although international consortia have made substantial progress in this area and 

provide guidelines for future standardisation efforts. 

In AD, perhaps the most important information a physician could be provided with is to know 

if a subject will eventually develop the disease. Therefore, it is very important to identify 

https://consortiapedia.fastercures.org/consortia/anm/
https://aibl.csiro.au/
http://www.oasis-brains.org/
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specific MRI diagnostic biomarkers to predict whether MCI subjects will eventually convert to 

AD patients. Most of the studies have been using baseline MRI data but perhaps the best way 

to estimate antecedent changes in MCI subjects who might convert to AD is through 

longitudinal and cross-sectional designs. In this thesis, the longitudinal measures (0-18 

months) in Chapter 6 showed that the entorhinal cortex atrophy was more severe in the MCIc 

subjects compared to MCI, whereas, hippocampal volume was similar between the two 

groups. Regarding the longitudinal measures of entorhinal cortex, more statistically 

significant changes were seen for MCIc subjects. Therefore, it seems that differences between 

these timeline scans were statistically different in more cases for texture compared to 

volumetric measures.  Perhaps the initiation of serial MRI scans at annual or longer intervals 

to investigate the disease progression will provide further insight in predicting the MCI 

subjects that will develop the disease.  

7.3.2 Core biomarkers and PET Imaging 

Interestingly, for the disease progression, morphometric measures derived from structural 

MRI, can provide similar results with cellular or metabolic markers such as CSF, amyloid Aβ 

and FDG-PET. This was shown in a systematic and quantitative meta-analysis by Schroeter et 

al. [247] where 1,351 AD patients and 1,097 NC were involved from 40 studies. The aim of the 

study was to reveal the prototypical neural correlates of AD and its prodromal stage. The 

analysis included data from studies that used structural MRI and studies that measured 

reduction in glucose utilization or in perfusion with PET. It was suggested that atrophy in the 

(trans-) entorhinal area/hippocampus and hypometabolism / hypoperfusion in the inferior 

parietal lobules could predict more reliably the progression from amnestic MCI to AD. 

Although, in a meta-analysis [248], PET was a better disease predictor than MRI. However, 

there should be enough clinical information to justify irradiation of a subject and this a major 

drawback for PET imaging. After the first symptoms appear, it was found that the evaluation 

and predictive accuracy was better using structural based biomarkers [8], [178], [249]. 
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However, other studies [19], [62], [163] revealed that structural MRI can also be used before 

clinical symptoms appear and in some cases it could be more accurate rather than metabolic 

markers [8], [177], [178]. Marcus et al. [250], supports that amyloid PET imaging  should be 

performed in subjects with suspected AD because it was shown that Aβ plaques could also 

appear on non-demented elderly subjects. The presence of Aβ plaques in elderly non-

demented subjects was also noticed in the study of Pike et al., [46]. Overall, it seems that the 

effectiveness of structural MRI compared to PET in predicting MCI conversion to AD is 

controversial and it should be further investigated.  

7.3.3 Potential of workflow environments and Deep learning 

Nowadays, medical image analysis has become a computationally rich process due to the 

additional new challenges e.g. to predict if an MCI subject will convert to an AD patient. These 

processes include many intricate steps run on increasingly larger datasets with the use of many 

different tools. Graphical workflow environments such as the KNIME Analytics Platform [215] 

and the LONI’s Pipeline [85], facilitate numerous resources developed at other institutions 

such as, FSL/Oxford [84] or Freesurfer/Harvard [81] to be used. The combination of these tools 

can be used to analyze images efficiently and effectively. The advantages and possibilities of 

such workflow environments have not yet been exploited in neuroradiology routine practice. 

Deep learning is the state-of-the-art in medical image analysis that is becoming the 

methodology of choice in many studies. Deep learning algorithms are based on neural 

networks of several layers of neurons through which a signal is propagated and can also be 

used for segmentation, registration, classification and other tasks in the assessment of AD  

[251]. Deep learning applications such as convolutional neural networks (CNN) or recurrent 

neural network (RNN) are currently used for the early detection and prediction of AD. 

According to a 2019 systematic review by Jo, No and Saykin [252], for the classification of the 

disease, accuracies up to 96% and 84.2% for the MCI conversion to AD were seen. Many 
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workflows, such as the KNIME Analytics platform [215], incorporates several deep learning 

workflows to be used according to the user needs.  

7.3.4 Extracting Explainable Assessments of Alzheimer’s disease via Machine Learning 

In a recent study [253] a novel argumentation model for the classification of NC and AD 

subjects was presented. The objective of this study was to investigate the usefulness of rule 

extraction in the assessment of AD using decision trees (DT) and RF algorithms and 

integrating the extracted rules within an argumentation-based reasoning frame-work in order 

to make the results easy to interpret and explain [253]. The KNIME analytics platform was 

used as well, and the usefulness of rule extraction was demonstrated in the assessment of AD 

based on hippocampal MRI texture features. RF models with 5000 trees were built to measure 

the mean Decrease Gini index in order to identify the most important features. Gini Index [218] 

is an impurity splitting method. It was observed that feature selection based on the Gini index 

increases the overall performance of the RF models [219]. The 10 most promising features are 

shown in Figure 22 and for comparison reasons, the respectively figure for entorhinal cortex 

features in Figure 23. Clearly volume seems to be the most promising feature, however, the 

argumentation model was based on NC and AD subjects, and it is expected that there would 

be a large difference in hippocampal volume between the subjects. Part of our future work will 

be to investigate the argumentation model to the more difficult classification problem between 

NC and MCI subjects based on entorhinal cortex. 

The positive results of the use of the argumentation based symbolic reasoning for composing 

and interpreting the rule extraction results was demonstrated (see Table 32). 
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Figure 22:  10 most promising hippocampal features based on mean decrease of the gini index 

Figure 23:  10 most promising hippocampal features based on mean decrease of the gini index 

 

Table 32: A selection of arguments defined in Gorgias framework  
P

rio
rity

  →
 

Sample Rules from the argumentation model  (in parenthesis: rule no in the model) Accuracy Sensitivity Specificity 

(r1) If hipVolume >= 2890mm3 return subject in NC 84% 96% 51% 

(r2) If hipVolume < 2890mm3 return subject in AD 83% 51% 96% 

(r3) If hipVolume<3170mm3 and hipClusterPRominence<802000 return subject in AD 87% 28% 98% 

(r5) If hipEntropy >= 3.67 and hipVAriance >= 198 and hipContrast < 194 return subject in NC 100% 14% 100% 

(r8) If hipSumVariance < 543 and hipSumEntropy < 2.92 return subject in NC 100% 17% 100% 
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7.3.4 ROI Investigation and Biomarkers combination 

In classification, the most challenging task appears to be the classification 

between NC and MCI subjects as the classification accuracy of most of the 

studies is lower compared to other group of subjects. In the study by 

Davatzikos et al. [163], evaluation of WM areas of the brain both in the temporal 

lobe and in the superior and middle frontal gyri, appeared to be necessary for 

the accurate classification of MCI subjects. However, apart from the 

hippocampus and entorhinal cortex, limited studies have investigated the 

aforementioned areas. Furthermore, in studies that will be using hippocampus, 

it would be interesting to evaluate if hippocampal subfields measures could 

provide similar or perhaps better results than global hippocampal measures. In 

the study by Khan et al., [241] it was shown that hippocampal subfields were 

more accurate for predicting MCI conversion to AD. It would be interesting for 

future studies to evaluate how hippocampal subfields texture could be used for 

MCI and AD assessment versus to hippocampal subfield volume. 

Imaging biomarkers are meaningless if they are not correlated with clinical 

assessment. The combination of the two provide better predictive accuracy [21], 

[28], [254]. It is also noted that the are very few studies [67], [68] that combine 

volume, thickness, shape, intensity, and texture in multivariate assessment of 

the disease, which in turn may result to better classification and prediction 

accuracy. This finding was consistent to our results when several variables 

were combined. In the study by Martinez Torteya et al. [132] the combination 

of texture-related features together with morphometrical and signal 

distribution related features improved the conversion to AD (AUC of 0.79). The 

same is true for the combination of imaging biomarkers derived from structural 

and functional imaging modalities [160], [255] as well as for the combination of 

MRI with genomic analysis towards personalized medicine and targeted drugs 

development.  
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Although in this thesis texture features were combined along with age, gender 

and MMSE scores, future studies might include: (1) how the inclusion of other 

biomarkers such as APOE ε4 or Aβ depositions could benefit the classification 

or prediction outcome, (2) the correlation of texture features and APOE ε4 or 

Aβ depositions to MCI and AD subjects. Knowing the heterogeneity of this 

disease and the meaning of APOE gene, the combination of the aforementioned 

could provide better results.  

7.3.5 The use of texture analysis and other MR sequences 

The use of texture analysis, although seems to be promising, is very restricted, 

when compared to the other methods, regarding the assessment of AD. 

However, some of the best classification accuracies were achieved with textures 

features [9], [91], [130] and it should be investigated further in the assessment 

of AD. Future studies should investigate the potential of texture analysis in 

other structures of the brain as well. Furthermore, the correlation of MRI 

texture characteristics and tissue pathology should be investigated. For 

example, if the accumulation of NFTs is correlated with specific MRI texture 

features it would be a viable disease biomarker.  

Furthermore, in this research it was mentioned that texture features extracted 

from stronger magnetic fields, can reveal more statistically significant results. 

Nowadays, there is access to even stronger systems, such as 7T MRIs, which 

perhaps could reveal even better results.  

Furthermore, research on the assessment of AD mainly involves volumetric 3D 

T1-weighted sequences. However, there are several other MRI strategies such 

as Diffusion Weighted Imaging (DWI) MRI, and Diffusion Tensor Imaging 

(DTI) [256], Fluid-attenuated inversion recovery (FLAIR) sequence or gradient 

echo sequences [257] that might help with the understanding of the disease 

pathophysiology.  
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7.3.6 Precision Medicine 

Nowadays, precision medicine due to the wealth of today’s healthcare big data 

has become the new trend. Precision medicine is based on quantitative analysis 

to drive personalized treatment – medication by taking into account individual 

variability in genes, environment and lifestyle of each person in order to 

provide a more accurate treatment. At the same time, there is a strong need to 

bring together all these clinical data, genomics and quantitative imaging 

features, known as radiomics. The combination of genomics and radiomics is 

also known as Radiogenomics [258]–[260]. 

Leading to precision medicine this work proved that quantitative MRI could 

have a great impact in the assessment, evaluation and treatment of AD leading 

towards to its better management. Furthermore, research relying on GWAS 

and whole exome and whole genome sequencing data, have identified a 

significant number of genes that are correlated to AD [261]. According to 

Panayides et al  [261], radiogenomics could contribute towards enhanced 

prognosis, diagnosis and treatment in AD. However, this study evaluated only 

structural imaging techniques, such as MRI, therefore, future studies should 

use metabolic imaging methods such as PET. Metabolic changes precede 

structural changes and with the combination of imaging and genetics better 

accuracy could be provided in the classification and prediction of AD.  

7.3.7 Virtual Reality application for visualization and analysis in medical 

imaging  

3D medical imaging provides an invaluable tool to the radiologist in 

visualizing normal and abnormal tissue and structure for the assessment of 

disease and treatment planning. Nowadays, 3D reconstruction is more 

frequently becoming a valuable technique for describing the size and the shape 

of a pathology which will prepare the doctor prior surgery however, these 

platforms are only accessible on the scanner’s computer or their workstations. 
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Prodromou et al. [262], developed a multi-user Virtual Reality (VR) application 

for visualization and analysis in medical imaging which is based on the Unity 

VR platform that is integrated with the very well-known and popular image 

Visualization Toolkit– VTK. This application accepts and processes medical 

images in the form of DICOM, HDR, MHD, SEQ.NRRD and NRRD. This 

platform was evaluated successfully in the 3D visualization of MRI images of 

AD subjects acquired from the ADNI database and it was found that the 

platform could be used by health professionals for teleconsultation or to be 

used by the health professional and the patient, so that the patient gains a better 

understanding of the underlying pathophysiology of his/her disease based on 

medical imaging. Future work could focus in the evaluation such platforms in 

a more wide spectrum of imaging cases and in the visualization of quantitative 

imaging features. 
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Appendix A 
Table 33 Interpretation of MMSE scores 

Score Dementia stage Communication skills / Impairement 

24-30 
Mild Cognitive 

Impairment 

Problems with concentration/ decreased attention span. 

Starting to have word finding difficulty. 

No impairments would be recognized in an interview of 

person 

Usually are aware of problems and may try to hide or 

compensate. 

20-24 Mild 

Diminished visual/spatial abilities 

Inappropriate social cues (e.g. stand too close to person 

during conversation). 

Word finding difficulty 

Lose train of thought in conversation, 

Repeats oneself 
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Usually aware of problems and may try to hide or 

compensate. 

13-20 Moderate 

Difficulty following a conversation. 

Loss of vocabulary, especially proper nouns. 

More word finding difficulty 

Word substitution or making up new words 

Difficulty following a story or movie. 

Poor recall 

Difficulty following directions. 

Tendency to talk about nothing or ramble. 

0-12 Severe 

Tendency to ramble or repeat words. 

Increasing loss of vocabulary 

Difficult to follow anything but simple conversation/ 

instructions. 

Unable to follow a story or movie 

Major personality/ behavioral changes. 

Terminal Dementia 

Inability to speak 

Difficulty understanding when spoken to 

Mostly nonverbal communication 

 


