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Abstract

The present thesis considers two biologically significant processes: the evolution of

populations of organisms through natural selection and the change of individual be-

haviour through learning. More specifically, we consider evolution and learning as

guided by the interactions of multiple populations or of multiple learners, respectively,

where we assume that these interactions can be described in the language of game the-

ory. While the evolution of populations is often considered in the framework of evolu-

tionary game theory and learning is often considered in the framework of multi-agent

reinforcement learning, this thesis strives to present a common perspective on these

two classes of processes by analysing the relation between the multi-population repli-

cator dynamics of evolutionary games and simple multi-agent reinforcement learning

algorithms.

In particular, this thesis addresses the question of when such processes lead a sys-

tem of interest, be it populations of organisms or individual learners, to states which

reflect the game theoretic structure describing the interactions between populations

or between individuals, respectively, and specifically when such systems converge to

the Nash equilibria of the underlying game. We motivate these ideas by consider-

ing a preliminary application to learning in artificial neural networks, as a concrete

multi-agent learning setting of high interest in the fields of artificial intelligence and

machine learning. We address the challenges to obtain convergence to interior Nash

equilibria in multi-population replicator dynamics by considering more closely the ef-

fects of weak mutation. In order to more explicitly account for mutation we specify a

replicator-mutator dynamics and relate the equilibria of these dynamics to the under-

lying game’s Nash equilibria in a precise manner, showing that this relation is inde-

pendent of the choice of mutation parameters. We further prove that such mutation

stabilises Nash equilibria in two-player zero-sum games. Finally, we demonstrate how

our results regarding the replicator-mutator dynamics can inform the formulation of

concrete multi-agent learning algorithms and provide an analytical investigation of

the convergence properties of such a learning algorithm.
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1 Introduction

The evolution of populations through natural selection and the change of individual

behaviour through learning are biologically important but quite distinct processes.

However, the latter, i.e., the ability of an individual to change its behaviour through

learning, has evolved under the conditions of the former, i.e., under the conditions of

natural selection. Furthermore, from a mathematical point of view, both processes

tend to move towards a state or behaviour that is better “adapted,” under some suit-

able interpretation, to a given environment. Under this premise, the current thesis

strives to consider a common perspective on evolutionary and learning processes.

Commonly, learning is thought of as a process centred on an agent, i.e., a biologi-

cal organism or a computational agent, while evolution concerns populations of agents

and their properties as they change over time. In particular, evolutionary game the-

ory considers the changes in populations when reproduction and other aspects are

determined by interactions in a game theoretical setting and we can ask, whether

and under which conditions populations might evolve towards a state which reflects

the game theoretical properties of their interactions. When learning is considered

in settings that include multiple agents, game theory provides a useful framework.

Just as evolution can be driven by the outcomes of interactions, so can the changes in

agents’ behaviours and we can ask, whether a system of interacting learning agents,

too, can acquire or learn a behaviour which reflects the game theoretical properties of

the interactions, e.g., behave in accordance with a game’s Nash equilibrium.

The evolutionary game theoretic perspective on multi-agent learning becomes par-

ticularly relevant when we require multi-agent learning under very restrictive con-

ditions; in particular, when we consider agents to be cognitively extremely simple,

departing from the often assumed perfect rationality in game theory, to only have a

very limited ability to observe other agents’ behaviours and to have no knowledge of

their own payoffs in advance and no knowledge of other agents’ payoffs at all. Such a

situation might be formulated as follows:

1



(†) Given a set of very simple agents with a limited ability to observe each others’ ac-

tions and an ability to react to those observed actions, and given some optimality

criterion, under which conditions will the system converge to a state reflecting

the game theoretic structure of the interactions?

Answers to questions similar to ours are actively sought in, among others, the ar-

eas of reinforcement learning, multi-agent systems and multi-agent reinforcement

learning, and we will refer to the relevant results where appropriate. However our

approach differs significantly from existing approaches, not least in an explicit con-

sideration of some degree of computational simplicity of the agents and a focus on a

mathematically rigorous treatment. We are not aware of any publications pursuing a

line of thought sufficiently close to ours, although there are publications having rel-

evance for individual aspects of our approach, which we refer to where appropriate.

Our approach is further informed by the following considerations: First, there are (at

least) two limit cases of our question. In the one case, convergence should occur if we

assume that there is in fact only a single agent instead of a multitude. In the other

case, we can assume that, apart from a focal agent, all agents have some form of sta-

tionary behaviour. In both cases, our question reduces to a Markov decision process

and we can employ the existing results and solution approaches to consider these limit

cases of our question. As we will see, reinforcement learning provides an answer to

our question in these limit cases.

Second, proceeding from the single-agent case to a multi-agent case, game theory

provides a formal framework and certain concepts in terms of which our question can

be formulated at least partially. However, the main concepts and results of game the-

ory are mostly static and we need to consider an extended formulation of game theory

in order to include the dynamic aspects of our question. In this respect, the merits

of an evolutionary game theoretic approach are that it prefers simple dynamics over

more complicated ones by design and that it provides suitable concepts to investigate

the dynamics and their stationary points in terms of game theory.

Furthermore, the research on multi-agent reinforcement learning investigates the

possibilities of extending the methods of reinforcement learning to the multi-agent

setting and we will consider in how far these extensions can be understood from an

evolutionary game theoretic perspective and how they can inform our approach.
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The objective of this thesis is to contribute to the mathematical foundations for

the analysis of the evolution of interactions in networks, be they networks of interact-

ing populations or of agents, describable as directed graphs with general topologies,

including cyclic graphs, and the evolution of such topologies induced by the evolution

of the populations or agents located at the vertices and their dependencies on other

populations or agents.

A basic and important questions regarding dynamic processes is the role of fixed

points and their stability. In particular, asymptotic stability allows one to analyse a

system’s dynamics in terms of its asymptotically stable equilibria as suitably close

initial conditions lead a system to converge to such equilibria. In particular in the

area of machine learning, as a subfield of mathematical optimization, questions of

convergence are central.

The questions addressed in this thesis are focused on questions of stability of equi-

libria and the relations between deterministic continuous-time dynamics and stochas-

tic discrete-time dynamics. The former are often, but not exclusively, considered in

evolutionary game theory and tend to be easier to analyse mathematically, while the

latter often result from learning algorithms. The rest of this thesis is structured as

follows:
• In chapter 2 we provide the general theoretical results from the literature re-

quired. In particular, we give an overview of results from evolutionary game theory

and from the theory of Markov decision processes, focusing on the relevant parts of

each, and of how our approach differs from related questions in the literature in 2.3.1.
• In chapter 3 we provide a preliminary attempt to combine these two perspectives

in a motivating application to learning in networks of agents, illustrating the general

ideas in a simple artificial neural network setting. To our knowledge, the learning

mechanism explored in this chapter is the first such approach to formulate learning

on the level of individual neurons based on rewards derived from the network’s overall

behaviour. In particular, chapter 3 demonstrates that the combination of these ideas

is not easily achieved in a well-informed ad-hoc adaptation of well-known basics of

artificial neural networks and illustrates the limits of such an approach. It therefore

motivates the pursuit of a mathematically rigorous foundation on which these ideas

can be based, as attempted in the following chapters.
• In chapter 4 we consider an extension of a standard multi-population replicator

dynamics to include certain kinds of mutation in addition to replication, which was

3



also published as [8]. These results demonstrate that relaxing the assumption of the

negligibility of mutation fundamentally affects the stability properties of equilibria

in multi-population replicator dynamics and, in principle, allows for equilibria to be-

come asymptotically stable. A central contribution of this chapter is that there are

equilibria with properties which are independent of certain mutation parameters. In

particular, this makes the resulting multi-population replicator-mutator dynamics a

candidate for a well-founded learning dynamics in multi-agent learning.
• In chapter 5 we consider how mutation affects the stability properties of equilib-

ria in zero-sum settings, in preparation for publication as [7]. More specifically, we

prove that mutation stabilises equilibria in 2 × 2 games and potentially larger two-

player zero-sum games, for all mutations in the class of mutation mechanisms speci-

fied in chapter 4.
• In chapter 6 we relate the previous results explicitly to a learning perspective

and provide a stochastic algorithm which is related to the deterministic dynamics

considered earlier in a precise manner, with results being prepared for publication

as [9] and with parts of the numerical implementation being contributed by Sheldon

West.1 This chapter demonstrates the learning behaviour in 2 × 2 games and zero-

sum games and how the speed of learning changes with game size, comparing results

to two algorithms from the literature. These results point in the direction in which a

rigorously analysable learning dynamics for larger multi-agent systems in the spirit

of the ideas considered in chapter 3 might be sought.
• In chapter 7 we discuss the implications of the presented results for understand-

ing the role of mutation in evolutionary games and learning, their limitations based

on the assumptions we made, potential future questions and the directions in which

these very first steps point in order to further advance the ideas outlined in this the-

sis.

Further results on evolutionary games and network topologies to which the au-

thor of this thesis has contributed as a co-author are published in [31]. However, the

questions considered there do not directly relate to the main question of this thesis

and therefore will not be elaborated upon.

1The initial program code used for simulations was the result of an excellent MSc thesis by Sheldon
West which the author co-supervised.
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2 Evolutionary dynamics and
learning

We begin with a presentation of Markov decision processes and some fundamental

ideas of reinforcement learning as these allow us to consider our question in the limit

case of a single agent in a stochastic but stationary environment. This will allow us

to formulate a first motivating application in the framework of game theory and to

approach the interaction of agents more explicitly in chapter 3.

2.1 Markov decision processes and reinforcement
learning

We introduce the basic framework of Markov decision processes and the main results

that will have a bearing on the understanding of our problem. The theory of Markov

decision processes considers the setting of an agent acting on a stochastic system as

it evolves and receiving a sequence of rewards depending on the system’s states. The

guiding question is whether there is a strategy for the agent that satisfies some specific

optimality criterion. The classic results give the optimality conditions of a strategy

given the specification of the process and guarantee the existence of optimal strategies

in a subset of all possible strategies.

Corresponding well with our assumption of minimal apriori knowledge on part of

the agents, one common practical assumption is that the specification of the process

is not known in advance. This motivates solution approaches which adapt strate-

gies depending on the rewards received during the evolution of the system. In this

situation the classical results provide the conditions under which such approaches

are guaranteed to converge to optimal strategies. This is the basic setting of rein-

forcement learning where behaviours yielding high rewards are strengthened, i.e.,

increased in frequency. In its advanced variants, reinforcement learning has been

shown to be able to arrive at strategies that take into account rewards that are to be

5



expected in the far future, as in the situation of complex strategic board games such

as backgammon [106] or the game of Go [94].

We restrict our attention to infinite horizon Markov decision processes in discrete

time with discrete state space and discrete action space, being close to repeated and

stochastic games and thus having the most relevance for us. The presentation mainly

follows [80], to which we refer the reader for a more detailed presentation of the topic.

Definition 2.1.1 (MDP). We call a tuple (𝑇, 𝑆, (𝐴𝑠), (𝑝𝑡(⋅|𝑠, 𝑎)), (𝑟𝑡)) with

i) 𝑇 a set of decision epochs, with the elements of 𝑇 referred to as stages or times,

ii) 𝑆 a set of states the system can occupy,

iii) (𝐴𝑠)𝑠∈𝑆 a family of non-empty action sets, with 𝐴 ∶= ⋃𝑠∈𝑆 𝐴𝑠,

iv) (𝑝𝑡(⋅|𝑠, 𝑎))𝑠∈𝑆,𝑎∈𝐴,𝑡∈𝑇 a family of probability distributions on 𝑆, the transition

probability functions,

v) 𝑟𝑡 ∶ 𝑆 × 𝐴 × 𝑆 → ℝ reward functions for every time 𝑡 ∈ 𝑇

a Markov decision process (MDP).

We further make the following assumptions:

i) 𝑇 = ℕ, i.e., we focus on infinite-horizon discrete time MDPs;

ii) 𝑆 finite;

iii) 𝐴𝑠 = 𝐴 (∀𝑠 ∈ 𝑆) and 𝐴 finite, i.e., available actions do not depend on the system’s

state;

iv) The transition probability functions 𝑝𝑡 are independent of 𝑡 , i.e., we can repre-

sent the family of transition probability functions (𝑝𝑡) as the family of matrices

(𝑃𝑎)𝑎∈𝐴, with [𝑃𝑎]𝑠,𝑠′ = 𝑝𝑡(𝑠′|𝑠, 𝑎) (∀𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴);

v) The reward functions 𝑟𝑡 are independent of 𝑡 and only depend on the subsequent

state 𝑠′, i.e., 𝑟𝑡(𝑠, 𝑎, 𝑠′) = 𝑟(𝑠′), and thus can be represented as a vector in 𝑟 ∈
ℝ|𝑆|.

Under these assumptions we define a Markov decision process for our purposes as the

tuple (𝑆, 𝐴, (𝑃𝑎), 𝑟).
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2.1.1 Decision rules and strategies

Definition 2.1.2 (History). Given an MDP, (𝑆, 𝐴, (𝑃𝑎), 𝑟), we call a tuple

ℎ𝑡 = (𝑠1, 𝑎1, … , 𝑠𝑡−1, 𝑎𝑡−1, 𝑠𝑡)

a history of length 𝑡, where 𝑠𝜏 ∈ 𝑆 and 𝑎𝜏 ∈ 𝐴 are the state of the system and the

action taken at time 𝜏 respectively. We can write recursively ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡−1, 𝑠𝑡). We

denote the set of all histories of length 𝑡 by 𝐻𝑡. Note that 𝐻1 = 𝑆 and 𝐻𝑡+1 = 𝐻𝑡×𝐴×𝑆,

and we set 𝐻∞ = (𝑆 × 𝐴)𝑇 , i.e., the functions 𝑇 → (𝑆 × 𝐴), as the set of all terminal

histories.

Remark. Note that we could extend the set of states 𝑆 to �̃� = 𝐴 × 𝑆, and thus let

an action taken at 𝑡 − 1 be absorbed by the state at 𝑠𝑡 ∈ �̃�. Apart from a separate

consideration of initial states this leads to a slightly, but not significantly, differing

definition of a history, which we will use when introducing repeated games.

Definition 2.1.3 (Decision rules & strategies). We call a function 𝑑𝑡 ∶ 𝐻𝑡 → 𝐴 a

deterministic decision rule, and 𝐷𝑡 the set of available decision rules at 𝑡. A function

𝜋 ∶ 𝑇 → ⋃𝑡∈𝑇 𝐷𝑡 with 𝜋(𝑡) ∈ 𝐷𝑡 then is called a deterministic strategy (or policy).

Let 𝒟(𝐴) denote the set of probability distributions on 𝐴. A function 𝑑𝑡 ∶ 𝐻𝑡 →
𝒟(𝐴) is called a randomized decision rule. Accordingly, a function 𝜋 that assigns a

randomized decision rule𝜋(𝑡) ∈ 𝒟(𝐷𝑡) to every time 𝑡 is called a randomized strategy.

A strategy 𝜋 is called stationary if 𝜋(𝑡) = 𝜋(𝑡′) for all 𝑡, 𝑡′ ∈ 𝑇.

We can consider deterministic decision rules as randomized decision rules that

assign a degenerate probability distribution, i.e., with (𝑑𝑡(ℎ𝑡))(𝑎) = 1 for ℎ𝑡 ∈ 𝐻𝑡

and some 𝑎 ∈ 𝐴. We further introduce the following special kind of decision rules and

corresponding strategies:

Definition 2.1.4 (Markovian decision rule). A deterministic or randomized decision

rule, 𝑑𝑡, is called Markovian (or memoryless) if for any two histories ℎ𝑡, ℎ′𝑡 ∈ 𝐻𝑡 with

the same state at time 𝑡, i.e., ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡−1, 𝑠𝑡) and ℎ′𝑡 = (ℎ′
𝑡−1, 𝑎′

𝑡−1, 𝑠𝑡), we have

𝑑𝑡(ℎ𝑡) = 𝑑𝑡(ℎ′𝑡). In this case, we consider 𝑑𝑡 a function 𝑆 → 𝐴 or 𝑆 → 𝒟(𝐴) respec-

tively.

We denote the set of all Markovian deterministic rules by 𝐷𝑀𝐷 and all such strate-

gies by Π𝑀𝐷 and the set of all Markovian randomized rules by 𝐷𝑀𝑅 and all such

strategies by Π𝑀𝑅.
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Markovian decision rules and strategies are of special interest because they are

much simpler than strategies which properly depend on the history of the process and

therefore simplify the resulting stochastic process.

Remark. We refer to the set of non-Markovian deterministic or randomized decision

rules by 𝐷𝐻𝐷𝑡 or 𝐷𝐻𝑅
𝑡 respectively, i.e., these rules properly depend on at least some

history of the process. The sets of corresponding strategies are denoted by Π𝐻𝐷 and

Π𝐻𝑅.

An MDP (𝑆, 𝐴, (𝑃𝑎), 𝑟) together with a strategy 𝜋 (from Π𝐻𝑅 or Π𝑀𝑅) generate

a stochastic process

{(𝑋𝑡, 𝑌𝑡)|𝑡 ∈ 𝑇, 𝑋𝑡 ∈ 𝑆, 𝑌𝑡 ∈ 𝐴}

on the probability space (𝐻∞, 𝔅(𝐻∞), 𝑃𝜋), where 𝔅(𝐻∞) is the Borel algebra over

𝐻∞ and, given some distribution over initial states 𝑝1, 𝑃𝜋 is induced by:

𝑃𝜋(𝑋1 = 𝑠) = 𝑝1(𝑠)

𝑃𝜋(𝑌𝑡 = 𝑎|ℎ𝑡) = 𝜋𝑡(ℎ𝑡, 𝑎)

𝑃𝜋(𝑋𝑡+1 = 𝑠|(ℎ𝑡−1, 𝑎𝑡−1, 𝑠𝑡), 𝐴𝑡 = 𝑎𝑡) = 𝑝(𝑠|𝑠𝑡, 𝑎𝑡)

If 𝜋 is a (randomized or deterministic) Markovian strategy, the induced stochastic

process is a discrete time Markov chain on a finite state space. Otherwise, the induced

stochastic process is in general non-Markovian. In the following we will not require a

deeper theory of stochastic processes and therefore refer the reader to the literature

on MDPs for a more detailed presentation, e.g. [80].

A note on terminology. Both terms, policy and strategy, are equally valid and

seem to be used synonymously in the MDP literature. However, policy seems to be

the more dominant one in MDP theory and in reinforcement learning, while strategy

is convenient for the embedding of MDP theory in game theory, where strategy is the

dominant term and is defined in essentially the same way, as we will see later. We

will, therefore, predominantly use the term strategy. However, the reader should keep

in mind that policy is synonymous, as it might occur in special circumstances, e.g., in

proper names of certain strategies.
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Value of a strategy

In order to be able to compare strategies to each other, we first define the value of a

strategy over a finite horizon of length 𝑁 + 1:

Definition 2.1.5. For an initial state 𝑠 ∈ 𝑆, i.e., for 𝑝1(𝑠) = 1, we define the value of

a strategy 𝜋 over 𝑁 + 1 stages as

𝑣𝜋𝑁+1(𝑠) = 𝔼𝜋𝑠
⎡⎢
⎣

𝑁
∑
𝑡=1

𝑟(𝑋𝑡, 𝑌𝑡, 𝑋𝑡+1)⎤⎥
⎦

.

We further define the value of the MDP over 𝑁 + 1 stages for an initial state 𝑠 as

𝑣∗
𝑁+1(𝑠) = sup

𝜋∈Π𝐻𝑅
𝑣𝜋𝑁+1(𝑠).

Thus, we will be interested in finding a strategy 𝜋∗ such that

𝑣𝜋∗
𝑁+1(𝑠) = 𝑣∗

𝑁+1(𝑠).

As we will be interested in the infinite horizon MDP, we introduce the following

extensions of the notion for a strategy 𝜋:

Definition 2.1.6. For 𝑠 ∈ 𝑆, we define the following three criteria:

i) Expected total reward:

𝑣𝜋(𝑠) = lim
𝑁→∞

𝔼𝜋𝑠
⎡⎢
⎣

𝑁
∑
𝑡=1

𝑟(𝑋𝑡, 𝑌𝑡, 𝑋𝑡+1)⎤⎥
⎦

= lim
𝑁→∞

𝑣𝜋𝑁+1(𝑠)

The existence of the limit is not guaranteed. For optimality concepts in this case

we refer to [80]. Where it exists, we define 𝑣∗(𝑠) = sup{𝑣𝜋(𝑠) ∣ 𝜋 ∈ Π𝐻𝑅}.

ii) Expected total discounted reward:

𝑣𝜋𝛾 (𝑠) = lim
𝑁→∞

𝔼𝜋𝑠
⎡⎢
⎣

𝑁
∑
𝑡=1

𝛾𝑡−1𝑟(𝑋𝑡, 𝑌𝑡, 𝑋𝑡+1)⎤⎥
⎦

for 0 ≤ 𝛾 < 1. The limit exists if {𝑟(𝑠, 𝑎, 𝑠′) ∣ 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴} is bounded, which

is the case for finite 𝑆 and 𝐴. We define 𝑣∗𝛾(𝑠) = sup{𝑣𝜋𝛾 (𝑠) ∣ 𝜋 ∈ Π𝐻𝑅}.

iii) Average expected reward:

𝑔𝜋(𝑠) = lim
𝑁→∞

1
𝑁 𝔼𝜋𝑠

⎡⎢
⎣

𝑁
∑
𝑡=1

𝑟(𝑋𝑡, 𝑌𝑡, 𝑋𝑡+1)⎤⎥
⎦

= lim
𝑁→∞

1
𝑁 𝑣𝜋𝑁+1(𝑠)

Similarly, we define 𝑔∗(𝑠) = sup{𝑔𝜋(𝑠) ∣ 𝜋 ∈ Π𝐻𝑅}.
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Remark. Note that the total discounted reward criterion corresponds to an expected

total reward criterion over 𝜈 stages, where 𝜈 is a random variable following a geometric

distribution with parameter 𝛾, i.e.,

𝑣𝜋𝜈 (𝑠) = 𝔼𝜋𝑠
⎡⎢
⎣

𝔼𝜈
⎧{
⎨{⎩

𝜈
∑
𝑡=1

𝑟 (𝑋𝑡, 𝑌𝑡, 𝑋𝑡+1)
⎫}
⎬}⎭

⎤⎥
⎦

where 𝑃(𝜈 = 𝑛) = (1 − 𝛾)𝛾𝑛−1 for 𝑛 = 1, 2, … . This is the statement of the next

proposition, for the proof of which we refer to [80, proposition 5.3.1, p. 126].

Proposition 2.1.7. Suppose 𝑆 and 𝐴 are finite, and 𝜈 has a geometric distribution

with parameter 𝛾. Then 𝑣𝜋𝜈 (𝑠) = 𝑣𝜋𝛾 (𝑠) for all 𝑠 ∈ 𝑆.

According to this proposition, a strategy which is optimal under the expected total

discounted reward criterion is also optimal if we evaluate the value of a strategy over

a finite duration where the duration has a geometric distribution. It is also equivalent

to the total expected reward if we extend the state space by a special absorbing end

state with zero reward and adapt the transition probabilities accordingly, i.e., by

multiplying the transition probabilities by 𝛾 and setting the transition probabilities

to the newly added end state to 1 − 𝛾.

2.1.2 Markov strategies

The following results illustrate the importance of Markovian strategies and why we

may restrict our attention to Markov strategies instead of considering all possible

strategies:

Proposition 2.1.8 ([80, theorem 5.5.1]). Let 𝜋 ∈ Π𝐻𝑅. Then for each 𝑠 ∈ 𝑆, there

exists 𝜋′ ∈ Π𝑀𝑅 such that for all 𝑡 ∈ 𝑇 and all 𝑗 ∈ 𝑆, 𝑎 ∈ 𝐴:

𝑃𝜋(𝑋𝑡 = 𝑗, 𝑌𝑡 = 𝑎|𝑋1 = 𝑠) = 𝑃𝜋′(𝑋𝑡 = 𝑗, 𝑌𝑡 = 𝑎|𝑋1 = 𝑠)

In words, we can always find a process induced by a Markovian strategy, which

has the same probabilities over state-action pairs for all times. From this proposition

directly follows that the values of such strategies are identical:

Proposition 2.1.9 ([80, theorem 5.5.3]). Let 𝜋 ∈ Π𝐻𝑅. Then for each 𝑠 ∈ 𝑆, there

exists 𝜋′ ∈ Π𝑀𝑅 such that (whenever the respective limits exists):

i) 𝑣𝜋′
𝑁 (𝑠) = 𝑣𝜋𝑁(𝑠) for all 𝑁 ∈ 𝑇
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ii) 𝑣𝜋′
𝛾 (𝑠) = 𝑣𝜋𝛾 (𝑠) for all 0 ≤ 𝛾 < 1

iii) 𝑔𝜋′(𝑠) = 𝑔𝜋(𝑠)

Therefore, to find an optimal strategy for an MDP, it is sufficient to consider the

randomized Markov strategies, i.e., the functions 𝑇 → 𝐷𝑀𝑅. This proposition does not

yet imply that these strategies have to be stationary, i.e., they can assign a different

randomized Markov decision rule at every point in time. However, that we can indeed

an optimal strategy which is a stationary Markov strategy, is demonstrated in the

following.

Let 𝑃𝑑 denote the transition probability matrix of an MDP induced by a Markov

randomized decision rule 𝑑 ∈ 𝐷𝑀𝑅 and let 𝜋 ∈ Π𝑀𝑅 be such that 𝜋 = (𝑑1, 𝑑2, …).

Then we can write the probability that the process, given an initial state 𝑠 ∈ 𝑆, is in

some state 𝑠′ ∈ 𝑆 at time 𝑡 + 1 as

𝑃𝜋 (𝑋𝑡+1 = 𝑠′ ∣ 𝑋1 = 𝑠) = [𝑃𝑑𝑡 ⋅ 𝑃𝑑𝑡−1 ⋯ 𝑃𝑑1]𝑠,𝑠′ =∶ [𝑃𝑡𝜋]𝑠,𝑠′ .

Furthermore, given a real valued function 𝑤 on 𝑆 (assumed finite), we have for 𝜋 ∈
Π𝑀𝑅:

𝔼𝜋𝑠 [𝑤 (𝑋𝑡)] = ∑
𝑠′∈𝑆

[𝑃𝑡−1𝜋 ]𝑠,𝑠′ 𝑤(𝑠′)

Therefore, for the discounted total reward criterion where the reward depends solely

on the subsequent state, we have

𝑣𝜋𝛾 (𝑠) = 𝔼𝜋𝑠
⎡⎢
⎣

∞
∑
𝑡=1

𝛾𝑡𝑟 (𝑋𝑡+1)⎤⎥
⎦

=
∞

∑
𝑡=1

𝛾𝑡 ∑
𝑠′∈𝑆

[𝑃𝑡𝜋]𝑠,𝑠′ 𝑟(𝑠′)

or in vector notation

𝑣𝜋𝛾 =
∞

∑
𝑡=1

𝛾𝑡𝑃𝑡𝜋𝑟.

If 𝜋 is a stationary randomized Markov strategy, i.e., 𝜋 = (𝑑, 𝑑, …) we have that

𝑃𝜋 (𝑋𝑡+1 = 𝑠′ ∣ 𝑋1 = 𝑠) = ⎡⎢
⎣

𝑃𝑑 ⋅ 𝑃𝑑 ⋯ 𝑃𝑑⏟⏟⏟⏟⏟⏟⏟
𝑡 times

⎤⎥
⎦𝑠,𝑠′

= [𝑃𝑡
𝑑]𝑠,𝑠′ .

Depending on the context, we might write 𝑃𝜋 instead of 𝑃𝑑 if it is clear that 𝜋 is a

stationary Markov strategy.

The value of the stationary randomized Markov strategy 𝜋 simplifies to

𝑣𝜋𝛾 =
∞

∑
𝑡=1

𝛾𝑡𝑃𝑡
𝑑𝑟
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and we have the recursive relationship

𝑣𝜋𝛾 = 𝛾𝑃𝑑𝑟 + 𝛾𝑃𝑑
∞

∑
𝑡=1

𝛾𝑡𝑃𝑡
𝑑𝑟 = 𝛾𝑃𝑑𝑟 + 𝛾𝑃𝑑𝑣𝜋𝛾 = 𝑟𝑑 + 𝛾𝑃𝑑𝑣𝜋𝛾

where 𝑟𝑑 = 𝛾𝑃𝑑𝑟. This is summarized in the following:

Proposition 2.1.10. Let 0 ≤ 𝛾 < 1. Then for any stationary strategy 𝜋 = (𝑑, 𝑑, …)
with 𝑑 ∈ 𝐷𝑀𝑅, the value 𝑣 of 𝜋 is given by the unique solution of

𝑣 = 𝑟𝑑 + 𝛾𝑃𝑑𝑣 (2.1.1)

which can be written as

𝑣 = (𝐼 − 𝛾𝑃𝑑)−1𝑟𝑑.

Proof. A detailed proof is given in [80, theorem 6.1.1, p. 145] and relies on 𝑃𝑑 being

a stochastic matrix, thus ‖𝛾𝑃𝑑‖ < 1. Therefore via the Neumann series, (𝐼 − 𝛾𝑃𝑑)−1

exists.

Let 𝑉 be the space of bounded functions 𝑆 → ℝ with supremum norm and compo-

nentwise partial order. We introduce the non-linear operator ℒ on 𝑉 as

ℒ𝑣 = sup
𝑑∈𝐷𝑀𝐷

{𝑟𝑑 + 𝛾𝑃𝑑𝑣} , (2.1.2)

where we refer to [80, lemma 5.6.1] for the fact that ℒ[𝑉] ⊆ 𝑉 . Note that for finite 𝐴,

as we assume, the supremum on the right-hand side is attained for all 𝑣 ∈ 𝑉 , and in

particular for 𝑆 finite, we may assume 𝑉 = ℝ|𝑆|. One useful property of the operator

ℒ is summarized in the following [80, theorem 6.2.2, p. 148]:

Proposition 2.1.11. Suppose there is 𝑣 ∈ 𝑉 such that

i) 𝑣 ≥ ℒ𝑣, then 𝑣 ≥ 𝑣∗𝛾;

ii) 𝑣 ≤ ℒ𝑣, then 𝑣 ≤ 𝑣∗𝛾;

iii) 𝑣 = ℒ𝑣, then 𝑣 is the unique such solution and 𝑣 = 𝑣∗𝛾.

The main result for our purposes is that under our assumptions, there exists a

stationary deterministic Markov strategy𝜋 that is optimal, i.e., for which 𝑣𝜋𝛾 = 𝑣∗𝛾. The

following proposition secures this existence, as the supremum in (2.1.2) is attained:

Proposition 2.1.12. Suppose 𝑆 is countable. Then ℒ has a unique fixed point 𝑣∗ ∈ 𝑉
and 𝑣∗ = 𝑣∗𝛾.
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Proof. The proof is given in [80, theorem 6.2.5] and relies on the fact that ℒ is a con-

tracting map and the unique fixed point exists due to the Banach fixed point theorem,

and 𝑣∗ = 𝑣∗𝛾 follows from proposition 2.1.11.

Bellman Equations. From the above it follows that a stationary Markov strategy

𝜋∗ is optimal iff

𝑣𝜋∗
𝛾 = 𝑣∗𝛾 = ℒ𝑣∗𝛾 = max

𝑑∈𝐷𝑀𝐷
{𝑟𝑑 + 𝛾𝑃𝑑𝑣𝜋∗

𝛾 }

or in component-wise notation

𝑣𝜋∗
𝛾 (𝑠) = max

𝑎∈𝐴

⎧{
⎨{⎩

𝑟(𝑠, 𝑎) + 𝛾 ∑
𝑠′∈𝑆

𝑝 (𝑠′ ∣ 𝑠, 𝑎) 𝑣𝜋∗
𝛾 (𝑠′)

⎫}
⎬}⎭

, 𝑠 ∈ 𝑆, (2.1.3)

i.e., if it is equivalent to picking the action that solves the one-step optimization prob-

lem and following 𝜋∗ thereafter, where 𝑟(𝑠, 𝑎) = 𝛾∑𝑠′∈𝑆 𝑝 (𝑠′ ∣ 𝑠, 𝑎) 𝑟 (𝑠, 𝑎, 𝑠′). The

equations (2.1.3) are also referred to as the Bellmann equations or optimality equa-

tions.

Remark. If the transition probabilities 𝑝(𝑠′|𝑠, 𝑎) are known, we can compute 𝑣∗𝛾 nu-

merically by solving 𝑣∗𝛾 = ℒ𝑣∗𝛾 iteratively, as well as 𝑣𝜋𝛾 for a Markov strategy 𝜋 by

solving equation (2.1.1). A range of algorithms to find an optimal strategy are known,

where two prominent approaches are value iteration and policy iteration approaches

which are analysed in detail in [80].

If the transition probabilities are not known, an algorithm can compute an esti-

mate of the probabilities by sampling. Such approaches are considered model-based

solutions as they rely on estimating a model of the MDP. In contrast, model-free ap-

proaches combine this sampling and the search for an optimal strategy such that an

explicit estimation of a model is not necessary.

2.1.3 Solutions based on action-value learning

One class of model-free algorithms relies on an estimate of the action-value function,

which we define as follows:

Definition 2.1.13. Given a stationary Markov strategy 𝜋, we define the action-value

function 𝑄𝜋 ∶ 𝑆 × 𝐴 → ℝ associated with 𝜋 as

𝑄𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∑
𝑠′∈𝑆

𝑝(𝑠′|𝑠, 𝑎)𝑣𝜋𝛾 (𝑠′)
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and 𝑄∗ corresponding to 𝑣∗𝛾 as

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∑
𝑠′∈𝑆

𝑝(𝑠′|𝑠, 𝑎)𝑣∗𝛾(𝑠′).

The 𝑄-function thus gives the value of choosing some action deterministically and

following some strategy thereafter.

Remark 2.1.14. From the definition of the action-value function and the properties

of the value function, we can derive a similar recursive relationship for 𝑄:

∑
𝑎∈𝐴

𝜋(𝑠, 𝑎)𝑄𝜋(𝑠, 𝑎) = ∑
𝑎∈𝐴

𝜋(𝑠, 𝑎) ⎛⎜⎜
⎝

𝑟(𝑠, 𝑎) + 𝛾 ∑
𝑠′∈𝑆

𝑝(𝑠′|𝑠, 𝑎)𝑣𝜋𝛾 (𝑠′)⎞⎟⎟
⎠

= 𝑣𝜋𝛾 (𝑠)

and thus by substitution in the definition of 𝑄

𝑄𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∑
𝑠′∈𝑆

𝑝(𝑠′|𝑠, 𝑎) ∑
𝑎′∈𝐴

𝜋(𝑠′, 𝑎′)𝑄𝜋(𝑠′, 𝑎′).

and similarly with (2.1.3)

𝑣∗𝛾(𝑠) = max
𝑎∈𝐴

{𝑄∗(𝑠, 𝑎)}

we have that

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∑
𝑠′∈𝑆

𝑝(𝑠′|𝑠, 𝑎) max
𝑎′∈𝐴

{𝑄∗(𝑠′, 𝑎′)} .

While we need the transition probabilities to construct an optimal strategy from a

known 𝑣∗, we can construct a deterministic Markov strategy 𝑑∗, that is optimal, di-

rectly from 𝑄∗ by choosing

𝑑∗(𝑠) ∈ arg max
𝑎∈𝐴

{𝑄∗(𝑠, 𝑎)} .

That 𝑑∗ is indeed an optimal strategy follows from the optimality equations (2.1.3).

Such a strategy, i.e., one that picks the action with a maximal action-value, is called a

greedy strategy or greedy policy. Closely related are the 𝜀-greedy strategies, which with

probability 1−𝜀 pick an action with a maximal action-value and with some probability

𝜀 pick a random action with uniform probability, thus ensuring sufficient exploration

of the action-values.

Sarsa and Q-learning algorithms

Two solution approaches based on learning an action-value function can be distin-

guished: on-policy learning, where the action-value function 𝑄𝜋 of the current strat-

egy (or policy) 𝜋 is estimated; and off-policy learning, where the optimal action-value
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function 𝑄∗ is estimated. As an example of the first, we present the Sarsa algorithm

(algorithm 2.1.1), first introduced in [85] and further elaborated upon in [100]. As

an example of the second, we present 𝑄-learning (algorithm 2.1.2), proposed by [116]

with a convergence proof in [117]. Both algorithms can be considered special cases of

temporal difference learning, introduced in [101], the convergence properties of which

essentially rely on stochastic approximation theory based on [30].

Our aim is primarily to show the similarity between both approaches and that they

exploit the fact that the action-value function is a fixed point of a contracting operator.

Algorithm 2.1.1 Sarsa [102, p. 146].

Let 𝜋𝑄 be a Markov strategy derived from an action-value function estimate 𝑄, e.g.,
𝜀-greedy. Then the Sarsa algorithm proceeds as follows:

1. Initialize 𝑄(𝑠, 𝑎) arbitrarily.

2. Repeat (for each episode):

a) Initialize 𝑠;
b) Given the state 𝑠, choose 𝑎 according to 𝜋𝑄;
c) Repeat (for each time step in episode) until 𝑠 is terminal:

i. Take action 𝑎, observe reward 𝑟(𝑠, 𝑎, 𝑠′) and subsequent state 𝑠′;
ii. Given 𝑠′, choose 𝑎′ according to 𝜋𝑄;

iii. 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎));
iv. 𝑠 ← 𝑠′; 𝑎 ← 𝑎′;

Under the condition that 𝜋𝑄 converges to a greedy strategy with respect to the

estimated action-value function 𝑄, and under further conditions on the learning rates

𝛼, [96] provides a proof that the action-value function estimated by Sarsa converges

to 𝑄∗ and thus 𝜋𝑄 converges to an optimal strategy. It is however important that 𝜋𝑄

does not approach a greedy strategy too quickly in order for 𝑄 to converge to 𝑄∗, a fact

known as the exploration-exploitation trade-off in reinforcement learning.

For 𝑄-learning, convergence of 𝑄 to 𝑄∗ is proven under similar assumptions as

for Sarsa in [50] and [108]. The proofs in [96], [50], and [108] make essential use of

Robbins-Monro stochastic approximation, [83], and results in [30].

We will keep in mind that 𝑄∗ can be reliably estimated without knowing the tran-

sition probabilities of the MDP, but we will abstract away from the concrete process

of estimating 𝑄∗ for the time being and will instead assume that agents have enough
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Algorithm 2.1.2 𝑄-learning [102, p. 149].

Let 𝜋𝑄 be a Markov strategy derived from an action-value function estimate 𝑄, e.g.,
𝜀-greedy. Then the Q-learning algorithm proceeds as follows:

1. Initialize 𝑄(𝑠, 𝑎) arbitrarily.

2. Repeat (for each episode):

a) Initialize 𝑠
b) Repeat (for each step in episode) until 𝑠 is terminal:

i. Choose 𝑎 from 𝑠 according to 𝜋𝑄
ii. Take action 𝑎, observe reward 𝑟, and subsequent state 𝑠′

iii. 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾max𝑎′{𝑄(𝑠′, 𝑎′)} − 𝑄(𝑠, 𝑎))
iv. 𝑠 ← 𝑠′

opportunity to arrive at a sufficiently good estimate. Thus, the existence of these

algorithms allows us to compute 𝑄∗ explicitly for the numerical analysis without in-

validating our assumptions about the computational simplicity of the agents.

As a concluding remark, reinforcement learning algorithms have been shown to

be successful in a wide variety of situations. While Q-learning and Sarsa rely on a

complete representation of the action-value function, in practical applications with

large state spaces and action spaces, approximations of the action-value function are

employed, e.g., through artificial (deep) neural networks. Such deep Q-learning has

been successfully employed to play Atari games [68], and [94] shows that deep Q-

learning can find a strategy for playing the game of go that surpasses that of any

human player, without using expert knowledge, to name just a very few applications.

However, convergence of such algorithms employing an approximation of the action-

value function is not always guaranteed, [32]. As temporal difference learning in

general, so can Sarsa and 𝑄-learning be extended with so-called eligibility traces such

that action-values for states that have been visited further in the past are updated

as well, resulting in Sarsa(𝜆) and 𝑄(𝜆), and general TD(𝜆) algorithms, where 𝜆 is

an eligibility trace parameter, [102]. The success and versatility of reinforcement

learning algorithms make the extension of these algorithms to multi-agent settings

an important question and a field of active research.
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2.2 Game theory and repeated games

Having elaborated on the single-agent perspective and having presented the main

results, we turn to a perspective that explicitly takes into account the interactions be-

tween agents. The investigation of agents interacting, such that other agents’ actions

have a significant influence on the rewards or payoffs of an agent, has been at the

heart of game theory since its early formulations in [114] and [115].

Based on these classical formulations, game theory has been employed to study

the evolution of traits, most notably in [63], and especially cooperative behaviour, by

extending it to repeated games and incorporating evolutionary population dynamics,

often considering the repeated Prisoner’s Dilemma as in [6], [41], [42], and [79], but

also with respect to the Stag Hunt in [76] and [97], and has seen a wide variety of ap-

plications in biology [17]. While these mostly investigate interactions and dynamics

on infinite well-mixed populations, evolutionary game theory has also been formu-

lated for structured finite populations as, e.g., evolutionary graph theory in [73] or

[1], and further in [16].

Our objective will be to combine the perspective of population dynamics with that

of each player simultaneously searching for an optimal strategy as in an MDP. The

latter problem has been addressed in the context of stochastic games in [92] and more

recently in [59], where it was proposed as an adequate framework to investigate multi-

agent reinforcement learning. We therefore introduce the basic concepts of game the-

ory and repeated games, following [75] and [34], and proceed to evolutionary game

theory and population dynamics, following [45].

2.2.1 Finite games and Nash equilibria

We begin with the definition of the central concept of game theory:

Definition 2.2.1 (Game). We call the tuple 𝐺 = (𝑁, 𝐴, (≿𝑖)𝑖∈𝑁) a game, where

i) 𝑁 is a set of players, where sometimes 𝑁 will denote the cardinality of 𝑁 if

misunderstanding is unlikely,1

ii) 𝐴 = ×𝑖∈𝑁𝐴𝑖 the set of action profiles where (𝐴𝑖)𝑖∈𝑁 is a family of non-empty

sets (we call 𝐴𝑖 the set of actions available to a player 𝑖),
1A rigorous approach to this would be to use von Neumann ordinals, which would however imply

starting to count with 0 instead of 1.
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iii) (≿𝑖)𝑖∈𝑁 is a family of preference relations on 𝐴, i.e., a family of complete reflexive

binary relations on 𝐴.

We call 𝐺 a finite game if 𝐴 and 𝑁 are finite.

Remark 2.2.2. We will in general assume games to be finite unless stated otherwise.

Furthermore, we will focus on games (𝑁, 𝐴, (≿𝑖)), where the preference relations are

induced by a family of payoff functions 𝑢 = (𝑢𝑖)𝑖∈𝑁 from 𝐴 to ℝ, such that:

∀𝑖 ∈ 𝑁, 𝑎, 𝑏 ∈ 𝐴 ∶ 𝑎 ≿𝑖 𝑏 ⇔ 𝑢𝑖(𝑎) ≥ 𝑢𝑖(𝑏)

In this case, we denote the game by (𝑁, 𝐴, 𝑢).

To illustrate the definition and provide a general intuition, we introduce the fol-

lowing prominent examples:

Example 2.2.3 (PD). Consider the following 2-player game known as the Prisoner’s

Dilemma (PD). Both players have {𝐶, 𝐷} as their action set and the payoff function

given by the following table, where the row player is player 1:

C D

C 4, 4 0, 5
D 5, 0 1, 1

If both players choose 𝐶, they both receive a payoff of 4 each. However, if one player

plays 𝐶, the other player is tempted to “defect”, that is play 𝐷, and receive a payoff of

5, sometime called the temptation, leaving the other with 0.

As the payoffs of the game are symmetrical, its payoffs can also be expressed as a

matrix of the payoffs for player 1:

𝐴 = ⎛⎜⎜⎜
⎝

𝑅 𝑆
𝑇 𝑃

⎞⎟⎟⎟
⎠

The payoffs for player 2 then are given by 𝐴𝑇 . In general, a Prisoner’s Dilemma is any

such game with 𝑇 > 𝑅 > 𝑃 > 𝑆 and 2𝑅 > 𝑇 + 𝑆.

Example 2.2.4 (SH). The Stag Hunt (SH) game is based on a passage of Rousseau’s

1754 A Discourse on Inequality, as related in [97, p. 1]: “If it was a matter of hunting

a deer, everyone well realized that he must remain faithful to his post; but if a hare

happened to pass within reach of one of them, we cannot doubt that he would have

gone off in pursuit of it without scruple.”
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Of course, this is not a specification of a strategic game. From what we have, we

infer that a stag is harder to catch than a hare and requires the hunters to focus on

hunting the stag. We should also think that a share of the stag is more desirable than

a hare, since otherwise we would not concern ourselves with the stag hunt to begin

with. We therefore formulate the game as a symmetrical two player game with the

following payoffs:

S H

S 10, 10 0, 2
H 2, 0 2, 2

Formulated as a payoff matrix, the game has the form

𝐴 = ⎛⎜⎜⎜
⎝

10 0
2 2

⎞⎟⎟⎟
⎠

.

Compared to the PD payoff structure, we have 𝑅 > 𝑇 = 𝑃 > 𝑆. Thus, if the two

players can commit themselves to hunting the stag, there is no temptation to deviate.

However, in the absence of such a commitment possibility it is risky, because that

could lead to having neither stag nor hare.

Example 2.2.5 (RPS). Another frequently encountered game in the literature as well

as real life is of the Rock-Paper-Scissors (RPS) type. The players’ action sets are given

as {𝑅, 𝑃, 𝑆} and the payoff function can again be given by the following table, where

the row player is player 1:

R P S

R 0, 0 −1, 1 1, −1
P 1, −1 0, 0 −1, 1
S −1, 1 1, −1 0, 0

This game can be framed as a zero-sum game, where the sum of payoffs of the players

is always 0, as is done here, but that is not the only sensible representation of such a

game, e.g., [17, p. 31].

The following is a central concept in the theory of games which helps to understand

the structure of games and characterize certain action profiles:

Definition 2.2.6 (Nash equilibrium). Given a game (𝑁, 𝐴, 𝑢), a Nash equilibrium is

an action profile 𝑎∗ ∈ 𝐴 such that:

∀𝑖 ∈ 𝑁, 𝑎𝑖 ∈ 𝐴𝑖 ∶ 𝑢𝑖(𝑎∗
𝑖 , 𝑎∗

−𝑖) ≥ 𝑢𝑖(𝑎𝑖, 𝑎∗
−𝑖)
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That is, given the other players’ actions, 𝑎∗
−𝑖, a player 𝑖 cannot increase the payoff by

deviating from 𝑎∗
𝑖 . Note that (𝑏𝑖, 𝑎−𝑖) denotes that action profile which is given by

𝑎 ∈ 𝐴 and where 𝑎𝑖 is replaced by 𝑏𝑖.

Remark 2.2.7. Note that in a Nash equilibrium 𝑎∗ ∈ 𝐴, each player 𝑖’s payoff is

maximal given the other players’ actions, i.e.,

𝑢𝑖(𝑎∗
𝑖 , 𝑎∗

−𝑖) = max
𝑎𝑖∈𝐴𝑖

𝑢𝑖(𝑎𝑖, 𝑎∗
−𝑖).

We also call 𝐵𝑖 ∶ 𝐴 → 𝒫(𝐴𝑖), 𝑎 ↦ {𝑎𝑖 ∈ 𝐴𝑖 | ∀𝑏𝑖 ∈ 𝐴𝑖 ∶ 𝑢𝑖(𝑎𝑖, 𝑎−𝑖) ≥ 𝑢𝑖(𝑏𝑖, 𝑎−𝑖)} the

best-response correspondence of player 𝑖, such that 𝑎∗ ∈ 𝐴 is a Nash equilibrium if and

only if ∀𝑖 ∈ 𝑁 ∶ 𝑎∗
𝑖 ∈ 𝐵𝑖(𝑎∗).

Remark 2.2.8. Note that in PD type games the action profile (𝐶, 𝐶) is not a Nash

equilibrium, as players are tempted to deviate from it. The only Nash equilibrium of

the game is (𝐷, 𝐷). Furthermore, not every game has an action profile that is a Nash

equilibrium, as can be seen from RPS type games.

Mixed strategies and mixed strategy Nash equilibria

Motivated by the observation that not all games have an action profile which is a Nash

equilibrium, such as RPS, we introduce the notion of a mixed strategy in order to

account for randomized behaviour and to ensure the existence of equilibria in games.

Definition 2.2.9 (Mixed strategy). Given a game (𝑁, 𝐴, 𝑢), we denote by 𝒟(𝐴𝑖) the

set of probability distributions over 𝐴𝑖 and call the elements of 𝒟(𝐴𝑖) player 𝑖’s mixed

strategies or just strategies. As usual, given 𝜎 ∈ 𝒟(𝐴𝑖), we refer to {𝑎𝑖 ∈ 𝐴𝑖 ∶ 𝜎(𝑎𝑖) >
0} as the support of 𝜎, or supp(𝜎).

Remark. A profile of mixed strategies (𝜎𝑖)𝑖∈𝑁 induces a probability distribution over

𝐴. For a finite 𝐴, as will be usually assumed further on, the probability distribution

induced by a strategy profile 𝜎 ∈ (𝒟(𝐴𝑖))𝑖∈𝑁 is a function 𝐴 → ℝ, 𝑎 ↦ ∏𝑖∈𝑁 𝜎𝑖(𝑎𝑖).

Definition 2.2.10 (Pure strategy). A probability distribution 𝜎 ∈ 𝒟(𝐴𝑖) with 𝜎(𝑎𝑖) =
1 for some 𝑎𝑖 ∈ 𝐴𝑖 is called a pure strategy, and we sometimes refer to such an 𝑎𝑖 itself

as a pure strategy.

Definition 2.2.11 (Mixed extension). Given a game 𝐺 = (𝑁, 𝐴, 𝑢), we call the tuple

(𝑁, (𝒟(𝐴𝑖))𝑖∈𝑁 , (𝑈𝑖)𝑖∈𝑁) the mixed extension of 𝐺 if for each 𝑖 ∈ 𝑁, 𝒟(𝐴𝑖) is the set
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of probability distributions over 𝐴𝑖 and 𝑈𝑖 ∶ ⨉𝑗∈𝑁 𝒟(𝐴𝑗) → ℝ assigns to each strategy

profile 𝜎 = (𝜎𝑗)𝑗∈𝑁 the expected value of 𝑢𝑖(𝑎) under the probability distribution

induced by 𝜎 over 𝐴.

Remark. For finite 𝐴, 𝑈𝑖 then is the function 𝜎 ↦ ∑𝑎∈𝐴 ∏𝑗∈𝑁 𝜎𝑗(𝑎𝑗)𝑢𝑖(𝑎).

Definition 2.2.12 (Mixed strategy Nash equilibrium). A mixed strategy Nash equilib-

rium of a game 𝐺 is the Nash equilibrium of its mixed extension.

According to this definition, given (𝑁, (𝒟(𝐴𝑖))𝑖∈𝑁 , (𝑈𝑖)𝑖∈𝑁), a strategy profile 𝜎∗

is a Nash equilibrium of this mixed extension iff

∀𝑖 ∈ 𝑁,𝜎𝑖 ∈ 𝒟(𝐴𝑖) ∶ 𝑈𝑖(𝜎∗
𝑖 ,𝜎∗

−𝑖) ≥ 𝑈𝑖(𝜎𝑖,𝜎∗
−𝑖).

Existence of mixed strategy Nash equilibria in finite games

We would like to delineate the conditions under which a game has at least one Nash

equilibrium. It turns out that, while a game does not necessarily have a Nash equi-

librium in pure strategies, the existence of a Nash equilibrium in mixed strategies is

guaranteed for all finite games:

Proposition 2.2.13 (Nash, [69]). Every finite game has a mixed strategy Nash equi-

librium.

Remark. Although we are concerned with finite games and their mixed extensions,

the existence of mixed strategy Nash equilibria can be guaranteed for games with

finite 𝑁 but infinite 𝐴 under certain compactness conditions on the 𝐴𝑖 and continuity

conditions on the 𝑢𝑖, [35].

2.2.2 Repeated games

We turn to repeated games, where we consider players playing a game repeatedly, e.g.,

a repeated Prisoner’s Dilemma. The framework of repeated games allows us to anal-

yse the repeated interaction of agents over time, where agents can take into account

the previous behaviour of other players. This will be a first step towards analysing

adaptive behaviour such as learning and evolution.

The consideration of repeated games has been a fruitful field to understand how

repetition affects the behaviour of players. The repeated Prisoner’s Dilemma is a very

intensely studied game, as under certain conditions cooperation becomes not only a
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feasible but a dominant option in contrast to the one-shot PD, where mutual defection

is the only Nash equilibrium.

Repeated games can consist of either finite or infinite repetitions of a game. Note

that the finite horizon usually implies that the number of repetitions is known in

advance. The infinite horizon case also includes the case where the number of repe-

titions is finite but stochastic. A prominent case is where the number of repetitions

follows a geometric distribution. The solution approach, i.e., the Nash equilibrium,

differs for the two cases. In the finite horizon case, the repeated game can be solved

by backwards induction from solving the last round. In the infinite horizon case, there

either is no last round or it is unknown which round is the last round. Therefore, here

the solution approach differs.

Thus, a repeated game consists of a game 𝐺 that is repeated and sometimes called

the stage game. And players choose their actions in each repetition simultaneously,

while they know the actions chosen by the other players for the whole history of the

repeated game. It is often defined as an extensive form game with perfect information

and simultaneous moves. As this will be the only kind of extensive form games of

interest to us, we refer the reader to the standard texts for a general definition of

extensive form games, e.g., [75]. For reasons of clarity, we define repeated games

directly as follows:

Definition 2.2.14. Let 𝐺 = (𝑁, 𝐴, (≿𝑖)) be a game. An infinitely repeated game of 𝐺
is a tuple (𝑁, 𝐻, (≿∗

𝑖 )), where

i) 𝐻 = 𝐴ℕ ∪ (⋃∞
𝑡=0 𝐴𝑡) with 𝐴0 = {∅}, i.e., 𝐻 is the set of all finite and infinite

sequences of elements of 𝐴, i.e., action profiles of the stage game 𝐺. We will

denote the set of finite sequences by �̊�, i.e., �̊� = 𝐻 ⧵ 𝐴ℕ.

ii) (≿∗
𝑖 ) is a family of preference relations on 𝐴ℕ such that ∀𝑖 ∈ 𝑁 and ∀(𝑎𝑡) ∈

𝐴ℕ, 𝑎, 𝑎′ ∈ 𝐴 with 𝑎 ≿𝑖 𝑎′:

(𝑎1, … , 𝑎𝑡−1, 𝑎, 𝑎𝑡+1, …) ≿∗
𝑖 (𝑎1, … , 𝑎𝑡−1, 𝑎′, 𝑎𝑡+1, …) (∀𝑡 ≥ 1)

Three forms for the preference relations in repeated games are of particular interest

and have analogues in the theory of Markov decision processes, [80]. Although we

present all three for the sake of completeness, only the discounting criterion will play a

role in the further analysis. We will again only consider the case where the preference
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relations in the stage game are induced by a family of functions 𝑢 = (𝑢𝑖)𝑖∈𝑁 . Thus,

we assume that the stage game is given as 𝐺 = (𝑁, 𝐴, 𝑢):

i) Discounting criterion. For a player 𝑖 ∈ 𝑁 let 𝛾𝑖 ∈ (0, 1) and (𝑎𝑡), (𝑏𝑡) ∈ 𝐴ℕ be

histories. Then define the preference relation ≿∗
𝑖 on 𝐴ℕ as

(𝑎𝑡) ≿∗
𝑖 (𝑏𝑡) ∶⇔

∞
∑
𝑡=1

𝛾𝑡−1
𝑖 (𝑢𝑖(𝑎𝑡) − 𝑢𝑖(𝑏𝑡)) ≥ 0.

This sum is well-defined, since 𝐺 is a finite game with finite 𝐴 and the sequence

(𝑢𝑖(𝑎𝑡) − 𝑢𝑖(𝑏𝑡))𝑡∈ℕ is therefore bounded. We will further assume that instead

of individual discount factors 𝛾𝑖, all players have the same discount factor 𝛾.
If we have (𝑎𝑡) ≿∗

𝑖 (𝑏𝑡) for two histories (𝑎𝑡), (𝑏𝑡) ∈ 𝐴ℕ, we say that (𝑎𝑡) is

preferred over (𝑏𝑡) by the 𝛾-discounting criterion. This criterion is a natural

criterion in the case where the number of repetitions follows a geometric distri-

bution with parameter 𝛾 and we are interested in the expected sum of payoffs,

as in the MDP case. It is clear that for two histories differences in earlier rep-

etitions have a larger influence than differences in later repetitions under the

discounting criterion. This also corresponds to the setting where a finite but

random number of repetitions is played, with the number of repetitions follow-

ing a geometric distribution, where potential differences in later rounds play a

smaller role because they are less probably to occur.

ii) Limit of means criterion. For a player 𝑖 ∈ 𝑁 let (𝑎𝑡), (𝑏𝑡) ∈ 𝐴ℕ be histories.

Then define the preference relation ≿∗
𝑖 on 𝐴ℕ as

(𝑎𝑡) ≿∗
𝑖 (𝑏𝑡) ∶⇔ lim inf

𝑇→∞
1
𝑇

𝑇
∑
𝑡=1

(𝑢𝑖(𝑎𝑡) − 𝑢𝑖(𝑏𝑡)) ≥ 0.

Note that for any two histories 𝑎, 𝑏 ∈ 𝐴ℕ, where 𝑎 is preferred over 𝑏 by the limit

of means criterion, there exists a 𝛾 < 1 such that 𝑎 is preferred over 𝑏 by the 𝛾-
discounting criterion. In the theory of Markov decision processes this criterion

is called the lim inf average criterion, [80].

iii) Overtaking criterion. For a player 𝑖 ∈ 𝑁 let (𝑎𝑡), (𝑏𝑡) ∈ 𝐴ℕ be histories. Then

define the preference relation ≿∗
𝑖 on 𝐴ℕ as

(𝑎𝑡) ≿∗
𝑖 (𝑏𝑡) ∶⇔ lim inf

𝑇→∞

𝑇
∑
𝑡=1

(𝑢𝑖(𝑎𝑡) − 𝑢𝑖(𝑏𝑡)) ≥ 0.

23



This criterion can be used to differentiate between strategies in the case where

the series over payoffs has no finite limit and it is sensitive to changes at a finite

amount of times, in contrast to the limit of means criterion.

Strategies and equilibria in repeated games

In the context of repeated games, the set of strategies becomes far larger and more

complex than for one-shot games. For repeated games, and extensive form games in

general, a strategy should determine a player’s action in every repetition depending

on (potentially) the whole history of previously played action profiles. This motivates

the following:

Definition 2.2.15. Given the infinitely repeated game (𝑁, 𝐻, (≿∗
𝑖 )) of a stage game

𝐺 = (𝑁, 𝐴, 𝑢) and a player 𝑖 ∈ 𝑁, a strategy for the infinitely repeated game of 𝐺 of

player 𝑖 is a function 𝜎𝑖 ∶ �̊� → 𝐴𝑖 . We call a family of such strategies 𝜎 = (𝜎𝑖)𝑖∈𝑁 a

strategy profile. We denote the set of all strategies of a player 𝑖 by Π𝑖.

Given a strategy profile, we want to define how that profile leads to a history of

the game:

Definition 2.2.16 (Outcome). Given the infinitely repeated game (𝑁, 𝐻, (≿∗
𝑖 )) of a

stage game 𝐺 = (𝑁, 𝐴, 𝑢) and a strategy profile (𝜎𝑖)𝑖∈𝑁 , we define the outcome 𝑂(𝜎)
of 𝜎 to be the history (𝑎𝑡) ∈ 𝐴ℕ that results when each player 𝑖 ∈ ℕ follows the

strategy 𝜎𝑖, i.e.:

∀𝑡 ∈ ℕ ∶ 𝑎𝑡+1 = 𝜎((𝑎𝜏)𝜏≤𝑡)

With these definitions in place, we can extend the definition of a Nash equilibrium

to repeated games:

Definition 2.2.17. Let (𝑁, 𝐻, (≿∗
𝑖 )) be an infinitely repeated game with possible

strategies (Π𝑖)𝑖∈𝑁 . A strategy profile (𝜎∗
𝑖 )𝑖∈𝑁 is called a Nash equilibrium if

∀𝑖 ∈ 𝑁,𝜎𝑖 ∈ Π𝑖 ∶ 𝑂(𝜎∗
𝑖 ,𝜎∗

−𝑖) ≿∗
𝑖 𝑂(𝜎𝑖,𝜎∗

−𝑖).

In the case of repeated games, we need at least one further refinement of the equi-

librium concept, that of a subgame perfect equilibrium, although we will not introduce

the notion of a subgame as it is not crucial to the understanding of our specific situa-

tion. Let us consider the following motivating example from [75, p. 146].
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Example 2.2.18. Let a 2-player game be given by the following payoff table:

A D

A 2, 3 1, 5
D 0, 1 0, 1

For player 2, we have (𝐴, 𝐷) ≻2 (𝐴, 𝐴) ≻2 (𝐷, 𝐴) ∼ (𝐷, 𝐷) in the one-shot game.

However, player 1 prefers (𝐴, 𝐴) over all other action profiles. Suppose then player 1’s

strategy is given as

𝜎∗
1((𝑎𝜏)𝜏≤𝑡) =

⎧{{
⎨{{⎩

𝐷 if ∃𝜏 ≤ 𝑡 ∶ 𝑎𝜏2 = 𝐷

𝐴 otherwise

i.e., if player 2 chooses 𝐷 even once, then player 1 will play 𝐷 forever as a “punishment”.

Let player 2’s strategy be given as 𝜎∗
2 ∶ (𝑎𝜏)𝜏≤𝑡 ↦ 𝐴, i.e., player 2 always plays 𝐴. Then,

given that player 1’s strategy is 𝜎∗
1, we have that

∀𝜎2 ∈ Π2 ∶ 𝑂(𝜎∗
2,𝜎∗

−2) ≿∗
2 𝑂(𝜎2,𝜎∗

−2).

Note that any deviation from playing 𝐴 would lead to action profiles (𝐷, 𝐴) and (𝐷, 𝐷)
and thus a payoff of 1 afterwards, for any strategy 𝜎2 ∈ Π2. This would offset any

gains from playing 𝐷 under the criteria introduced earlier (for a sufficiently high dis-

count factor 𝛾). More obviously, given player 2’s strategy 𝜎∗
2, we have that

∀𝜎1 ∈ Π1 ∶ 𝑂(𝜎∗
1,𝜎∗

−1) ≿∗
1 𝑂(𝜎1,𝜎∗

−1) .

Thus, (𝜎∗
1,𝜎∗

2) is a Nash equilibrium strategy profile for the repeated game. However,

note that 𝜎∗
1 implies that player 1 would receive a payoff of 0 for “punishing”, i.e., for

playing 𝐷. Even if player 2 switches to playing always 𝐷, then player 1 would have a

strong incentive to play 𝐴, i.e., the threat of “punishment” is not credible.

This example motivates the reasoning that players should have no motivation to

change their strategy later on in the game, after any previous history, i.e., they would

not gain anything from changing their strategy if things turned out differently, which

motivates the following definition:

Definition 2.2.19. Given an infinitely repeated game (𝑁, 𝐻, (≿∗
𝑖 )), a strategy profile

𝜎∗ is a subgame perfect equilibrium of the game if for every player 𝑖 ∈ 𝑁 and every

non-terminal history ℎ ∈ �̊�

∀𝜎𝑖 ∈ Π𝑖 ∶ 𝑂ℎ(𝜎∗
𝑖 ,𝜎∗

−𝑖) ≿∗
𝑖 𝑂ℎ(𝜎𝑖,𝜎∗

−𝑖) ,
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where for a strategy profile 𝜎 and a non-terminal history ℎ = (ℎ𝑡)𝑡≤𝑡ℎ , 𝑂ℎ(𝜎) is the

terminal history (𝑎𝑡)𝑡∈ℕ such that

𝑎𝑡 =
⎧{{
⎨{{⎩

ℎ𝑡 if 𝑡 ≤ 𝑡ℎ

𝜎((𝑎𝜏)𝜏<𝑡) otherwise
.

Thus, a subgame perfect equilibrium strategy profile is a Nash equilibrium after

any history, even and especially if that history would not have occurred under that

strategy profile. Considering the Nash equilibrium strategy profile presented in the

motivating example 2.2.18, it becomes clear that this is not a subgame perfect equilib-

rium, as seen after, e.g., the very short history (𝐷, 𝐷), which would not have occurred

under the given strategy profile.

2.3 Evolutionary game theory and replicator dynamics

Based on the game theoretic concepts introduced so far, we can now consider a very

specific approach to analyse and establish equilibria through dynamics on a popula-

tion of players. Our presentation mainly follows [45].

In evolutionary game theory the question of interest is the presence of traits in

a population that is subjected to an evolutionary process where the fitness associ-

ated with a trait is determined by a game. One standard setting is a single infinite

population of players who encounter each other randomly and play a game in each

encounter. The expected payoffs of the game then determine the fitness of that agent

and the agents reproduce according to their respective fitness such that traits which

lead to a higher fitness proliferate whereas traits with lower fitness disappear from a

population.

However, we are only interested in traits which have a bearing on a player’s strat-

egy, and instead of a player having certain traits, we will say that a player is of some

type and we sometimes speak of strategies instead of types, employing these terms

almost synonymously in the present context.

The main idea of evolutionary stability was introduced in [64], further specified in

[105], and can be formulated as in [45]:

Let 𝑊(𝐼, 𝑄) ∈ ℝ be the fitness of a type 𝐼 in a population with composition 𝑄 and

let 𝑥𝐽 + (1 − 𝑥)𝐼 denote the population with a proportion 𝑥 of 𝐽-types and 1 − 𝑥 of

𝐼-types. We call a population of 𝐼-types evolutionarily stable if there is ̄𝜀 > 0 such that
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for all 𝜀 < ̄𝜀 and all other types 𝐽 (𝐽 ≠ 𝐼) we have:

𝑊(𝐽, 𝜀𝐽 + (1 − 𝜀)𝐼) < 𝑊(𝐼, 𝜀𝐽 + (1 − 𝜀)𝐼)

Thus, if we replace a small proportion of the population with some other type 𝐽, that

type will disappear under an evolutionary process.

In the context of evolutionary game theory, the fitness of a type is determined by a

finite game. Therefore, let (𝜋𝑖)1≤𝑖≤𝜈 be a mixed strategy in a game, i.e., a distribution

over the 𝜈 pure strategies of the game. Let further 𝑢𝑖𝑗 denote the payoff of playing the

pure strategy 𝑖 against the pure strategy 𝑗, giving the payoff matrix 𝑈 = (𝑢𝑖𝑗). Then

the expected payoff of a 𝜋-player against a 𝜌-player is given as:

∑
1≤𝑖,𝑗≤𝜈

𝜋𝑖𝜌𝑗𝑢𝑖𝑗 or 𝜋𝑇𝑈𝜌.

Definition 2.3.1. We call 𝜋 an evolutionarily stable strategy (ESS) if there is ̄𝜀 > 0
such that for all strategies 𝜌 (𝜌 ≠ 𝜋) and all 0 < 𝜀 < ̄𝜀 we have

𝜌𝑇𝑈(𝜀𝜌 + (1 − 𝜀)𝜋) < 𝜋𝑇𝑈(𝜀𝜌 + (1 − 𝜀)𝜋).

Remark. This definition implies by continuity for 𝜀 → 0 that a strategy 𝜋 is an ESS

if and only if

i) (𝜋,𝜋) is a Nash equilibrium, i.e. for all strategies 𝜌

𝜌𝑇𝑈𝜋 ≤ 𝜋𝑇𝑈𝜋

ii) and for all strategies 𝜌 (𝜌 ≠ 𝜋)

𝜌𝑇𝑈𝜋 = 𝜋𝑇𝑈𝜋 ⇒ 𝜌𝑇𝑈𝜌 < 𝜋𝑇𝑈𝜌.

Note that 𝜋 is an ESS if it is a strict Nash equilibrium, i.e., with strict inequality for

all 𝜌 ≠ 𝜋 in i).

The following then characterizes an ESS:

Proposition 2.3.2 ([45, theorem 6.4.1]). A strategy 𝜋 is an ESS if and only if for all

𝜌 ≠ 𝜋 in some neighbourhood of 𝜋,

𝜋𝑇𝑈𝜌 > 𝜌𝑇𝑈𝜌 .
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A dynamic perspective. In order to clarify what we mean, when we say that a type

will disappear under an evolutionary dynamics, we need to specify that dynamics for

some population. Although the range of possible population dynamics is wide, as [46]

shows, we focus on the replicator dynamics, which was introduced in [105] in order to

provide a dynamics and relate its stationary points to evolutionarily stable strategies:

Consider a population 𝑥 of individuals of types 𝑖 ∈ {1, 2, … , 𝑛}, and corresponding

proportions of the population, 𝑥𝑖 ≥ 0 with ∑𝑛
𝑖=1 𝑥𝑖 = 1. Let further 𝑓𝑖(𝑥) be the

fitness of a type 𝑖 in a population 𝑥, and ̄𝑓 (𝑥) = ∑𝑛
𝑖=1 𝑥𝑖𝑓𝑖(𝑥) the average fitness of the

population.

In the replicator dynamics, the time evolution of a population 𝑥 is then given by

the following differential equations:

̇𝑥𝑖 = 𝑥𝑖(𝑓𝑖(𝑥) − ̄𝑓 (𝑥)) (2.3.1)

An alternative discrete time replicator dynamics is given by

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡)𝑓𝑖(𝑥(𝑡)) + 𝑐
̄𝑓 (𝑥(𝑡)) + 𝑐

(2.3.2)

where 𝑐 can be interpreted as a background fitness ensuring positive numerators as

suggested in [46].

Remark 2.3.3. We note that the discrete dynamics (2.3.2) approaches the continuous

(2.3.1) as the background fitness tends to infinity. We can rewrite (2.3.2) as:

𝑥𝑖(𝑡 + Δ𝑡) = 𝑥𝑖(𝑡)𝑤𝑓𝑖(𝑥(𝑡)) + 1
𝑤 ̄𝑓 (𝑥(𝑡)) + 1

As 𝑤 → 0, we approach the weak selection case, where the fitness has essentially no

influence on the selection process. Linearizing the dynamics around 𝑤 = 0 yields

𝑥𝑖(𝑡 + Δ𝑡) − 𝑥𝑖(𝑡)
𝑤 = 𝑥𝑖(𝑡)(𝑓𝑖(𝑥(𝑡)) − ̄𝑓 (𝑥(𝑡))) (2.3.3)

Setting 𝑤 = Δ𝑡 and taking the limit Δ𝑡 → 0 then yields the continuous dynamics

(2.3.1). Thus the two dynamics coincide in the weak selection limit.

Clarifying the relation between the dynamical perspective and evolutionary stabil-

ity, we next specify the relationship between the stationary points of the continuous

replicator dynamics (2.3.1) and the ESS of a game. Consider again a game with 𝜈 pure

strategies and a payoff matrix 𝑈 = (𝑢𝑖𝑗), where 𝑢𝑖𝑗 gives the payoff of playing the pure

strategy 𝑖 against a pure strategy 𝑗. Assume a population (𝑥𝑖)1≤𝑖≤𝑛 consisting of 𝑛
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types, where each type 𝑖 plays a (possibly mixed) strategy (𝜎𝑖
𝑘)1≤𝑘≤𝜈. Then the payoff

of playing 𝜎𝑖 against 𝜎𝑗 is given as:

𝑎𝑖𝑗 = ∑
1≤𝑘,𝑙≤𝜈

𝜎𝑖
𝑘𝑢𝑘𝑙𝜎

𝑗
𝑙 = (𝜎𝑖)𝑇𝑈𝜎𝑗

We define the fitness 𝑓𝑖(𝑥) of a type 𝑖 as the expected payoff of playing a random op-

ponent in 𝑥:

𝑓𝑖(𝑥) = ∑
1≤𝑗≤𝑛

𝑎𝑖𝑗𝑥𝑗 = [𝐴𝑥]𝑖

In this case, the replicator equations (2.3.1) simplify to

̇𝑥𝑖 = 𝑥𝑖([𝐴𝑥]𝑖 − 𝑥𝑇𝐴𝑥) . (2.3.4)

To clarify the relationship between the stationary points of (2.3.4) and evolutionar-

ily stable strategies of the game with payoffs 𝑈, we will need the following definitions:

Definition 2.3.4. Let 𝐴 be as above. Then we call a population composition 𝑥∗:

i) a Nash equilibrium of the game with the payoff matrix 𝐴 if 𝑥𝑇𝐴𝑥∗ ≤ (𝑥∗)𝑇𝐴𝑥∗

for all populations 𝑥;

ii) an evolutionarily stable state(!) for a payoff matrix 𝐴 if 𝑥𝑇𝐴𝑥 < (𝑥∗)𝑇𝐴𝑥 for all

𝑥 ≠ 𝑥∗ in a neighbourhood of 𝑥∗;

iii) an interior point if 𝑥∗
𝑖 > 0 for all 1 ≤ 𝑖 ≤ 𝑛; and an orbit (𝑥(𝑡)) an interior orbit

if all its points are interior points.

Definition 2.3.5 (Dynamic stability). Given some dynamics, not necessarily (2.3.1)

or (2.3.4), we call a stationary point 𝑥∗ of that dynamics

i) Lyapunov stable (or neutrally stable) if for every neighbourhood 𝒱 of 𝑥∗, there is

a neighbourhood 𝒰 of 𝑥∗ such that for every 𝑥 ∈ 𝒰 its forward-orbit (𝑥(𝑡))𝑡∈ℝ+
0

under under the dynamics is contained in 𝒱;

ii) asymptotically stable if 𝑥∗ is Lyapunov stable and there is a neighbourhood 𝒰 of

𝑥∗ such that for every 𝑥 ∈ 𝒰 its forward-orbit (𝑥(𝑡))𝑡∈ℝ+
0

converges to 𝑥∗; and

globally asymptotically stable if this is the case for every 𝑥 in the domain of the

dynamics.

Then the following result establishes the relation between these perspectives:

29



Proposition 2.3.6 ([45, theorems 7.2.1 and 7.2.4]). Let ̃𝑥 be a population of 𝑛 types

and 𝐴 a payoff matrix for (2.3.4).

i) If 𝑥∗ is a Nash equilibrium of the game with payoffs 𝐴, then 𝑥∗ is a stationary

point of (2.3.4).

ii) If 𝑥∗ is the limit of an interior orbit (𝑥(𝑡))𝑡∈ℝ for 𝑡 → ∞, then 𝑥∗ is a Nash

equilibrium.

iii) If 𝑥∗ is Lyapunov stable, then 𝑥∗ is a Nash equilibrium.

iv) If 𝑥∗ is an evolutionarily stable state for 𝐴, then 𝑥∗ is an asymptotically stable

stationary point of (2.3.4).

Note that this result pertains to the relationship between populations and the

Nash equilibria of the game with payoff matrix 𝐴. However, it will allow us to establish

the relationship between the stationary points of (2.3.4) and the ESS of the game with

payoff matrix 𝑈. To this end, we introduce the following:

Definition 2.3.7. Given the types 1, … , 𝑛, corresponding to the (possibly mixed)

strategies 𝜎1, … ,𝜎𝑛 in the underlying game with payoff matrix 𝑈, and a population

(𝑥𝑖)1≤𝑖≤𝑛, we call the strategy ̄𝜎 = ∑1≤𝑖≤𝑛 𝑥𝑖𝜎𝑖 the mean population strategy.

We call a strategy ̄𝜎 strongly stable, if it is a mean population strategy and any

mean population strategy in a neighbourhood of ̄𝜎 converges to ̄𝜎 under (2.3.4). Note

that this is not asymptotic stability, but asymptotic stability without requiring neutral

stability.

Note that the mapping from populations to mean population strategies is not nec-

essarily injective, and further that if the types in a population are exactly the pure

strategies of a game, then the possible mean population strategies cover all (pure and

mixed) strategies of the game.

This leads to our main result on the relationship between evolutionarily stable

strategies and the single-population replicator equation (2.3.4):

Proposition 2.3.8 ([45, theorem 7.3.2]). A strategy ̄𝜎 is an ESS of the game with payoff

matrix 𝑈 if and only if it is strongly stable.

We illustrate the variety of systems that can result from a replicator dynamics

with an example given by [17, p. 31]:
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Example. Consider a population of players in the pairwise Rock-Paper-Scissors (RPS)

game with the general payoff matrix for player 1 being:

𝐴 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 𝑎3 −𝑏2

−𝑏3 0 𝑎1

𝑎2 −𝑏1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Let the types correspond to the deterministic strategies of RPS and the population be

a 3-tuple, where the components are in the order 𝑅, 𝑆, 𝑃, representing the frequency

of the corresponding type. For the parameter choices

𝐴1 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 −1
−2 0 2
2 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝐴2 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 −1
−1 0 1
1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝐴3 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 −2
−2 0 1
1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

the dynamics produces three different outcomes (figure 2.1):

(a) For 𝐴1, (5/19, 8/19, 6/19) is an asymptotically stable stationary point of the dy-

namics and is the 𝜔-limit of all interior orbits.

(b) For 𝐴2, a Lyapunov stable stationary point at (1/3, 1/3, 1/3) results. However, it

is not asymptotically stable and all interior orbits are closed.

(c) For 𝐴3, an unstable and globally repelling stationary point at (4/16, 7/16, 5/16)
results.

Figure 2.1: Three possible situations resulting from the continuous single-population replicator
dynamics with different payoffs in the Rock-Paper-Scissors game. (a) An asymptotically stable and
globally attracting stationary point results from payoff matrix 𝐴1. (b) For the conventional choice
for payoffs 𝐴2, a Lyapunov stable but not asymptotically stable stationary point with closed orbits
results. (c) For 𝐴3, an unstable and globally repelling stationary point results.

(1,0,0)

(0,1,0)

(0,0,1)

(a)
(1,0,0)

(0,1,0)

(0,0,1)

(b)
(1,0,0)

(0,1,0)

(0,0,1)

(c)

Note that this formulation of evolutionary game theory considers a population of

players where players from the same population interact with each other. As we will
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consider several populations, where players from different populations interact and

gain fitness from those interactions, we will not employ the simplified replicator equa-

tions (2.3.4) but will consider the more general and discrete form (2.3.2) instead, or

rather the weak selection version (2.3.3). Therefore in our case, a type’s absolute fit-

ness 𝑓𝑖 does not depend on the composition of its own population but rather on the

composition of the other population(s). The reproductive success of a type will how-

ever still depend on the relative fitness with respect to its own population and thus

on the population composition.

2.3.1 Evolutionary dynamics and multi-agent reinforcement
learning

The relationship between game theory and multi-agent reinforcement learning shows

parallels to that between MDPs and single-agent reinforcement learning. We want

to give a short overview over those aspects of multi-agent systems that are closely

linked to game theory and are concerned with extending the approach of single-agent

reinforcement learning to a multi-agent setting, while a comprehensive presentation

is given in, e.g., [119]. While the links between discrete-time replicator dynamics and

single-agent reinforcement learning dynamics have been investigated on several occa-

sions, as listed, e.g., in [46], the multi-agent setting raises additional questions such

as the observability of the other agents’ actions and possibly their rewards. Accord-

ingly, multi-agent reinforcement learning presents a wider variety of proposed algo-

rithms, as surveyed, e.g., in [20]. Furthermore, drawing on ideas from evolutionary

game theory for the construction of multi-agent reinforcement learning algorithms

has been proposed in, e.g., [110], specifically for iterated games in [109], and as a

selection-mutation dynamics in [111]. A detailed analysis of the continuous time Q-

learning dynamics in two-player-two-actions games is provided in [53]. Finally, [11]

gives a comprehensive overview of algorithms motivated by an evolutionary dynamical

approach to multi-agent learning. However, we are not aware of a comprehensive an-

alytical treatment of the underlying dynamics for discounted repeated games, where

the focus on the stationary distribution of the resulting Markov process in general

is not sufficient, nor are we aware of a treatment relating multi-agent reinforcement

learning to game theory in a mathematical way comparable to the relation of rein-

forcement learning to Markov decision processes.
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3 An application to learning in
networks

In order to better clarify the context in which we consider the parallels between learn-

ing and evolution and the idea of employing evolutionary game theory in understand-

ing the learning dynamics in a network of simple interacting agents, we consider a

concrete learning dynamics in a basic artificial neural network. To our knowledge,

there are no previous proposals connecting the learning dynamics in artificial neural

networks to evolutionary game theory in the literature. Of course, the broad area of

learning has been addressed in many different ways in game theory as well as in evo-

lutionary game theory. However, assumptions on agents’ rationality and their ability

to observe others are often incompatible with the perspective of artificial neural net-

works and the resulting directions pursued and the techniques employed cannot be

easily translated.

The presented setting is a preliminary approach to incorporate learning based on

game theoretic payoffs in an artificial neural network and it will become clear that

such a preliminary approach, although informed by the literature on artificial neural

networks, very quickly encounters problems which require a more rigorous treatment.

Therefore, besides providing an illustration of the proposed ideas, the main objective

here is to underscore the necessity of pursuing a mathematically rigorous treatment.

We start by considering neurons to be simple agents with a limited ability to ob-

serve each others’ actions and an ability to react to those observed actions. As usual

for neural networks, we assume some optimality criterion on the collective behaviour

is given. We further assume that individual payoffs depend on the network’s collective

performance. Our main question (†) here becomes whether agents can learn individ-

ual behaviour that is collectively optimal. We formulate this question in the following

terms:

– Let 𝑁 be a finite set of agents, where we assume 𝑁 = {1, 2, … , |𝑁|}, with agents

having non-empty action sets (𝐴𝑖)𝑖∈𝑁 , such that the possible states of the system
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are given by the set 𝑆 with

𝑆 = ×𝑖∈𝑁𝐴𝑖 ∶=
⎧{
⎨{⎩

𝑎 ∶ 𝑁 → ⋃
𝑖∈𝑁

𝐴𝑖
∣∣∣∣
∀𝑖 ∈ 𝑁 ∶ 𝑎(𝑖) ∈ 𝐴𝑖

⎫}
⎬}⎭

.

– Let 𝐼 ⊂ 𝑁 be a set of “input” agents and 𝐽 ⊂ 𝑁 a set of “output” agents with

𝐼 ∩ 𝐽 = ∅. The optimality criterion should consider only these agents’ states.

– Let (𝑂𝑖)𝑖∈𝑁 be a family of subsets of 𝑁, which we will call the agents’ neigh-

bourhoods. Note that (𝑂𝑖)𝑖∈𝑁 induces a digraph with vertices 𝑁 and edges

{(𝑗, 𝑖) ∈ 𝑁 × 𝑁 ∣ 𝑗 ∈ 𝑂𝑖}, which we call the observability graph or interaction

graph.

– Let for each 𝑖 ∈ 𝑁, Π𝑖 be the set of the agent’s strategies 𝜋𝑖 ∶ ×𝑗∈𝑂𝑖𝐴𝑗 → 𝐴𝑖. The

agents’ computational “simplicity” is expressed by limiting the sets of possible

strategies. Here, we only consider Markov strategies.

The question also implies two dynamics: First, the agents form a digraph and their

respective actions depend on the agents’ actions they can observe. Therefore, we need

to consider the time 𝑇 in which the state of the system evolves, which we assume to

be ℕ. Then we can define the sequence of states (𝑎𝑡
𝑖)𝑖∈𝑁,𝑡∈𝑇 given an initial state

(𝑎0
𝑖 )𝑖∈𝑁 and given strategies (𝜋𝑡

𝑖)𝑖∈𝑁,𝑡∈𝑇 , with (𝜋𝑡
𝑖)𝑡∈𝑇 ⊂ Π𝑖, such that

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁 ∶ 𝑎𝑡+1
𝑖 = 𝜋𝑡

𝑖((𝑎𝑡
𝑗)𝑗∈𝑂𝑖).

Given the evolution of the system, we can consider some form of optimality crite-

rion defined on the sequence of states, as the basis for a feedback signal, from which

the agents’ individual rewards are derived. Here, the question of convergence of the

system’s states and the agents’ rewards arises. Note that if the induced digraph is

acyclic and the strategies are stationary, i.e., independent of 𝑡 ∈ 𝑇, and determin-

istic, then the system’s state will converge after a finite amount of time and we can

define an optimality criterion as depending on these limit states. If the graph contains

cycles, then convergence in general is not guaranteed even with stationary determin-

istic strategies. However, it is the cyclic case in which we can speak of agents actually

interacting, as there is no mutual dependence in behaviours without cycles. This mo-

tivates us to employ the discounted total reward as a suitable optimality criterion

for the agents, as it is equivalent to evaluating the system over a random but finite
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amount of time. In this case, we can define an optimality criterion and feedback sig-

nal without requiring the convergence of the system’s states and we thus can consider

interaction graphs with cycles.

Second, our initial question assumes that agents “arrive” at some desired behavi-

our, which can be accommodated by either of the following: We can either assume that

there is some dynamics on the agents’ strategies, i.e., functions 𝐺𝑖 ∶ 𝑇 → Π𝑖. This

assumes that both dynamics, i.e., the system’s evolution and the change in strategies,

operate on the same time scale. Or we can assume that the agents’ strategies are

adapted on a separate time scale, e.g., adaptation happening after the system has

been evaluated for some time and before the time is reset for a new series of evalua-

tions. We will consider both possibilities.

In this chapter, we first consider our question in a setting that is informed by

simplified artificial neural networks. It illustrates the interaction of the different as-

pects of our question and the possible arising complexities. We then proceed to the

limit case of a single agent in a stationary environment and relax this assumption to

an environment that adapts very slowly relative to the agent with the more general

results allowing for proper multi-agent settings presented in later chapters.

3.1 A first numerical approach

In an initial attempt to approach the problem, we specify the following algorithm as

a variant of our main question (†) and numerically investigate the system’s ability to

approximate the identity function on 𝑋 = (0, 10)𝑛 for some 𝑛 ∈ ℕ. We first present

the concrete algorithm and will then go into the details as to how this algorithm relates

to our initial question:

Algorithm 3.1.1

1. Initialization

a) Choose the set of agents to be 𝑁 = {1, … , |𝑁|}, the number of input agents,

|𝐼|, and output agents, |𝐽|, with |𝐼| = |𝐽| < 1
2 |𝑁|, and set 𝐼 = {1, … , |𝐼|} ⊂ 𝑁,

𝑃 = {|𝐼| + 1, … , |𝑁| − |𝐽|} ⊂ 𝑁, and 𝐽 = {|𝑁| − |𝐽| + 1, … , |𝑁|} ⊂ 𝑁.

b) Set 𝑋 = (0, 10)|𝐼|.

35



c) Initialize a random upper triangular matrix 𝑊0 ∈ (0, 1)|𝑁|×|𝑁| of the fol-

lowing block form:

𝑊0 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 𝐴 0
0 𝐵 𝐶
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where 𝐴 ∈ (0, 1)|𝐼|×|𝑃|, 𝐵 is a |𝑃| × |𝑃| upper triangular matrix with zero

diagonal and entries in (0, 1) above the diagonal, and 𝐶 ∈ (0, 1)|𝑃|×|𝐽|. 𝑊0

is the adjacency matrix of an acyclic weighted digraph describing the inter-

actions between the agents.

d) Choose the maximal number of iterations 𝑇𝑚𝑎𝑥 over 𝑋 and meta-parameters

𝛼, 𝛾 ∈ (0, 1), and a smoothed characteristic function of (0, ∞), 𝜎.

2. Iterate over 𝑋 , setting 𝑡 ← 1.

a) Choose a random pair (𝑥𝑡, 𝑥𝑡) from 𝑋 × 𝑋 .

b) Calculate agents’ actions and thus the system’s state:

i. Given 𝑥𝑡 ∈ (0, 10)|𝐼|, set the system’s state as:

𝑎𝑡
𝑖 ←

⎧{{
⎨{{⎩

𝑥𝑡
𝑖 if 𝑖 ∈ 𝐼

0 otherwise

ii. Choose agents as enumerated by 𝑊𝑡 and calculate their actions, start-

ing with 𝑖 ← |𝐼| + 1:

A. Let 𝑤𝑡
𝑖 denote the 𝑖-th column of 𝑊𝑡.

B. Choose a random diagonal |𝑁| × |𝑁| matrix 𝒦𝑡
𝑖, where we have for

the diagonal elements

ln ([𝒦𝑡
𝑖]𝑗,𝑗) ∼ 𝒩(0,𝜎2) (𝑗 ∈ 𝑁),

and calculate 𝑖’s action 𝑎𝑡
𝑖 as

𝑎𝑡
𝑖 ← ⟨𝒦𝑡

𝑖𝑤𝑡
𝑖, 𝑎𝑡⟩ .

C. If 𝑖 < |𝑁|, set 𝑖 ← 𝑖 + 1 and repeat.

c) Calculate agents’ rewards:
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i. Calculate the system’s performance as

𝐹𝑡 = (‖(𝑎𝑡
𝑖)𝑖∈𝐽 − (𝑎𝑡

𝑖)𝑖∈𝐼‖2

‖(𝑎𝑡
𝑖)𝑖∈𝐼‖2 + 1)

−1
,

where we use the natural enumerations of 𝐼 and 𝐽.

ii. Keep track of the “average” performance over time

𝑓 𝑡 = (1 − 𝛿)𝑓 𝑡−1 + 𝛿𝐹𝑡,

where 𝑓 0
𝑖 = 0.

iii. Calculate the (non-input) agents’ rewards as:

𝑅𝑡
𝑖 = 𝜎(𝑎𝑡

𝑖)
∑𝑘∈𝑁⧵𝐼 𝜎(𝑎𝑡

𝑘) max{0, 𝐹𝑡 − 𝑓 𝑡} (𝑖 ∈ 𝑁 ⧵ 𝐼),

where 𝜎 is a smoothed characteristic function of (0, ∞).

d) Adapt agents’ behaviours:

i. For each active non-input agent 𝑖 (i.e., 𝑎𝑖 > 0) update the reward esti-

mate:

𝑟𝑡
𝑖 = (1 − 𝛾)𝑟𝑡−1

𝑖 + 𝛾𝑅𝑡
𝑖,

where 𝑟0
𝑖 = 0.

ii. Set

𝑤𝑡+1
𝑖 = 𝑤𝑡

𝑖 + 𝛼𝑡
𝑖(𝒦𝑡

𝑖𝑤𝑡
𝑖 − 𝑤𝑡

𝑖),

where

𝛼𝑡
𝑖 = max {𝛼 𝑅𝑡

𝑖 − 𝑟𝑡
𝑖

|𝑅𝑡
𝑖 − 𝑟𝑡

𝑖 | + 1, 0} .

iii. 𝑊𝑡+1 is then composed of the updated columns 𝑤𝑡+1
𝑖 and zero-columns

for the input agents.

e) If 𝑡 < 𝑇𝑚𝑎𝑥, set 𝑡 ← 𝑡 + 1 and repeat.

We want to comment on certain parts of the algorithm and clarify how certain

aspects relate to our initial general question.
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Agents and observability. We interpret the matrix 𝑊0 in the algorithm as the

adjacency matrix of a weighted directed graph, where we only consider edges with

non-zero weights. It is clear then that the neighbourhoods for the input agents (𝑖 ∈ 𝐼)

are given as 𝑂𝑖 = ∅, i.e., these agents cannot observe any part of the system’s state.

The output agents in 𝐽 cannot observe any of the input agents or output agents, but

observe all agents in 𝑃, i.e., ∀𝑗 ∈ 𝐽 ∶ 𝑂𝑗 = 𝑃. It is further clear from the definition

of 𝑊0 that for all agents 𝑖 ∈ 𝑃 we have 𝐼 ⊂ 𝑂𝑖 and that there is a linear sorting of

the agents in 𝑃 such that every agent has outgoing edges to every subsequent agent

in 𝑃, as illustrated in figure 3.1. Indeed, the introduced enumeration of agents is a

topological ordering of the whole interaction graph, i.e., for all edges (𝑖, 𝑗) we have

𝑖 < 𝑗. For the more general case, we may relax the requirement that the digraph be

acyclic.

Figure 3.1: Schematic illustration of the induced subgraph of agents in 𝑃.

|𝐼| + 1 |𝐼| + 2 |𝐼| + 3 |𝐼| + 4 |𝐼| + 5 |𝐼| + 6 …

Time. Let us consider the evolution of the system’s state. Note that any agent’s ac-

tion only depends on the agents that precede it in the ordering given by 𝑊0. Therefore,

an agent’s action does not change if its preceding agents’ actions do not change and if

we used deterministic strategies, e.g., by reusing the same disturbances 𝒦𝑡
𝑖. Thus,

in such a deterministic case, agents reach their final action as soon as their preceding

agents reach their respective final actions, since the interaction digraph is acyclic and

we have a topological sorting of the graph. By computing the agents’ actions in the

order given by 𝑊0 or equivalently by 𝑊𝑡, cf. algorithm 3.1.1, step 2. b) ii., we arrive

at the system’s final state after computing each agent’s action once.

Note that if agents were evaluated in some arbitrary sequence, all agents would

reach their final state after at most |𝑁|2 evaluations. Therefore, if at each point in

time all agents were evaluated simultaneously, the system would reach its final state

not later than time |𝑁|. Therefore in the stochastic case, any variation after time |𝑁|
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would be due solely to the stochastic disturbances. By computing the agents’ actions

in the order given by 𝑊0, we effectively ignore the role of the time it would take to

reach the system’s final state and consider the agents’ rewards only for the final state.

The only remaining time scale is the time in which the input agents’ states change

due to iterations over our input set 𝑋 , and in which the agents’ strategies are adapted.

Effectively, we have two nested time scales: On the inner time scale, strategies are

constant for input agents and deterministic for all other agents and we compute the

system’s final state in that time scale, effectively ignoring or “compressing” this time

scale. On the outer time scale, input agents have stationary stochastic strategies and

all other agents’ strategies are adapted stochastically, and this is the time scale that

we keep track of in the algorithm.

Agents’ strategies. The specific choice of agents’ strategies is motivated by the ac-

tivation function of rectified linear units in deep artificial neural networks, e.g., in [57]

and [5]. There, instead of the linear function used here, an affine linear function is

used with values below zero replaced by zero, e.g. for some 𝑏𝑖 ∈ ℝ a unit’s activation

function would be

(𝑎𝑗)𝑗∈𝑂𝑖 ↦ max {0, ⟨(𝑎𝑗), 𝑤𝑖⟩ + 𝑏𝑖} .

For simplicity in this first approach, we ignore the threshold parameter 𝑏𝑖 and, as our

actions are all non-negative, we do not need the maximum.

Signals and rewards. We investigate the system’s ability to approximate the iden-

tity function on (0, 10)|𝐼|. Therefore, 𝐹 measures the relative distance between input

and output state. Furthermore, as the system is sequentially presented with random

values from (0, 10)|𝐼| a (biased) approximation 𝑓 of the average value of 𝐹 is calculated,

which is then used to calculate agents’ rewards.

Agents’ rewards are non-negative and each active agent receives the same reward

if its action is larger than some 𝜀, which is the smoothing cutoff of 𝜎, i.e., 𝜎(𝑥) = 1 for

𝑥 > 𝜀. Analogous to 𝐹, agents have an approximation of their average rewards and

agents’ policies are only changed if their received reward is higher than this average

reward.

Dynamics on strategies. The strategy updates are based on the realised actual

reward, 𝑅𝑡
𝑖, and past rewards, 𝑟𝑡

𝑖, as well as on the parameters, 𝑤𝑡
𝑖, and the disturbance
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matrix, 𝒦𝑡
𝑖. The strategy dynamics is motivated by the reasoning that the action

produced by 𝑤𝑡
𝑖 would have been ⟨𝑤𝑡

𝑖, 𝑎𝑡⟩ and was expected to result in a reward of 𝑟𝑡
𝑖,

as 𝔼[𝒦𝑡
𝑖] = 𝐼𝑑. However, the random disturbance matrix 𝒦𝑡

𝑖 causes 𝑖’s action to be

𝑎𝑡
𝑖 and results in the possibly different reward, 𝑅𝑡

𝑖. Therefore, if the actual reward is

higher than the expected reward, the strategy is adapted such that, given the same

observed state, it produces an action that is closer to the actual action 𝑎𝑡
𝑖. Similar

approaches employing randomly disturbed strategies are presented in [84].

3.1.1 Numerical results and discussion

We consider the algorithm’s behaviour in the following variants:

1. For |𝐼| = |𝐽| = 1 and |𝑃| = 2, |𝑃| = 20, and |𝑃| = 40, respectively, we consider the

system’s ability to approximate the identity on (0, 10).

2. For |𝐼| = |𝐽| = 2 and |𝑃| = 1, |𝑃| = 2, |𝑃| = 10, and |𝑃| = 20, respectively, we

consider the system’s ability to approximate the identity on (0, 10)2.

(a) (b)

(c)

Figure 3.2: The overall network re-
ward 𝐹𝑡 over time 𝑡 (104 iterations)
for: |𝐼| = |𝐽| = 1 and (a) |𝑃| = 2
agents; (b) |𝑃| = 20 agents; (c) |𝑃| =
40 agents.

For the first set of variants, i.e., |𝐼| = |𝐽| = 1, figures 3.2a-3.2c, show the values of

𝐹𝑡 over the course of 104 iterations. In all three cases the system approaches the

maximum of 𝐹, and the remaining deviation is due only to the stochastic disturbance.
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The number of iterations required to reach the limit behaviour increases with the

number of agents, as would be expected given the larger search space.

Figure 3.3: Interaction graph in the case of |𝐼| = |𝐽| = 2 and |𝑃| = 1.

1 3 4

2 5

For the second set of variants, i.e., |𝐼| = |𝐽| = 2, figures 3.4a-3.4d, show the values

of 𝐹𝑡 over the course of 104 iterations (105 in figure 3.4c). The variant with |𝑃| = 1
is included as a negative test case, as it is impossible to sufficiently approximate the

identity on (0, 10)2 in this case, as is clear from the interaction graph (figure 3.3). As

expected, the approximation in this case does not reach a comparable level to the one

dimensional case (figure 3.4a).

In the case of |𝑃| = 2, approximation is expected to be straight-forward, and the

interaction graph is expected to approach one of two possible graphs (figure 3.5). How-

ever, as figure 3.4b shows, the approximation does not improve compared to |𝑃| = 1,

and indeed the interaction graph does not approach any of the two expected variants.

For the sake of completeness, figures 3.4c and 3.4d show the system’s behaviour for

larger numbers of agents. Both cases show a qualitatively similar behaviour to the

smaller cases, although considerably more iterations are required to reach that be-

haviour.

The investigation of the system’s behaviour therefore shows that the presented

naive approach encounters serious problems in an intuitively simple case, i.e., the

approximation of the identity on a two dimensional bounded set.1 This result thus

motivates us to approach the basic question in a more systematic way and to consider

two perspectives on the problem:

1) A minimum requirement on a sensible dynamics is that, assuming that all ex-

cept one agents’ policies are held constant, it results in a maximization of the sys-

tem’s performance by optimizing over that one agent’s parameter space. Thus,

the dynamics should solve the single agent optimization problem if all other
1An extension of 𝑋 to [0, 10]2 produces no significant difference in this respect.
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Figure 3.4: The overall network reward 𝐹𝑡 over time 𝑡 (104 iterations) for: |𝐼| = |𝐽| = 2 and (a)
|𝑃| = 1 agent; (b) |𝑃| = 2 agents; (c) |𝑃| = 10 agents (over 105 iterations); and (d) |𝑃| = 20 agents.

(a) (b)

(c) (d)

Figure 3.5: Expected interaction graphs for |𝐼| = |𝐽| = 2, |𝑃| = 2, where dashed edges have weights
close to zero.

1 3 5

2 4 6

1 3 5

2 4 6

agents’ policies are held constant. This property of a learning algorithm is called

rationality in [14] in the context of multi-agent learning.

2) The two agent setting, with 𝑁 = {1, 2} and 𝐼 = 𝐽 = 𝑁, with a complete inter-

action graph should be analysable in the language of standard and evolutionary

game theory.

3.2 A single agent in a stationary environment

As a result of the observations stated above, we consider a special case of our initial

problem. We assume that the dynamics on all agents except one, 𝑖, are constant, i.e.,

all other agents have stationary strategies. We further assume that we have some
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function 𝐹 ∶ ×𝑗∈𝑁𝐴𝑗 → ℝ which measures the desirability of a system’s state and that

we are interested in maximizing

𝔼 ⎡⎢
⎣

∞
∑
𝑡=1

𝛾𝑡𝐹(𝑎𝑡)⎤⎥
⎦

(3.2.1)

for some 𝛾 ∈ [0, 1) where (𝑎𝑡)𝑡∈ℕ is the sequence of states generated by the agents’

strategies. We further assume that for all sequences of states (𝑎𝑡), (𝑏𝑡) ∈ (×𝑗∈𝑁𝐴𝑗)ℕ

the following relation between the reward function 𝑅𝑖 and the function 𝐹 holds:
∞

∑
𝑡=1

𝛾𝑡𝑅𝑖(𝑎𝑡) >
∞

∑
𝑡=1

𝛾𝑡𝑅𝑖(𝑏𝑡) ⇔
∞

∑
𝑡=1

𝛾𝑡𝐹(𝑎𝑡) >
∞

∑
𝑡=1

𝛾𝑡𝐹(𝑏𝑡)

Under this assumption, a dynamics 𝐺 on the focal agent’s strategy maximizes (3.2.1)

if it solves the optimization problem of the focal agent 𝑖, i.e., if it solves:

max 𝔼𝜋 ⎡⎢
⎣

∞
∑
𝑡=1

𝛾𝑡𝑅𝑖(𝑎𝑡)⎤⎥
⎦

s. t. 𝜋 ∈ Π𝑖 (3.2.2)

Under our assumption that for all 𝑗 ∈ 𝑁 we have |𝐴𝑗| < ∞, i.e., that we have

finite action sets and therefore a finite state space for the system, and that Π𝑖 con-

tains all stationary Markov strategies, the focal agent’s maximization problem is a

Markov decision process and a strategy ̂𝜋𝑖 solves (3.2.2) if and only if it satisfies the

optimality conditions for the Markov decision process (2.1.3). Accordingly, a dynamics

𝐺 maximizes (3.2.1) if and only if its limit is a strategy that satisfies these optimality

conditions, such that, e.g., 𝑄-learning would be one such dynamics.

Thus, this situation provides two crucial conditions under which we can hope for a

sensible answer to our initial question. First, 𝑅 should preserve the ordering relation

on ×𝑗∈𝑁𝐴𝑗 induced by 𝐹 and the chosen optimality condition, the discounted total

reward in our case. Second, 𝐺 should converge to strategies that solve the individual

agents’ Markov decision processes if all other agents are assumed stationary, i.e., 𝐺
should be rational.

Note that by choosing the discounted total reward as optimality criterion, we do

not need the sequence of the system’s states to be convergent and we can estimate the

expected discounted total reward by estimating total rewards over finite times with

times following a geometric distribution, as noted earlier.

An outlook on adaptation on different time scales

In order to approach a dynamics where all agents’ strategies are adapted, we relax

our assumption about the stationarity of all other agents and instead assume that
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our focal agent’s strategy adapts fast whereas the other agents’ strategies adapt very

slowly. In the extreme, this means that the focal agent adapts instantly relative to the

adaptation speed of the other agents, while the other agents’ strategies have a slow

drift. We take a tentative look at the numerical behaviour of such a system with two

agents playing the repeated Stag Hunt with the following payoffs:

𝑎𝑆 𝑎𝐻

𝑎𝑆 1, 1 −2, 0
𝑎𝐻 0, −2 0, 0

with the action set 𝐴 = {𝑎𝑆, 𝑎𝐻}. For simplicity, we consider the case of a complete

interaction graph, where all agents can observe all actions. Before we introduce the

algorithm, we point out the following properties of the problem: In a repeated two

player game with a given payoff vector and a given stationary strategy 𝜌 for player 2,

we can specify a Markov decision process for player 1, where the state space 𝑆 consists

of 𝐴×𝐴 and the probability to transition from some state 𝑠 ∈ 𝑆 to a state (𝑎1, 𝑎2) ∈ 𝑆
if player 1 chooses action 𝑎 ∈ 𝐴 is induced by 𝜌 as follows:

𝑝((𝑎1, 𝑎2)|𝑠, 𝑎) =
⎧{{
⎨{{⎩

𝜌(𝑠, 𝑎2) if 𝑎1 = 𝑎,

0 otherwise.

We define 𝜋∗ ∶ Π𝑀𝑅 → Π𝑀𝑅 such that

[𝜋∗(𝜌)](𝑠, 𝑎) =
⎧{{
⎨{{⎩

1
∣arg max𝑎′∈𝐴{𝑄∗𝜌(𝑠,𝑎′)}∣ if 𝑎 ∈ arg max𝑎′∈𝐴{𝑄∗𝜌(𝑠, 𝑎′)},

0 otherwise

where 𝑄∗𝜌 is the optimal action-value function for the MDP induced by player 2’s strat-

egy 𝜌. Thus, 𝜋∗(𝜌) is an optimal strategy for the induced MDP. We can then introduce

the following algorithm for the repeated two player Stag Hunt game:

In this situation, player 1’s strategy adapts faster than player 2’s. In the extreme

case of 𝛼𝜋 ≫ 𝛼𝜌, player 1’s strategy would immediately reach an optimal strategy 𝜋∗.

Apart from border cases, in the SH game this means that 𝜋∗ ∈ Π𝑀𝐷, i.e., in each

state 𝑠, player 1 will deterministically chose one of the two available actions 𝑎𝑆 or

𝑎𝐻 . We could exclude these border cases by defining 𝜋∗ such that it always returns

a stationary deterministic Markov strategy. As we have |𝑆| = 4 and |𝐴| = 2, this

results in ∣Π𝑀𝐷∣ = 24. Table 3.1 shows the optimal strategies for player 1, given

deterministic strategies for player 2. Note that player 1 always has a deterministic
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Algorithm 3.2.1
Let 𝛼𝜋 and 𝛼𝜌 denote the adaptation speed of players 1 and 2 respectively and 𝜋 and
𝜌 the strategies of players 1 and 2 respectively.

1. Choose 𝛼𝜋,𝛼𝜌 ∈ (0, 1) with 𝛼𝜋 > 𝛼𝜌, and 𝜋0, 𝜌0 ∈ Π𝑀𝑅.

2. For 𝑡 ∈ ℕ0:

a) Calculate the optimal strategy for player 1: 𝜋∗
𝑡 = 𝜋∗(𝜌𝑡)

b) 𝜋𝑡+1 = (1 − 𝛼𝜋)𝜋𝑡 + 𝛼𝜋𝜋∗
𝑡

c) Calculate the optimal strategy for player 2: 𝜌∗
𝑡+1 = 𝜌∗(𝜋𝑡+1)

d) 𝜌𝑡+1 = (1 − 𝛼𝜌)𝜌𝑡 + 𝛼𝜌𝜌∗
𝑡+1

strategy that is optimal and reaches that strategy instantly under 𝛼𝜋 ≫ 𝛼𝜌. The

drift of player 2’s strategy is therefore a response to player 1’s deterministic optimal

strategy, in this case. Due to the symmetry of the game, the table therefore shows the

optimal strategy 𝜋∗(𝜌) of any player, given that the other player’s strategy is 𝜌. We

also note that player 1’s optimal strategy 𝜋∗(𝜌) is the same if player 2’s strategy is

close enough to the corresponding deterministic strategy. for illustration, we consider

the following:

Table 3.1: Optimal deterministic strategies for player 1, 𝜋∗(𝜌), given the strategy of player 2,
𝜌. The states are enumerated as given at the top. The strategies are represented by a tuple of
probabilities of playing 𝑎𝑆 in the respective state.

Player 2’s strategy 𝜌 Player 1’s optimal strategy 𝜋∗(𝜌)
(𝑎𝑆, 𝑎𝑆), (𝑎𝑆, 𝑎𝐻), (𝑎𝐻 , 𝑎𝑆), (𝑎𝐻 , 𝑎𝐻) (𝑎𝑆, 𝑎𝑆), (𝑎𝑆, 𝑎𝐻), (𝑎𝐻 , 𝑎𝑆), (𝑎𝐻 , 𝑎𝐻)

(1, 1, 1, 1) (1, 1, 1, 1)
(1, 1, 1, 0) (1, 1, 1, 1)
(1, 1, 0, 1) (1, 1, 0, 1)
(1, 1, 0, 0) (1, 1, 1, 1)
(1, 0, 1, 1) (1, 0, 1, 1)
(1, 0, 1, 0) (1, 1, 0, 1)
(1, 0, 0, 1) (1, 0, 0, 1)
(1, 0, 0, 0) (1, 0, 0, 0)
(0, 1, 1, 1) (0, 1, 1, 1)
(0, 1, 1, 0) (0, 1, 1, 0)
(0, 1, 0, 1) (0, 1, 0, 1)
(0, 1, 0, 0) (0, 1, 0, 0)
(0, 0, 1, 1) (0, 0, 1, 1)
(0, 0, 1, 0) (0, 0, 1, 0)
(0, 0, 0, 1) (0, 0, 0, 1)
(0, 0, 0, 0) (0, 0, 0, 0)

Example. Let us represent a strategy by a tuple in ℝ4, where each entry represents

the probability of playing 𝑎𝑆 in the respective state and the states are enumerated
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in the order (𝑎𝑆, 𝑎𝑆), (𝑎𝑆, 𝑎𝐻), (𝑎𝐻 , 𝑎𝑆), (𝑎𝐻 , 𝑎𝐻), as in table 3.1. Suppose then that

player 2’s initial strategy 𝜌0 is close to (1, 0, 0, 1). Then player 1 will adopt the strategy

𝜋∗(𝜌0) = (1, 0, 0, 1), independent of its initial strategy 𝜋0. In response, player 2’s

strategy will slowly drift towards its optimal strategy, (1, 0, 0, 1), as well. If player

1’s optimal strategy does not change as long as 𝜌 does not leave a neighbourhood of

(1, 0, 0, 1), both players’ strategies converge to (1, 0, 0, 1).

Remark. In the case where algorithm 3.2.1 is applied to the repeated Prisoner’s

Dilemma game, the role of adaptation speeds 𝛼𝜋 and 𝛼𝜌 becomes more prominent,

as their relationship affects whether players tend to play the overall beneficial but

non-Nash-equilibrium (𝐶, 𝐶) or the Nash equilibrium (𝐷, 𝐷).

Although numerical results seem to confirm the reasoning presented above, two

aspects need to be clarified in order to further investigate the concrete relationships

and the concrete dynamics. First, although the adaptation dynamics proposed in algo-

rithm 3.2.1 is comparable to the Policy-Hill-Climbing algorithm investigated in [14],

it is not directly comparable to 𝑄-learning or evolutionary dynamics, and does not

explicitly account for the stochasticity of the underlying problem. Second, in the in-

tuition presented above, player 2’s strategy would be fixed, while in the presented

algorithm it is changing slowly. Therefore, an explicit formulation for this dynamics

has to be found which allows to analytically investigate and check the asymptotic be-

haviour suggested by intuition. To address these issues, we consider the implications

of employing an evolutionary dynamics.

3.3 A single agent as a population with a replicator
dynamics

In order to specify a sound dynamics on the agents’ strategies, we investigate the

single agent perspective further. As noted, for a single agent in a stationary envi-

ronment the problem is equivalent to solving an MDP. As proven, there is always a

deterministic Markov strategy that solves the MDP. We note that given a distribu-

tion (𝜋𝜎)𝜎∈Π𝑀𝐷 ∈ 𝒟(Π𝑀𝐷) over the stationary deterministic Markov strategies,

the following defines a stationary randomized Markov strategy 𝜋 ∈ Π𝑀𝑅:

𝜋(𝑠, 𝑎) = ∑
𝜎∈Π𝑀𝐷

𝜋𝜎𝜒𝜎(𝑠, 𝑎)
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where 𝜒𝜎 is the characteristic function on the graph of 𝜎, i.e., 𝜒𝜎(𝑠, 𝑎) = 1 ⇔ 𝜎(𝑠) = 𝑎.

We consider (𝜋𝜎)𝜎∈Π𝑀𝐷 to represent a population of types 𝜎 ∈ Π𝑀𝐷 and the

randomized Markov strategy 𝜋 the resulting mean population strategy corresponding

to definition 2.3.7. This perspective allows us to define a dynamics on a stationary

randomized Markov strategy 𝜋 ∈ Π𝑀𝑅 that corresponds to an evolutionary dynamics

on a population of stationary deterministic Markov strategies (𝜋𝜎) ∈ 𝒟(Π𝑀𝐷).

Optimality of a population. It is clear from the optimality conditions for MDPs

(2.1.3) that a stationary Markov strategy 𝜋 is optimal iff ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴:

𝜋(𝑠, 𝑎) > 0 ⇒ 𝑎 ∈ arg max
𝑎′∈𝐴

{𝑄∗(𝑠, 𝑎′)}

This yields that a population (𝜋𝜎) ∈ 𝒟(Π𝑀𝐷) corresponds to an optimal strategy 𝜋
if and only if

𝜋𝜎 > 0 ⇒ ∀𝑠 ∈ 𝑆 ∶ 𝜎(𝑠) ∈ arg max
𝑎′∈𝐴

{𝑄∗(𝑠, 𝑎′)} .

In other words, 𝜋𝜎 > 0 only if 𝜎 is itself an optimal deterministic strategy. If follows

from proposition 2.1.12 that under the assumption of a stationary environment, i.e.,

the stationarity of all other players, there exists at least one stationary deterministic

Markov strategy 𝜎 ∈ Π𝑀𝐷, that is optimal, and thus that there exists an optimal

population composition.

Type fitness. We define the fitness 𝑓 𝜎(𝑠) of a type 𝜎 ∈ Π𝑀𝐷 for a state 𝑠 ∈ 𝑆 as

𝑓 𝜎(𝑠) = 𝑄∗(𝑠,𝜎(𝑠)) ,

i.e., as the optimal action-value for that action 𝜎(𝑠) which the deterministic strategy

𝜎 chooses in state 𝑠. The average population fitness,

̄𝑓 (𝑠) = ∑
𝜎∈Π𝑀𝐷

𝜋𝜎𝑄∗(𝑠,𝜎(𝑠)) = ∑
𝑎∈𝐴

𝜋(𝑠, 𝑎)𝑄∗(𝑠, 𝑎) ,

then is the value of following the mean population strategy 𝜋 in the current state 𝑠
and an optimal strategy thereafter. Note that, as there is always a stationary deter-

ministic strategy that is optimal, for at least one of the types 𝜎 ∈ Π𝑀𝐷 we already

have 𝑓 𝜎(𝑠) = 𝑣∗(𝑠) ≥ ̄𝑓 (𝑠) (∀𝑠 ∈ 𝑆).

We consider how the population changes under the discrete replicator dynamics

(2.3.2), i.e.,

𝜋𝜎(𝑡 + 1) = 𝜋𝜎(𝑡)1 + 𝑤𝑓 𝜎(𝑠𝑡)
1 + 𝑤 ̄𝑓 (𝑠𝑡)

,

under weak selection, i.e., for sufficiently small 𝑤:
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Lemma 3.3.1. Let 𝜋0 be an interior population, and (𝜋(𝑡))𝑡∈ℕ a realization of the

discrete replicator dynamics (2.3.2) with sufficiently small 𝑤. Then every accumulation

point ̄𝜋 ∈ Π𝑀𝑅 of (𝜋(𝑡))𝑡∈ℕ in the sense that there is a subsequence (𝑡𝑘)𝑘∈ℕ of times

such that (𝑠𝑡𝑘)𝑘∈ℕ visits all states in 𝑆 infinitely often and for all 𝑎 ∈ 𝐴,

⎛⎜⎜⎜⎜
⎝

∑
𝜌∈Π𝑀𝐷,𝜌(𝑠𝑡𝑘)=𝑎

𝜋𝜌(𝑡𝑘)
⎞⎟⎟⎟⎟
⎠

→ ̄𝜋(𝑠𝑡𝑘 , 𝑎) as 𝑘 → ∞ ,

is a solution to the corresponding MDP almost certainly.

Proof. Let 𝜋0 be an interior point, i.e., ∀𝜎 ∈ Π𝑀𝐷 ∶ 𝜋𝜎0 > 0, and let there be a non-

optimal deterministic strategy for the problem, i.e., there is 𝜎 ∈ Π𝑀𝐷 such that for

some state 𝑠 ∈ 𝑆 we have 𝑓 𝜎(𝑠) < 𝑣∗(𝑠). (Otherwise, 𝜋0 is already an optimal pop-

ulation and a rest point of (2.3.2).) Note further that (2.3.2) produces a sequence

(𝜋(𝑡))𝑡∈ℕ of interior populations if 𝜋0 is in the interior, and therefore almost certainly

a sequence of states (𝑠𝑡)𝑡∈ℕ such that every state is recurrent, i.e., is an accumulation

point of the sequence. For notational simplicity, we set 𝑓 𝜎𝑡 ∶= 𝑓 𝜎(𝑠𝑡) and ̄𝑓𝑡 ∶= ̄𝑓 (𝑠𝑡).

Then:
̄𝑓𝑡 = ∑

𝜎∈Π𝑀𝐷
𝜋𝜎(𝑡)𝑓 𝜎𝑡 < ∑

𝜎∈Π𝑀𝐷
𝜋𝜎(𝑡)𝑣∗(𝑠𝑡) = 𝑣∗(𝑠𝑡)

Let us denote the set of optimal deterministic strategies by Π∗ (≠ ∅ as noted above)

and let 𝜎∗ ∈ Π∗. Then,

𝑓 𝜎∗
𝑡 = 𝑣∗(𝑠𝑡) > ̄𝑓𝑡

and thus for 𝑤 > 0 but small enough to ensure positivity, we have

1 + 𝑤𝑓 𝜎∗
𝑡

1 + 𝑤 ̄𝑓𝑡
> 1 .

By the replicator dynamics, we then have:

𝜋𝜎∗(𝑡 + 1) = 𝜋𝜎∗(𝑡)1 + 𝑤𝑓 𝜎∗
𝑡

1 + 𝑤 ̄𝑓𝑡
> 𝜋𝜎∗(𝑡)

Thus, as an increasing sequence bounded by 1 from above, (𝜋𝜎∗(𝑡))𝑡∈ℕ is convergent,

and hence for 𝑡 → ∞ we have

1 + 𝑤𝑓 𝜎∗
𝑡

1 + 𝑤 ̄𝑓𝑡
= 𝜋𝜎∗(𝑡 + 1)

𝜋𝜎∗(𝑡) → 1 and so |𝑓 𝜎∗
𝑡 − ̄𝑓𝑡| → 0 .

Let 𝜌 ∉ Π∗ and let 𝑠 be a state for which 𝑓 𝜌(𝑠) < 𝑣∗(𝑠). As every state is revis-

ited infinitely often almost surely, there is a subsequence (𝑠𝑡𝑘)𝑘∈ℕ ⊂ (𝑠𝑡)𝑡∈ℕ which

contains exactly the occurrences of 𝑠, i.e., 𝑠𝑡𝑘 = 𝑠 (∀𝑘 ∈ ℕ).
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Then we have

𝑓 𝜎∗
𝑡𝑘 − ̄𝑓𝑡𝑘 = 𝑓 𝜎∗

𝑡𝑘 − ∑
𝜎∈Π𝑀𝐷

𝜋𝜎(𝑡𝑘)𝑓 𝜎𝑡𝑘 + 𝑣∗(𝑠𝑡𝑘) − 𝑣∗(𝑠𝑡𝑘)

= 𝑓 𝜎∗
𝑡𝑘

− 𝑣∗(𝑠𝑡𝑘)⏟⏟⏟⏟⏟⏟⏟
=0

− ∑
𝜎∈Π∗

𝜋𝜎(𝑡𝑘) (𝑓 𝜎𝑡𝑘
− 𝑣∗(𝑠𝑡𝑘))⏟⏟⏟⏟⏟⏟⏟

=0
− ∑

𝜎∉Π∗
𝜋𝜎(𝑡𝑘)(𝑓 𝜎𝑡𝑘 − 𝑣∗(𝑠𝑡𝑘))

= ∑
𝜎∉Π∗

𝜋𝜎(𝑡𝑘)(𝑣∗(𝑠𝑡𝑘) − 𝑓 𝜎(𝑠𝑡𝑘)) > 𝜋𝜌(𝑡𝑘) (𝑣∗(𝑠) − 𝑓 𝜌(𝑠))⏟⏟⏟⏟⏟⏟⏟⏟⏟
>0

≥ 0

and so (𝜋𝜌(𝑡𝑘))𝑘∈ℕ → 0. Hence for 𝑎 ∉ arg max𝑎′∈𝐴 {𝑄∗(𝑠, 𝑎′)}, we have that

⎛⎜⎜⎜⎜
⎝

∑
𝜌∈Π𝑀𝐷,𝜌(𝑠𝑡𝑘)=𝑎

𝜋𝜌(𝑡𝑘)
⎞⎟⎟⎟⎟
⎠

→ 0 as 𝑘 → ∞ ,

and further

∑
𝑎∉arg max𝑎′∈𝐴{𝑄∗(𝑠𝑡,𝑎′)}

⎛⎜⎜⎜
⎝

∑
𝜌∈Π𝑀𝐷,𝜌(𝑠𝑡)=𝑎

𝜋𝜌(𝑡)⎞⎟⎟⎟
⎠

→ 0 as 𝑡 → ∞ .

Therefore, all accumulation points in the sense of the lemma must be solutions to

the MDP if (𝑠𝑡)𝑡∈ℕ visits all states in 𝑆 infinitely often, which is almost certainly the

case.

Simulation of the replicator dynamics

We have simulated the discrete replicator dynamics (2.3.2) for a discounted repeated

Prisoner’s Dilemma with discount factor 𝛾 = 0.8. The state space is given as

𝑆 = {(𝐶, 𝐶), (𝐶, 𝐷), (𝐷, 𝐶), (𝐷, 𝐷)}

and is enumerated in this order. The state represents the action profile chosen by the

players in the preceding round. The payoffs for player 1 are given as 𝑟 = (4, 0, 5, 1)𝑇 .

We fix player 2’s Markov strategy as presented in table 3.2. It amounts to player 2

playing a stochastic version of a tit-for-tat strategy where the player plays the action

chosen by the opponent in the preceding round as discussed in [6].

Table 3.2: Randomized Markov strategy of player 2. The table shows the probability that player 2
will play C or D in a given state.

𝐶 𝐷
(𝐶, 𝐶) 0.7 0.3
(𝐶, 𝐷) 0.7 0.3
(𝐷, 𝐶) 0.01 0.99
(𝐷, 𝐷) 0.01 0.99
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The optimal action-value function 𝑄∗ for the resulting MDP is given in table 3.3.

It shows that player 1 maximizes the expected total reward or equivalently the dis-

counted total reward given player 2’s strategy by playing 𝐶 in each state.

Table 3.3: 𝑄∗-values for player 1 for actions 𝐶 and 𝐷 in the corresponding state (given player 2’s
strategy).

𝐶 𝐷
(𝐶, 𝐶) 11.2 10.2336
(𝐶, 𝐷) 11.2 10.2336
(𝐷, 𝐶) 8.992 8.0256
(𝐷, 𝐷) 8.992 8.0256

We set the uniform distribution over states, (1/4, 1/4, 1/4, 1/4), as the initial state

probabilities. In order to incorporate the population perspective, we consider that

the set of stationary deterministic Markov strategies Π𝑀𝐷 in this case consists of 24

strategies. Therefore, we set our population to consist of 16 types corresponding to

those strategies, as given in table 3.4. We set the initial population to consist of equal

proportions of all types.

Table 3.4: Types corresponding to deterministic Markov strategies for player 1.

Type No. (𝐶, 𝐶) (𝐶, 𝐷) (𝐷, 𝐶) (𝐷, 𝐷)
1 𝐶 𝐶 𝐶 𝐶
2 𝐷 𝐶 𝐶 𝐶
3 𝐶 𝐷 𝐶 𝐶
4 𝐷 𝐷 𝐶 𝐶
5 𝐶 𝐶 𝐷 𝐶
6 𝐷 𝐶 𝐷 𝐶
7 𝐶 𝐷 𝐷 𝐶
8 𝐷 𝐷 𝐷 𝐶
9 𝐶 𝐶 𝐶 𝐷
10 𝐷 𝐶 𝐶 𝐷
11 𝐶 𝐷 𝐶 𝐷
12 𝐷 𝐷 𝐶 𝐷
13 𝐶 𝐶 𝐷 𝐷
14 𝐷 𝐶 𝐷 𝐷
15 𝐶 𝐷 𝐷 𝐷
16 𝐷 𝐷 𝐷 𝐷

The simulation results are presented in figure 3.6. We see that after 300 genera-

tions only four types remain in significant proportions, while all other types’ propor-

tions approach 0. Table 3.5 gives the population compositions after 300 and 1000 gen-

erations respectively and illustrates that the proportions of the four surviving types

remain almost constant. We further see that the four remaining types correspond to
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strategies choosing 𝐶 in the states (𝐶, 𝐶) and (𝐶, 𝐷). Although the only optimal type

is type 1, states (𝐷, 𝐶) and (𝐷, 𝐷) are not visited often enough to see a diminishing of

the proportions of the suboptimal types 5, 9, and 13, after 1000 generations. However

from lemma 3.3.1, we know that only strategy 1 is ever played in the limit.

Figure 3.6: Evolution of population composition (abscissa) over time for first 300 generations,
where the vertical distance along the ordinate between type boundaries gives the proportion in the
population.

3.4 Towards multi-population dynamics

We have so far essentially only considered cases where only a single population or

a single player’s strategy was changing. In evolutionary game theory, the multi-

population case has been considered in detail for certain classes of dynamics, the

multi-population replicator dynamics being one of the most prominent, e.g., in [118].

Furthermore, simultaneous learning has been considered in game theory and a promi-

nent negative result is given in [39], which also applies to the multi-population repli-

cator dynamics, among others.

In particular, [118, proposition 5.13] excludes the possibility that an interior2 equi-

librium can be asymptotically stable under the standard multi-population replicator
2To be precise, this extends to relatively interior equilibria, i.e., points such that any population

consist of more than one type.
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Table 3.5: Population compositions after 300 and 1000 generations, respectively, for each type.
Rows set in bold face mark the types present after 1000 generations.

Type
No. Strategy proportion after

300 generations
proportion after
1000 generations

1 (C, C, C, C) 0.566226 0.569213
2 (𝐷, 𝐶, 𝐶, 𝐶) 2.49848e-5 3.21206e-16
3 (𝐶, 𝐷, 𝐶, 𝐶) 0.00296228 5.61113e-8
4 (𝐷, 𝐷, 𝐶, 𝐶) 1.30711e-7 3.16635e-23
5 (C, C, D, C) 0.209617 0.210723
6 (𝐷, 𝐶, 𝐷, 𝐶) 9.24938e-6 1.18911e-16
7 (𝐶, 𝐷, 𝐷, 𝐶) 0.00109664 2.07725e-8
8 (𝐷, 𝐷, 𝐷, 𝐶) 4.83893e-8 1.17219e-23
9 (C, C, C, D) 0.159764 0.160607
10 (𝐷, 𝐶, 𝐶, 𝐷) 7.04958e-6 9.06301e-17
11 (𝐶, 𝐷, 𝐶, 𝐷) 0.000835825 1.58321e-8
12 (𝐷, 𝐷, 𝐶, 𝐷) 3.68808e-8 8.93404e-24
13 (C, C, D, D) 0.0591447 0.0594567
14 (𝐷, 𝐶, 𝐷, 𝐷) 2.60976e-6 3.35514e-17
15 (𝐶, 𝐷, 𝐷, 𝐷) 0.000309423 5.86106e-9
16 (𝐷, 𝐷, 𝐷, 𝐷) 1.36533e-8 3.30739e-24

dynamics, which we will consider in the following chapter. Furthermore, [118, propo-

sition 5.14] gives a negative result regarding constant player-dependent rescalings of

the dynamics, proving that such rescalings do not affect the stability of interior equi-

libria. This is extended by [82] to non-constant rescalings that are non-decreasing in

the type fitness. While these results concern the case of multi-population replicator

dynamics, [39] relates to so-called uncoupled dynamics, i.e., where players’ strategies

change only depending on their own strategies, their own payoffs, or other players’

strategies, but not depending on other players’ payoffs. For every such dynamics there

is a game and a neighbourhood of that game such that the dynamics does not converge

to the Nash equilibrium for all games in the neighbourhood. This is a basic impossi-

bility result which does not depend on further properties besides uncoupledness, e.g.,

the dynamics being payoff-increasing.

It is these fundamental challenges regarding stability that we hope to address

in the further course of this thesis, in order to gain a better understanding of the

conditions for a common perspective on evolutionary and learning dynamics in games

and to provide useful insights for multi-agent learning.
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4 Replicator dynamics and mutation
limits

4.1 Introduction

Evolutionary game theory has contributed significantly to our understanding of a

wide range of biological, e.g., [17, 64], and social phenomena, as shown by the vast

research into the evolution of cooperation and eusociality, e.g., [6], or the problem of

collective action, e.g., [76]. The evolutionary game theoretic approach, formulated in

[64], initially assumed a single population with intrapopulation interaction and com-

petition for reproduction, resulting in the concept of the evolutionarily stable strategy

(ESS), a refinement of the Nash equilibrium concept, where a strategy is said to be

evolutionarily stable if it outperforms any other newcomer strategy in a population

consisting almost entirely of players playing the former. While the intuition under-

lying the notion of an ESS is dynamic, its main definition is usually given in static

terms. In an effort to capture the dynamic intuition of the ESS concept, the continuous

time replicator dynamics (RD)1, provided by [105], relates the ESS to certain station-

ary points, [45], albeit lacking a complete characterization. In its usual formulation,

it captures the single population setting with pairwise intrapopulation interactions.

However, just as the concept of an ESS has been extended to the multi-population,

or multi-species, setting, e.g., [26], so has RD been formulated and analysed in the

multi-population setting with intrapopulation competition (for reproduction) but in-

terpopulation interactions (determining reproductive advantage), e.g., [118]. Forms

of multi-population RD have been employed in the analysis of coevolutionary systems,

such as mutualism [10], antagonistic coevolution of host-parasite systems [70, 99], of

institutional ecosystems [40], of the evolution of a population’s sex ratio [4], or the co-

evolution of social behaviour and recognition [98]. It has further been linked to Cross’

learning, a simple type of reinforcement learning [13].
1The term ‘replicator dynamics’ and its abbreviation ‘RD’ are unspecific and can refer to a range of

different dynamics. We later define a specific system of equations of the same name and we use ‘(RD)’
(note also the different typeface) when referring to these equations.
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In the context of potentially very large systems, e.g., complex ecosystems or multi-

agent systems, multi-population RD is of special interest because a population’s com-

position evolves exclusively depending on the payoffs from interactions, but indepen-

dent of any information about the other populations’ payoffs, their compositions, or

indeed their very existence. The latter specifics affect a population’s composition only

through their effect on its payoffs. Borrowing the term from [39], we call this property

of RD its uncoupledness.

In spite of RD leading to payoff-improving or even equilibrium states in certain

cases, there are intuitively simple games, for which neither an ESS exists nor RD

reaches any Nash equilibrium, exhibiting periodic limit or general non-convergent

behaviour instead: In the usual rock-paper-scissors (RPS) game, RD has exclusively

periodic orbits in the single population case and the only Nash equilibrium, an interior

point, is not approached from any initial state, e.g., [17], and a range of (un)-stable

situations can result [47]. Further, the two population setting results in periodic or-

bits, as well, and therefore does not reach the interior Nash equilibrium either. An

analogue result holds for the matching pennies game, e.g., [118]. Indeed, it has been

shown in [39] that no uncoupled dynamics, in particular RD, can be converging to a

Nash equilibrium for all possible games. For our understanding of actual biological

populations, this periodicity is not necessarily problematic. On the contrary, periodic

population dynamics similar to the single-population RPS case have been observed in

nature, e.g., in the common side-blotched lizard (Uta stansburiana) [95]. For our un-

derstanding of the conditions of behavioural convergence in multi-agent systems and

their ability to solve large-scale problems such periodic behaviour is less desirable.

Although RD is intended to capture the idea of evolutionary selection, and thus

is inspired by evolution, it treats mutation, an arguably central process of evolution

and one of the main generators of the diversity on which selection operates, as an

extremely rare event, to the degree that it is actually absent from the formulation of

the dynamics, especially in the case of multiple populations, e.g., [118]. Approaches

which include mutation mainly focus on the single population case [2, 12, 15, 18, 44,

49, 54, 77], consider a payoff-adjusted RD, or a discrete time process [19], or a single

discrete population [48, 113], while we are not aware of an analysis of continuous-time

multi-population RD with mutation, apart from [81] where certain approximations to

multi-population RD are considered, with a different focus however and not linked to

mutation.
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We demonstrate that introducing a class of mutations, which allows simple non-

uniform mutations, in multi-population RD can fundamentally change the properties

of the dynamics, i.e., preclude any periodicity in certain cases and, furthermore, guar-

antee convergence to states close to Nash equilibria, which would not be reachable

under standard RD. Note that the non-existence result in [39] does not directly apply

to such mutation dynamics, as it only considers Nash-convergence.

Our main interest, therefore, lies with the derivation of an uncoupled dynam-

ics, which, on the one hand, explicitly considers mutation and, on the other hand,

is as close as possible to standard RD, and with the analysis of how this mutation

mechanism affects the position and stability of equilibria compared to the standard

(multi-population) RD. The resulting mutation mechanism with spontaneous muta-

tions from one type to another is of course not appropriate for all biological muta-

tion processes In a biological population, such spontaneous mutation between a finite

number of types occurs, e.g., for single nucleotide polymorphisms, where alleles differ

by only one nucleotide, with the number of possible single nucleotide polymorphisms

at that position restricted to four. Furthermore, such point mutations are known to

occur with a non-negligible probability [23, 28] and can be significant factors in dis-

eases, [28, 71], e.g., sickle cell anaemia, [25, 61], which also interacts with malaria

parasites, [60], cystic fibrosis, [36], or 𝛽 thalassemia, [21, 93], and further in human

cancer cells, [29, 67]. There is further evidence that in Drosophila most such non-

synonymous point mutations are deleterious, while the rest are slightly deleterious,

near-neutral, or weakly beneficial, [91], suggesting that a weak selection assumption

as we employ can be reasonable for persisting polymorphisms. Considered as a learn-

ing dynamics, modifications of multi-population RD have been shown to be linked to

so-called Q-learning, a more sophisticated reinforcement learning algorithm, [111].

In particular, the resulting modification can be interpreted as a mutation-like term.

The inclusion of mutation should not only further our understanding of coevolu-

tionary multi-population systems, such as ecosystems. Its ability in certain cases

to stabilise equilibria for any non-zero mutation rate, and thereby make them ap-

proachable under an uncoupled dynamics, should also be useful in the study of game

theoretical solution concepts, such as 𝜀-Nash equilibria, [33], and the formulation of

conditions for the convergence of learning in multi-agent systems.

We proceed by introducing the standard multi-population RD, i.e., without muta-

tion, and recounting some stability properties of its equilibria and their relation to
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game theoretic concepts, such as Nash equilibria and evolutionary stability.

We then introduce mutation, specifically a simple class of mutations one might call

memoryless, which includes non-uniform mutations, and give a heuristic derivation

of the specific form of mutation we consider, defining a replicator-mutator dynamics

(RMD), the equilibria of which we call mutation equilibria. For fixed mutation param-

eters, we prove the existence of equilibria of RMD, their 𝜀-Nash property, and their

uniqueness and asymptotic stability under very high mutation.

We proceed by defining the concept of limits of mutation equilibria for vanishing

mutation, which we call mutation limits. Mutation limits and their properties are

independent of any choice of specific mutation parameters. We prove the existence of

mutation limits for all systems with continuously differentiable fitness functions and

give a sufficient condition for a Nash equilibrium to be a mutation limit.

In order to address the question of reachability of mutation limits, we define the

notion of an attracting mutation limit based on the asymptotic stability of the mu-

tation equilibria by which it is approximated. Such attracting mutation limits are

reachable in the sense that for any choice of mutation parameters there is an asymp-

totically stable mutation equilibrium arbitrarily close to the mutation limit.

We further provide a sufficient condition for a Nash equilibrium to be an attracting

mutation limit. In particular, all evolutionarily stable states are attracting mutation

limits, but not all attracting mutation limits are evolutionarily stable, showing the

notion to be a strictly weaker property than evolutionary stability. We conclude by

giving a necessary condition for attracting mutation limits, ruling out hyperbolic in-

terior equilibria.

4.2 Multi-population replicator dynamics

In the following we consider the situation where we have a finite set of populations

𝐼 = {1, 2, … , 𝑁} and each population 𝑖 consists of a finite number of types which we

enumerate and denote by 𝑆𝑖 = {1, 2, … , 𝑛𝑖}. Note that types are population-specific

and numbers do not identify types across populations. The composition of a population

𝑖 is then given as a vector 𝑥𝑖 such that 𝑥𝑖ℎ ≥ 0 gives the frequency of a type ℎ ∈ 𝑆𝑖 in

population 𝑖. Thus, the set of possible compositions of population 𝑖 is given as:

Δ𝑖 =
⎧{
⎨{⎩

𝑥𝑖 ∈ ℝ𝑛𝑖
≥0∣ ∑

ℎ≤𝑛𝑖

𝑥𝑖ℎ = 1
⎫}
⎬}⎭
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For convenience, we denote the Cartesian product of the Δ𝑖 (𝑖 = 1 … 𝑁) by Δ, i.e.,

Δ = ⨉𝑖≤𝑁 Δ𝑖, and denote by Δo the interior of Δ, i.e., ∀𝑖 ≤ 𝑁, ℎ ≤ 𝑛𝑖 ∶ 𝑥𝑖ℎ > 0.

Furthermore, we set 𝑆 = {(𝑖, ℎ)|𝑖 ∈ 𝐼 and ℎ ∈ 𝑆𝑖}, such that Δ ⊂ ℝ𝑆, where ℝ𝑆

denotes the set of tuples of reals indexed by 𝑆. The state of the multi-population model

then is a description of the frequencies of the different types in the populations, i.e.,

it is given by some 𝑥 ∈ Δ.

We assume that for each population 𝑖 ∈ 𝐼 and each type in that population ℎ ∈ 𝑆𝑖

we have a function 𝑓𝑖ℎ ∈ 𝒞1(𝑈, ℝ), for 𝑈 ⊃ Δ open, describing the reproductive rate

or fitness 𝑓𝑖ℎ(𝑥) of that type in a given state 𝑥 ∈ Δ and we define population 𝑖’s av-

erage fitness as ̄𝑓𝑖(𝑥) = ∑ℎ≤𝑛𝑖
𝑥𝑖ℎ𝑓𝑖ℎ(𝑥). It should be noted that fitness is frequency-

dependent in replicator dynamics models and not affected by population sizes. We

further assume that there is no intraspecific interaction affecting fitness in a type-

specific manner, i.e., the fitness values of types in population 𝑖 are independent of the

composition of population 𝑖 or 𝜕
𝜕𝑥𝑖𝑘

𝑓𝑖ℎ(𝑥) = 0 (𝑖 ∈ 𝐼, ℎ, 𝑘 ∈ 𝑆𝑖) in keeping with the clas-

sic normal-form game settings.2 The standard multi-population replicator dynamics,

based on [104] and developed later, e.g., [118], is given by the following system of

differential equations:

̇𝑥𝑖ℎ = 𝜑𝑖ℎ(𝑥) ∶= 𝑥𝑖ℎ (𝑓𝑖ℎ(𝑥) − ̄𝑓𝑖(𝑥)) (𝑖 ∈ 𝐼, ℎ ∈ 𝑆𝑖) (RD)

We denote by Φ ∶ ℝ × Δ → Δ the flow of (RD), i.e., for 𝑥 ∈ Δ, Φ(⋅, 𝑥) ∶ ℝ → Δ, 𝑡 ↦
Φ(𝑡, 𝑥) is a solution of (RD) with Φ(0, 𝑥) = 𝑥. Due to our continuity assumption on 𝑓 ,

the existence and uniqueness of Φ is clear, e.g., [107, theorem 6.1].

4.2.1 Stationary points of the replicator dynamics

We give a short recount of some well-known properties of (RD) with regards to game

theory, beginning with the main concept of game theory:

Definition 4.2.1 (Nash equilibrium). We call a state 𝑥∗ ∈ Δ a Nash equilibrium if

∀𝑖 ∈ 𝐼, 𝑧𝑖 ∈ Δ𝑖\{𝑥∗
𝑖 } ∶ ̄𝑓𝑖(𝑥∗) ≥ ̄𝑓𝑖(𝑥∗

−𝑖, 𝑧𝑖),

where (𝑥∗
−𝑖, 𝑧𝑖) denotes the state such that

[𝑥∗
−𝑖, 𝑧𝑖]𝑗𝑘 =

⎧{{
⎨{{⎩

𝑧𝑖𝑘 if 𝑗 = 𝑖,

𝑥∗
𝑗𝑘 otherwise

.

2Note that this assumption is not essential for all results.
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We call 𝑥∗ ∈ Δ a strict Nash equilibrium if all inequalities in the Nash equilibrium

condition are strict.

Remark. It is clear that 𝑥∗ ∈ Δ is a Nash equilibrium if and only if

∀𝑖 ∈ 𝐼, ℎ ≤ 𝑛𝑖 ∶ 𝑔𝑖ℎ(𝑥∗) ∶= 𝑓𝑖ℎ(𝑥∗) − ̄𝑓𝑖(𝑥∗) ≤ 0.

Note that 𝑔𝑖ℎ(𝑥) is exactly the coefficient of 𝑥𝑖ℎ in (RD). Therefore, we can denote the

set of Nash equilibria by ℰ = {𝑥 ∈ Δ | 𝑔(𝑥) ≤ 0}, where the inequality is component-

wise. A strict Nash equilibrium 𝑥∗ ∈ Δ in particular is a state where each population

consists of exactly one type, i.e., for each population 𝑖 ∈ 𝐼 there is exactly one type ℎ𝑖

such that 𝑥∗
𝑖ℎ𝑖

= 1.

The following results on Nash equilibria and stationary points of (RD) are straight-

forward and well-known, e.g., [118, p. 173]:

Proposition 4.2.2. If 𝑥 ∈ Δ is a Nash equilibrium, then 𝑥 is a stationary point of

(RD), i.e., 𝜑(𝑥) = 0.

Proposition 4.2.3. If 𝑥 ∈ Δo is a stationary point of (RD), then 𝑥 is a Nash equilib-

rium.

Stability properties of equilibria

Our special interest lies with the attainability of Nash equilibria. Therefore, we re-

state a few stability properties of Nash equilibria and stationary points of (RD) re-

spectively.

Definition 4.2.4. We call a stationary point 𝑥 ∈ Δ stable, if for every neighbourhood

𝑈 of 𝑥 there is a neighbourhood 𝑉 ⊂ 𝑈 such that Φ(ℝ≥0, 𝑉) ⊂ 𝑈. We further call a

stationary point 𝑥 ∈ Δ asymptotically stable if 𝑥 is stable and there is a neighbourhood

𝑉 of 𝑥 such that for all 𝑦 ∈ 𝑉 we have Φ(𝑡, 𝑦) → 𝑥 for 𝑡 → ∞.

For stable stationary points we have the following:

Proposition 4.2.5. If 𝑥 ∈ Δ is a stable stationary point of (RD), then 𝑥 is a Nash

equilibrium.

A proof of this statement can be found in [118, theorem 5.2]. Note that this further

characterization is interesting if 𝑥 ∈ 𝜕Δ, as stationary points on the boundary of Δ are
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not necessarily Nash equilibria. Furthermore, it implies that stationary points that

are not Nash equilibria must be unstable and thus are harder to attain under (RD).

However, note that Nash equilibria do not have to be stable. We have the following

stronger characterization of asymptotically stable stationary points (with a proof in,

e.g., [118, proposition 5.13]):

Proposition 4.2.6. A stationary point 𝑥 ∈ Δ is asymptotically stable under (RD) if

and only if 𝑥 is a strict Nash equilibrium.

For completeness, we would like to mention the relationship between stationary

points of (RD) and evolutionarily stable states, where we define evolutionary stability

as in [118, p. 166], equivalently to [26], as follows:

Definition 4.2.7 (Evolutionary Stability). We call a state 𝑥∗ ∈ Δ evolutionarily stable

if for all 𝑦 ∈ Δ (𝑦 ≠ 𝑥∗) there is some ̄𝜀𝑦 > 0 such that for all 𝜀 ∈ (0, ̄𝜀𝑦) and 𝑤 =
𝜀𝑦 + (1 − 𝜀)𝑥∗ we have some 𝑖 ∈ 𝐼 with ̄𝑓𝑖(𝑥𝑖, 𝑤−𝑖) > ̄𝑓𝑖(𝑦𝑖, 𝑤−𝑖).

It is well known that in the multi-population case the concept of evolutionary sta-

bility is equivalent to that of a strict Nash equilibrium, e.g., [118, proposition 5.1]:

Proposition 4.2.8. 𝑥 ∈ Δ is evolutionarily stable if and only if 𝑥 is a strict Nash

equilibrium.

Therefore, we have that strict Nash equilibria are exactly the evolutionarily stable

states and exactly the asymptotically stable stationary points of (RD). The dynamics

(RD) will therefore not have any asymptotically stable points if the underlying game

does not have any strict Nash equilibria. Furthermore, no mixed Nash equilibrium

can be asymptotically stable, such that there is no guarantee that any Nash equilib-

rium will be approached under (RD) if the game has only mixed Nash equilibria.

4.3 Introducing mutation

We consider the effect of mutation for two reasons. First, the idea of evolution is in-

tricately linked with mutation and mutation does not seem to be an extraordinary

event but is to be expected. Second, a central idea in the proof that the dynamics (RD)

has no interior asymptotically stable states relies on the fact that (RD) is divergence

free (after suitable modification) and therefore volume preserving, [45]. However,

some games, such as the matching pennies game and the standard rock-paper-scissors
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game, have only interior equilibria, while describing biologically relevant interspecies

interactions such as host-parasite systems. The kind of mutation we consider results

quite clearly in a dynamics with negative divergence. Of course, this does not guar-

antee asymptotically stable interior equilibria, but it opens up the possibility of such

equilibria.

We will first give a motivational heuristic derivation of our specific replicator-

mutator dynamics from a more general form. Afterwards, we will consider the prop-

erties of our specific dynamics and of its equilibria.

4.3.1 Replicator-mutator dynamics

General mutation

In the standard replicator dynamics (RD), we assume that the offspring of individuals

of some type inherit that same type. In contrast, we consider mutation as a process

by which the offspring of a certain individual changes into another type (of the same

population) with some probability. More precisely, we assume that the offspring of an

ℎ-type in population 𝑖 mutates to a 𝑘-type in the same population with some proba-

bility 𝜇𝑖𝑘ℎ > 0, with ∑𝑘≤𝑛𝑖
𝜇𝑖𝑘ℎ = 1 for all populations 𝑖, and therefore:

𝜇𝑖ℎℎ = 1 − ∑
𝑘≠ℎ

𝜇𝑖𝑘ℎ

In order to represent overall mutation more clearly, we introduce relative mutation

probabilities 𝑐𝑖𝑘ℎ and an overall mutation rate 𝜇𝑖 such that 𝜇𝑖𝑘ℎ = 𝜇𝑖𝑐𝑖𝑘ℎ (ℎ ≠ 𝑘) and

thus:

𝜇𝑖ℎℎ = 1 − 𝜇𝑖 ∑
𝑘≠ℎ

𝑐𝑖𝑘ℎ

Here, 𝜇𝑖 controls the overall strength of mutation, such that for 𝜇𝑖 = 0 there is no mu-

tation at all, without affecting relative probabilities. We derive our specific dynamics

from the general multi-population replicator-mutator dynamics as given in, e.g., [77],

̇𝑥𝑖ℎ = ∑
𝑘≤𝑛𝑖

𝜇𝑖ℎ𝑘𝑥𝑖𝑘𝑓𝑖𝑘(𝑥) − 𝑥𝑖ℎ ̄𝑓𝑖(𝑥) (4.3.1)

yielding after substitution:

̇𝑥𝑖ℎ = 𝑥𝑖ℎ(𝑓𝑖ℎ(𝑥) − ̄𝑓𝑖(𝑥)) + 𝜇𝑖 ∑
𝑘≤𝑛𝑖

(𝑐𝑖ℎ𝑘𝑥𝑖𝑘𝑓𝑖𝑘(𝑥) − 𝑐𝑖𝑘ℎ𝑥𝑖ℎ𝑓𝑖ℎ(𝑥)) (4.3.2)

This formulation emphasizes the similarity to the standard replicator dynamics (RD)

and how 𝜇𝑖 determines the extent to which (4.3.1) deviates from (RD).
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Weak selection-weak mutation limit

Recall that (RD) is invariant under the addition of a background fitness for all types

of a population, a property which (4.3.1) does not have. We therefore derive a version

which is invariant under the addition of a constant background fitness. For conve-

nience, let 𝑠𝑖−1 denote some background fitness, where 𝑠𝑖 can be seen as representing

the selection pressure on that particular trait. Formulating (4.3.1) with a modified

fitness function ̃𝑓𝑖ℎ ∶ 𝑥 ↦ 𝑓𝑖ℎ(𝑥) + 𝑠𝑖−1 and suitable substitution yields a dynamics

with explicit background fitness:

̇𝑥𝑖ℎ = 𝜑𝑖ℎ(𝑥) + 𝜇𝑖
𝑠𝑖

∑
𝑘≤𝑛𝑖

(𝑠𝑖 (𝑐𝑖ℎ𝑘𝑥𝑖𝑘𝑓𝑖𝑘(𝑥) − 𝑐𝑖𝑘ℎ𝑥𝑖ℎ𝑓𝑖ℎ(𝑥)) + 𝑐𝑖ℎ𝑘𝑥𝑖𝑘 − 𝑐𝑖𝑘ℎ𝑥𝑖ℎ)

Analogous to [45], we consider a weak selection-weak mutation limit, where the back-

ground fitness tends to infinity, i.e., the selection pressure goes to zero 𝑠𝑖 → 0, and

mutation occurs on the same order as selection, i.e., 𝜇𝑖 → 0, such that overall:

𝜇𝑖
𝑠𝑖

→ 𝑀𝑖 > 0

This yields the following weak selection-weak mutation limit of (4.3.1), which is in-

variant under addition of background fitness,

̇𝑥𝑖ℎ = 𝑥𝑖ℎ(𝑓𝑖ℎ(𝑥) − ̄𝑓𝑖(𝑥)) + 𝑀𝑖 ∑
𝑘≤𝑛𝑖

(𝑐𝑖ℎ𝑘𝑥𝑖𝑘 − 𝑐𝑖𝑘ℎ𝑥𝑖ℎ) (4.3.3)

where we refer to 𝑀𝑖 as the mutation rate in population 𝑖. Note that (4.3.3) can also

be derived from a discrete selection-mutation equation, [45]. Additionally, we assume

that mutation is memoryless, i.e., 𝑐𝑖ℎ𝑘 = 𝑐𝑖ℎ𝑙 (𝑘, 𝑙 ≠ ℎ), akin to Kingman’s house-

of-cards model [54]. Note that this explicitly allows non-uniform mutation to occur.

Then we can write 𝑐𝑖ℎ instead of 𝑐𝑖ℎ𝑘 and assuming that the mutation rate is the same

for every population, replacing 𝑀𝑖 with 𝑀, this yields the following: 3

Replicator-Mutator Dynamics

For some fixed 𝑐 ∈ Δo and 𝑀 ≥ 0, the replicator-mutator dynamics (RMD) is given by:

̇𝑥𝑖ℎ = 𝜑𝑀
𝑖ℎ(𝑥) ∶= 𝑥𝑖ℎ(𝑓𝑖ℎ(𝑥) − ̄𝑓𝑖(𝑥)) + 𝑀(𝑐𝑖ℎ − 𝑥𝑖ℎ) (RMD)

3Note that we can choose 𝑀𝑖 such that ∑ℎ≤𝑛𝑖
𝑐𝑖ℎ = 1 holds. Although we consider 𝑀 as indepen-

dent of the population, population-dependent mutation parameters 𝑀𝑖 are mostly compatible with the
present arguments, but would render proofs overly technical.
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It is clear that we obtain (RD) for 𝑀 = 0. We denote by Φ𝑀 ∶ ℝ × Δ → Δ the flow

of (RMD), i.e., for 𝑥 ∈ Δ, Φ𝑀(⋅, 𝑥) ∶ ℝ → Δ, 𝑡 ↦ Φ𝑀(𝑡, 𝑥) is a solution of (RMD) with

Φ𝑀(0, 𝑥) = 𝑥.

Remark. Note that Φ𝑀 also depends on our choice of 𝑐. Throughout this section, we

will consider some arbitrary but fixed 𝑐 ∈ Δo and the defined concepts will depend

on that choice. However, we will proceed to properties of (RMD) which are invariant

under the choice of 𝑐 later on.

Definition 4.3.1. We call 𝑥 ∈ Δ with 𝜑𝑀(𝑥) = (𝜑𝑀
𝑖ℎ(𝑥))(𝑖,ℎ)∈𝑆 = 0 a mutation equi-

librium for 𝑀. For shortness, we call 𝑥𝑀 a mutation equilibrium if it is a mutation

equilibrium for 𝑀.

Definition 4.3.2. We call a sequence (𝑥𝑛)𝑛∈ℕ ⊂ Δ a sequence of mutation equilibria

if there is a sequence (𝑀𝑛)𝑛∈ℕ ⊂ ℝ>0 with

i) 𝑀𝑛 → 0 for 𝑛 → ∞

ii) and 𝑥𝑛 is a mutation equilibrium for 𝑀𝑛, i.e., 𝜑𝑀𝑛(𝑥𝑛) = 0, for all 𝑛 ∈ ℕ.

For ease of notation, we write such a sequence as (𝑥𝑀)𝑀>0.

Under suitable assumptions, such sequences represent the change of a coevolu-

tionary system under decreasing mutation rates, and we will be especially interested

in the limits of such sequences of mutation equilibria and in their properties.

4.3.2 Existence of stationary points with mutation

Lemma 4.3.3. For all 𝑀 > 0 and 𝑐 ∈ Δo there is 𝑥 ∈ Δo, such that 𝑥 is a stationary

point of the replicator-mutator dynamics (RMD), i.e., 𝜑𝑀(𝑥) = 0.

Proof. Note that the vector field 𝜑𝑀 points towards the interior of Δ for all 𝑥 ∈ 𝜕Δ.

We thus have that for all 𝑥 ∈ 𝜕Δ and all 𝑡 > 0, Φ𝑀(𝑡, 𝑥) ∈ Δo, and thus Δ is forward-

invariant under the flow Φ𝑀 , in particular, Φ𝑀(ℝ>0, Δ) ⊂ Δo. Furthermore, it is

clear that Δ is nonempty, convex and compact. Using Brouwer’s fixed point theorem,

we can now use that if a nonempty, convex compact set is forward-invariant under a

flow, then it contains a fixed point, e.g., [107, lemma 6.8]. With Φ𝑀(ℝ>0, Δ) ⊂ Δo,

we have that the fixed point has to be in Δo.
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The following definition, e.g., as given by [33], will be useful in our later investi-

gation:

Definition 4.3.4 (𝜀-Equilibrium). For some 𝜀 > 0, we call a state 𝑥𝜀 ∈ Δ an 𝜀-
equilibrium if

∀𝑖 ∈ 𝐼, ℎ ≤ 𝑛𝑖 ∶ 𝑓𝑖ℎ(𝑥𝜀) − ̄𝑓𝑖(𝑥𝜀) ≤ 𝜀 .

In relation to 𝜀-equilibria we state the following property:

Lemma 4.3.5. Let 𝑥𝑀 be a mutation equilibrium, then 𝑥𝑀 is an 𝜀-equilibrium of the

underlying game for 𝜀 = 𝑀, and in particular ∀𝑖 ∈ 𝐼, ℎ ≤ 𝑛𝑖 ∶ 𝑓𝑖ℎ(𝑥𝑀) − ̄𝑓𝑖(𝑥𝑀) < 𝑀.

Proof. For (𝑖, ℎ) ∈ 𝑆, we have that

0 = 𝜑𝑀
𝑖ℎ(𝑥𝑀) = 𝑥𝑀

𝑖ℎ(𝑓𝑖ℎ(𝑥𝑀) − ̄𝑓𝑖(𝑥𝑀)) + 𝑀(𝑐𝑖ℎ − 𝑥𝑀
𝑖ℎ)

> 𝑥𝑀
𝑖ℎ(𝑓𝑖ℎ(𝑥𝑀) − ̄𝑓𝑖(𝑥𝑀)) − 𝑀𝑥𝑀

𝑖ℎ

and thus, with 𝑥𝑀 ∈ Δo, we have 𝑓𝑖ℎ(𝑥𝑀) − ̄𝑓𝑖(𝑥𝑀) < 𝑀.

Together with the continuity of 𝑓 , we have the following:

Corollary 4.3.6. Let (𝑥𝑀)𝑀>0 be a sequence of mutation equilibria and 𝑥∗ an accu-

mulation point for 𝑀 → 0. Then 𝑥∗ is a Nash equilibrium.

4.3.3 Mutation equilibria for high mutation rates

We consider some specific properties under high mutation rates which illustrate the

effect of mutation on the number and stability of equilibria through its effect on the

Jacobian of the replicator dynamics. Note that all equilibria of (RMD), irrespective

of the specific choice of 𝑀 > 0, lie in the interior of Δ and that 𝜑𝑀 points inward on

𝜕Δ. We can therefore consider (RMD) as a dynamics on Δo. We can further, for all

populations 𝑖, replace 𝑥𝑖𝑛𝑖 with (1 − ∑𝑘<𝑛𝑖
𝑥𝑖𝑘), and thus proceed to the resulting

reduced system ̃𝜑𝑀 (with an analogous procedure to obtain ̃𝜑 from 𝜑), which is then

defined on the Cartesian product of the (𝑛𝑖 − 1)-simplices. For ease of notation, we

will still use Δ to denote this reduced space. Thus, questions regarding the stability

of a mutation equilibrium 𝑥𝑀 ∈ Δo can be treated by considering the eigenvalues of

the Jacobian 𝐷 ̃𝜑𝑀 . In particular, due to the Hartman-Grobman theorem, e.g., [78,

107], we have the following useful characterization:
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Remark 4.3.7. Let 𝑥𝑀 be a hyperbolic equilibrium of (RMD), and of the reduced sys-

tem ̃𝜑𝑀 equivalently, i.e., all eigenvalues of 𝐷 ̃𝜑𝑀(𝑥𝑀) have non-zero real part. Then

𝑥𝑀 is asymptotically stable if and only if all eigenvalues of 𝐷 ̃𝜑𝑀(𝑥𝑀) have negative

real part, e.g., [107, theorem 6.10]. In particular, all eigenvalues of 𝐷 ̃𝜑𝑀(𝑥𝑀) have

negative real part, if and only if all eigenvalues of 𝐷 ̃𝜑(𝑥𝑀) have real part smaller than

𝑀, due to 𝐷 ̃𝜑𝑀 = 𝐷 ̃𝜑 − 𝑀 ⋅ 𝐼, where 𝐼 is the identity matrix.

With this observation, we obtain the following:

Lemma 4.3.8. There is 𝑀 ≥ 0 such that for all 𝑀 > 𝑀 the stationary points of the

replicator-mutator dynamics (RMD) are asymptotically stable. In particular, 𝐷 ̃𝜑𝑀 is

invertible everywhere on Δ.

Proof. Note that all eigenvalues of 𝐷 ̃𝜑 are bounded on Δ, in particular the real parts

of the eigenvalues are bounded, as well. Then let 𝑀 be an upper bound on all real

parts of the eigenvalues of 𝐷 ̃𝜑 on Δo, i.e.:

𝑀 = sup {ℜ(𝜆) | 𝜆 ∈ 𝜎(𝐷 ̃𝜑(𝑥)), 𝑥 ∈ Δ}

Let 𝑥𝑀 ∈ Δo be a mutation equilibrium for some 𝑀 > 𝑀. As noted, the Jacobian of

̃𝜑𝑀 satisfies 𝐷 ̃𝜑𝑀(𝑥) = 𝐷 ̃𝜑(𝑥) − 𝑀 ⋅ 𝐼 for all 𝑥 ∈ Δ. In particular, for all eigenvalues

𝜆𝑀 ∈ 𝜎(𝐷 ̃𝜑𝑀(𝑥𝑀)) we have that 𝜆𝑀 + 𝑀 ∈ 𝜎(𝐷 ̃𝜑(𝑥𝑀)) and hence ℜ(𝜆𝑀) + 𝑀 ≤ 𝑀,

and thus ℜ(𝜆𝑀) < 0. Therefore, all eigenvalues of 𝐷 ̃𝜑𝑀(𝑥𝑀) have strictly negative

real parts and with remark 4.3.7, 𝑥𝑀 is asymptotically stable.

Remark. Note that that the 𝑀 in the previous lemma 4.3.8 is independent of the

choice of 𝑐 ∈ Δo, thus giving a lower bound on the mutation rate above which all

equilibria are asymptotically stable independent of 𝑐 ∈ Δo.

Uniqueness of mutation equilibria for high mutation rates

For very high mutation (𝑀 > 𝑀) we further obtain that mutation equilibria are

unique and that there is a continuously differentiable function mapping mutation

rates to mutation equilibria. We first consider the following lemma (proven in as

corollary 4.6.4 in section 4.6):

Lemma 4.3.9. Let 𝑐 ∈ Δo and 𝑀 from lemma 4.3.8. Let 𝑥𝑀 be a mutation equilibrium

for some 𝑀 > 𝑀. Then there is a unique function ℳ ∶ (𝑀, ∞) → Δ such that ℳ(𝑀) =
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𝑥𝑀 and for all 𝑚 ∈ (𝑀, ∞), ℳ(𝑚) is a mutation equilibrium for 𝑚. In particular, ℳ
is continuously differentiable and ℳ(𝑚) 𝑚→∞⟶ 𝑐.

Note that this does not guarantee any uniqueness of equilibria, yet, only the

uniqueness of functions passing through a given equilibrium. The uniqueness of mu-

tation equilibria for high mutation rates is then obtained in the next step from the

fact that we have uniqueness at least for some mutation rate (proven in as proposition

4.6.5 in section 4.6):

Proposition 4.3.10. Let 𝑐 ∈ Δo and 𝑀 from lemma 4.3.8. For all 𝑀 > 𝑀, the

replicator-mutator dynamics (RMD) has a unique mutation equilibrium. The unique

map ℳ ∶ 𝑀 ↦ 𝑥𝑀 is continuously differentiable on (𝑀, ∞).

Remark 4.3.11. Note that the main achievement of proposition 4.3.10 is to extend

the uniqueness of equilibria beyond any Lipschitz constant of ̃𝜑 to (𝑀, ∞), i.e., to

the interval where 𝐷 ̃𝜑𝑀 is guaranteed to be invertible. Furthermore, if 𝐷 ̃𝜑𝑀(𝑥𝑀)
is invertible for all 𝑀 ∈ (𝑎, ∞) and corresponding mutation equilibria 𝑥𝑀 then the

uniqueness extends to (𝑎, ∞). In fact, if 𝑎 = 0 then there is a unique sequence of

mutation equilibria (𝑥𝑀)𝑀>0 for 𝑐 ∈ Δo since it is induced by the function ℳ.

For a fixed 𝑐 ∈ Δo and a sufficiently high mutation rate, the unique mutation

equilibrium will be arbitrarily close to 𝑐. Therefore, if we were interested in finding

the mutation equilibrium for a sufficiently high mutation rate, we could choose an

initial point close to 𝑐 and the dynamics (RMD) would converge to the asymptotically

stable mutation equilibrium. The uniqueness on (𝑀, ∞) further enables us to lower

the mutation rate almost to 𝑀 without losing uniqueness and asymptotic stability.

4.4 Mutation limits

In our previous considerations, we assumed fixed relative mutation probabilities 𝑐 ∈
Δo. In particular, certain effects could depend on the specific choice of 𝑐, e.g., if we

picked 𝑐 to coincide with a Nash equilibrium 𝑥∗ ∈ ℰ of the underlying game. However,

we are interested in properties that are independent of the specific choice of 𝑐. To this

end, we introduce the following definition:

Definition 4.4.1 (Mutation Limit). We call a connected compact set 𝑋 ⊂ ℰ a mutation

limit, if for all 𝑐 ∈ Δo there is a sequence of mutation equilibria (𝑥𝑀)𝑀>0 ⊂ Δ that
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converges to an element of 𝑋 for 𝑀 → 0 and 𝑋 contains no proper subset with these

properties. We call 𝑥 ∈ Δ a mutation limit point if the singleton set {𝑥} is a mutation

limit.

4.4.1 General existence of mutation limits

A question that arises from the definition is that of the existence of mutation limit

points. While we have shown that for any fixed 𝑐 ∈ Δo and any mutation rate 𝑀 > 0
there is a corresponding mutation equilibrium and therefore the Bolzano-Weierstrass

theorem guarantees the existence of a limit for vanishing mutation, this limit need

not be independent of the choice of 𝑐, and indeed it could be possible that there is no

mutation limit at all, neither a singleton set nor otherwise. The question, therefore,

is whether every game has at least one mutation limit point. To this question, we can

give a negative answer, as the following example shows:

Example 4.4.2. Consider a two-player game with the following payoff structure:

𝐶1 𝐶2

𝑅1 1, 0 0, 1

𝑅2 0, 1 1, 0

𝑅3 0, 1 1, 0

It is clear that any Nash equilibrium of the game has the form ((1
2 , 𝑡

2 , 1−𝑡
2 ) , (1

2 , 1
2))

with 𝑡 ∈ [0, 1], where we give the strategy of the row player first. Excluding a few

special choices of 𝑐 ∈ Δo, for any generic 𝑐 given as ((𝑐𝑅,1, 𝑐𝑅,2, 𝑐𝑅,3), (𝑐𝐶,1, 𝑐𝐶,2)),

every sequence of mutation equilibria will converge to a Nash equilibrium of the above

form with 𝑡 = 𝑐𝑅,2 (𝑐𝑅,2 + 𝑐𝑅,3)−1. It is therefore evident that this game has no

mutation limit point, i.e., there is no Nash equilibrium that is approached by mutation

equilibria for all choices 𝑐 ∈ Δo. However, for any Nash equilibrium 𝑥 of the above form

with 𝑡 ∈ (0, 1) there is a 𝑐 ∈ Δo such that 𝑥 is approached by a sequence of mutation

equilibria. Therefore, the set of Nash equilibria is indeed a mutation limit.

In the above example, the set of all Nash equilibria turns out to be a mutation limit.

However in general, the set of Nash equilibria need not be connected. In this context,

the following result answers the question about the general existence of mutation

limits (proven in subsection 4.6.2):

Proposition 4.4.3. For every 𝑓 ∈ 𝒞1(𝑈 ⊃ Δ, ℝ𝑆) there is a mutation limit 𝑋 ⊂ ℰ.
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Note that this result does not require that there is no intraspecies interaction,

i.e., it does not require 𝜕
𝜕𝑥𝑖𝑘

𝑓𝑖ℎ(𝑥) = 0 (∀𝑖 ∈ 𝐼, ℎ, 𝑘 ∈ 𝑆𝑖, 𝑥 ∈ Δ). In fact, the proof

can be quite easily generalized to other, not necessarily replicator dynamics. From

proposition 4.4.3, we obtain the following existence result for dynamics with only a

finite number of Nash equilibria:

Corollary 4.4.4. Let 𝑓 ∈ 𝒞1(𝑈 ⊃ Δ, ℝ𝑆) such that the set of Nash equilibria, ℰ,

is finite. Then all mutation limits are mutation limit points and there is at least one

mutation limit point.

Note that the finiteness condition is particularly important for fitness functions

that are not derived from finite normal-form games.

A sufficient condition for mutation limits

We can further guarantee that regular Nash equilibria, introduced in [38], cf. also

[112], are mutation limit points, where we employ the following equivalent definition,

[81]:

Definition 4.4.5. We call a Nash equilibrium 𝑥 ∈ Δ a regular equilibrium if the

reduced Jacobian of (RD) at 𝑥, 𝐷 ̃𝜑(𝑥), is invertible.

In particular, all strict Nash equilibria are regular, [112, corollary 2.5.3].

Lemma 4.4.6. Let 𝑥∗ be a regular equilibrium. Then 𝑥∗ is a mutation limit, i.e., for

all 𝑐 ∈ Δo, there is a sequence of mutation equilibria, (𝑥𝑀)𝑀>0, such that 𝑥𝑀 → 𝑥∗ for

𝑀 → 0.

Proof. Note that 𝐷 ̃𝜑(𝑥∗) is invertible and therefore, by the implicit function theorem,

for every 𝑐 ∈ Δo, there is a continuously differentiable 𝜇 ∶ (−𝜀, 𝜀) → ℝ𝑁 for some

𝜀 > 0, such that for 𝑀 ∈ (−𝜀, 𝜀) we have that ̃𝜑𝑀(𝜇(𝑀)) = 0. Of course, negative

values of 𝑀 are not interpretable as mutation rates and we consider them here only

for technical reasons of differentiability at 0.

If 𝑥∗ ∈ Δo, then it is clear that we can choose 𝜀 such that 𝜇([0, 𝜀]) ⊂ Δ, and

therefore a sequence of mutation equilibria (𝑥𝑀)𝑀>0 ⊂ Δ with 𝑥𝑀 → 𝑥∗ for 𝑀 → 0.
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Suppose that 𝑥∗ ∈ 𝜕Δ and for some (𝑖, ℎ) ∈ 𝑆 we have 𝑥∗
𝑖ℎ = 0. Note that 𝜇 is

continuously differentiable and therefore for 𝑀 ∈ (−𝜀, 𝜀),

0 = 𝑑
𝑑𝑀𝜑𝑀

𝑖ℎ(𝜇(𝑀)) = 𝑑
𝑑𝑀 (𝜇𝑖ℎ(𝑀)𝑔𝑖ℎ(𝜇(𝑀))) + 𝑑

𝑑𝑀 (𝑀(𝑐𝑖ℎ − 𝜇𝑖ℎ(𝑀)))

= (𝑔𝑖ℎ(𝜇(𝑀)) − 𝑀) 𝑑
𝑑𝑀𝜇𝑖ℎ(𝑀) + 𝜇𝑖ℎ(𝑀) 𝑑

𝑑𝑀 𝑔𝑖ℎ(𝜇(𝑀)) + (𝑐𝑖ℎ − 𝜇𝑖ℎ(𝑀))

and hence for 𝑀 = 0,

0 = 𝑑
𝑑𝑀𝜑𝑀

𝑖ℎ(𝜇(𝑀))∣𝑀=0

= 𝑔𝑖ℎ(𝜇(0)) 𝑑
𝑑𝑀𝜇𝑖ℎ(0) + 𝜇𝑖ℎ(0) 𝑑

𝑑𝑀 𝑔𝑖ℎ(𝜇(0)) + (𝑐𝑖ℎ − 𝜇𝑖ℎ(0))

= 𝑔𝑖ℎ(𝑥∗) 𝑑
𝑑𝑀𝜇𝑖ℎ(0) + 𝑥∗

𝑖ℎ⏟
=0

𝑑
𝑑𝑀 𝑔𝑖ℎ(𝑥∗) + (𝑐𝑖ℎ − 𝑥∗

𝑖ℎ⏟
=0

) = 𝑔𝑖ℎ(𝑥∗) 𝑑
𝑑𝑀𝜇𝑖ℎ(0) + 𝑐𝑖ℎ

> 𝑔𝑖ℎ(𝑥∗) 𝑑
𝑑𝑀𝜇𝑖ℎ(0) .

Thus, with 𝑥∗ being a Nash equilibrium, we have 𝑔𝑖ℎ(𝑥∗) ≤ 0 and therefore 𝑑
𝑑𝑀𝜇𝑖ℎ(0) ≥

0. Because of the strict inequality, we even have 𝑔𝑖ℎ(𝑥∗) < 0 and 𝑑
𝑑𝑀𝜇𝑖ℎ(0) > 0.

Therefore, we can choose 𝜀 such that 𝜇([0, 𝜀)) ⊂ Δ and a sequence of mutation

equilibria converging to 𝑥∗.

Remark. It should be noted that the proof of the above result shows that there is

a continuously differentiable function mapping mutation rates to mutation equilib-

ria and that this function is unique. In other words, given a 𝑐 ∈ Δo, the sequence

approaches 𝑥∗ in a unique manner.

4.4.2 Attracting mutation limits

Up to this point we have considered equilibria (or sets of equilibria) of (RD) such that

for any 𝑐 ∈ Δo and mutation rate 𝑀 > 0 a mutation equilibrium of the respective

(RMD) would be located arbitrarily close, depending on 𝑀. We have so far ignored the

stability properties of the mutation equilibria arising nearby. If the mutation equilib-

rium arising nearby happens to be asymptotically stable for some mutation rate 𝑀 > 0
and some 𝑐 ∈ Δo, then under suitable initial conditions the system will converge to a

state close to the mutation limit. However, as with the notion of mutation equilibria,

such behaviour of the system is mostly of interest if it does not depend on a lucky choice

of 𝑐, in particular if nearby mutation equilibria turn out to be asymptotically stable for

every choice of 𝑐. In this case, the mutation limit would be approximated arbitrarily

close in all (RMD) only depending on 𝑀 > 0. This idea motivates the following formal

definition:
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Definition 4.4.7 (Attracting Mutation Limit). We call a mutation limit 𝑋 ⊂ Δ at-

tracting if for every 𝑐 ∈ Δo and every sequence of mutation equilibria (𝑥𝑀)𝑀>0 that

converges to an element of 𝑋 , there is 𝑚 > 0 such that for all 𝑀 < 𝑚, 𝑥𝑀 is asymp-

totically stable. We call 𝑥 ∈ Δ an attracting mutation limit point if the singleton set

{𝑥} is an attracting mutation limit.

A sufficient condition for attracting mutation limits

It is known that if 𝑥∗ is a strict Nash equilibrium, then 𝐷 ̃𝜑(𝑥∗) has only real, strictly

negative eigenvalues, e.g., [81, lemma 1], and 𝑥∗ is therefore regular and thus a mu-

tation limit. Furthermore, we can show that 𝑥∗ is an attracting mutation limit:

Lemma 4.4.8. Let 𝑥∗ be a strict Nash equilibrium. Then 𝑥∗ is an attracting mutation

limit.

Proof. With the previous note, it is clear that 𝑥∗ is a mutation limit. It remains to show

that the mutation equilibria (𝑥𝑀)𝑀>0 converging to 𝑥∗ for any 𝑐 ∈ Δo are asymptot-

ically stable. Since all eigenvalues of the Jacobian at 𝑥∗ have strictly negative real

parts, and in fact are real, [81], we have that the eigenvalues of 𝐷 ̃𝜑(𝑥) have strictly

negative real parts in a neighbourhood of 𝑥∗, as the roots of a polynomial vary con-

tinuously with its coefficients, e.g., [37], and 𝐷 ̃𝜑 is continuous. Therefore, in a neigh-

bourhood of 𝑥∗, all eigenvalues of the Jacobian of ̃𝜑𝑀 , with 𝐷 ̃𝜑𝑀(𝑥) = 𝐷 ̃𝜑(𝑥) − 𝑀 ⋅ 𝐼,

have strictly negative real parts for any 𝑀 ≥ 0, and thus the 𝑥𝑀 are asymptotically

stable, e.g., [78].

Remark 4.4.9. Since the strict Nash equilibria are exactly the asymptotically sta-

ble equilibria of (RD), this ensures that all asymptotically stable equilibria are also

attracting mutation limits, including evolutionary stable equilibria.

The following example shows that attracting mutation limits are not necessarily

strict Nash equilibria, and hence that the concept of attracting mutation limits is also

weaker than evolutionary stability:

Example 4.4.10. Consider the 2-by-2 matching pennies game given by the payoffs:

⎛⎜⎜⎜
⎝

(1, 0) (0, 1)
(0, 1) (1, 0)

⎞⎟⎟⎟
⎠
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The strategy profile ((1/2, 1/2), (1/2, 1/2)) is a Nash equilibrium but not strict and

hence not asymptotically stable. However, it is an attracting mutation limit: The

eigenvalues of the Jacobian 𝐷 ̃𝜑 are given by

𝜆1,2 = ±√(1 − 2𝑥)2(1 − 2𝑦)2 − 4𝑥(1 − 𝑥)𝑦(1 − 𝑦).

At (1/2, 1/2), the radicand is negative and the eigenvalues purely imaginary. Hence,

the radicand is negative in a neighbourhood and the eigenvalues purely imaginary.

Then the eigenvalues of 𝐷 ̃𝜑𝑀 have real part −𝑀 in that neighbourhood due to re-

mark 4.3.7 and for 𝑀 sufficiently small all mutation equilibria are asymptotically

stable with corollary 3.6, and hence ((1/2, 1/2), (1/2, 1/2)) is an attracting mutation

limit point. This also holds for the general matching pennies game, which we prove

in chapter 5.

A necessary condition for attracting mutation limits

The observation that not all Nash equilibria are attracting mutation limits relies on

the following:

Lemma 4.4.11. Let 𝑥∗ ∈ Δ be an attracting mutation limit. Then all eigenvalues of

the Jacobian 𝐷 ̃𝜑(𝑥∗) have nonpositive real parts.

Proof. Suppose there is an eigenvalue of 𝐷 ̃𝜑(𝑥∗) with a strictly positive real part.

Then there is 𝜀 > 0 and a neighbourhood 𝑈 of 𝑥∗ such that 𝐷 ̃𝜑(𝑥) has an eigen-

value 𝜆 with ℜ(𝜆) > 𝜀 for all 𝑥 ∈ 𝑈. Let (𝑥𝑀)𝑀>0 be a sequence of mutation

equilibria converging to 𝑥∗ for some 𝑐 ∈ Δo. Then there is 𝜀′ such that 𝑥𝑀 ∈ 𝑈
for 𝑀 < 𝜀′. In particular, we can choose 𝜀′ < 𝜀. Then the Jacobian 𝐷 ̃𝜑𝑀(𝑥𝑀), with

𝐷 ̃𝜑𝑀(𝑥𝑀) = 𝐷 ̃𝜑(𝑥𝑀) − 𝑀 ⋅ 𝐼, has an eigenvalue with strictly positive real part, and

𝑥𝑀 is not asymptotically stable, as it is not even stable, e.g., [43]. Therefore, 𝑥∗ is not

an attracting mutation limit.

This result, together with the following example, then demonstrates that not all

Nash equilibria are attracting mutation limits:

Example 4.4.12. Consider the 2-by-2 coordination game given by:

⎛⎜⎜⎜
⎝

(1, 1) (0, 0)
(0, 0) (1, 1)

⎞⎟⎟⎟
⎠

The strategy profile ((1/2, 1/2), (1/2, 1/2)) is a Nash equilibrium, but its Jacobian has

eigenvalues 1/2 and −1/2 and therefore it is not an attracting mutation limit.
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4.5 Discussion

We have shown that a very simple form of mutation leads to qualitative changes in

the multi-population replicator dynamics. Furthermore, these changes do not depend

on the specific choice of parameters but are of a general character. Not only do muta-

tion limits exist for all continuously differentiable fitness functions, mutation can also

cause the dynamics to approximate equilibria that would not be approximated without

mutation, again independently of the choice of specific mutation parameters, which is

due to asymptotically stable equilibria arising close to an original equilibrium, as in

the matching pennies game. The closest results to our approach that we are aware of

are presented in [81], and if considered as an approximation to (RD), certain aspects

of (RMD) are clarified by those results, as indicated. The results presented here differ

in that they show robustness in a system of families of approximations which are not

related to perturbed normal-form game payoffs and in that they focus on the effects

on the stability of equilibria, independent of the choice of the specific approximation.

With respect to periodic behaviour in biological populations it should be noted that

the degree of stabilisation of RD depends on the mutation rate, resulting in a very

slow approach of an asymptotically stable mutation equilibrium and seemingly peri-

odic behaviour if mutation is low. In an empirical situation this can lead to difficulties

in distinguishing dynamics with truly periodic behaviour from ones with only seem-

ingly periodic behaviour if measuring on a (relatively) small time scale. Furthermore,

in small populations stochastic effects will play a significant role. Therefore, under

very low mutation, empirical findings of periodic fluctuations can be consistent with

our results if measured in small populations on a small time scale, such that any sta-

bilising effects of mutation will be more apparent in large populations on large time

scales, or with sufficiently fast reproduction.

On the one hand, given the potential health impacts of even slight mutations on

organisms and the fact that such mutations occur with a non-negligible probability, as

mentioned earlier, and given further its role as a generator of variety on which evolu-

tionary selection operates, it is clear that it is worth including mutation mechanisms

in the study of populations, and one should expect results that deviate potentially

significantly from models without mutation.

On the other hand, given that the multi-population replicator dynamics has been

shown to be related to learning dynamics and that mutation-like terms have been
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shown to arise in formulations of Q-learning algorithms, it is worth noting that

our results show that replicator-mutator dynamics have more desirable convergence

properties than the pure replicator dynamics, while remaining arbitrarily close to a

Nash equilibrium. Therefore, attracting mutation limits resulting from a replicator-

mutator dynamics can be considered a more suitable class of dynamic solution ap-

proaches for games than the pure multi-population replicator dynamics.

As shown, attracting mutation limits do not exist for all games, and the character-

ization of their existence is therefore an open problem. We will address this problem

partially in forthcoming results on attracting mutation limits in the matching pen-

nies game, which can be considered a model of antagonistic coevolution. Furthermore,

we have considered a specific form of mutation, and therefore the question of which

properties carry over to more complicated and more realistic mutation mechanisms

remains.

4.6 Proofs of propositions 4.3.10 and 4.4.3

4.6.1 Proof of proposition 4.3.10

The proof of proposition 4.3.10 relies on the implicit function theorem, which we re-

state for convenience, e.g., as in [56, theorem 3.3.1]:

Theorem 4.6.1 (Implicit Function). Let 𝑊 ⊂ ℝ, 𝑋 ⊂ ℝ𝑛 be open and let 𝜌 ∶ 𝑊 × 𝑋 →
ℝ𝑛, (𝑤, 𝑥) ↦ 𝜌(𝑤, 𝑥) be a continuously differentiable function. Let further (𝑤′, 𝑥′) ∈
𝑊 × 𝑋 be such that 𝜌(𝑤′, 𝑥′) = 0 and the 𝑛 × 𝑛 matrix 𝜕

𝜕𝑥𝜌(𝑤′, 𝑥′) be invertible.

Then there exist an open neighbourhood 𝑊𝐹 ⊂ 𝑊 of 𝑤′, an open neighbourhood

𝑋𝐹 ⊂ 𝑋 of 𝑥′, and a continuously differentiable function 𝐹 ∶ 𝑊𝐹 → 𝑋𝐹 such that

∀𝑤 ∈ 𝑊𝐹 ∶ 𝜌(𝑤, 𝐹(𝑤)) = 0. Furthermore, for all (𝑤, 𝑥) ∈ 𝑊𝐹 × 𝑋𝐹 we have that

𝜌(𝑤, 𝑥) = 0 if and only if 𝑥 = 𝐹(𝑤), i.e., 𝐹 is unique.

For the proof of proposition 4.3.10 we will need a consequence of the implicit func-

tion theorem, based on the following statement that we can extend an implicitly de-

fined function if the conditions of the implicit function theorem hold on the boundary

of its domain:

Lemma 4.6.2. Let 𝜌 ∶ 𝑊 × 𝑋 → ℝ𝑛 be as given in theorem 4.6.1 and let 𝑅 ∶ 𝑊𝑅 → 𝑋𝑅

be continuously differentiable, with open and convex 𝑊𝑅 ⊂ 𝑊 and open 𝑋𝑅 ⊂ 𝑋 , such

that:
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i) ∀𝑣 ∈ 𝑊𝑅 ∶ 𝜌(𝑣, 𝑅(𝑣)) = 0;

ii) ∀(𝑣, 𝑥) ∈ 𝑊𝑅 × 𝑋𝑅 ∶ 𝜌(𝑣, 𝑥) = 0 ⇔ 𝑥 = 𝑅(𝑣).

If for some sequence (𝑣𝑛)𝑛∈ℕ ⊂ 𝑊𝑅 with 𝑣𝑛 → 𝑣′ ∈ 𝜕𝑊𝑅 ∩ 𝑊 and an accumulation

point 𝑥′ ∈ 𝑋 of (𝑅(𝑣𝑛))𝑛∈ℕ, the matrix 𝜕
𝜕𝑥𝜌(𝑣′, 𝑥′) is invertible, then there is a unique

continuously differentiable extension of 𝑅 with the above properties whose domain is

open and a proper superset of 𝑊𝑅. In particular, (𝑅(𝑣𝑛))𝑛∈ℕ is convergent with limit

𝑥′.

Proof. Let (𝑣𝑛)𝑛∈ℕ ⊂ 𝑊𝑅 with 𝑣𝑛 → 𝑣′ ∈ 𝜕𝑊𝑅∩𝑊 and let 𝑥′ ∈ 𝑋 be an accumulation

point of (𝑅(𝑣𝑛))𝑛∈ℕ, such that the matrix 𝜕
𝜕𝑥𝜌(𝑣′, 𝑥′) is invertible. Due to the conti-

nuity of 𝜌 on 𝑊 × 𝑋 , we have that 𝜌(𝑣′, 𝑥′) = 0. With the implicit function theorem,

there are open neighbourhoods 𝑊′ ⊂ 𝑊 of 𝑣′, where we can require 𝑊′ to be convex,

and 𝑋′ ⊂ 𝑋 of 𝑥′ and a unique continuously differentiable function 𝑆 ∶ 𝑊′ → 𝑋 ′ with

the corresponding properties i) and ii).

We will show that there is 𝑁 such that (𝑅(𝑣𝑛))𝑛≥𝑁 ⊂ 𝑋 ′: As 𝑥′ is an accumulation

point of (𝑅(𝑣𝑛))𝑛∈ℕ, there are infinitely many 𝑛 ∈ ℕ with 𝑅(𝑣𝑛) ∈ 𝑋′, in particular

let 𝑅(𝑣𝑁) ∈ 𝑋′. Note that we can assume (𝑣𝑛)𝑛≥𝑁 ⊂ 𝑊′ as 𝑣′ ∈ 𝑊′ is the limit of

that sequence. Assume that there is some 𝑁′ > 𝑁 with 𝑅(𝑣𝑁′) ∉ 𝑋′ and let 𝑁′ be

minimal. W.l.o.g. let 𝑁′ = 𝑁 +1 and define 𝑣 ∶ [0, 1] → 𝑊′, 𝑡 ↦ (1−𝑡)𝑣𝑁 +𝑡𝑣𝑁′ . Then

𝑣([0, 1]) ⊂ 𝑊′ due to convexity. Consider that 𝑅(𝑣𝑁) ∈ 𝑋′, with 𝑋′ open. Therefore,

there is some 𝜀 > 0 with 𝑅(𝑣([0, 𝜀])) ⊂ 𝑋′. However, with our assumption, 𝑅(𝑣(1)) =
𝑅(𝑣𝑁′) ∉ 𝑋′. Then, with the complement of 𝑋′ being closed, there is a minimal ̄𝑡
such that 𝑅(𝑣( ̄𝑡)) ∉ 𝑋′. Then 𝑅 ∘ 𝑣 = 𝑆 ∘ 𝑣 on [0, ̄𝑡), but due to their continuity

we then also have 𝑅(𝑣( ̄𝑡)) = 𝑆(𝑣( ̄𝑡)) and thus 𝑅(𝑣( ̄𝑡)) ∈ 𝑋′, in contradiction to

𝑅(𝑣( ̄𝑡)) ∉ 𝑋 ′. Thus, 𝑅(𝑣𝑁′) = 𝑅(𝑣(1)) ∈ 𝑋′, in contradiction to 𝑅(𝑣𝑁′) ∉ 𝑋 ′.

Overall, we then have (𝑅(𝑣𝑛))𝑛≥𝑁 ⊂ 𝑋′, and further 𝑅([𝑣𝑁 , 𝑣′)) ⊂ 𝑋 ′ (assuming

𝑣𝑁 < 𝑣′). This implies that 𝑅 = 𝑆 on 𝑊𝑅 ∩𝑊′ and 𝑇 ∶= 𝑅∪𝑆 is a proper, continuously

differentiable extension of 𝑅, satisfying properties i) and ii). In particular, due to

(𝑅(𝑣𝑛))𝑛≥𝑁 = (𝑇(𝑣𝑛))𝑛≥𝑁 , (𝑅(𝑣𝑛))𝑛∈ℕ is convergent with limit 𝑥′.

The following lemma states that there is an implicitly defined function whose do-

main is such that the points at the boundary do not satisfy the conditions of the im-

plicit function theorem:
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Lemma 4.6.3. Let 𝜌 ∶ 𝑊 × 𝑋 → ℝ𝑛 be as given in theorem 4.6.1 and (𝑤, 𝑥𝑤) ∈ 𝑊 × 𝑋
such that 𝜌(𝑤, 𝑥𝑤) = 0 and the matrix 𝜕

𝜕𝑥𝜌(𝑤, 𝑥𝑤) is invertible. Then there exist open

neighbourhoods 𝑊∗ ⊂ 𝑊 of 𝑤, with 𝑊∗ convex, and 𝑋∗ ⊂ 𝑋 of 𝑥𝑤, and a continuously

differentiable function 𝑅∗ ∶ 𝑊∗ → 𝑋∗ such that:

i) ∀𝑣 ∈ 𝑊∗ ∶ 𝜌(𝑣, 𝑅∗(𝑣)) = 0;

ii) ∀(𝑣, 𝑥) ∈ 𝑊∗ × 𝑋∗ ∶ 𝜌(𝑣, 𝑥) = 0 ⇔ 𝑥 = 𝑅∗(𝑣);

iii) for all (𝑣𝑛)𝑛∈ℕ ⊂ 𝑊∗ with 𝑣𝑛 → 𝑣′ ∈ 𝜕𝑊∗ ∩ 𝑊 and every accumulation point

𝑥′ ∈ 𝑋 of (𝑅∗(𝑣𝑛))𝑛∈ℕ, the matrix 𝜕
𝜕𝑥𝜌(𝑣′, 𝑥′) is singular.

In particular, 𝑅∗ is a maximally defined such function.

Proof. Let ℛ be the set of all continuously differentiable functions 𝑅𝛼 ∶ 𝑊𝛼 → 𝑋𝛼,

with 𝑊𝛼 ⊂ 𝑊 convex and 𝑋𝛼 ⊂ 𝑋 being open neighbourhoods of 𝑤 and 𝑥𝑤, respec-

tively, such that 𝑅𝛼 satisfies i) and ii). Due to 𝜌 being continuously differentiable, 𝜕
𝜕𝑥𝜌

is invertible in a convex, open neighbourhood of (𝑤, 𝑥𝑤). With the implicit function

theorem, ℛ is not empty. We define a partial order on ℛ by the set inclusion on the

graphs of the functions 𝑅𝛼 ∈ ℛ.

Let 𝒪 be a non-empty completely ordered chain in ℛ. Consider the function 𝑅′

defined by the graph:

Γ(𝑅′) = ⋃
𝑅𝛼∈𝒪

{(𝑣, 𝑅𝛼(𝑣)) | 𝑣 ∈ 𝑊𝛼}

Then 𝑊′ = ⋃𝑅𝛼∈𝒪 𝑊𝛼 ⊂ 𝑊 and 𝑋′ = ⋃𝑅𝛼∈𝒪 𝑋𝛼 ⊂ 𝑋 are open neighbourhoods of

𝑤 and 𝑥𝑤 and 𝑅′ ∶ 𝑊′ → 𝑋′ is a continuously differentiable function. Furthermore,

{𝑊𝛼 | 𝑅𝛼 ∈ 𝒪} is completely ordered by set inclusion as well and therefore, 𝑊′ is

convex. It is clear that 𝑅′ satisfies i) as all 𝑅𝛼 satisfy i). Let (𝑣, 𝑥) ∈ 𝑊′ × 𝑋 ′. Then

there is 𝑅𝛼 ∈ 𝒪 with 𝑣 ∈ 𝑊𝛼, 𝑥 ∈ 𝑋𝛼, and 𝑅′(𝑣) = 𝑅𝛼(𝑣). Then, as 𝑅𝛼 satisfies

ii), we have 𝜌(𝑣, 𝑥) = 0 ⇔ 𝑥 = 𝑅𝛼(𝑣) = 𝑅′(𝑣), and thus 𝑅′ satisfies ii). Therefore,

𝑅′ ∈ ℛ, and with Zorn’s Lemma, ℛ contains a maximal element 𝑅∗ ∶ 𝑊∗ → 𝑋∗, such

that 𝑅∗ satisfies i) and ii).

For iii), let (𝑣𝑛)𝑛∈ℕ ⊂ 𝑊∗ with 𝑣𝑛 → 𝑣′ ∈ 𝜕𝑊∗ ∩ 𝑊 and let 𝑥′ ∈ 𝑋 be an ac-

cumulation point of (𝑅∗(𝑣𝑛))𝑛∈ℕ. Assume that the matrix 𝜕
𝜕𝑥𝜌(𝑣′, 𝑥′) is invertible.

With the previous lemma there is a proper extension of 𝑅∗ and 𝑅∗ is not maximal, a

contradiction. Thus, 𝜕
𝜕𝑥𝜌(𝑣′, 𝑥′) is singular.
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In order to apply the above lemma, for 𝑀 > 0, we rewrite (RMD) as

𝜌 ∶ ℝ × 𝑋 → ℝ𝑆, (𝑤, 𝑥) ↦ 𝑤𝜑(𝑥) + (𝑐 − 𝑥) (4.6.1)

with 𝑤 = 𝑀−1. It is clear that 𝜌(𝑀−1, 𝑥) = 𝑀−1𝜑𝑀(𝑥) and therefore 𝜌(𝑀−1, 𝑥) =
0 ⇔ 𝜑𝑀(𝑥) = 0 and that 𝜌 is continuously differentiable on ℝ × 𝑋 with some 𝑋 ⊃ Δ
open and bounded, depending on 𝜑. Then we obtain lemma 4.3.9 as a corollary:

Corollary 4.6.4. Let 𝑐 ∈ Δo and 𝑀 be as in lemma 4.3.8. Let 𝑥𝑀 be a mutation

equilibrium for some 𝑀 > 𝑀. Then there is a unique function ℳ ∶ (𝑀, ∞) → Δ such

that ℳ(𝑀) = 𝑥𝑀 and for all 𝑚 ∈ (𝑀, ∞), ℳ(𝑚) is a mutation equilibrium for 𝑚.

In particular, ℳ is continuously differentiable and ℳ(𝑚) 𝑚→∞⟶ 𝑐.

Proof. Consider that for 𝑚 > 𝑀, 𝐷𝜑𝑚 is invertible everywhere on Δ due to lemma

4.3.8, and that for 𝑤 = 𝑚−1 with 𝜌 from (4.6.1), the matrix 𝜕
𝜕𝑥𝜌(𝑤, 𝑥) is invertible

whenever 𝐷𝜑𝑚(𝑥) is. Then let 𝑤 = 𝑀−1 and 𝑤 = 𝑀−1 for some 𝑀 > 𝑀. Then apply-

ing the previous lemma to 𝑤, 𝑥𝑀 and 𝜌 yields a continuously differentiable function

𝑅 ∶ 𝑊 → Δ with 𝑊 ⊂ ℝ and 𝑤 ∈ 𝑊. Furthermore, the previous lemma guar-

antees that [0, 𝑤) ⊂ 𝑊 because 𝜕
𝜕𝑥𝜌(𝑣, 𝑥) is invertible ∀𝑣 ∈ [0, 𝑤), 𝑥 ∈ Δ. Thus,

ℳ ∶ (𝑀, ∞) → Δ with 𝑚 ↦ 𝑅(𝑚−1) is continuously differentiable and is as de-

sired.

With this we can prove proposition 4.3.10:

Proposition 4.6.5 (4.3.10). Let 𝑐 ∈ Δo and 𝑀 as in lemma 4.3.8. For all 𝑀 > 𝑀, the

replicator-mutator dynamics (RMD) has a unique mutation equilibrium. The unique

map ℳ ∶ 𝑀 ↦ 𝑥𝑀 is continuously differentiable on (𝑀, ∞).

Proof. As 𝜑 is Lipschitz, let 𝐿𝜑 be the best Lipschitz constant for 𝜑. Since 𝜑 is differ-

entiable and Δ is convex, we further have that 𝐿𝜑 = ‖𝐷𝜑‖∞,Δ ∶= sup𝑥∈Δ ‖𝐷𝜑(𝑥)‖ ≥ 𝑀
with 𝑀 from lemma 4.3.8. Choose 𝑀′ > 𝐿𝜑 and consider for 𝑐 ∈ Δo and some 𝑠 > 0
the function 𝐹𝑀′,𝑐 ∶ Δ → Δ with [𝐹𝑀′,𝑐(𝑥)]𝑖ℎ = 𝑥𝑖ℎ + 𝑠 (𝜑𝑖ℎ(𝑥) + 𝑀′(𝑐𝑖ℎ − 𝑥𝑖ℎ)).

Then, we have that

[𝐹𝑀′,𝑐(𝑥)]𝑖ℎ − [𝐹𝑀′,𝑐(𝑦)]𝑖ℎ = (1 − 𝑠𝑀′)(𝑥𝑖ℎ − 𝑦𝑖ℎ) + 𝑠 (𝜑𝑖ℎ(𝑥) − 𝜑𝑖ℎ(𝑦))

and thus

‖𝐹𝑀′,𝑐(𝑥) − 𝐹𝑀′,𝑐(𝑦)‖ ≤|1 − 𝑠𝑀′|‖𝑥 − 𝑦‖ + 𝑠‖𝜑(𝑥) − 𝜑(𝑦)‖

≤|1 − 𝑠𝑀′|‖𝑥 − 𝑦‖ + 𝑠𝐿𝜑‖𝑥 − 𝑦‖ = (|1 − 𝑠𝑀′| + 𝑠𝐿𝜑)‖𝑥 − 𝑦‖ .
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Choosing 𝑠 such that 𝑠𝑀′ ≤ 1, we have that:

|1 − 𝑠𝑀′| + 𝑠𝐿𝜑 = 1 − 𝑠𝑀′ + 𝑠𝐿𝜑 = 1 + 𝑠(𝐿𝜑 − 𝑀′) < 1

Hence, 𝐹𝑀′,𝑐 is a contractive mapping and has a unique fixed point 𝑥𝑀′ ∈ Δo. Then

every function ℳ from corollary 4.6.4 satisfies ℳ(𝑀′) = 𝑥𝑀′ and thus all such func-

tions are identical, yielding the uniqueness of mutation equilibria for all 𝑀 > 𝑀.

4.6.2 Proof of proposition 4.4.3

In order to prove proposition 4.4.3, we need to extend (RMD) slightly, such that we

can allow more general mutation to occur. Recall that 𝑔𝑖ℎ(𝑥) = 𝑓𝑖ℎ(𝑥) − ̄𝑓𝑖(𝑥) and

that then ℰ = {𝑥 ∈ Δ | 𝑔(𝑥) ≤ 0} is the set of Nash equilibria, where the inequality is

component-wise. Then let 𝐻 = 𝒞1(Δ, ℝ𝑆
>0), and define for 𝑐 ∈ 𝐻, 𝑀 > 0:

[𝐹𝑀,𝑐(𝑥)]𝑖ℎ = 𝑥𝑖ℎ + 𝑠 (𝑥𝑖ℎ𝑔𝑖ℎ(𝑥) + 𝑀 (𝑐𝑖ℎ(𝑥) − 𝑥𝑖ℎ ∑𝑘≤𝑛𝑖
𝑐𝑖𝑘(𝑥)))

where 𝑖 ∈ 𝐼, ℎ ∈ 𝑆𝑖. Note that for all 𝑠 > 0, the fixed points of 𝐹𝑀,𝑐 are the stationary

points of a suitably generalized (RMD). In particular, if 𝑐 ∈ 𝐻 is constant on Δ, then

the fixed points are exactly the mutation equilibria of (RMD) for a suitably chosen �̃�.

It is clear that for a choice of 𝑐 ∈ 𝐻, we can choose 𝑠 > 0 such that for all 𝑀 ∈ (0, 𝜀𝑠),

we have 𝐹𝑀,𝑐(Δ) ⊂ Δ and thus the set of fixed points is non-empty. Therefore, we

assume a suitable choice of 𝑠 > 0 (possibly depending on 𝑐). For convenience, let us

denote by ℱ(𝐹𝑀,𝑐) the set of fixed points of 𝐹𝑀,𝑐 for 𝑐 ∈ 𝐻 and 𝑀 > 0:

ℱ(𝐹𝑀,𝑐) = {𝑥 ∈ Δ | 𝐹𝑀,𝑐(𝑥) = 𝑥}.

From the definition of a mutation limit, we extract the main property and say that a

set 𝑋 ⊂ Δ has the property (𝐴) if

(𝐴) for all 𝑐 ∈ Δo, there is a sequence of mutation equilibria (𝑥𝑀)𝑀>0 ⊂ Δ that

converges to an element of 𝑋 .

We extend this notion to 𝐹𝑀,𝑐 and say that a set 𝑋 ⊂ Δ has the property (𝐴′) if

(𝐴′) for all 𝑐 ∈ 𝐻 and open 𝑈 ⊃ 𝑋 , there is 𝑀 > 0 such that ℱ(𝐹𝑀,𝑐) ∩ 𝑈 ≠ ∅.

Remark. It is clear that a set 𝑋 has the property (𝐴′) if and only if for every 𝑐 ∈ 𝐻
there is a sequence (𝑥𝑀)𝑀>0 ⊂ Δ such that (𝑥𝑀)𝑀>0 converges to an element of 𝑋
and every 𝑥𝑀 in the sequence satisfies 𝑥𝑀 ∈ ℱ(𝐹𝑀,𝑐). With this it is also clear that
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a set has the property (𝐴) if it has property (𝐴′), due to 𝑐 ∈ Δo being equivalent to a

constant function in 𝐻.

The proof of proposition 4.4.3 will proceed as follows: We first show that ℰ has the

property (𝐴′). Next, we show that a set with the property (𝐴′) contains a minimal

set with that property, and that an analog but slightly modified result holds for the

property (𝐴). We then show that a minimal set with the property (𝐴′) is connected,

based on a proof by Kinoshita [55]. Thus, we have that ℰ contains a minimal set with

the property (𝐴′), which must be contained in a connected component of ℰ. Finally

this set is connected and in particular has the property (𝐴) and hence contains a

minimal connected set with the property (𝐴), proving proposition 4.4.3.

Existence. We show first that any minimal set with the property (𝐴′) must be con-

tained in ℰ:

Lemma 4.6.6. Let 𝑋 ⊂ Δ be minimal with the property (𝐴′). Then 𝑋 ⊂ ℰ and ℰ has

the property (𝐴′).

Proof. Assume that 𝑋 ⊄ ℰ. Let 𝑐 ∈ 𝐻 and (𝑀𝑛)𝑛∈ℕ ⊂ ℝ>0 be a null sequence, and

(𝑥𝑀𝑛)𝑛∈ℕ ⊂ Δ convergent with limit 𝑥∗ with 𝑥𝑀𝑛 ∈ ℱ(𝐹𝑀𝑛,𝑐) for all 𝑛 ∈ ℕ. From

our earlier note on the possibility of a constant choice of 𝑠 > 0 for all 𝑛 ∈ ℕ, and from

the continuity of 𝑔 and 𝑐, we have that for all 𝑖 ∈ 𝐼, ℎ ∈ 𝑆𝑖, 𝑥∗
𝑖ℎ𝑔𝑖ℎ(𝑥∗) = 0 holds.

We now show that 𝑥∗ ∈ ℰ: If 𝑥∗ ∈ Δo, then for all 𝑖 ∈ 𝐼, ℎ ∈ 𝑆𝑖, 𝑥∗
𝑖ℎ𝑔𝑖ℎ(𝑥∗) = 0

implies 𝑔𝑖ℎ(𝑥∗) = 0, i.e., 𝑥∗ ∈ ℰ. If 𝑥∗ ∈ 𝜕Δ, then let some (𝑖, ℎ) ∈ 𝑆 be such that

𝑥∗
𝑖ℎ = 0, and let ̃𝑐𝑖 = sup {∑𝑘≤𝑛𝑖

𝑐𝑖𝑘(𝑥) | 𝑥 ∈ Δ}. Then ̃𝑐𝑖 < ∞ and for 𝑀 > 0:

𝑥𝑀
𝑖ℎ = [𝐹𝑀,𝑐(𝑥𝑀)]𝑖ℎ = 𝑥𝑀

𝑖ℎ + 𝑠 (𝑥𝑀
𝑖ℎ𝑔𝑖ℎ(𝑥𝑀) + 𝑀 (𝑐𝑖ℎ(𝑥𝑀) − 𝑥𝑀

𝑖ℎ ∑
𝑘≤𝑛𝑖

𝑐𝑖𝑘(𝑥𝑀)))

> 𝑥𝑀
𝑖ℎ + 𝑠 (𝑥𝑀

𝑖ℎ𝑔𝑖ℎ(𝑥𝑀) − 𝑀𝑥𝑀
𝑖ℎ ∑

𝑘≤𝑛𝑖
𝑐𝑖𝑘(𝑥𝑀)) ≥ 𝑥𝑀

𝑖ℎ + 𝑠𝑥𝑀
𝑖ℎ (𝑔𝑖ℎ(𝑥𝑀) − 𝑀 ̃𝑐𝑖)

Therefore, we have for all 𝑀 > 0:

0 > 𝑠𝑥𝑀
𝑖ℎ (𝑔𝑖ℎ(𝑥𝑀) − 𝑀 ̃𝑐𝑖) ⇔ 0 > 𝑔𝑖ℎ(𝑥𝑀) − 𝑀 ̃𝑐𝑖 ⇔ 𝑀 ̃𝑐𝑖 > 𝑔𝑖ℎ(𝑥𝑀)

Therefore, with 𝑀 → 0, we have 𝑔𝑖ℎ(𝑥∗) ≤ 0, and overall 𝑥∗ ∈ ℰ. Thus 𝑋 ∩ ℰ has the

property (𝐴′) and 𝑋 is not minimal, a contradiction. From 𝑥∗ ∈ ℰ, it is clear that ℰ
has the property (𝐴′).
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Minimality. We first show that the existence of a set with the property (𝐴′) implies

the existence of a minimal such set, where the proof is fairly standard and adapted

from [65, theorem 7.3]:

Lemma 4.6.7. Let a compact set 𝑋 ⊂ Δ have the property (𝐴′). Then it contains a

minimal compact set with the property (𝐴′).

Proof. The proof uses Zorn’s lemma. Let 𝐶 be the set of compact subsets of 𝑋 with the

property (𝐴′), i.e., 𝐶 = {𝐾 ⊂ 𝑋 ∣ 𝐾 ≠ ∅ is compact and has the property (𝐴′)}, and

order 𝐶 by reverse inclusion ⊃. Let 𝑂 ⊂ 𝐶 be completely ordered. Then 𝑂 has the

finite intersection property, as it is completely ordered by reverse inclusion and its

elements are compact. Therefore, 𝐾∞ ∶= ⋂ 𝑂 ≠ ∅ and 𝐾∞ is compact.

It remains to show that 𝐾∞ has the property (𝐴′): Assume 𝐾∞ does not have the

property (𝐴′). Then there is a 𝑐 ∈ 𝐻 and an open neighbourhood 𝑉 of 𝐾∞ such that

no 𝐹𝑀,𝑐 (𝑀 > 0) has a fixed point in 𝑉 . For 𝐿 ∈ 𝑂, we have 𝐿 ⊄ 𝑉 because 𝐿 has the

property (𝐴′). Then 𝑂′ ∶= {𝐿\𝑉 ∶ 𝐿 ∈ 𝑂} is a completely ordered collection of compact

sets (𝐿 is compact and 𝑉 is open) with the finite intersection property, inherited from

the reverse inclusion ordering of 𝑂. Therefore, it has a nonempty intersection 𝐾 ′∞ ⊂
𝐾∞ ⊂ 𝑉 but 𝐾 ′∞∩𝑉 = ∅, which is a contradiction. Thus, 𝐾∞ has the property (𝐴′) and

therefore 𝐾∞ ∈ 𝐶 is an upper bound of 𝑂. With Zorn’s lemma then, 𝐶 has a maximal

element, which is a minimal compact subset of 𝑋 with the property (𝐴′).

For the existence of a mutation limit we will have to make a similar step, however

preserving connectedness:

Lemma 4.6.8. Let a connected compact set 𝑋 ⊂ Δ have the property (𝐴). Then it

contains a minimal connected compact set with the property (𝐴).

Proof. Let 𝐶 be the set of all compact connected (non-empty) subsets of 𝑋 with the

property (𝐴), partially ordered by ⊃ and 𝑂 a completely ordered chain in 𝐶. Then

𝐾∞ = ⋂𝐾∈𝑂 𝐾 is non-empty, compact and has the property (𝐴) by an argument

completely analogous to the previous lemma.

It remains to show that 𝐾∞ is connected: Assume that 𝐾∞ is not connected. Then,

there are open disjoint sets 𝑈1, 𝑈2, with 𝐾∞ ⊂ 𝑈1 ∪ 𝑈2 =∶ 𝑈 and 𝐾∞ ∩ 𝑈1 ≠ ∅,

𝐾∞ ∩ 𝑈2 ≠ ∅, and 𝑈 open in 𝑋 . 𝑋 and all 𝐾 ∈ 𝑂 are compact and, with 𝑋 being

Hausdorff, also closed. Thus 𝑋 ⧵𝐾 is open in 𝑋 for 𝐾 ∈ 𝑂. Then, with ⋃𝐾∈𝑂 𝑋 ⧵𝐾 =
𝑋 ⧵⋂𝐾∈𝑂 𝐾 = 𝑋 ⧵𝐾∞, we have that {𝑈} ∪ {𝑋 ⧵𝐾|𝐾 ∈ 𝑂} is an open cover of 𝑋 , and
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there is a finite subcover {𝑈} ∪ {𝑋 ⧵ 𝐾𝑖|𝐾𝑖 ∈ 𝑂, 1 ≤ 𝑖 ≤ 𝑛}, as 𝑋 is compact. Thus

𝑋 = 𝑈 ∪⋃1≤𝑖≤𝑛 𝑋 ⧵𝐾𝑖 = 𝑈 ∪𝑋 ⧵⋂1≤𝑖≤𝑛 𝐾𝑖. As 𝑂 is completely ordered by inclusion,

we can assume that 𝐾𝑖 ⊃ 𝐾𝑛 (1 ≤ 𝑖 ≤ 𝑛) and we have that 𝑋 = 𝑈 ∪ 𝑋 ⧵ 𝐾𝑛. Thus

𝐾𝑛 ⊂ 𝑈 = 𝑈1 ∪ 𝑈2, and hence 𝐾𝑛 is not connected, a contradiction. Therefore, 𝐾∞ is

connected and 𝐾∞ ∈ 𝐶. With Zorn’s lemma the statement of the lemma follows.

Connectedness. We gain connectedness as a necessary property of minimal sets

with the property (𝐴′), where the main idea of the proof is based on a proof by Ki-

noshita [55] and relies on the “convexity” of 𝐻:

Lemma 4.6.9. If 𝐾 ⊂ Δ has the property (𝐴′) and 𝐾 = (𝐾1 ∪ … ∪ 𝐾𝑠) with the 𝐾𝑗

disjoint and compact, then some 𝐾𝑗 has the property (𝐴′). If 𝐾 is minimal with the

property (𝐴′), then 𝐾 is connected.

Proof. Let 𝐾 ⊂ Δ have property (𝐴′) and 𝐾 = 𝐾1 ∪ … ∪ 𝐾𝑠 with the 𝐾𝑗 disjoint and

compact. Assume that no 𝐾𝑗 has the property (𝐴′). Then there are 𝑐1, … , 𝑐𝑠 ∈ 𝐻 and

neighbourhoods 𝑈1, … , 𝑈𝑠 of 𝐾1, … , 𝐾𝑠 with disjoint closures such that for all 𝑀 > 0,

ℱ(𝐹𝑀,𝑐𝑗) ∩ 𝑈𝑗 = ∅. Let further 𝑉1, … , 𝑉𝑠 be strictly smaller neighbourhoods, i.e.,

𝑉 𝑗 ⊊ 𝑈𝑗, and let 𝑈0 be a neighbourhood of Δ\(𝑈1 ∪ … ∪ 𝑈𝑠) whose closure is disjoint

from the 𝑉1, … , 𝑉𝑠, and 𝑐0 any function in 𝐻. Then {𝑈0, 𝑈1, … , 𝑈𝑠} is an open cover

of Δ and with Δ being a compact subset of a topological vector space, there is a 𝐶∞-

partition of unity 𝜋0,𝜋1, … ,𝜋𝑠 such that 𝜋𝑗(𝑥) = 0 (∀𝑥 ∈ Δ⧵𝑈𝑗), and ∑𝑠
𝑗=0 𝜋𝑗(𝑥) = 1

(∀𝑥 ∈ Δ), [65, theorem 6.2]. The convex combination, ̄𝑐, with ̄𝑐 ∶ 𝑥 ↦ ∑𝑠
𝑗=0 𝜋𝑗(𝑥)𝑐𝑗(𝑥),

is an element of 𝐻. Considering 𝐹𝑀, ̄𝑐, we then have that 𝐹𝑀, ̄𝑐(𝑥) = 𝐹𝑀,𝑐𝑗(𝑥) for

𝑥 ∈ 𝑉𝑗. Thus ℱ(𝐹𝑀, ̄𝑐) ∩ 𝑉𝑗 = ∅ for 1 ≤ 𝑗 ≤ 𝑠 for all 𝑀 > 0. Therefore, 𝐹𝑀, ̄𝑐 has

no fixed points in (𝑉1 ∪ … ∪ 𝑉𝑠) ⊃ 𝐾 for any 𝑀 > 0. This is a contradiction to the

assumption that 𝐾 has the property (𝐴′). In particular, if 𝐾 is minimal, then 𝐾 is

connected.

Overall, this proves the following:

Proposition 4.6.10. There is a mutation limit 𝑋 ⊂ ℰ.

Proof. With lemma 4.6.6, ℰ has the property (𝐴′). With ℰ being compact due to

𝑔 ∈ 𝒞(Δ, ℝ𝑆) and ℰ ⊂ Δ, and with lemma 4.6.7, there is a minimal compact set

𝑋′ ⊂ ℰ with the property (𝐴′). Furthermore, with lemma 4.6.9, 𝑋′ is connected.

With the property (𝐴′), 𝑋′ also has the property (𝐴). With lemma 4.6.8, 𝑋′ contains
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a minimal connected compact subset 𝑋 ⊂ 𝑋′ with the property (𝐴). By definition, 𝑋
is a mutation limit.
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5 Mutation and asymptotic stability

In the multi-population replicator dynamics, interior equilibria cannot be asymptoti-

cally stable. In chapter 4, we have given a rigorous formulation of the idea of vanishing

mutation and have linked the equilibria of systems with mutation to those without

mutation. Furthermore, we have shown that, under the replicator dynamics, every

game has at least one mutation limit, a connected component of equilibria that is ro-

bust under mutation: all systems with mutations have equilibria close to such a set.

In particular, the specific mutation parameters are irrelevant.

One consequence of considering mutation is that interior equilibria can become

asymptotically stable under arbitrarily low levels of mutation, and we have called

such equilibria (or sets of equilibria) attracting mutation limits. There, we have also

demonstrated that the sole equilibrium of the standard Matching Pennies game is

such an attracting mutation limit. Here, we demonstrate that this phenomenon holds

in much more general cases: Our first result shows that all Lyapunov stable equilibria

are attracting mutation limits in all two-by-two systems. Our second result shows

that in all two-player (rescaled) zero-sum games, all Lyapunov stable equilibria are

attracting mutation limits. Overall, this indicates that mutation stabilizes evolution

in these two classes of settings.

The Matching Pennies game and zero-sum games are of particular relevance in

antagonistic biological settings such as host-parasite systems. Such a host-parasite

system can be modelled as a system of two populations, where a parasite needs to

match a host’s trait in order to effectively infect the host, as considered, e.g., in [70, 88].

As shown in [99], under the assumption of constant host and parasite populations, the

Lotka-Volterra dynamics in [88] is equivalent to a two population replicator dynamics

with parasites and hosts playing a Matching Pennies type game.
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5.1 Two population replicator-mutator dynamics

We first repeat the two-population replicator dynamics, proceeding to the replicator-

mutator dynamics in a second step. In general, the populations are enumerated, but

with only two populations, we will name the first population 𝑋 and the second 𝑌 for

convenience, with each population consisting of individuals of types from the type

sets 𝑆𝑋 and 𝑆𝑌 , respectively.1 Let the frequencies of types in populations 𝑋 and

𝑌 be given by 𝑥 = (𝑥ℎ)ℎ∈𝑆𝑋 ∈ Δ𝑋 and 𝑦 = (𝑦ℎ)ℎ∈𝑆𝑌 ∈ Δ𝑌 , respectively, with

Δ𝑖 = {𝑧 ∈ ℝ|𝑆𝑖|
≥0 ∣ ∑ℎ∈𝑆𝑖

𝑧ℎ = 1} for 𝑖 ∈ {𝑋, 𝑌}. For population 𝑋 , let the fitness of

a type ℎ ∈ 𝑆𝑋 be given by ̃𝑓𝑋,ℎ(𝑦) and analogously for population 𝑌 . If we consider

that 𝑥|𝑆𝑋 | = 1−∑ℎ∈𝑆𝑋
𝑥ℎ and 𝑦|𝑆𝑌 | = 1−∑ℎ∈𝑆𝑌

𝑦ℎ, then we can write the replicator

dynamics as a reduced system ignoring 𝑥|𝑆𝑋 | and 𝑦|𝑆𝑌 |:

̇𝑥ℎ = 𝑥ℎ
⎛⎜⎜⎜
⎝

𝑓𝑋,ℎ(𝑦) − ∑
𝑘<|𝑆𝑋 |

𝑥𝑘𝑓𝑋,𝑘(𝑦)⎞⎟⎟⎟
⎠

=∶ 𝜑𝑋,ℎ(𝑥, 𝑦) (ℎ < |𝑆𝑋 |)

̇𝑦𝑗 = 𝑦𝑗
⎛⎜⎜⎜
⎝

𝑓𝑌,𝑗(𝑥) − ∑
𝑘<|𝑆𝑌 |

𝑦𝑘𝑓𝑌,𝑘(𝑥)⎞⎟⎟⎟
⎠

=∶ 𝜑𝑌,𝑗(𝑥, 𝑦) (𝑗 < |𝑆𝑌 |)
(RD)

where 𝑓𝑋,ℎ(𝑦) = ̃𝑓𝑋,ℎ(𝑦)− ̃𝑓𝑋,|𝑆𝑋 |(𝑦) for ℎ < |𝑆𝑋 | and analogously for 𝑓𝑌,𝑗 and 𝑗 < |𝑆𝑌 |.
We denote by 𝐽(𝑥, 𝑦) the Jacobian of the system (RD) at some (𝑥, 𝑦) ∈ Δ ∶= Δ𝑋 × Δ𝑌 .

Note that the continuous-time multi-population replicator dynamics (RD) can be

considered as the limit case of weak-selection due to nearly infinite background fit-

ness. Similarly, we obtain our replicator-mutator dynamics (RMD) as the weak-selec-

tion weak-mutation limit of a more general replicator-mutator equation, e.g. [77], as

detailed in chapter 4. Under our assumption that mutation is memory-less, i.e., the

probability 𝑐𝑖,ℎ that offspring will mutate to some type ℎ is independent of the par-

ent’s type (∀𝑖 ∈ {𝑋, 𝑌}, ℎ ∈ 𝑆𝑖), we have that the mutation parameters 𝑐𝑖 are from

Δ𝑖 (𝑖 ∈ {𝑋, 𝑌}) and can be interpreted as the population compositions favoured by

mutation. As detailed in chapter 4, we can then extend (RD) as follows:

Given mutation parameters 𝑐𝑖 ∈ Δ𝑖 and mutation strength parameters 𝑀𝑖 > 0
(𝑖 ∈ {𝑋, 𝑌}), the replicator-mutator dynamics is given by:

̇𝑥ℎ = 𝜑𝑋,ℎ(𝑥, 𝑦) − 𝑀𝑋(𝑥ℎ − 𝑐𝑋,ℎ) =∶ 𝜑𝑀
𝑋,ℎ(𝑥, 𝑦) (ℎ < |𝑆𝑋 |)

̇𝑦𝑗 = 𝜑𝑌,ℎ(𝑥, 𝑦) − 𝑀𝑌(𝑦𝑗 − 𝑐𝑌,𝑗) =∶ 𝜑𝑀
𝑌,𝑗(𝑥, 𝑦) (𝑗 < |𝑆𝑌 |)

(RMD)

1We assume that we have chosen some ordering or some enumeration wherever we need to handle
matrices or other ordered structures.
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where 𝑀 = (𝑀𝑋 , 𝑀𝑌). Again, we denote by 𝐽𝑀(𝑥, 𝑦) the Jacobian of (RMD) at some

(𝑥, 𝑦) ∈ Δ. Note that the Jacobian of (RMD) satisfies

𝐽𝑀(𝑥, 𝑦) = 𝐽(𝑥, 𝑦) − 𝔐 ,

where 𝔐 is a block matrix of the form

𝔐 = ⎛⎜⎜⎜
⎝

𝑀𝑋𝐼|𝑆𝑋 |−1 0
0 𝑀𝑌𝐼|𝑆𝑌 |−1

⎞⎟⎟⎟
⎠

with 𝐼𝑛 denoting the 𝑛 × 𝑛 identity matrix.

5.2 2 × 2 settings

As a special case, we consider settings with only two types in each population. In

particular, this covers the classical case of 2 × 2 matrix games. In this setting, (RMD)

depends only on 𝑥1 and 𝑦1 respectively and, dropping the indices for simplicity, we can

write (RMD) as:

̇𝑥 = 𝑥(1 − 𝑥)𝑓𝑋(𝑦) − 𝑀𝑋(𝑥 − 𝑐𝑋)

̇𝑦 = 𝑦(1 − 𝑦)𝑓𝑌(𝑥) − 𝑀𝑌(𝑦 − 𝑐𝑌)
(5.2.1)

for 𝑀 = (𝑀𝑋 , 𝑀𝑌) with 𝑀𝑋 , 𝑀𝑌 > 0 and 𝑐𝑋 , 𝑐𝑌 ∈ (0, 1), and the reduced fitness

functions in (5.2.1) are obtained as 𝑓𝑖 ∶= 𝑓𝑖,1 − 𝑓𝑖,2 for 𝑖 ∈ {𝑋, 𝑌}. In this case, we

have a two-dimensional dynamic system and we can completely characterize when

regular (definition 4.4.5) interior Nash equilibria are attracting mutation limits for

all, in particular non-linear, 𝒞1 functions 𝑓𝑋 and 𝑓𝑌 . Further, the Jacobian 𝐽 of (RD)

at some (𝑥, 𝑦) reduces to

𝐽(𝑥, 𝑦) ∶= ⎛⎜⎜⎜
⎝

𝐽𝑋𝑥(𝑥, 𝑦) 𝐽𝑋𝑦(𝑥, 𝑦)
𝐽𝑌𝑥(𝑥, 𝑦) 𝐽𝑌𝑦(𝑥, 𝑦)

⎞⎟⎟⎟
⎠

∶= ⎛⎜⎜⎜
⎝

(1 − 2𝑥)𝑓𝑋(𝑦) 𝑥(1 − 𝑥) 𝑑
𝑑𝑦 𝑓𝑋(𝑦)

𝑦(1 − 𝑦) 𝑑
𝑑𝑥 𝑓𝑌(𝑥) (1 − 2𝑦)𝑓𝑌(𝑥)

⎞⎟⎟⎟
⎠

and consequently, the Jacobian 𝐽𝑀 of (5.2.1) at (𝑥, 𝑦) is given by

𝐽𝑀(𝑥, 𝑦) ∶= 𝐽(𝑥, 𝑦) − ⎛⎜⎜⎜
⎝

𝑀𝑋 0
0 𝑀𝑌

⎞⎟⎟⎟
⎠

.

Remark. Note that if (𝑥∗, 𝑦∗) ∈ Δ is a Nash equilibrium, then we have that 𝑓𝑋(𝑦∗) =
𝑓𝑌(𝑥∗) = 0 and hence the trace of the Jacobian satisfies Tr(𝐽(𝑥∗, 𝑦∗)) = 0.

We approach the question of stability in two steps. We first consider the signs of the

diagonal elements of 𝐽𝑀 and then use this to obtain a result based on the determinant

of 𝐽 in a second step.
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Lemma 5.2.1. Let 𝑀𝑋 , 𝑀𝑌 ≥ 0 with 𝑀𝑋 > 0 or 𝑀𝑌 > 0, and let (𝑥𝑀 , 𝑦𝑀) be an

interior mutation equilibrium.2 Then 𝐽𝑀
𝑋𝑥(𝑥𝑀 , 𝑦𝑀), 𝐽𝑀

𝑌𝑦(𝑥𝑀 , 𝑦𝑀) ≤ 0 with at least

one strictly negative and Tr(𝐽𝑀) < 0.

Proof. Assume first that 𝑀𝑋 , 𝑀𝑌 > 0. Consider that in an interior mutation equilib-

rium (𝑥𝑀 , 𝑦𝑀), we have 𝜑𝑋(𝑥𝑀 , 𝑦𝑀) = 𝑀𝑋(𝑥𝑀 − 𝑐𝑋) (and 𝜑𝑌(𝑥𝑀 , 𝑦𝑀) = 𝑀𝑌(𝑦𝑀 −
𝑐𝑌)) and thus

𝑓𝑋(𝑥𝑀 , 𝑦𝑀) = 𝑀𝑋
𝑥𝑀 − 𝑐𝑋

𝑥𝑀(1 − 𝑥𝑀)
and further:

𝐽𝑀
𝑋𝑥 = 𝐽𝑋𝑥 − 𝑀𝑋 = 𝜕

𝜕𝑥𝜑𝑋(𝑥𝑀 , 𝑦𝑀) − 𝑀𝑋 = (1 − 2𝑥𝑀)𝑀𝑋
𝑥𝑀 − 𝑐𝑋

𝑥𝑀(1 − 𝑥𝑀) − 𝑀𝑋

= −𝑀𝑋
(𝑥𝑀)2 − 2𝑥𝑀𝑐𝑋 + 𝑐𝑋 + 𝑐2

𝑋 − 𝑐2
𝑋

𝑥𝑀(1 − 𝑥𝑀) = −𝑀𝑋
(𝑥𝑀 − 𝑐𝑋)2 + 𝑐𝑋(1 − 𝑐𝑋)

𝑥𝑀(1 − 𝑥𝑀) < 0,

and similarly 𝐽𝑀
𝑌𝑦 = 𝐽𝑌𝑦 − 𝑀𝑌 < 0 and therefore Tr(𝐽𝑀) < 0. Now if 𝑀𝑋 = 0, then

𝐽𝑀
𝑋𝑥 = 0, but with 𝑀𝑌 > 0 we still have 𝐽𝑀

𝑌𝑦 < 0, and similarly for 𝑀𝑌 = 0, which

concludes the proof.

With this we obtain the following result for Nash equilibria (𝑥∗, 𝑦∗) with positive

determinant of the Jacobian:

Proposition 5.2.2. Let (𝑥∗, 𝑦∗) be an interior Nash equilibrium such that the Jacobian

𝐽(𝑥∗, 𝑦∗) satisfies |𝐽(𝑥∗, 𝑦∗)| > 0. Then (𝑥∗, 𝑦∗) is an attracting mutation limit.

Proof. Let |𝐽(𝑥∗, 𝑦∗)| > 0. Then (𝑥∗, 𝑦∗) is a regular equilibrium and hence a muta-

tion limit with [8, lemma 4.6]. Let then (𝑥𝑀 , 𝑦𝑀)(𝑀𝑋 ,𝑀𝑌 )→0 be a sequence of muta-

tion equilibria converging to (𝑥∗, 𝑦∗). Consider that the eigenvalues of the Jacobian

𝐽𝑀(𝑥𝑀 , 𝑦𝑀) are given by:

𝜆1,2 = Tr(𝐽𝑀)
2 ±

√√√
⎷

(Tr(𝐽𝑀)
2 )

2
− |𝐽𝑀 |

Now, for 𝑀 → 0, Tr(𝐽𝑀(𝑥𝑀 , 𝑦𝑀)) → Tr(𝐽(𝑥∗, 𝑦∗)) = 0, while |𝐽𝑀(𝑥𝑀 , 𝑦𝑀)| →
|𝐽(𝑥∗, 𝑦∗)| > 0. Hence, there are 𝑀𝑥 > 0, 𝑀𝑦 > 0 such that, for all 𝑀 = (𝑀𝑋 , 𝑀𝑌) ∈
(0, 𝑀𝑥)×(0, 𝑀𝑦), the radicand is negative at (𝑥𝑀 , 𝑦𝑀). Together with lemma 5.2.1, we

have that ℜ(𝜆1,2) = 1
2 Tr(𝐽𝑀) < 0, and with [78, theorem 1, p. 130], that (𝑥𝑀 , 𝑦𝑀)

is asymptotically stable and thus (𝑥∗, 𝑦∗) an attracting mutation limit.

In particular, the previous statement applies to neutrally stable regular equilibria:
2Note that all mutation equilibria are interior points.
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Proposition 5.2.3. Let (𝑥∗, 𝑦∗) be a regular interior Nash equilibrium. If (𝑥∗, 𝑦∗) is

neutrally stable, then it is an attracting mutation limit.

Proof. Let (𝑥∗, 𝑦∗) be a regular interior Nash equilibrium. Then |𝐽(𝑥∗, 𝑦∗)| ≠ 0. Let

further (𝑥∗, 𝑦∗) be neutrally stable. Then with [78, theorem 2, p. 130] both eigenval-

ues of 𝐽(𝑥∗, 𝑦∗) have (the same) non-positive real part. With Tr(𝐽(𝑥∗, 𝑦∗)) = 0, both

eigenvalues are strictly imaginary and |𝐽(𝑥∗, 𝑦∗)| ≥ 0 and hence |𝐽(𝑥∗, 𝑦∗)| > 0. With

|𝐽(𝑥∗, 𝑦∗)| > 0 and proposition 5.2.2, (𝑥∗, 𝑦∗) is an attracting mutation limit.

For regular Nash equilibria the previous proposition yields a characterization of

attracting mutation limits:

Corollary 5.2.4. A regular interior Nash equilibrium, (𝑥∗, 𝑦∗), is an attracting mu-

tation limit if and only if |𝐽(𝑥∗, 𝑦∗)| > 0.

Proof. One direction follows directly from proposition 5.2.3. For the other direction

let |𝐽(𝑥∗, 𝑦∗)| < 0. Then the eigenvalues must be real and with Tr(𝐽(𝑥∗, 𝑦∗)) = 0, we

have that one eigenvalue must be positive. Hence (𝑥∗, 𝑦∗) is unstable and cannot be

an attracting mutation limit owing to lemma 4.4.11.

Example 5.2.5. Let us revisit the matching pennies game from example 4.4.10, with

payoffs given as:
⎛⎜⎜⎜
⎝

(1, 0) (0, 1)
(0, 1) (1, 0)

⎞⎟⎟⎟
⎠

It is clear that, after reducing to two dimensions, the unique Nash equilibrium (𝑥∗, 𝑦∗)
of the game is located at (1/2, 1/2) , where we give the strategy of the row player first.

At the Nash equilibrium (𝑥∗, 𝑦∗), the Jacobian has a positive determinant, specifically,

|𝐽(𝑥∗, 𝑦∗)| = 1/4. It is then clear that (𝑥∗, 𝑦∗) is an attracting mutation limit, i.e.,

mutation stabilises (𝑥∗, 𝑦∗). However, the strength of the asymptotic stability depends

on the mutation strength 𝑀, since 𝑀 provides the bounds for the exponential stability

of the linearisation. This implies that solutions take longer to approach the mutation

limit for lower mutation strengths, returning to periodic orbits in the limit of 𝑀 → 0,

as illustrated in figure 5.1.
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Figure 5.1: Four solutions of (5.2.1) for the matching pennies game in example 5.2.5 with different
mutation strengths 𝑀𝑋 = 𝑀𝑌 = 𝑀. The coloured lines show the distance of the solution to the
Nash equilibrium (1/2, 1/2), with red, orange, green and blue lines corresponding to solutions for
𝑀-values of 2−4 ⋅ 10−2, 2−5 ⋅ 10−2, 2−6 ⋅ 10−2 and 2−7 ⋅ 10−2, respectively. Lines appear thicker
at the start as the distance fluctuates stronger. The shapes ‘△’, ‘○’, ‘□’ and ‘×’ show the values of
the exponential decay function 𝐶0 ⋅ 𝑒−𝑀⋅𝑡 with appropriate scaling constant 𝐶0 for corresponding
𝑀-values of 2−4 ⋅ 10−2, 2−5 ⋅ 10−2, 2−6 ⋅ 10−2 and 2−7 ⋅ 10−2, respectively.
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5.3 Antagonistic co-evolution: two-population zero-sum
games

For convenience, in the situation of two-population zero-sum games, we use the

more general notation, as introduced in chapter 4, i.e., with populations and types

numbered. We consider the case of two populations where the game is a rescaled two-

player zero-sum game, i.e., there is 𝛼 > 0 such that ̄𝑓1(𝑥) = −𝛼 ̄𝑓2(𝑥) for all 𝑥 ∈ Δ. We

deal with this situation by considering the unreduced system of equations:

̇𝑥𝑖ℎ = 𝑥𝑖ℎ(𝑓𝑖ℎ(𝑥) − ∑
𝑘≤𝑛𝑖

𝑥𝑖𝑘𝑓𝑖𝑘(𝑥)) =∶ 𝜑𝑖ℎ(𝑥) (RD)

Note that we set ̄𝑓𝑖(𝑥) = ∑𝑘≤𝑛𝑖
𝑥𝑖𝑘𝑓𝑖𝑘(𝑥) and hence 𝜕𝑖ℎ ̄𝑓𝑖(𝑥) = 𝑓𝑖ℎ(𝑥), which follows

from 𝜕𝑖ℎ𝑓𝑖𝑘(𝑥) = 0 (∀𝑖, ℎ, 𝑘), where we write 𝜕𝑖ℎ for 𝜕
𝜕𝑥𝑖ℎ

. For the Jacobian 𝐽𝜑 of 𝜑,

we have:

[𝐽𝜑(𝑥)]𝑖ℎ,𝑗𝑘 = 𝜕𝑗𝑘𝜑𝑖ℎ(𝑥) = 𝑥𝑖ℎ(𝜕𝑗𝑘𝑓𝑖ℎ(𝑥) − 𝜕𝑗𝑘 ̄𝑓𝑖(𝑥)) + 𝛿𝑖𝑗𝛿ℎ𝑘(𝑓𝑖ℎ(𝑥) − ̄𝑓𝑖(𝑥)) ,

where 𝛿 denotes the Kronecker delta.

The main objective of this section will be to show that a mutation equilibrium 𝑥𝑀 ,

i.e., an equilibrium of (RMD), is asymptotically stable in antagonistic games. The
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proofs will proceed as follows: The main lemma, lemma 5.3.1, will give an estimate

for the real parts of the eigenvalues of the Jacobian of (RMD) at 𝑥𝑀 , implying negative

real parts, for all (non-zero) eigenvectors in the tangent space of Δ at 𝑥𝑀 ∈ Δo, i.e.,

for all eigenvectors in 𝑇Δ ∶= {𝜉 ∈ ℝ𝑆 ∣ ∀𝑖 ∶ ∑ℎ≤𝑛𝑖
𝜉𝑖ℎ = 0 and 𝜉𝑖 ≠ 0}.

We then proceed to show that this property is sufficient for asymptotic stability,

by considering an extension of (RMD) that is defined on a neighbourhood of Δ and

coincides with (RMD) on Δ. For this extension, we prove that 𝑥𝑀 is asymptotically

stable by considering the eigenvalues of the Jacobian of that extension, where we prove

some auxiliary lemmas to provide a rigorous proof. From these, the main proposition,

proposition 5.3.8, of this section follows.

Lemma 5.3.1. For all 𝜉 ∈ 𝑇Δ, we have

𝜉𝑇(𝔄(𝐽𝜑(𝑥𝑀) − 𝔐) + (𝐽𝜑(𝑥𝑀) − 𝔐)𝑇𝔄𝑇)𝜉

= −2(𝑀1 ∑
ℎ≤𝑛1

(𝑥𝑀
1ℎ)−2𝑐1ℎ𝜉2

1ℎ + 𝛼𝑀2 ∑
ℎ≤𝑛2

(𝑥𝑀
2ℎ)−2𝑐2ℎ𝜉2

2ℎ) < 0 ,

where the diagonal matrix 𝔄 is defined as [𝔄]𝑖ℎ,𝑗𝑘 = 𝛿𝑖𝑗𝛿ℎ𝑘(𝑥𝑖ℎ)−1𝛼𝛿𝑖2 , and the di-

agonal matrix 𝔐 is defined as [𝔐]𝑖ℎ,𝑗𝑘 = 𝛿𝑖𝑗𝛿ℎ𝑘𝑀𝑖, with 𝛿 denoting the Kronecker

delta.

Proof. For the proof we first consider 𝜉𝑇(𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝜑(𝑥𝑀)𝑇𝔄𝑇)𝜉 by establishing

the entries of (𝔄𝐽𝜑(𝑥) + 𝐽𝜑(𝑥)𝑇𝔄𝑇) for general 𝑥 ∈ Δo, taking into account its block

structure, and subsequently considering 𝑥𝑀 .

We start by noting that with [𝔄]𝑖ℎ,𝑗𝑘 = 𝛿𝑖𝑗𝛿ℎ𝑘(𝑥𝑖ℎ)−1𝛼𝛿𝑖2 , we have that

[𝔄𝐽𝜑(𝑥)]𝑖ℎ,𝑗𝑘 = 𝛼𝛿𝑖2(𝜕𝑗𝑘𝑓𝑖ℎ(𝑥) − 𝜕𝑗𝑘 ̄𝑓𝑖(𝑥)) + 𝛿𝑖𝑗𝛿ℎ𝑘(𝑥𝑖ℎ)−1𝛼𝛿𝑖2(𝑓𝑖ℎ(𝑥) − ̄𝑓𝑖(𝑥))

and further

[𝔄𝐽𝜑(𝑥) + 𝐽𝑇𝜑 (𝑥)𝔄𝑇]𝑖ℎ,𝑗𝑘 = [𝔄𝐽𝜑(𝑥)]𝑖ℎ,𝑗𝑘 + [𝔄𝐽𝜑(𝑥)]𝑗𝑘,𝑖ℎ

= 𝛼𝛿𝑖2(𝜕𝑗𝑘𝑓𝑖ℎ(𝑥) − 𝜕𝑗𝑘 ̄𝑓𝑖(𝑥)) + 𝛿𝑖𝑗𝛿ℎ𝑘(𝑥𝑖ℎ)−1𝛼𝛿𝑖2(𝑓𝑖ℎ(𝑥) − ̄𝑓𝑖(𝑥))

+ 𝛼𝛿𝑗2(𝜕𝑖ℎ𝑓𝑗𝑘(𝑥) − 𝜕𝑖ℎ ̄𝑓𝑗(𝑥)) + 𝛿𝑖𝑗𝛿ℎ𝑘(𝑥𝑗𝑘)−1𝛼𝛿𝑗2(𝑓𝑗𝑘(𝑥) − ̄𝑓𝑗(𝑥))

= 𝛼𝛿𝑖2(𝜕𝑗𝑘𝑓𝑖ℎ(𝑥) − 𝜕𝑗𝑘 ̄𝑓𝑖(𝑥)) + 𝛼𝛿𝑗2(𝜕𝑖ℎ𝑓𝑗𝑘(𝑥) − 𝜕𝑖ℎ ̄𝑓𝑗(𝑥))

+ 2𝛿𝑖𝑗𝛿ℎ𝑘(𝑥𝑖ℎ)−1𝛼𝛿𝑖2(𝑓𝑖ℎ(𝑥) − ̄𝑓𝑖(𝑥)) .

The matrix (𝔄𝐽𝜑(𝑥) + 𝐽𝑇𝜑 (𝑥)𝔄𝑇) has a block structure with two symmetric block

matrices on the diagonal, where 𝑖 = 𝑗, and a block matrix on the upper-right with
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a transposed copy on the lower-left respectively, where 𝑖 ≠ 𝑗. We treat these blocks

separately:

1) 𝑖 = 𝑗 = 1:

[𝔄𝐽𝜑(𝑥) + 𝐽𝑇𝜑 (𝑥)𝔄𝑇]1ℎ,1𝑘 = 𝛼𝛿12(𝜕1𝑘𝑓1ℎ(𝑥)⏟⏟⏟⏟⏟
=0

−𝜕1𝑘 ̄𝑓1(𝑥))

+ 𝛼𝛿12(𝜕1ℎ𝑓1𝑘(𝑥)⏟⏟⏟⏟⏟
=0

−𝜕1ℎ ̄𝑓1(𝑥)) + 2𝛿11𝛿ℎ𝑘(𝑥1ℎ)−1𝛼𝛿12(𝑓1ℎ(𝑥) − ̄𝑓1(𝑥))

= −𝜕1𝑘 ̄𝑓1(𝑥) − 𝜕1ℎ ̄𝑓1(𝑥) + 2𝛿ℎ𝑘(𝑥1ℎ)−1(𝑓1ℎ(𝑥) − ̄𝑓1(𝑥))

= −𝑓1𝑘(𝑥) − 𝑓1ℎ(𝑥) + 2𝛿ℎ𝑘(𝑥1ℎ)−1(𝑓1ℎ(𝑥) − ̄𝑓1(𝑥))

2) 𝑖 = 𝑗 = 2:

[𝔄𝐽𝜑(𝑥) + 𝐽𝑇𝜑 (𝑥)𝔄𝑇]2ℎ,2𝑘 = 𝛼𝛿22(𝜕2𝑘𝑓2ℎ(𝑥)⏟⏟⏟⏟⏟
=0

−𝜕2𝑘 ̄𝑓2(𝑥))

+ 𝛼𝛿22(𝜕2ℎ𝑓2𝑘(𝑥)⏟⏟⏟⏟⏟
=0

−𝜕2ℎ ̄𝑓2(𝑥)) + 2𝛿22𝛿ℎ𝑘(𝑥2ℎ)−1𝛼𝛿22(𝑓2ℎ(𝑥) − ̄𝑓2(𝑥))

= 𝛼( − 𝜕2𝑘 ̄𝑓2(𝑥) − 𝜕2ℎ ̄𝑓2(𝑥) + 2𝛿ℎ𝑘(𝑥2ℎ)−1(𝑓2ℎ(𝑥) − ̄𝑓2(𝑥)))

= 𝛼( − 𝑓2𝑘(𝑥) − 𝑓2ℎ(𝑥) + 2𝛿ℎ𝑘(𝑥2ℎ)−1(𝑓2ℎ(𝑥) − ̄𝑓2(𝑥)))

3) 𝑖 = 1, 𝑗 = 2:

[𝔄𝐽𝜑(𝑥) + 𝐽𝑇𝜑 (𝑥)𝔄𝑇]1ℎ,2𝑘

= 𝛼𝛿12(𝜕2𝑘𝑓1ℎ(𝑥) − 𝜕2𝑘 ̄𝑓1(𝑥)) + 𝛼𝛿22(𝜕1ℎ𝑓2𝑘(𝑥) − 𝜕1ℎ ̄𝑓2(𝑥))

= (𝜕2𝑘𝑓1ℎ(𝑥) − 𝜕2𝑘 ̄𝑓1(𝑥)) + 𝛼(𝜕1ℎ𝑓2𝑘(𝑥) − 𝜕1ℎ ̄𝑓2(𝑥))

= (𝜕2𝑘𝜕1ℎ ̄𝑓1(𝑥) − 𝜕2𝑘 ̄𝑓1(𝑥)⏟
=−𝛼 ̄𝑓2(𝑥)

) + (𝜕1ℎ𝜕2𝑘𝛼 ̄𝑓2(𝑥) − 𝜕1ℎ𝛼 ̄𝑓2(𝑥))

= (𝜕2𝑘𝜕1ℎ ̄𝑓1(𝑥) + 𝛼𝜕2𝑘 ̄𝑓2(𝑥)) + (−𝜕1ℎ𝜕2𝑘 ̄𝑓1(𝑥) + 𝜕1ℎ ̄𝑓1(𝑥))

= 𝜕2𝑘𝜕1ℎ ̄𝑓1(𝑥) + 𝛼𝜕2𝑘 ̄𝑓2(𝑥) − 𝜕1ℎ𝜕2𝑘 ̄𝑓1(𝑥) + 𝜕1ℎ ̄𝑓1(𝑥)

= 𝛼𝜕2𝑘 ̄𝑓2(𝑥) + 𝜕1ℎ ̄𝑓1(𝑥)

4) 𝑖 = 2, 𝑗 = 1:

[𝔄𝐽𝜑(𝑥) + 𝐽𝑇𝜑 (𝑥)𝔄𝑇]2ℎ,1𝑘

= 𝛼𝛿22(𝜕1𝑘𝜕2ℎ ̄𝑓2(𝑥) − 𝜕1𝑘 ̄𝑓2(𝑥)) + 𝛼𝛿12(𝜕2ℎ𝜕1𝑘 ̄𝑓1(𝑥) − 𝜕2ℎ ̄𝑓1(𝑥))

= 𝛼(𝜕1𝑘𝜕2ℎ ̄𝑓2(𝑥) − 𝜕1𝑘 ̄𝑓2(𝑥)) + (𝜕2ℎ𝜕1𝑘 ̄𝑓1(𝑥) − 𝜕2ℎ ̄𝑓1(𝑥))

= 𝛼𝜕1𝑘𝜕2ℎ ̄𝑓2(𝑥) + 𝜕1𝑘 ̄𝑓1(𝑥) − 𝛼𝜕2ℎ𝜕1𝑘 ̄𝑓2(𝑥) + 𝛼𝜕2ℎ ̄𝑓2(𝑥)

= 𝛼𝜕2ℎ ̄𝑓2(𝑥) + 𝜕1𝑘 ̄𝑓1(𝑥)
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Next, we consider that we are interested in the values at 𝑥𝑀 where we have the

additional property that 𝜑𝑀
𝑖ℎ(𝑥𝑀) = 0 and hence

𝑓𝑖ℎ(𝑥𝑀) = (𝑥𝑀
𝑖ℎ)−1𝑀𝑖(𝑥𝑀

𝑖ℎ − 𝑐𝑖ℎ) + ̄𝑓𝑖(𝑥𝑀) (∀𝑖, ℎ) .

Substituting this yields the following for the entries of the four block matrices:

1) For 𝑖 = 𝑗 = 1, we have:

[𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇]1ℎ,1𝑘 = −((𝑥𝑀
1𝑘)−1𝑀1(𝑥𝑀

1𝑘 − 𝑐1𝑘) + ̄𝑓1(𝑥𝑀))

− ((𝑥𝑀
1ℎ)−1𝑀1(𝑥𝑀

1ℎ − 𝑐1ℎ) + ̄𝑓1(𝑥𝑀)) + 2𝛿ℎ𝑘(𝑥𝑀
1ℎ)−2𝑀1(𝑥𝑀

1ℎ − 𝑐1ℎ)

2) For 𝑖 = 𝑗 = 2, we have:

[𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇]2ℎ,2𝑘 = −𝛼((𝑥𝑀
2𝑘)−1𝑀2(𝑥𝑀

2𝑘 − 𝑐2𝑘) + ̄𝑓2(𝑥𝑀))

− 𝛼((𝑥𝑀
2ℎ)−1𝑀2(𝑥𝑀

2ℎ − 𝑐2ℎ) + ̄𝑓2(𝑥𝑀)) + 𝛼2𝛿ℎ𝑘(𝑥𝑀
2ℎ)−2𝑀2(𝑥𝑀

2ℎ − 𝑐2ℎ)

3) For 𝑖 = 1, 𝑗 = 2, we have:

[𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇]1ℎ,2𝑘 = 𝛼𝜕2𝑘 ̄𝑓2(𝑥𝑀) + 𝜕1ℎ ̄𝑓1(𝑥𝑀)

= 𝛼𝑓2𝑘(𝑥𝑀) − 𝛼 ̄𝑓2(𝑥𝑀) + 𝛼 ̄𝑓2(𝑥𝑀)⏟⏟⏟⏟⏟
=− ̄𝑓1(𝑥𝑀)

+𝑓1ℎ(𝑥𝑀)

= 𝛼(𝑥𝑀
2𝑘)−1𝑀2(𝑥𝑀

2𝑘 − 𝑐2𝑘) + (𝑥𝑀
1ℎ)−1𝑀1(𝑥𝑀

1ℎ − 𝑐1ℎ)

4) For 𝑖 = 2, 𝑗 = 1, we have similarly:

[𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇]2ℎ,1𝑘 = 𝛼𝜕2ℎ ̄𝑓2(𝑥𝑀) + 𝜕1𝑘 ̄𝑓1(𝑥𝑀)

= 𝛼(𝑥𝑀
2ℎ)−1𝑀2(𝑥𝑀

2ℎ − 𝑐2ℎ) + (𝑥𝑀
1𝑘)−1𝑀1(𝑥𝑀

1𝑘 − 𝑐1𝑘)

We can now consider (𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇)𝜉 for 𝜉 ∈ 𝑇Δ:

[(𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇)𝜉]𝑖ℎ = ∑
𝑗

∑
𝑘≤𝑛𝑗

[𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇]𝑖ℎ,𝑗𝑘𝜉𝑗𝑘

= ∑
𝑘≤𝑛1

[𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇]𝑖ℎ,1𝑘𝜉1𝑘 + ∑
𝑘≤𝑛2

[𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇]𝑖ℎ,2𝑘𝜉2𝑘

and considering 𝑖 = 1 and 𝑖 = 2 separately, we have for 𝑖 = 1,

[(𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇)𝜉]1ℎ = ∑
𝑗

∑
𝑘≤𝑛𝑗

[𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇]1ℎ,𝑗𝑘𝜉𝑗𝑘

= ∑
𝑘≤𝑛1

[𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇]1ℎ,1𝑘𝜉1𝑘 + ∑
𝑘≤𝑛2

[𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇]1ℎ,2𝑘𝜉2𝑘

= ∑
𝑘≤𝑛1

( − ((𝑥𝑀
1𝑘)−1𝑀1(𝑥𝑀

1𝑘 − 𝑐1𝑘) + ̄𝑓1(𝑥𝑀)) 𝜉1𝑘
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− ((𝑥𝑀
1ℎ)−1𝑀1(𝑥𝑀

1ℎ − 𝑐1ℎ) + ̄𝑓1(𝑥𝑀)) 𝜉1𝑘 + 2𝛿ℎ𝑘(𝑥𝑀
1ℎ)−2𝑀1(𝑥𝑀

1ℎ − 𝑐1ℎ)𝜉1𝑘)

+ ∑
𝑘≤𝑛2

(𝛼(𝑥𝑀
2𝑘)−1𝑀2(𝑥𝑀

2𝑘 − 𝑐2𝑘)𝜉2𝑘 + (𝑥𝑀
1ℎ)−1𝑀1(𝑥𝑀

1ℎ − 𝑐1ℎ)𝜉2𝑘)

= −𝑀1 ∑
𝑘≤𝑛1

𝑥𝑀
1𝑘 − 𝑐1𝑘

𝑥𝑀
1𝑘

𝜉1𝑘 + ̄𝑓1(𝑥𝑀) ∑
𝑘≤𝑛1

𝜉1𝑘
⏟⏟⏟⏟⏟

=0

− ((𝑥𝑀
1ℎ)−1𝑀1(𝑥𝑀

1ℎ − 𝑐1ℎ) + ̄𝑓1(𝑥𝑀)) ∑
𝑘≤𝑛1

𝜉1𝑘
⏟⏟⏟⏟⏟

=0

+ 2(𝑥𝑀
1ℎ)−2𝑀1(𝑥𝑀

1ℎ − 𝑐1ℎ)𝜉1ℎ

+ 𝛼𝑀2 ∑
𝑘≤𝑛2

𝑥𝑀
2𝑘 − 𝑐2𝑘

𝑥𝑀
2𝑘

𝜉2𝑘 + ((𝑥𝑀
1ℎ)−1𝑀1(𝑥𝑀

1ℎ − 𝑐1ℎ)) ∑
𝑘≤𝑛2

𝜉2𝑘
⏟⏟⏟⏟⏟

=0

= 2𝑀1(𝑥𝑀
1ℎ)−2(𝑥𝑀

1ℎ − 𝑐1ℎ)𝜉1ℎ − 𝑀1 ∑
𝑘≤𝑛1

𝑥𝑀
1𝑘 − 𝑐1𝑘

𝑥𝑀
1𝑘

𝜉1𝑘 + 𝛼𝑀2 ∑
𝑘≤𝑛2

𝑥𝑀
2𝑘 − 𝑐2𝑘

𝑥𝑀
2𝑘

𝜉2𝑘

and in a similar manner for 𝑖 = 2

[(𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇)𝜉]2ℎ = ∑
𝑗

∑
𝑘≤𝑛𝑗

[𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇]2ℎ,𝑗𝑘𝜉𝑗𝑘

= ∑
𝑘≤𝑛1

[𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇]2ℎ,1𝑘𝜉1𝑘 + ∑
𝑘≤𝑛2

[𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇]2ℎ,2𝑘𝜉2𝑘

= ∑
𝑘≤𝑛1

(𝛼𝑀2(𝑥𝑀
2ℎ)−1(𝑥𝑀

2ℎ − 𝑐2ℎ) + 𝑀1(𝑥𝑀
1𝑘)−1(𝑥𝑀

1𝑘 − 𝑐1𝑘))𝜉1𝑘

− 𝛼 ∑
𝑘≤𝑛2

( ((𝑥𝑀
2𝑘)−1𝑀2(𝑥𝑀

2𝑘 − 𝑐2𝑘) + ̄𝑓2(𝑥𝑀))

+ ((𝑥𝑀
2ℎ)−1𝑀2(𝑥𝑀

2ℎ − 𝑐2ℎ) + ̄𝑓2(𝑥𝑀)) )𝜉2𝑘

+ 𝛼 ∑
𝑘≤𝑛2

(2𝛿ℎ𝑘(𝑥𝑀
2ℎ)−2𝑀2(𝑥𝑀

2ℎ − 𝑐2ℎ))𝜉2𝑘

= 𝛼𝑀2(𝑥𝑀
2ℎ)−1(𝑥𝑀

2ℎ − 𝑐2ℎ) ∑
𝑘≤𝑛1

𝜉1𝑘
⏟⏟⏟⏟⏟

=0

+𝑀1 ∑
𝑘≤𝑛1

𝑥𝑀
1𝑘 − 𝑐1𝑘

𝑥𝑀
1𝑘

𝜉1𝑘

− 𝛼(𝑀2 ∑
𝑘≤𝑛2

𝑥𝑀
2𝑘 − 𝑐2𝑘

𝑥𝑀
2𝑘

𝜉2𝑘 + ̄𝑓2(𝑥𝑀) ∑
𝑘≤𝑛2

𝜉2𝑘
⏟⏟⏟⏟⏟

=0

)

− 𝛼((𝑥𝑀
2ℎ)−1𝑀2(𝑥𝑀

2ℎ − 𝑐2ℎ) + ̄𝑓2(𝑥𝑀)) ∑
𝑘≤𝑛2

𝜉2𝑘
⏟⏟⏟⏟⏟

=0

+2𝛼𝑀2(𝑥𝑀
2ℎ)−2(𝑥𝑀

2ℎ − 𝑐2ℎ)𝜉2ℎ

= 2𝛼𝑀2(𝑥𝑀
2ℎ)−2(𝑥𝑀

2ℎ − 𝑐2ℎ)𝜉2ℎ + 𝑀1 ∑
𝑘≤𝑛1

𝑥𝑀
1𝑘 − 𝑐1𝑘

𝑥𝑀
1𝑘

𝜉1𝑘 − 𝛼𝑀2 ∑
𝑘≤𝑛2

𝑥𝑀
2𝑘 − 𝑐2𝑘

𝑥𝑀
2𝑘

𝜉2𝑘
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With the above considerations we can finally consider:

𝜉𝑇(𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇)𝜉 = ∑
𝑖

∑
ℎ≤𝑛𝑖

𝜉𝑖ℎ[(𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇)𝜉]𝑖ℎ

= ∑
ℎ≤𝑛1

𝜉1ℎ[(𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇)𝜉]1ℎ + ∑
ℎ≤𝑛2

𝜉2ℎ[(𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇)𝜉]2ℎ

= ∑
ℎ≤𝑛1

𝜉1ℎ(2𝑀1(𝑥𝑀
1ℎ)−2(𝑥𝑀

1ℎ − 𝑐1ℎ)𝜉1ℎ

− 𝑀1 ∑
𝑘≤𝑛1

𝑥𝑀
1𝑘 − 𝑐1𝑘

𝑥𝑀
1𝑘

𝜉1𝑘 + 𝛼𝑀2 ∑
𝑘≤𝑛2

𝑥𝑀
2𝑘 − 𝑐2𝑘

𝑥𝑀
2𝑘

𝜉2𝑘)

+ ∑
ℎ≤𝑛2

𝜉2ℎ(2𝛼𝑀2(𝑥𝑀
2ℎ)−2(𝑥𝑀

2ℎ − 𝑐2ℎ)𝜉2ℎ

+ 𝑀1 ∑
𝑘≤𝑛1

𝑥𝑀
1𝑘 − 𝑐1𝑘

𝑥𝑀
1𝑘

𝜉1𝑘 − 𝛼𝑀2 ∑
𝑘≤𝑛2

𝑥𝑀
2𝑘 − 𝑐2𝑘

𝑥𝑀
2𝑘

𝜉2𝑘)

= (2𝑀1 ∑
ℎ≤𝑛1

𝜉1ℎ(𝑥𝑀
1ℎ)−2(𝑥𝑀

1ℎ − 𝑐1ℎ)𝜉1ℎ

− 𝑀1 ∑
𝑘≤𝑛1

𝑥𝑀
1𝑘 − 𝑐1𝑘

𝑥𝑀
1𝑘

𝜉1𝑘 ∑
ℎ≤𝑛1

𝜉1ℎ
⏟⏟⏟⏟⏟

=0

+𝛼𝑀2 ∑
𝑘≤𝑛2

𝑥𝑀
2𝑘 − 𝑐2𝑘

𝑥𝑀
2𝑘

𝜉2𝑘 ∑
ℎ≤𝑛1

𝜉1ℎ
⏟⏟⏟⏟⏟

=0

)

+ (2𝛼𝑀2 ∑
ℎ≤𝑛2

𝜉2ℎ(𝑥𝑀
2ℎ)−2(𝑥𝑀

2ℎ − 𝑐2ℎ)𝜉2ℎ

+ 𝑀1 ∑
𝑘≤𝑛1

𝑥𝑀
1𝑘 − 𝑐1𝑘

𝑥𝑀
1𝑘

𝜉1𝑘 ∑
ℎ≤𝑛2

𝜉2ℎ
⏟⏟⏟⏟⏟

=0

−𝛼𝑀2 ∑
𝑘≤𝑛2

𝑥𝑀
2𝑘 − 𝑐2𝑘

𝑥𝑀
2𝑘

𝜉2𝑘 ∑
ℎ≤𝑛2

𝜉2ℎ
⏟⏟⏟⏟⏟

=0

)

= 2𝑀1 ∑
ℎ≤𝑛1

(𝑥𝑀
1ℎ)−2(𝑥𝑀

1ℎ − 𝑐1ℎ)𝜉2
1ℎ + 2𝛼𝑀2 ∑

ℎ≤𝑛2

(𝑥𝑀
2ℎ)−2(𝑥𝑀

2ℎ − 𝑐2ℎ)𝜉2
2ℎ

Consider now for 𝔐𝑖ℎ,𝑗𝑘 = 𝛿𝑖𝑗𝛿ℎ𝑘𝑀𝑖 and 𝜉 as above:

𝜉𝑇(𝔄(𝐽𝜑(𝑥𝑀) − 𝔐) + (𝐽𝜑(𝑥𝑀) − 𝔐)𝑇𝔄𝑇)𝜉

= 𝜉𝑇(𝔄𝐽𝜑(𝑥𝑀) − 𝔄𝔐 + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇 − 𝔐𝑇𝔄𝑇)𝜉

= 𝜉𝑇(𝔄𝐽𝜑(𝑥𝑀) + 𝐽𝑇𝜑 (𝑥𝑀)𝔄𝑇)𝜉 − 2𝜉𝑇𝔄𝔐𝜉

= 2𝑀1 ∑
ℎ≤𝑛1

(𝑥𝑀
1ℎ)−2(𝑥𝑀

1ℎ − 𝑐1ℎ)𝜉2
1ℎ + 2𝛼𝑀2 ∑

ℎ≤𝑛2

(𝑥𝑀
2ℎ)−2(𝑥𝑀

2ℎ − 𝑐2ℎ)𝜉2
2ℎ

− 2𝑀1 ∑
ℎ≤𝑛1

(𝑥𝑀
1ℎ)−1𝜉2

1ℎ − 2𝛼𝑀2 ∑
ℎ≤𝑛2

(𝑥𝑀
2ℎ)−1𝜉2

2ℎ

= −2(𝑀1 ∑
ℎ≤𝑛1

(𝑥𝑀
1ℎ)−2𝑐1ℎ𝜉2

1ℎ + 𝛼𝑀2 ∑
ℎ≤𝑛2

(𝑥𝑀
2ℎ)−2𝑐2ℎ𝜉2

2ℎ) < 0

because at least for some 𝑖, ℎ we have 𝜉𝑖ℎ ≠ 0 and 𝑥𝑀 , 𝑐 ∈ Δo.

91



For completeness’ sake, we state the following simple, general lemma which, to-

gether with the previous lemma provides an estimate on the real parts of certain

eigenvalues:

Lemma 5.3.2. Let 𝒮 ∈ ℝ𝑛×𝑛 be a positive definite, symmetric matrix, and 𝐴 ∈ ℝ𝑛×𝑛

a real matrix. If for all 𝑥 ∈ ℝ𝑛 ⧵ {0}, ⟨𝒮𝐴𝑥, 𝑥⟩ < 0, then ℜ(𝜆) < 0 for all 𝜆 ∈ 𝜎(𝐴).

Proof. Let 𝜆 ∈ 𝜎(𝐴) be an eigenvalue of 𝐴 and let 𝑧 ∈ ℂ𝑛 ⧵ {0} be a corresponding

eigenvector with 𝑧 = 𝑥+𝑖𝑦 for suitable 𝑥, 𝑦 ∈ ℝ𝑛. Note that 𝒮 induces an inner product

(𝑥, 𝑦) ↦ ⟨𝑥, 𝑦⟩𝒮 ∶= ⟨𝒮
1
2 𝑥, 𝒮

1
2 𝑦⟩ on ℂ𝑛 and that ⟨𝒮

1
2 𝑥, 𝒮

1
2 𝑦⟩ = ⟨𝒮𝑥, 𝑦⟩, where 𝒮

1
2

denotes the matrix such that 𝒮
1
2 𝒮

1
2 = 𝒮. W.l.o.g. we can assume ⟨𝑧, 𝑧⟩𝒮 = 1. Then

we have:

ℜ(𝜆) = ℜ(𝜆 ⟨𝑧, 𝑧⟩𝒮) = ℜ(⟨𝜆𝑧, 𝑧⟩𝒮) = ℜ(⟨𝐴𝑧, 𝑧⟩𝒮) = ℜ(⟨𝒮𝐴𝑧, 𝑧⟩)

= ℜ(⟨𝒮𝐴𝑥, 𝑥⟩ − 𝑖 ⟨𝒮𝐴𝑥, 𝑦⟩ + 𝑖 ⟨𝒮𝐴𝑦, 𝑥⟩ + ⟨𝒮𝐴𝑦, 𝑦⟩)

= ⟨𝒮𝐴𝑥, 𝑥⟩ + ⟨𝒮𝐴𝑦, 𝑦⟩ < 0 .

Before we consider the extended dynamical system, we state the following intu-

itively clear lemma stating that the tangent space is invariant under the Jacobian:

Lemma 5.3.3. 𝑇Δ is invariant under 𝐽𝜑(𝑥𝑀) − 𝔐, i.e., for all 𝜂 ∈ 𝑇Δ we have that

(𝐽𝜑(𝑥𝑀) − 𝔐)𝜂 ∈ 𝑇Δ.

Proof. We consider 𝐽𝜑(𝑥)𝜂 and 𝔐𝜂 separately. Then for any 𝑖

∑
ℎ≤𝑛𝑖

[𝐽𝜑(𝑥)𝜂]𝑖ℎ = ∑
ℎ≤𝑛𝑖

∑
𝑗

∑
𝑘≤𝑛𝑗

𝜕𝑗𝑘𝜑𝑖ℎ(𝑥)𝜂𝑗𝑘 = ∑
ℎ≤𝑛𝑖

∇𝜑𝑇
𝑖ℎ(𝑥)𝜂

= ∑
ℎ≤𝑛𝑖

lim
𝑡→0

𝜑𝑖ℎ(𝑥 + 𝑡𝜂) − 𝜑𝑖ℎ(𝑥)
𝑡 = lim

𝑡→0
1
𝑡 ( ∑

ℎ≤𝑛𝑖

𝜑𝑖ℎ(𝑥 + 𝑡𝜂)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

− ∑
ℎ≤𝑛𝑖

𝜑𝑖ℎ(𝑥)
⏟⏟⏟⏟⏟⏟⏟

=0

) = 0

and further

∑
ℎ≤𝑛𝑖

[𝔐𝜂]𝑖ℎ = ∑
ℎ≤𝑛𝑖

∑
𝑗

∑
𝑘≤𝑛𝑗

𝛿𝑖𝑗𝛿ℎ𝑘𝑀𝑖𝜂𝑗𝑘 = 𝑀𝑖 ∑
ℎ≤𝑛𝑖

𝜂𝑖ℎ = 0.

From this the claim follows immediately.

We now consider an extension of (RMD) to an open neighbourhood 𝑈 ⊃ Δ of Δ. For

𝑖, define 𝑠𝑖 ∶ 𝑥 ∈ 𝑈 ↦ (∑ℎ≤𝑛𝑖
𝑥𝑖ℎ)−1 ∈ ℝ, and 𝑤𝑖ℎ ∶ 𝑥 ∈ 𝑈 ↦ 𝑥𝑖ℎ𝑠𝑖(𝑥) for ℎ ∈ 𝑆𝑖. It is

clear that there is such a neighbourhood 𝑈 such that these functions are well-defined.

Note that 𝑠𝑖(𝛼𝑥) = 𝛼−1𝑠𝑖(𝑥) and 𝑤(𝛼𝑥) = 𝑤(𝑥), i.e., the functions are homogeneous
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of degree −1 and 0 respectively, and in particular for 𝑥 ∈ Δ, we have 𝑠𝑖(𝑥) = 1 and

𝑤(𝑥) = 𝑥. We define now the following system for (𝑖, ℎ) ∈ 𝑆:

̇𝑥𝑖ℎ = 𝜌𝑖ℎ(𝑥) ∶= 𝑠𝑖(𝑥)𝜑𝑖ℎ(𝑤(𝑥)) + 𝑠𝑖(𝑥)𝑀𝑖(𝑐𝑖ℎ − 𝑥𝑖ℎ) (5.3.1)

It is clear that 𝜌𝑖ℎ(𝑥) = 𝜑𝑀
𝑖ℎ(𝑥) for all 𝑥 ∈ Δ. It is further easy to see that the Jacobian

𝐽𝜌 coincides with that of (RMD) on Δo:

Lemma 5.3.4. For 𝑥 ∈ Δo and 𝜉 ∈ 𝑇Δ, the Jacobian 𝐽𝜌(𝑥) satisfies 𝐽𝜌(𝑥)𝜉 = (𝐽𝜑(𝑥)−
𝔐)𝜉.

Proof. Note that 𝑥 + 𝑡𝜉 ∈ Δ for 𝑡 sufficiently small. Hence, 𝜌(𝑥 + 𝑡𝜉) = 𝜑𝑀(𝑥 + 𝑡𝜉) and

thus 𝐽𝜌(𝑥)𝜉 = (𝐽𝜑(𝑥) − 𝔐)𝜉.

For 𝐽𝜌(𝑥𝑀) (and hence (𝐽𝜑(𝑥𝑀) − 𝔐)), we can provide explicitly the eigenvectors

not contained in the tangent space of Δo at 𝑥𝑀 :

Lemma 5.3.5. For every 𝑖 and a mutation equilibrium 𝑥𝑀 , the vector 𝔷𝑀,𝑖, where

[𝔷𝑀,𝑖]𝑗𝑘 = 𝑥𝑀
𝑗𝑘𝛿𝑖𝑗 is an eigenvector of the Jacobian 𝐽𝜌(𝑥𝑀) of 𝜌, with eigenvalue −𝑀𝑖.

Proof. Let 𝔷𝑀,𝑖 be as stated and 𝑡 > 0. Note that

𝑠𝑗(𝑥𝑀 + 𝑡𝔷𝑀,𝑖) = ⎛⎜⎜⎜
⎝

∑
𝑘≤𝑛𝑗

𝑥𝑀
𝑗𝑘 + 𝑡𝑥𝑀

𝑗𝑘𝛿𝑖𝑗
⎞⎟⎟⎟
⎠

−1

= (1 + 𝑡𝛿𝑖𝑗)
−1 ⎛⎜⎜⎜

⎝
∑

𝑘≤𝑛𝑗

𝑥𝑀
𝑗𝑘

⎞⎟⎟⎟
⎠

−1

= (1 + 𝑡𝛿𝑖𝑗)
−1

and 𝑤𝑗𝑘(𝑥𝑀 + 𝑡𝔷𝑀,𝑖) = (𝑥𝑀
𝑗𝑘 + 𝑡𝑥𝑀

𝑗𝑘𝛿𝑖𝑗)𝑠𝑗(𝑥𝑀 + 𝑡𝔷𝑀,𝑖)

= 𝑥𝑀
𝑗𝑘(1 + 𝑡𝛿𝑖𝑗)𝑠𝑗(𝑥𝑀 + 𝑡𝔷𝑀,𝑖) = 𝑥𝑀

𝑗𝑘(1 + 𝑡𝛿𝑖𝑗)(1 + 𝑡𝛿𝑖𝑗)−1 = 𝑥𝑀
𝑗𝑘

and hence 𝑤(𝑥𝑀 + 𝑡𝔷𝑀,𝑖) = 𝑥𝑀 . Consider now:

∇𝜌𝑗𝑘(𝑥𝑀)𝑇𝔷𝑀,𝑖 = lim
𝑡→0

1
𝑡 (𝜌𝑗𝑘(𝑥𝑀 + 𝑡𝔷𝑀,𝑖) − 𝜌𝑗𝑘(𝑥𝑀))

= lim
𝑡→0

1
𝑡 (𝑠𝑗(𝑥𝑀 + 𝑡𝔷𝑀,𝑖)𝜑𝑗𝑘(𝑤(𝑥𝑀 + 𝑡𝔷𝑀,𝑖))

+ 𝑠𝑗(𝑥𝑀 + 𝑡𝔷𝑀,𝑖)𝑀𝑗(𝑐𝑗𝑘 − (𝑥𝑀
𝑗𝑘 + 𝑡[𝔷𝑀,𝑖]𝑗𝑘))

− (𝑠𝑗(𝑥𝑀)𝜑𝑗𝑘(𝑤(𝑥𝑀)) + 𝑠𝑗(𝑥𝑀)𝑀𝑗(𝑐𝑗𝑘 − 𝑥𝑀
𝑗𝑘)))

= lim
𝑡→0

1
𝑡 ((1 + 𝑡𝛿𝑖𝑗)−1𝜑𝑗𝑘(𝑥𝑀) + (1 + 𝑡𝛿𝑖𝑗)−1𝑀𝑗(𝑐𝑗𝑘 − 𝑥𝑀

𝑗𝑘(1 + 𝑡𝛿𝑖𝑗))

− (𝜑𝑗𝑘(𝑥𝑀) + 𝑀𝑗(𝑐𝑗𝑘 − 𝑥𝑀
𝑗𝑘)))

= lim
𝑡→0

1
𝑡 (𝛿𝑖𝑗

1 − 1 − 𝑡
1 + 𝑡 𝜑𝑗𝑘(𝑥𝑀) + 𝛿𝑖𝑗

1 − 1 − 𝑡
1 + 𝑡 𝑀𝑗𝑐𝑗𝑘) = 𝛿𝑖𝑗 lim

𝑡→0
−1

1 + 𝑡(𝜑𝑗𝑘(𝑥𝑀) + 𝑀𝑗𝑐𝑗𝑘)

= −𝛿𝑖𝑗(𝜑𝑗𝑘(𝑥𝑀) + 𝑀𝑗𝑐𝑗𝑘) = −𝑀𝑗𝛿𝑖𝑗𝑥𝑀
𝑗𝑘 = −𝑀𝑖[𝔷𝑀,𝑖]𝑀

𝑗𝑘

Thus, we have 𝐽𝜌(𝑥𝑀)𝔷𝑀,𝑖 = −𝑀𝑖𝔷𝑀,𝑖.
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The following lemma states that the vectors 𝔷𝑀,𝑖 are orthogonal to 𝑇Δ under the

operator (𝔄𝐽𝜌(𝑥𝑀) + (𝔄𝐽𝜌(𝑥𝑀))𝑇), which will allow us to discard mixed terms in

the proof of lemma 5.3.7:

Lemma 5.3.6. Let 𝔷𝑀,𝑖 be as above and 𝜉 ∈ 𝑇Δ. Then

(𝔷𝑀,𝑖)𝑇(𝔄𝐽𝜌(𝑥𝑀) + (𝔄𝐽𝜌(𝑥𝑀))𝑇)𝜉 = 0 .

Proof. Note that:

(𝔷𝑀,𝑖)𝑇(𝔄𝐽𝜌(𝑥𝑀) + (𝔄𝐽𝜌(𝑥𝑀))𝑇)𝜉 = (𝔷𝑀,𝑖)𝑇(𝔄𝐽𝜌(𝑥𝑀))𝜉 + (𝔄𝐽𝜌(𝑥𝑀)𝔷𝑀,𝑖)𝑇𝜉

Now we have

(𝔄𝐽𝜌(𝑥𝑀)𝔷𝑀,𝑖)𝑇𝜉 = −𝑀𝑖(𝔄𝔷𝑀,𝑖)𝑇𝜉 = −𝑀𝑖 ∑
𝑗

∑
𝑘≤𝑛𝑗

𝛼𝛿𝑗2 1
𝑥𝑀

𝑗𝑘
𝑥𝑀

𝑗𝑘𝛿𝑗𝑖𝜉𝑗𝑘

= −𝑀𝑖𝛼𝛿𝑖2 ∑
𝑘≤𝑛𝑖

𝜉𝑖𝑘 = 0

due to the lemma 5.3.5, and

(𝔷𝑀,𝑖)𝑇(𝔄𝐽𝜌(𝑥𝑀))𝜉 = ∑
𝑗

∑
𝑘≤𝑛𝑗

[𝔷𝑀,𝑖]𝑗𝑘
1

𝑥𝑀
𝑗𝑘
𝛼𝛿𝑗2[𝐽𝜌(𝑥𝑀)𝜉]𝑗𝑘

= ∑
𝑗

∑
𝑘≤𝑛𝑗

𝛿𝑗𝑖𝛼𝛿𝑗2[𝐽𝜌(𝑥𝑀)𝜉]𝑗𝑘 = 𝛼𝛿𝑖2 ∑
𝑘≤𝑛𝑖

[(𝐽𝜑(𝑥𝑀) − 𝔐)𝜉]𝑖𝑘 = 0

where the second to last equality is due to lemma 5.3.4 and the last one due to lemma

5.3.3. This concludes the proof.

We can now prove the main lemma:

Lemma 5.3.7. For all 𝑥 ∈ ℝ𝑛 ⧵ {0}, we have

𝑥𝑇(𝐽𝜌(𝑥𝑀) + 𝐽𝜌(𝑥𝑀)𝑇)𝑥 < 0 .

In particular, all eigenvalues of 𝐽𝜌(𝑥𝑀) have strictly negative real parts.

Proof. Let 𝑥 ∈ ℝ𝑛 ⧵ {0} and set 𝑠𝑖 = ∑ℎ≤𝑛𝑖
𝑥𝑖ℎ. Then set 𝜉𝑖ℎ = 𝑥𝑖ℎ − 𝑠𝑖𝑥𝑀

𝑖ℎ such that

𝑥𝑖ℎ = 𝑠𝑖𝑥𝑀
𝑖ℎ + 𝜉𝑖ℎ. Clearly, ∑ℎ≤𝑛𝑖

𝜉𝑖ℎ = 0 for all 𝑖. Overall, we have 𝑥 = 𝜉 + ∑𝑖 𝑠𝑖𝔷𝑀,𝑖,

with 𝔷𝑀,𝑖 as in lemma 5.3.5, and hence:

𝑥𝑇(𝔄𝐽𝜌(𝑥𝑀) + 𝐽𝜌(𝑥𝑀)𝑇𝔄)𝑥

= ⎛⎜
⎝
𝜉 + ∑

𝑖
𝑠𝑖𝔷𝑀,𝑖⎞⎟

⎠

𝑇
(𝔄𝐽𝜌(𝑥𝑀) + 𝐽𝜌(𝑥𝑀)𝑇𝔄) ⎛⎜

⎝
𝜉 + ∑

𝑖
𝑠𝑖𝔷𝑀,𝑖⎞⎟

⎠
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= 𝜉𝑇(𝔄𝐽𝜌(𝑥𝑀) + 𝐽𝜌(𝑥𝑀)𝑇𝔄)𝜉 + 2𝜉𝑇(𝔄𝐽𝜌(𝑥𝑀) + 𝐽𝜌(𝑥𝑀)𝑇𝔄) ⎛⎜
⎝

∑
𝑖

𝑠𝑖𝔷𝑀,𝑖⎞⎟
⎠

+ ⎛⎜
⎝

∑
𝑖

𝑠𝑖𝔷𝑀,𝑖⎞⎟
⎠

𝑇
(𝔄𝐽𝜌(𝑥𝑀) + 𝐽𝜌(𝑥𝑀)𝑇𝔄) ⎛⎜

⎝
∑

𝑖
𝑠𝑖𝔷𝑀,𝑖⎞⎟

⎠
= 𝜉𝑇(𝔄𝐽𝜌(𝑥𝑀) + 𝐽𝜌(𝑥𝑀)𝑇𝔄)𝜉 + 2 ∑

𝑖
𝑠𝑖 𝜉𝑇(𝔄𝐽𝜌(𝑥𝑀) + 𝐽𝜌(𝑥𝑀)𝑇𝔄)𝔷𝑀,𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0 with lemma 5.3.6

+ ∑
𝑗

∑
𝑖

𝑠𝑗𝑠𝑖(𝔷𝑀,𝑗)𝑇(𝔄𝐽𝜌(𝑥𝑀) + 𝐽𝜌(𝑥𝑀)𝑇𝔄)𝔷𝑀,𝑖

= 𝜉𝑇(𝔄𝐽𝜌(𝑥𝑀) + 𝐽𝜌(𝑥𝑀)𝑇𝔄)𝜉

+ ∑
𝑗

∑
𝑖

𝑠𝑗𝑠𝑖(𝔷𝑀,𝑗)𝑇𝔄𝐽𝜌(𝑥𝑀)𝔷𝑀,𝑖 + 𝑠𝑗𝑠𝑖(𝔷𝑀,𝑗)𝑇𝐽𝜌(𝑥𝑀)𝑇𝔄𝔷𝑀,𝑖

= 𝜉𝑇(𝔄𝐽𝜌(𝑥𝑀) + 𝐽𝜌(𝑥𝑀)𝑇𝔄)𝜉 + ∑
𝑗

∑
𝑖

𝑠𝑗𝑠𝑖(𝔷𝑀,𝑗)𝑇𝔄𝔷𝑀,𝑖(−𝑀𝑖 − 𝑀𝑗)

Lemma
5.3.4= 𝜉𝑇(𝔄(𝐽𝜑(𝑥𝑀) − 𝔐) + (𝐽𝜑(𝑥𝑀) − 𝔐)𝑇𝔄)𝜉 − 2 ∑

𝑖
𝑀𝑖(𝑠𝑖)2(𝔷𝑀,𝑖)𝑇𝔄𝔷𝑀,𝑖

where the last equality follows from

(𝔷𝑀,𝑗)𝑇𝔄𝔷𝑀,𝑖 = ∑
𝑙

∑
𝑝≤𝑛𝑙

[𝔷𝑀,𝑗]𝑙𝑝(𝑥𝑙𝑝)−1𝛼𝛿𝑙2[𝔷𝑀,𝑖]𝑙𝑝

= ∑
𝑙

∑
𝑝≤𝑛𝑙

𝑥𝑀
𝑙𝑝𝛿𝑗𝑙(𝑥𝑀

𝑙𝑝)−1𝛼𝛿𝑙2𝑥𝑀
𝑙𝑝𝛿𝑖𝑙 = 𝛼𝛿𝑖2𝛿𝑖𝑗 ∑

𝑝≤𝑛𝑖

𝑥𝑀
𝑖𝑝 = 𝛼𝛿𝑖2𝛿𝑖𝑗

Overall, we have together with lemma 5.3.1:

𝑥𝑇(𝔄𝐽𝜌(𝑥𝑀) + 𝐽𝜌(𝑥𝑀)𝑇𝔄)𝑥

= 𝜉𝑇(𝔄(𝐽𝜑(𝑥𝑀) − 𝔐) + (𝐽𝜑(𝑥𝑀) − 𝔐)𝑇𝔄)𝜉 − 2 ∑
𝑖

𝑀𝑖(𝑠𝑖)2(𝔷𝑀,𝑖)𝑇𝔄𝔷𝑀,𝑖

= 𝜉𝑇(𝔄(𝐽𝜑(𝑥𝑀) − 𝔐) + (𝐽𝜑(𝑥𝑀) − 𝔐)𝑇𝔄)𝜉 − 2 ∑
𝑖

𝑀𝑖(𝑠𝑖)2𝛼𝛿𝑖2

= −2(𝑀1 ∑
ℎ≤𝑛1

(𝑥𝑀
1ℎ)−2𝑐1ℎ𝜉2

1ℎ + 𝛼𝑀2 ∑
ℎ≤𝑛2

(𝑥𝑀
2ℎ)−2𝑐2ℎ𝜉2

2ℎ)

− 2 ∑
𝑖

𝑀𝑖(𝑠𝑖)2𝛼𝛿𝑖2 < 0

With lemma 5.3.2, we have that all eigenvalues of 𝐽𝜌(𝑥𝑀) have strictly negative

real parts.

From the above lemma, the following directly follows:

Proposition 5.3.8. For all 𝑀 > 0, every mutation equilibrium 𝑥𝑀 is an asymptotically

stable stationary point of (RMD).
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Proof. With lemma 5.3.7, the eigenvalues of the Jacobian 𝐽𝜌(𝑥𝑀) have strictly nega-

tive real parts. With, e.g., [78, theorem 1, p. 130], this implies that 𝑥𝑀 is asymptoti-

cally stable under (5.3.1). With 𝑥𝑀 ∈ Δo and the system (5.3.1) coinciding with (RMD)

on Δ, we have that 𝑥𝑀 is asymptotically stable under (RMD).

Overall, this yields the following:

Proposition 5.3.9. For every antagonistic two-population setting, all mutation limits

are attracting and there is at least one attracting mutation limit.

Proof. That all mutation limits are attracting, follows directly from proposition 5.3.8

together with the definition of attracting mutation limits. That there is at least one

attracting mutation limit, then follows from the general existence of mutation limits

(proposition 4.4.3).

5.4 Discussion

We have investigated analytically the effect of mutation in the continuous time multi-

population replicator dynamics. For 2×2 games we have shown that memoryless mu-

tation always stabilises neutrally stable regular Nash equilibria. In particular, the

results are general enough to include non-linear games, such as games with different

interaction durations for different types, e.g., [103]. Effectively the slightest muta-

tion probability affects the quality of antagonistic co-evolution in these situations and

prevents cycling, with convergence being slower for lower mutation probabilities. For

vanishing mutation, co-evolution converges extremely slowly to a Nash equilibrium,

such that very weak mutation becomes almost indistinguishable from a pure replica-

tor dynamics for short time intervals. The proofs relied on shifting the real parts of

the Jacobian to the negative half-plane and in principle this approach might work for

mutation matrices which are not diagonal. In our approach, we implicitly exploited

the fact that our matrices did not affect the eigenspaces of the unperturbed Jacobian.

With more general mutation, this would be an aspect requiring additional considera-

tion.

For larger games, we have shown that in the antagonistic setting of rescaled zero-

sum games, which includes constant-sum games, mutation again stabilises equilibria.

Larger games are particularly interesting in that there we can consider the single-

population replicator dynamics as a special case. Specifically, this is contained in the
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setting where both populations have identical parameters and initial conditions. In

this case, the dynamics evolves in a submanifold where populations remain identical,

allowing us to identify the two with each other. Therefore, the case becomes identical

to the setting where all interactions are with conspecifics—something we assume not

to be the case for the multi-population setting. In this way, we can extend the notion

of attracting mutation limits and the associated results to the single-population repli-

cator dynamics. From this we can infer that the single-population RPS with mutation

converges and that the mixed Nash equilibrium is an attracting mutation limit. How-

ever, although in this case mutation drives the system towards the mutation limit, we

know that the mutation limit is not an ESS as it is not asymptotically stable. Thus, it

is clear that the notions of ESS and attracting mutation limit are distinct and address

different intuitions. It is further of interest whether the effects of mutation seen in

the replicator dynamics extend to more complicated models, e.g., with variable popu-

lation sizes as in [99], and whether the techniques employed here can be extended to

those cases.
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6 Replicator-mutator dynamics and
mutation-bias learning

6.1 Introduction

Reinforcement learning algorithms have been employed in a wide range of problem

settings with great success, e.g., [94], and for the single-agent case the conditions for

convergence of, e.g., Q-learning have been clarified, [117]. However, for multi-agent

reinforcement learning (MARL), questions of convergence are still very much open as

a mathematically rigorous analysis becomes much more challenging. That even two-

player settings can prove challenging for rigorous analysis is demonstrated by [89],

which analyses the rich dynamics that can occur for the Rock-Paper-Scissors (RPS)

game under the replicator dynamics. There is a vast array of different algorithms and

an even greater array of problem settings, cf., [20]. In many cases, analysis beyond

experimental evaluation is hardly possible. However, more general analysis is highly

informative of why algorithms behave in a certain way and theoretical guarantees for

at least the simplest of settings are highly desirable in order to assess the behaviour

of MARL algorithms.

Building on the relation between the replicator dynamics and a simple form of

reinforcement learning, called Cross learning [13, 27], we formulate two variants of

a new reinforcement learning algorithm, called mutation-bias learning (MBL), and

establish a relation between (RMD) introduced in chapter 4 and the stochastic pro-

cesses induced by MBL. We demonstrate that the possibility of asymptotic stability of

interior equilibria in (RMD) allows it to be used as an ordinary differential equation

(ODE) approximation to MBL, in contrast to (RD), which diverges from its discrete ap-

proximations due to at most neutral stability of interior equilibria. While the process

induced by Cross learning deviates from the solutions of (RD) for finite times in the

case of neutral stability, globally asymptotically stable equilibria in (RMD) allow us

to show that MBL processes revisit neighbourhoods of such equilibria infinitely often

98



almost surely, and hence the neighbourhoods of such mutation limits, showing MBL

to be 𝜀-rational with arbitrary certainty in such cases.

We illustrate these theoretical results with numerical experiments in a range of

two-player games, as well as a three-player game, and compare the behaviours of the

MBL variants to those of so-called Frequency-adjusted Q-learning (FAQ), [52], and

Win-or-Learn-Fast Policy-Hill-Climbing (WoLF-PHC), [14], demonstrating the advan-

tages of theoretical guarantees in the study of MARL algorithms. We further illustrate

the trade-off between convergence and “rationality” caused by the mutation term of

(RMD) and similar perturbations.

Game theory has proven to be a useful framework for the theoretical analysis of

MARL algorithms. In particular, as MARL algorithms usually lead to (often stochas-

tic) discrete time dynamic systems, the insights from the fields of learning dynamics

in games and of evolutionary game theory have been particularly relevant. These

fields further offer a wide range of approaches linking the stochastic discrete time

dynamics of learning to a deterministic continuous time setting, e.g., [45, 87].

In particular, when learning algorithms are linked to a system of ODEs, questions

of convergence can be addressed by considering the dynamic stability of equilibria in

the ODE system, as e.g., in [24]. While Lyapunov stability and other properties of the

continuous time case not always transfer to the discrete dynamics as is illustrated by

the prominent example of the Rock-Paper-Scissors game, asymptotic stability in the

continuous case can (under suitable conditions on algorithm parameters) imply the

convergence of a MARL algorithm.

Evolutionary game theoretic approaches, and specifically relating (RD) to learning

algorithms have informed a number of analyses of learning algorithms in multi-agent

settings, e.g., [66, 74]. One of the earliest rigorous analyses of the relation between

stochastic learning and (RD) is given in [13] and concerns Cross learning, [27]. A

larger class of stochastic reinforcement learning rules is related to deterministic con-

tinuous time systems of (RD) type in [86]. Systems of (RD) type with additional per-

turbations have been related to various learning rules, including such with entropy

related perturbation terms, [90], and exponential learning based on a logit model,

[62]. Some analyses focus specifically on Q-learning based learning algorithms. For

instance, [53] considers the stability and convergence properties of Q-learning in the

two-player setting; however, the Q-values enter as expectations, not as random vari-

ables, and therefore the effects of stochasticity are not considered. A similar approach
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is pursued in [109] with a corrected derivation given in [52]. However, both strands

start from assumptions which have not been proved, and therefore no theoretical guar-

antees can be inferred.

An analysis of the convergence of multiple timescales algorithms, where Q-value

estimates are learned quicker than policy changes occur, is given in [24]. Here, the

convergence analysis relates to smoothed best-response dynamics. Furthermore, [22]

gives conditions for convergence of an 𝜀-greedy multi-agent Q-learning algorithm un-

der stochastic payoffs. However, this algorithm operates on joint actions, which re-

quires agents to be able to observe the actions chosen by all agents and therefore is

distinct from the approaches mentioned above and from the algorithm we introduce.

The main contribution of the present approach is to demonstrate that the con-

vergence problems of Cross learning can be addressed in a low complexity manner,

namely mutation-bias learning with direct policy updates (MBL-DPU), that still al-

lows a theoretical analysis while also showing behaviour similar to much more com-

plex algorithms. For MBL-DPU, we prove converges to the replicator-mutator dynam-

ics (RMD), given in chapter 4. There we have shown that (RMD) in principle allows

non-strict Nash equilibria to be approximated by asymptotically stable mutation equi-

libria, which is particularly relevant for zero-sum games. Further, asymptotic stabil-

ity in (RMD) allows MBL-DPU to reach 𝜀-equilibria with arbitrary certainty. Thus,

despite only slightly increasing the complexity of basic Cross learning, MBL-DPU

allows for the solution of a much larger range of games.

Furthermore, the presented perturbative approach can be applied to a range of

different algorithms, e.g., based on logistic choice. To this end, we formulate MBL-LC

which follows the evolution of a policy under a logistic choice function (also known as

Boltzmann policy or softmax policy). This formulation is parallel to the Q-learning

based FAQ learning rule, [52].

6.2 Mutation-bias learning

6.2.1 Preliminaries

We consider the proposed algorithms in a basic game theoretical setting, where a

stage game (𝑁, (𝒜𝑖)𝑖∈𝑁 , (𝑟𝑖)𝑖∈𝑁) is repeatedly played by the players. However, the

strategy space for the repeated game is not that of Markovian strategies, but simply

the space of the mixed strategies of the stage game, the space of which we denote by
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Δ = ×𝑖∈𝑁Δ𝑖, as previously. In particular, we do not assume that players can react to

past play in the current analysis.

As a reference frame for the MBL algorithm, we provide two MARL algorithms,

specifically WoLF-PHC, [14], and FAQ learning, [52], both Q-learning based; the for-

mer, WoLF-PHC (algorithm 6.2.1), because it is a game theoretically informed algo-

rithm, with a rigorous analysis available and based on direct policy search, thus mak-

ing it one of the closest points of reference for MBL in the literature; the latter, FAQ

learning (algorithm 6.2.2), because although no proofs are provided, it seems among

the Q-learning based approaches the one most closely related to (RD) and to the ideas

presented in [13] on which our approach is based.

The WoLF-PHC algorithm illustrates the potential of evolutionary game theory

(EGT) to inform learning algorithms in so far as WoLF-PHC keeps track of the past

average policy and compares the value of the current policy to that of the average

policy. The time-average of a population has been shown to converge to a Nash equi-

librium under the replicator dynamics in zero-sum games, e.g., [118, proposition 3.6,

p.92] and comparing this to the current policy’s payoff therefore makes sense from an

EGT perspective.

While this might have been only a side-motivation for the formulation of WoLF-

PHC, the FAQ learning algorithm is deliberately targeted at exploiting a relation be-

tween Q-learning and evolutionary dynamics. In [52], the authors claim that the FAQ

learning algorithm generates trajectories which converge to the solutions of an (RD)

type ODE system in probability.1 Specifically, the system in question is

̇𝑥𝑖ℎ(𝑡) = 𝜏𝑥𝑖ℎ
⎛⎜⎜⎜
⎝

𝔼[𝑟𝑖ℎ(𝑡)] − ∑
𝑘∈𝒜𝑖

𝑥𝑖𝑘(𝑡)𝔼[𝑟𝑖𝑘(𝑡)]⎞⎟⎟⎟
⎠

+ 𝑥𝑖ℎ
⎛⎜⎜⎜
⎝

∑
𝑘∈𝒜𝑖

𝑥𝑖𝑘 ln(𝑥𝑖𝑘) − ln(𝑥𝑖ℎ)⎞⎟⎟⎟
⎠

(6.2.1)

for 𝑖 ∈ 𝑁, ℎ ∈ 𝒜𝑖, such that the system consists of the usual (RD) part and a perturba-

tive part that can be related to information entropy, elaborated upon in [52, 111]. The

relative strengths of the replicator dynamics and the perturbative term are controlled

by 𝜏, such that 𝜏−1 plays an analogous role to 𝑀 in (RMD).

6.2.2 Mutation-bias learning algorithm

We can now formulate the stochastic learning rules and specify how they relate to

the deterministic dynamics of (RMD). We consider two versions of MBL: one, based
1As the authors do not provide a proof for this claim, it should be taken with appropriate caution.
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Algorithm 6.2.1 WoLF-PHC learning, [14], for generic player 𝑖 ∈ 𝑁.

1. Let 𝛼 ∈ (0, 1], 𝛿𝑙 > 𝛿𝑤 ∈ (0, 1] be learning rates. Initialize ∀ℎ ∈ 𝒜𝑖

𝑄𝑖ℎ ← 0, 𝑥𝑖ℎ ← 1
|𝒜𝑖|

, 𝐶 ← 0.

2. Repeat for each time 𝑡:

a) Select action 𝐴𝑖 according to mixed strategy 𝑥𝑖 with suitable exploration.

b) Observing the reward 𝑟𝑖 resulting from action profile (𝐴𝑗)𝑗∈𝑁 , set for ℎ = 𝐴𝑖

𝑄𝑖ℎ ← 𝑄𝑖ℎ + 𝛼(𝑟𝑖 + 𝛾max
ℎ′

𝑄𝑖ℎ′ − 𝑄𝑖ℎ).

c) Update estimate of average policy, ̄𝑥,

𝐶 ← 𝐶 + 1,

̄𝑥𝑖ℎ′ ← ̄𝑥𝑖ℎ′ + 1
𝐶(𝑥𝑖ℎ′ − ̄𝑥𝑖ℎ′) (∀ℎ′ ∈ 𝒜𝑖).

d) Step 𝑥 closer to the optimal policy w.r.t. 𝑄.

𝑥𝑖ℎ′ ←
⎧{
⎨{⎩

𝑥𝑖ℎ′ − 𝛿𝑖ℎ′ if ℎ′ ≠ arg max𝑘 𝑄𝑖𝑘,
𝑥𝑖ℎ′ + ∑𝑘≠ℎ′ 𝛿𝑖𝑘 otherwise,

with

𝛿𝑖𝑘 = min {𝑥𝑖𝑘, 𝛿
|𝒜𝑖| − 1} and 𝛿 =

⎧{
⎨{⎩
𝛿𝑤 if ∑ℎ′ 𝑥𝑖ℎ′𝑄𝑖ℎ′ > ∑ℎ′ ̄𝑥𝑖ℎ′𝑄𝑖ℎ′ ,
𝛿𝑙 otherwise.

Algorithm 6.2.2 Frequency-adjusted 𝑄-learning, [52], for generic player 𝑖 ∈ 𝑁.

1. Set learning rate 𝜗 sufficiently small, choose initial 𝑥𝑖 ∈ Δ𝑖 and parameters 𝛽 > 0,
𝜏 > 0, 𝛾 ≥ 0.

2. Repeat for each time 𝑡:

a) Select action 𝐴𝑖 ∈ 𝒜𝑖 according to mixed strategy 𝑥𝑖.

b) Observe reward 𝑟𝑖 resulting from action profile (𝐴𝑗)𝑗∈𝑁 .

c) For ℎ = 𝐴𝑖, set:

𝑄𝑖ℎ ← 𝑄𝑖ℎ + min { 𝛽
𝑥𝑖ℎ

, 1}𝜗(𝑟𝑖 + 𝛾 max
𝑘∈𝒜𝑖

𝑄𝑖𝑘 − 𝑄𝑖ℎ) .

d) For all ℎ ∈ 𝒜𝑖, set: 𝑥𝑖ℎ ← 𝑒𝜏𝑄𝑖ℎ

∑𝑘∈𝒜𝑖
𝑒𝜏𝑄𝑖𝑘

.
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on direct policy updates, MBL-DPU (algorithm 6.2.3)—where the policy update corre-

sponds to Cross learning, [27], with a mutation bias as a perturbation term; the other,

based on logistic choice, MBL-LC (algorithm 6.2.4)—where the policy corresponds to

logistic choice (also known as a Boltzmann distribution or as softmax policy) based on

action-value estimates which are updated with a mutation bias perturbation.

MBL with direct policy update (MBL-DPU). We first consider the simplest

version of MBL, which performs a simple direct policy update, MBL-DPU. We note

that for 𝑀𝑖 = 0 (∀𝑖 ∈ 𝑃), MBL-DPU reduces to Cross learning [13, 27]. MBL-

DPU is therefore an additive perturbation of Cross learning with perturbation term

𝜗𝑀𝑖 (𝑐𝑖ℎ − 𝑥𝑖ℎ). We further note that the assumption in Cross learning, that rewards

be restricted to [0, 1], is not necessary. It suffices that rewards are non-negative and

bounded. In this case, 𝜗 can be chosen small enough to ensure well-definition of MBL-

DPU. Note that this assumption is not restrictive for finite games, as boundedness

is trivially satisfied for finite games and non-negativity can be ensured by adding a

constant 𝐶𝑖 to all payoffs 𝑟𝑖. This affects neither the position of Nash equilibria nor

the dynamics in the deterministic limit—a straight-forward property of the replicator

dynamics.

MBL with logistic choice (MBL-LC). The simple perturbation in MBL-DPU can

be combined with a wide class of transformations on the payoffs without affecting the

additive character of the perturbation. Additionally, we consider a more complex pos-

sibility to combine the mutation-like perturbation with a policy based on multinomial

Algorithm 6.2.3 MBL-DPU for generic player 𝑖 ∈ 𝑃.

1. Set learning rate 𝜗 sufficiently small, choose initial 𝑥𝑖 ∈ Δ𝑖 and mutation param-
eters 𝑀𝑖 > 0 and 𝑐𝑖 ∈ Δ𝑖

o.

2. Repeat for each time 𝑡:

a) Select action 𝐴𝑖 according to mixed strategy 𝑥𝑖.

b) Observe reward 𝑟𝑖 resulting from action profile (𝐴𝑗)𝑗∈𝑁 .

c) For all ℎ ∈ 𝒜𝑖, update 𝑥𝑖ℎ according to

𝑥𝑖ℎ ←
⎧{
⎨{⎩

𝑥𝑖ℎ + 𝜗(1 − 𝑥𝑖ℎ)𝑟𝑖 + 𝜗𝑀𝑖 (𝑐𝑖ℎ − 𝑥𝑖ℎ) if ℎ = 𝐴𝑖,
𝑥𝑖ℎ − 𝜗𝑥𝑖ℎ𝑟𝑖 + 𝜗𝑀𝑖 (𝑐𝑖ℎ − 𝑥𝑖ℎ) otherwise.
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logistic choice, as frequently encountered in Q-learning. In MBL-LC, the perturba-

tion affects the Q-value updates instead of the policy. Hence, this version more closely

resembles FAQ learning. In particular, restricting the frequency-adjustment in step

2.c) by applying a minimum is parallel to [52]. One can see that the logistic choice

policy can still be expressed as a direct policy update with modified payoffs in the

following way for a chosen action 𝐴𝑖:

𝑥𝑖ℎ ←
⎧{{
⎨{{⎩

𝑥𝑖ℎ + (1 − 𝑥𝑖ℎ) ̃𝑟𝑖 if ℎ = 𝐴𝑖

𝑥𝑖ℎ − 𝑥𝑖ℎ ̃𝑟𝑖 otherwise
, where ̃𝑟𝑖 =

𝑥𝑖𝐴𝑖(𝑒𝜏Δ𝑄𝑖𝐴𝑖 − 1)
𝑥𝑖𝐴𝑖(𝑒𝜏Δ𝑄𝑖𝐴𝑖 − 1) + 1

,

and Δ𝑄𝑖𝐴𝑖 denotes the update of the Q-value of the chosen action 𝐴𝑖. From this it is

clear that an intermediate approach could be to use the simpler MBL-DPU combined

with payoffs derived from Q-learning, which is equivalent to transforming payoffs ac-

cordingly.

Algorithm 6.2.4 MBL-LC for generic player 𝑖 ∈ 𝑁.

1. Set learning rate 𝜗 sufficiently small, choose initial 𝑥𝑖 ∈ Δ𝑖 and mutation param-
eters 𝑀𝑖 > 0 and 𝑐𝑖 ∈ Δ𝑖

o. Choose 𝛽 > 0, 𝜏 > 0.

2. Repeat for each time 𝑡:

a) Select action 𝐴𝑖 according to mixed strategy 𝑥𝑖.

b) Observe reward 𝑟𝑖 resulting from action profile (𝐴𝑗)𝑗∈𝑁 .

c) For ℎ = 𝐴𝑖, set: 𝑄𝑖ℎ ← 𝑄𝑖ℎ + min { 𝛽
𝑥𝑖ℎ

, 1}𝜗(𝑟𝑖 + 𝑀𝑖
𝑐𝑖ℎ
𝑥𝑖ℎ

) .

d) For all ℎ ∈ 𝒜𝑖, set: 𝑥𝑖ℎ ← 𝑒𝜏𝑄𝑖ℎ

∑𝑘∈𝒜𝑖
𝑒𝜏𝑄𝑖𝑘

.

6.2.3 Convergence of MBL

The question of convergence can be considered in two steps. First, one determines

whether the stochastic process induced by the learning algorithm can be approxi-

mated by a deterministic dynamics. Second, one might transfer the convergence prop-

erties of the deterministic dynamics to the stochastic process. For MBL-DPU we have

the following convergence result (proved in section 6.5 as proposition 6.5.3):
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Proposition 6.2.1. For every 𝑇 < ∞, the family of stochastic processes {(𝑋𝜗
𝑖ℎ(𝑡))𝑖,ℎ}𝑡≥0

induced by MBL-DPU converges to (RMD) in the sense that for all 𝜀 > 0:

sup
𝑥0∈Δ

Pr(‖𝑋𝜗(𝑛𝜗) − Φ𝑀(𝑥0, 𝑇)‖ > 𝜀) → 0 as 𝜗 → 0,

where 𝑛𝜗𝜗
𝜗→0−−−→ 𝑇, 𝑥0 is (almost surely) the initial state of the stochastic processes and

Φ𝑀(𝑥0, ⋅) is the unique solution of (RMD) with Φ𝑀(𝑥0, 0) = 𝑥0.

Remark. Analogous to [13, 72], proposition 6.2.1 on its own does not yield an anal-

ysis of the asymptotic behaviour of the stochastic processes. If an equilibrium 𝑥𝑀 of

(RMD) is asymptotically stable and 𝑥0 lies in the basin of attraction of 𝑥𝑀 , then we

have Φ𝑀(𝑥0, 𝑇) → 𝑥𝑀 as 𝑇 → ∞. However, with the asymptotic stability of 𝑥𝑀 , we

have that for 𝑇 large enough, Φ𝑀(𝑥0, 𝑇) is arbitrarily close to 𝑥𝑀 and together with

proposition 6.2.1, any neighbourhood of 𝑥𝑀 will be reached by the learning process

with an arbitrary degree of certainty after finitely many steps. This, however, does

not imply that the process must remain in this neighbourhood afterwards.

The utility of the mutation perturbation stems from the fact that learning without

the mutation perturbation always leads to the boundary of Δ which is particularly

unfortunate if the only Nash equilibrium is located in the interior.

In chapter 4 we have shown that every game has at least one connected equilibrium

component that is approximated by mutation equilibria irrespective of the choice of

the mutation parameter 𝑐 as 𝑀 → 0. Furthermore, it was shown that for the Matching

Pennies game, the Nash equilibrium is approximated by asymptotically stable muta-

tion equilibria, warranting the name attracting mutation limit. In fact, for Matching

Pennies those mutation equilibria are even globally asymptotically stable, i.e., trajec-

tories converge to the mutation equilibrium for all initial states 𝑥 ∈ Δ. This is due

to the fact that the system is planar and therefore the Poincaré-Bendixson theorem

holds. More generally, we state this as the following proposition (a direct consequence

of proposition 6.5.4 and corollary 6.5.5):

Proposition 6.2.2. Let 𝑥∗ ∈ Δo be an attracting mutation limit and 𝑈 a neighbour-

hood of 𝑥∗. If the mutation equilibria approximating 𝑥∗ are globally asymptotically

stable, then for every mutation parameter 𝑐 ∈ Δo there are 𝑀 > 0 and 𝜗 > 0 such that

the stochastic process {𝑋𝜗(𝑡)}𝑡∈ℕ0 induced by MBL-DPU visits 𝑈 at a finite time al-

most surely, i.e., 𝑋𝜗(𝑆) ∈ 𝑈 for some 𝑆 ∈ ℕ0 with probability 1. In fact, {𝑋𝜗(𝑡)}𝑡∈ℕ0

visits 𝑈 infinitely often with probability 1.
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In contrast to MBL-DPU, we do not have a proof of an analogous result for MBL-

LC. Although it would be plausible for MBL-LC to behave similarly to MBL-DPU and

to converge to (RMD) in the limit of 𝜗 → 0, the numerical results show that this is not

as clear as it might seem.

6.2.4 Perturbation creates a trade-off between accuracy and speed

We note that neither MBL-DPU nor MBL-LC “converge” to a Nash equilibrium but

only to an 𝜀-equilibrium and in particular, that both stay away from the boundary of

Δ. For MBL-DPU this is clear from the facts that the equilibria of (RMD) are not

Nash equilibria and that the boundary of Δ is repelling. For MBL-LC this is also due

to the exploration parameter 𝜏. For the latter, it is further the case that 𝜏 cannot be

let to approach ∞ as this collides with the 𝜗 → 0 limit and makes the time derivative

of the policy unbounded. This results in a highly increased variance in the stochastic

process, preventing effective learning of equilibria. This particular aspect applies also

to other logistic choice based algorithms, particularly FAQ learning.

However, if MBL-LC and FAQ indeed converge to the corresponding ODE systems

in the deterministic limit, then these include 𝜏 as a simple scaling parameter, cf.

equation (6.2.1). Since constant positive rescalings do not change the trajectories, the

systems can be rescaled by 1/𝜏 in such a way that 𝜏 effectively regulates the pertur-

bation strength relative to the replicator dynamics. In the case of (RMD), 1/𝜏 can be

absorbed by the mutation strength 𝑀. Thus an increase of 𝜏 has the same effect as a

decrease of 𝑀 which results in mutation equilibria moving closer to a Nash equilib-

rium, as desired. We can thus ignore 𝜏 in the policy function of MBL-LC. A similar

reasoning can be applied to FAQ learning: A reduction in the perturbation term also

results in a longer time to approach equilibria and this creates a trade-off between

accuracy, i.e., the distance to the Nash equilibrium, and convergence speed.

6.3 Numerical results

We consider the behaviour of MBL-DPU, illustrating the theoretical results, and of

MBL-LC, providing a first intuition, in a number of different game settings and com-

pare these to FAQ-learning as an instance which is close to MBL-LC in its formu-

lation and approach and to WoLF-PHC as a well-known MARL algorithm. We con-

sider the much analysed Prisoner’s Dilemma (PD) game as a case with a strict Nash
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equilibrium, which illustrates the different behaviours when the Nash equilibrium is

asymptotically stable and located on the boundary of Δ, more specifically at a vertex.

As a second, significantly different case, we consider zero-sum games, or equivalently

constant-sum, which have interior Nash equilibria and, as we have shown, are at-

tracting mutation limits. This implies that the linearised system cannot be unstable

at the Nash equilibrium. However, here (RD) does not converge and the differences of

the algorithms compared to (RD) (and Cross learning) become more explicit.

6.3.1 Prisoner’s dilemma

In PD, we have a strict Nash equilibrium. According to previous results, we have

that strict Nash equilibria are asymptotically stable in (RD) and hence (RMD) has

asymptotically stable equilibria nearby when mutation is sufficiently low. Therefore,

MBL-DPU will also approach the mutation equilibrium and, depending on mutation

strength, it will approximate the Nash equilibrium. However, as mutation equilibria

(for generic 𝑐 ∈ Δo) differ from Nash equilibria, MBL-DPU cannot converge to the

Nash equilibrium. In particular, MBL-DPU stays away from the boundary of Δ, while

the Nash equilibrium is on the boundary.

MBL-DPU and MBL-LC. The experimental results (figures 6.1, 6.2) illustrate the

behaviour of MBL-DPU and its convergence for different mutation strengths 𝑀. In

accordance with intuition, convergence is quick for high mutation strength at the price

of the mutation equilibrium being further away from the Nash equilibrium. For lower

values of 𝑀, we have that the mutation equilibrium moves closer to the Nash equilib-

rium while convergence becomes slower.

In comparison, MBL-LC (figures 6.3, 6.4) behaves similarly while converging much

more quickly. An intuition for this is provided when considering that MBL-DPU can

be viewed as a linear approximation to MBL-LC for small 𝜏.

FAQ-learning. For FAQ-learning (figures 6.5, 6.6), the role of 𝜏 corresponds to that

of 𝑀−1 in MBL. We have that, similarly to both MBL variants, with increasing values

of 𝜏 (i.e., decreasing values of 𝑀), the dynamics approaches a region that lies closer to

the Nash equilibrium. The intuition here is provided by the fact that the deterministic

limit of FAQ is a replicator dynamics with a perturbative term whose effect depends

on 𝜏 and which pulls the system towards the centre of Δ. Furthermore, convergence
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is the slower the weaker the perturbative term is, much like in the two MBL variants.

In contrast to the MBL variants, FAQ-learning defaults to the usual Q-learning when

𝑥𝑖ℎ ≤ 𝛽. This effectively neutralises the repelling dynamics at the boundary of Δ,

which would otherwise result in very large (unbounded) changes in the Q-values for

very low values of 𝑥𝑖ℎ. Note that MBL-LC has 𝑥𝑖ℎ occurring in the denominator twice

and hence retains the repelling effect at the boundary of Δ.

WoLF-PHC. In contrast to the other algorithms, WoLF-PHC (figure 6.7) follows a

chosen direction for some time until it is replaced by a new direction, which results

in a discrete sequence of directions and non-smooth trajectories. Convergence to the

Nash equilibrium occurs much faster than for the other algorithms in the case of PD.

However, strict Nash equilibria are also asymptotically stable in (RD) and thus PD is a

base case which illustrates the different behaviours in a clear-cut situation, as opposed

to more challenging and ambiguous situations without strict Nash equilibria.

Figure 6.1: MBL-DPU in self-play on the PD game with different values for 𝜏 (1, 10, 20) or 𝑀 (1,
10−1, 20−1) equivalently; 𝜗 = 10−4; for 10 different initial conditions. In each subfigure, the upper
graph shows the ten trajectories in the projection on the first components of the players’ strategies,
in this case the ‘defect’ strategy, with the first player given on the horizontal axis and the second
player on the vertical axis. Points coloured yellow correspond to earlier points in time, changing
over orange and violet to black for later points in time. The position of the game’s Nash equilibrium
is marked with a blue cross in the projection plane. The lower graph shows the standard deviation
of all components of the players’ strategies for each point in time over the past 5000 time steps, for
each of the ten initial conditions, coloured red and blue for the two players. Time is given on the
horizontal axis. The standard deviation is computed with the usual Euclidean metric.

(a) 𝜏 = 1, 𝑀 = 1 (b) 𝜏 = 10, 𝑀 = 10−1 (c) 𝜏 = 20, 𝑀 = 20−1
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Figure 6.2: MBL-DPU in self-play on the PD game with different values for 𝜏 (30, 35, 40) or 𝑀
(30−1, 35−1, 40−1) equivalently; 𝜗 = 10−4; for 10 different initialisations. (See figure 6.1 for a
detailed explanation of the graphs.)

(a) 𝜏 = 30, 𝑀 = 30−1 (b) 𝜏 = 35, 𝑀 = 35−1 (c) 𝜏 = 40, 𝑀 = 40−1

Figure 6.3: MBL-LC in self-play on the PD game with different values for 𝜏 (1, 10, 20) or 𝑀 (1,
10−1, 20−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations. (See figure 6.1 for a detailed
explanation of the graphs.)

(a) 𝜏 = 1, 𝑀 = 1−1 (b) 𝜏 = 10, 𝑀 = 10−1 (c) 𝜏 = 20, 𝑀 = 20−1
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Figure 6.4: MBL-LC in self-play on the PD game with different values for 𝜏 (30, 35, 40) or 𝑀
(30−1, 35−1, 40−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations. (See figure 6.1 for a
detailed explanation of the graphs.)

(a) 𝜏 = 30, 𝑀 = 30−1 (b) 𝜏 = 35, 𝑀 = 35−1 (c) 𝜏 = 40, 𝑀 = 40−1

Figure 6.5: FAQ in self-play on the PD game with different values for 𝜏 (1, 10, 20) or 𝑀 (1, 10−1,
20−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations. (See figure 6.1 for a detailed
explanation of the graphs.)

(a) 𝜏 = 1, 𝑀 = 1−1 (b) 𝜏 = 10, 𝑀 = 10−1 (c) 𝜏 = 20, 𝑀 = 20−1
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Figure 6.6: FAQ in self-play on the PD game with different values for 𝜏 (30, 35, 40) or 𝑀 (30−1,
35−1, 40−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations. (See figure 6.1 for a detailed
explanation of the graphs.)

(a) 𝜏 = 30, 𝑀 = 30−1 (b) 𝜏 = 35, 𝑀 = 35−1 (c) 𝜏 = 40, 𝑀 = 40−1

Figure 6.7: WoLF-PHC in self-play on the PD game with different learning schedules; for 10 differ-
ent initialisations. Subgraph (a) has a high convergence speed such that only disconnected points
can be seen. (See figure 6.1 for a detailed explanation of the graphs.)

(a) Initial learning rate 10−1 for
𝑄. Win learning rate 10−2.

(b) Initial learning rate 10−1 for
𝑄. Win learning rate 1/2 ⋅ 10−4.

(c) Initial learning rate 10−2 for
𝑄. Win learning rate 1/2 ⋅ 10−4.
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6.3.2 Zero-sum games

For two-player zero-sum games, we have shown that the Nash equilibrium is an at-

tracting mutation limit. Therefore, while (RD) (and Cross learning) would not con-

verge to interior equilibria (with Cross learning eventually approaching the bound-

ary), (RMD) converges to the mutation equilibrium for every choice of mutation prob-

abilities, 𝑐 ∈ Δo and 𝑀 > 0, and so does MBL-DPU. Here, stability is induced by

the perturbative terms and their varying strengths have two effects which have to be

weighed against each other. We demonstrate the general idea in the simple situation

of the Matching Pennies (MP) game. Further, we illustrate the changing behaviour

when we grow the strategy space by considering different versions of the Rock-Paper-

Scissors game, RPS-𝑛, with 𝑛 = 3, 5, 9, where 𝑛 denotes the number of strategies

available to each player.

Matching Pennies

The MP game is a particularly simple case of a zero-sum game and hence provides

an informative perspective on the basic characteristics of the different algorithms. In

general, we see that the location of the mutation equilibrium depends on the mutation

strength 𝑀, while convergence is slower for lower values of 𝑀 creating a trade-off

between these, as discussed in more detail below.

MBL-DPU and MBL-LC. Comparing MBL-DPU and MBL-LC, we see again that

the LC-variant (figures 6.10, 6.11) approaches the mutation equilibrium more quickly

than the DPU-variant (figures 6.8, 6.9). However, we see that the DPU-variant ex-

hibits a much smaller variance, more precisely standard deviation, in the vicinity of

the mutation equilibrium due to its slower change, with both variants roughly differ-

ing by a factor between 5 and 10 (for 𝑀 = 40−1). This illustrates the stronger effect

that single larger payoffs have on the LC-variant, producing a larger variance near

the mutation equilibrium.

FAQ-learning. For FAQ-learning (figures 6.12, 6.13) we see a similar behaviour as

MBL-LC, however with a smaller variance near the equilibrium for weaker pertur-

bation (figure 6.13). As with the MBL variants, FAQ exhibits slower convergence for

weaker perturbation with larger variance near its (apparently asymptotically stable)

equilibrium. However, we also observe that with FAQ, solutions can get trapped near
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the boundary (note the trapped solution in the upper left corner in figure 6.13), which

we do not observe for the MBL variants and have proved not to be the case for MBL-

DPU.

WoLF-PHC. Similar to the other algorithms, WoLF-PHC (figure 6.14) follows spiral-

like trajectories towards a region close to the Nash equilibrium. It also shows a lower

variance near the (apparently asymptotically stable) equilibrium. However, WoLF-

PHC employs a learning rate schedule which reduces the learning rate over time and

thus reduces variance.2 One should note that WoLF-PHC has a considerably higher

complexity as it relies on a reliable way to estimate action-values as well as a long-

term population average. It is clear that for WoLF-PHC to be implemented by an evo-

lutionary dynamics in a population, further biological mechanisms would be required

to reflect these additional quantities, potentially in the form of e.g., cross-generational

effects or some other age-structure in the population and corresponding mechanisms.

Zero-sum games with larger action spaces

While MP is an informative illustration of the different behaviours, it should be noted

that MP reduces to a planar dynamical system, which does not allow many complex

behaviours, as exemplified by the Poincaré-Bendixson theorem, e.g., [107, theorem

7.16] holding for planar systems. Hence, higher-dimensional zero-sum games allow a

further understanding of the differences between the algorithms and shed light on the

effect of larger state spaces while preserving the neutral stability of interior equilibria.

We consider here the Rock-Paper-Scissors game of different sizes (3, 5 and 9 actions).

MBL-DPU and MBL-LC. In RPS-3, MBL-DPU (figures 6.15, 6.16) shows a simi-

lar behaviour to MP with a marked dependence of the behaviour of the variance on

the value of 𝑀. In contrast, MBL-LC (figures 6.17, 6.18) shows a much quicker con-

vergence, with the variance dropping after similar numbers of episodes (around 105)

for all values of 𝑀. As with MBL-DPU, the residual variance increases with weaker

mutation. This is in accordance with the neutral stability of the Nash equilibrium,

allowing for larger fluctuations.
2It would be possible to evaluate WoLF-PHC with a fixed learning rate or use a reduction schedule

for the other algorithms. However, the former would be a deviation from the canonical formulation of
WoLF-PHC while the latter would not be based on a principled approach. Hence, this heterogeneous
situation is an appropriate base scenario.
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Figure 6.8: MBL-DPU in self-play on the MP game with different values for 𝜏 (1, 10, 20) or 𝑀 (1,
10−1, 20−1) equivalently; 𝜗 = 10−4; for 10 different initialisations. (See figure 6.1 for a detailed
explanation of the graphs.)

(a) 𝜏 = 1, 𝑀 = 1−1 (b) 𝜏 = 10, 𝑀 = 10−1 (c) 𝜏 = 20, 𝑀 = 20−1

Figure 6.9: MBL-DPU in self-play on the MP game with different values for 𝜏 (30, 35, 40) or 𝑀
(30−1, 35−1, 40−1) equivalently; 𝜗 = 10−4; for 10 different initialisations. (See figure 6.1 for a
detailed explanation of the graphs.)

(a) 𝜏 = 30, 𝑀 = 30−1 (b) 𝜏 = 35, 𝑀 = 35−1 (c) 𝜏 = 40, 𝑀 = 40−1
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Figure 6.10: MBL-LC in self-play on the MP game with different values for 𝜏 (1, 10, 20) or 𝑀 (1,
10−1, 20−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations. (See figure 6.1 for a detailed
explanation of the graphs.)

(a) 𝜏 = 1, 𝑀 = 1−1 (b) 𝜏 = 10, 𝑀 = 10−1 (c) 𝜏 = 20, 𝑀 = 20−1

Figure 6.11: MBL-LC in self-play on the MP game with different values for 𝜏 (30, 35, 40) or 𝑀
(30−1, 35−1, 40−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations. (See figure 6.1 for a
detailed explanation of the graphs.)

(a) 𝜏 = 30, 𝑀 = 30−1 (b) 𝜏 = 35, 𝑀 = 35−1 (c) 𝜏 = 40, 𝑀 = 40−1
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Figure 6.12: FAQ in self-play on the MP game with different values for 𝜏 (1, 10, 20) or 𝑀 (1,
10−1, 20−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations. (See figure 6.1 for a detailed
explanation of the graphs.)

(a) 𝜏 = 1, 𝑀 = 1−1 (b) 𝜏 = 10, 𝑀 = 10−1 (c) 𝜏 = 20, 𝑀 = 20−1

Figure 6.13: FAQ in self-play on the MP game with different values for 𝜏 (30, 35, 40) or 𝑀 (30−1,
35−1, 40−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations. (See figure 6.1 for a detailed
explanation of the graphs.)

(a) 𝜏 = 30, 𝑀 = 30−1 (b) 𝜏 = 35, 𝑀 = 35−1 (c) 𝜏 = 40, 𝑀 = 40−1
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Figure 6.14: WoLF-PHC in self-play on the MP game with different learning schedules; for 10
different initialisations. (See figure 6.1 for a detailed explanation of the graphs.)

(a) Initial learning rate 10−1 for
𝑄. Win learning rate 10−2.

(b) Initial learning rate 10−1 for
𝑄. Win learning rate 1/2 ⋅ 10−4.

(c) Initial learning rate 10−2 for
𝑄. Win learning rate 1/2 ⋅ 10−4.

In RPS-5, both MBL variants (figures 6.22, 6.23 for MBL-DPU and figures 6.24,

6.25 for MBL-LC) show behaviours similar to their RPS-3 counterparts. In RPS-9,

MBL-DPU (figures 6.29, 6.30) again shows similar behaviour, with slower convergence

compared to its RPS-3 and RPS-5 counterparts. Interestingly, MBL-LC (figures 6.31,

6.32) seems to have two distinct regions to which trajectories evolve, suggesting a

qualitatively different behaviour from MBL-DPU or a potentially stronger sensitivity

to the choice of 𝜗.

FAQ-learning. Like for MP, we see a quicker convergence for FAQ in RPS-3 (figures

6.19, 6.20) compared to the MBL variants, but with trajectories similar to those of

MBL-LC when considering low values of 𝑀, in which case the replicator dynamics

makes a stronger contribution to the trajectories. Similar to MBL-LC, but already in

RPS-5, FAQ shows two distinct regions to which trajectories evolve when perturbation

is weak (figures 6.26, 6.27), whereas the former does not show such a split for RPS-5.

In RPS-9, FAQ shows such a split for stronger perturbation levels already and shows

even three distinct such regions for weaker perturbation (figures 6.33, 6.34).
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WoLF-PHC. For WoLF-PHC, we see a still quicker convergence in RPS-3 (figure

6.21) than for the other algorithms, similar to the MP case. However, the behaviour is

much less clear in RPS-5 (figure 6.28). Here, trajectories do not consistently approach

a specific region. It is possible that the reduction schedules for the learning rates,

which force each trajectory to converge, lead to trajectories stalling prematurely. This

becomes even more pronounced in RPS-9 (figure 6.35), where WoLF-PHC seems to

initially move away from the Nash equilibrium and to get stuck along the boundaries

of Δ.

Figure 6.15: MBL-DPU in self-play on the RPS-3 game with different values for 𝜏 (1, 10, 20) or 𝑀
(1, 10−1, 20−1) equivalently; 𝜗 = 10−4; for 10 different initialisations. (See figure 6.1 for a detailed
explanation of the graphs.)

(a) 𝜏 = 1, 𝑀 = 1−1 (b) 𝜏 = 10, 𝑀 = 10−1 (c) 𝜏 = 20, 𝑀 = 20−1
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Figure 6.16: MBL-DPU in self-play on the RPS-3 game with different values for 𝜏 (30, 35, 40) or
𝑀 (30−1, 35−1, 40−1) equivalently; 𝜗 = 10−4; for 10 different initialisations. (See figure 6.1 for a
detailed explanation of the graphs.)

(a) 𝜏 = 30, 𝑀 = 30−1 (b) 𝜏 = 35, 𝑀 = 35−1 (c) 𝜏 = 40, 𝑀 = 40−1

Figure 6.17: MBL-LC in self-play on the RPS-3 game with different values for 𝜏 (1, 10, 20) or
𝑀 (1, 10−1, 20−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations. (See figure 6.1 for a
detailed explanation of the graphs.)

(a) 𝜏 = 1, 𝑀 = 1−1 (b) 𝜏 = 10, 𝑀 = 10−1 (c) 𝜏 = 20, 𝑀 = 20−1
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Figure 6.18: MBL-LC in self-play on the RPS-3 game with different values for 𝜏 (30, 35, 40) or 𝑀
(30−1, 35−1, 40−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations. (See figure 6.1 for a
detailed explanation of the graphs.)

(a) 𝜏 = 30, 𝑀 = 30−1 (b) 𝜏 = 35, 𝑀 = 35−1 (c) 𝜏 = 40, 𝑀 = 40−1

Figure 6.19: FAQ in self-play on the RPS-3 game with different values for 𝜏 (1, 10, 20) or 𝑀 (1,
10−1, 20−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations. (See figure 6.1 for a detailed
explanation of the graphs.)

(a) 𝜏 = 1, 𝑀 = 1−1 (b) 𝜏 = 10, 𝑀 = 10−1 (c) 𝜏 = 20, 𝑀 = 20−1
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Figure 6.20: FAQ in self-play on the RPS-3 game with different values for 𝜏 (30, 35, 40) or 𝑀
(30−1, 35−1, 40−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations.

(a) 𝜏 = 30, 𝑀 = 30−1 (b) 𝜏 = 35, 𝑀 = 35−1 (c) 𝜏 = 40, 𝑀 = 40−1

Figure 6.21: WoLF-PHC in self-play on the RPS-3 game with different learning schedules; for 10
different initialisations. (See figure 6.1 for a detailed explanation of the graphs.)

(a) Initial learning rate 10−1 for
𝑄. Win learning rate 10−2.

(b) Initial learning rate 10−1 for
𝑄. Win learning rate 1/2 ⋅ 10−4.

(c) Initial learning rate 10−2 for
𝑄. Win learning rate 1/2 ⋅ 10−4.
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Figure 6.22: MBL-DPU in self-play on the RPS-5 game with different values for 𝜏 (1, 10, 20) or 𝑀
(1, 10−1, 20−1) equivalently; 𝜗 = 10−4; for 10 different initialisations. (See figure 6.1 for a detailed
explanation of the graphs.)

(a) 𝜏 = 1, 𝑀 = 1−1 (b) 𝜏 = 10, 𝑀 = 10−1 (c) 𝜏 = 20, 𝑀 = 20−1

Figure 6.23: MBL-DPU in self-play on the RPS-5 game with different values for 𝜏 (30, 35, 40) or
𝑀 (30−1, 35−1, 40−1) equivalently; 𝜗 = 10−4; for 10 different initialisations.

(a) 𝜏 = 30, 𝑀 = 30−1 (b) 𝜏 = 35, 𝑀 = 35−1 (c) 𝜏 = 40, 𝑀 = 40−1
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Figure 6.24: MBL-LC in self-play on the RPS-5 game with different values for 𝜏 (1, 10, 20) or
𝑀 (1, 10−1, 20−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations. (See figure 6.1 for a
detailed explanation of the graphs.)

(a) 𝜏 = 1, 𝑀 = 1−1 (b) 𝜏 = 10, 𝑀 = 10−1 (c) 𝜏 = 20, 𝑀 = 20−1

Figure 6.25: MBL-LC in self-play on the RPS-5 game with different values for 𝜏 (30, 35, 40) or 𝑀
(30−1, 35−1, 40−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations. (See figure 6.1 for a
detailed explanation of the graphs.)

(a) 𝜏 = 30, 𝑀 = 30−1 (b) 𝜏 = 35, 𝑀 = 35−1 (c) 𝜏 = 40, 𝑀 = 40−1
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Figure 6.26: FAQ in self-play on the RPS-5 game with different values for 𝜏 (1, 10, 20) or 𝑀 (1,
10−1, 20−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations.

(a) 𝜏 = 1, 𝑀 = 1−1 (b) 𝜏 = 10, 𝑀 = 10−1 (c) 𝜏 = 20, 𝑀 = 20−1

Figure 6.27: FAQ in self-play on the RPS-5 game with different values for 𝜏 (30, 35, 40) or 𝑀
(30−1, 35−1, 40−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations. (See figure 6.1 for a
detailed explanation of the graphs.)

(a) 𝜏 = 30, 𝑀 = 30−1 (b) 𝜏 = 35, 𝑀 = 35−1 (c) 𝜏 = 40, 𝑀 = 40−1
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Figure 6.28: WoLF-PHC in self-play on the RPS-5 game with different learning schedules; for 10
different initialisations.

(a) Initial learning rate 10−1 for
𝑄. Win learning rate 10−2.

(b) Initial learning rate 10−1 for
𝑄. Win learning rate 1/2 ⋅ 10−4.

(c) Initial learning rate 10−2 for
𝑄. Win learning rate 1/2 ⋅ 10−4.

Figure 6.29: MBL-DPU in self-play on the RPS-9 game with different values for 𝜏 (1, 10, 20) or 𝑀
(1, 10−1, 20−1) equivalently; 𝜗 = 10−4; for 10 different initialisations. (See figure 6.1 for a detailed
explanation of the graphs.)

(a) 𝜏 = 1, 𝑀 = 1−1 (b) 𝜏 = 10, 𝑀 = 10−1 (c) 𝜏 = 20, 𝑀 = 20−1
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Figure 6.30: MBL-DPU in self-play on the RPS-9 game with different values for 𝜏 (30, 35, 40) or
𝑀 (30−1, 35−1, 40−1) equivalently; 𝜗 = 10−4; for 10 different initialisations.

(a) 𝜏 = 30, 𝑀 = 30−1 (b) 𝜏 = 35, 𝑀 = 35−1 (c) 𝜏 = 40, 𝑀 = 40−1

Figure 6.31: MBL-LC in self-play on the RPS-9 game with different values for 𝜏 (1, 10, 20) or
𝑀 (1, 10−1, 20−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations. (See figure 6.1 for a
detailed explanation of the graphs.)

(a) 𝜏 = 1, 𝑀 = 1−1 (b) 𝜏 = 10, 𝑀 = 10−1 (c) 𝜏 = 20, 𝑀 = 20−1
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Figure 6.32: MBL-LC in self-play on the RPS-9 game with different values for 𝜏 (30, 35, 40) or 𝑀
(30−1, 35−1, 40−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations.

(a) 𝜏 = 30, 𝑀 = 30−1 (b) 𝜏 = 35, 𝑀 = 35−1 (c) 𝜏 = 40, 𝑀 = 40−1

Figure 6.33: FAQ in self-play on the RPS-9 game with different values for 𝜏 (1, 10, 20) or 𝑀 (1,
10−1, 20−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations. (See figure 6.1 for a detailed
explanation of the graphs.)

(a) 𝜏 = 1, 𝑀 = 1−1 (b) 𝜏 = 10, 𝑀 = 10−1 (c) 𝜏 = 20, 𝑀 = 20−1
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Figure 6.34: FAQ in self-play on the RPS-9 game with different values for 𝜏 (30, 35, 40) or 𝑀
(30−1, 35−1, 40−1) equivalently; 𝜗 = 5 ⋅ 10−3; for 10 different initialisations.

(a) 𝜏 = 30, 𝑀 = 30−1 (b) 𝜏 = 35, 𝑀 = 35−1 (c) 𝜏 = 40, 𝑀 = 40−1

Figure 6.35: WoLF-PHC in self-play on the RPS-9 game with different learning schedules; for 10
different initialisations. (See figure 6.1 for a detailed explanation of the graphs.)

(a) Initial learning rate 10−1 for
𝑄. Win learning rate 10−2.

(b) Initial learning rate 10−1 for
𝑄. Win learning rate 1/2 ⋅ 10−4.

(c) Initial learning rate 10−2 for
𝑄. Win learning rate 1/2 ⋅ 10−4.
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6.3.3 Three-player matching pennies

Further, we consider the behaviour of the MBL variants in comparison to FAQ learn-

ing and WoLF-PHC in a three-player Matching Pennies (3MP) game introduced in

[51], with payoffs as given in table 6.1. The similarity to the standard MP game be-

comes clear when one considers that the payoff structure reflects the following idea:

The first player wants to match the second player’s action. The second player wants

to match the third player’s action. However, the third player does not want to match

the first player’s action. The unique Nash equilibrium for 3MP is located at the centre

of Δ. Note that, as initially proposed, 3MP is not a zero-sum game.

Table 6.1: Payoff tuples for the three-player Matching Pennies (3MP) game with the first player’s
action determining the row, the second player’s action the column, and the third player’s action the
table.

H T
H (1, 1, −1) (−1, −1, −1)
T (−1, 1, 1) (1, −1, 1)

(a) Payoffs when the third player chooses ‘H’.

H T
H (1, −1, 1) (−1, 1, 1)
T (−1, −1, −1) (1, 1, −1)

(b) Payoffs when the third player chooses ‘T’.

In 3MP, both MBL variants (figures 6.36, 6.37) show apparently asymptotically

stable periodic limit behaviours, which approach the boundary of Δ as mutation di-

minishes. MBL-DPU not approaching the Nash equilibrium is to be expected, since

the Jacobian of (RD) has eigenvalues with positive real parts at the Nash equilibrium

and hence it is not an attracting mutation limit due to lemma 4.4.11.3 We further see

a very similar behaviour for FAQ (figure 6.38) with 𝜏−1 showing an analogous effect

to 𝑀 in MBL, quite similar to the two-player settings. Likewise, WoLF-PHC (figure

6.39) exhibits apparently asymptotically stable trajectories, at least in the projection

onto the first actions of the first two players. Again, WoLF-PHC shows a reduction

of variance over time, presumably due to diminishing learning rates. In [14], the au-

thors show that WoLF-PHC converges to the Nash equilibrium when 𝛿𝑙/𝛿𝑤 = 3 (as

opposed to 𝛿𝑙/𝛿𝑤 = 2). Since there is no established ODE approximation of WoLF-

PHC that we are aware of, the reasons for this remain unclear as acknowledged in

[14]. One should also note that we have made sure that the Nash equilibrium is not

located at the centre of Δ in the two-player games because the perturbation term in

FAQ has its equilibrium there and convergence might easily have been coincidental.

For 3MP, we have not made any such adaptations and some behaviours might change
3The eigenvalues in question are easily calculated as −1 and 1/2(1 ± 𝑖√3).
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when the Nash equilibrium is moved away from the centre.

Figure 6.36: MBL-DPU in self-play on the 3MP game with different values for 𝜏 (10, 20, 30) or
𝑀 (10−1, 20−1, 30−1) equivalently; 𝜗 = 10−4; for 10 different initialisations. (See figure 6.1 for a
detailed explanation of the graphs.)

(a) 𝜏 = 10, 𝑀 = 10−1 (b) 𝜏 = 20, 𝑀 = 20−1 (c) 𝜏 = 30, 𝑀 = 30−1

Figure 6.37: MBL-LC in self-play on the 3MP game with different values for 𝜏 (10, 20, 30) or
𝑀 (10−1, 20−1, 30−1) equivalently; 𝜗 = 10−4; for 10 different initialisations. (See figure 6.1 for a
detailed explanation of the graphs.)

(a) 𝜏 = 10, 𝑀 = 10−1 (b) 𝜏 = 20, 𝑀 = 20−1 (c) 𝜏 = 30, 𝑀 = 30−1
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Figure 6.38: FAQ in self-play on the 3MP game with different values for 𝜏 (10, 20, 30) or 𝑀 (10−1,
20−1, 30−1) equivalently; 𝜗 = 10−4; for 10 different initialisations.

(a) 𝜏 = 10, 𝑀 = 10−1 (b) 𝜏 = 20, 𝑀 = 20−1 (c) 𝜏 = 30, 𝑀 = 30−1

Figure 6.39: WoLF-PHC in self-play on the 3MP game with different learning schedules; for 10
different initialisations. (See figure 6.1 for a detailed explanation of the graphs.)

(a) Initial learning rate 10−1 for
𝑄. Win learning rate 10−2.

(b) Initial learning rate 10−1 for
𝑄. Win learning rate 1/2 ⋅ 10−4.

(c) Initial learning rate 10−2 for
𝑄. Win learning rate 1/2 ⋅ 10−4.
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6.4 Discussion

The results on MBL established here relate both variants to the broad literature on

mutli-agent reinforcement learning, in particular on Q-learning based variants. In

particular, these results address the important question of whether and, if so, when

Nash equilibria can be learned in a multi-agent setting. Although MBL-DPU shows

slower convergence in simple settings compared to MBL-LC, FAQ and WoLF-PHC,

it is also clear that it is among the simplest approaches and only slightly more com-

plex than Cross learning. Similar to FAQ and WoLF-PHC, the MBL variants require

agents neither to be able to observe and process others’ actions nor payoffs, a signifi-

cant distinction from, e.g., joint-action learning algorithms. Furthermore, its simplic-

ity allows us to precisely specify the relation to (RMD), which in turn allows a deeper

understanding of the behaviour of MBL-DPU in different settings and allows us to

employ methods from evolutionary game theory in the study of MARL algorithms in

a mathematically rigorous way. For instance, it is clear that hyperbolic equilibria

of (RD) will remain hyperbolic in (RMD) for small 𝑀 while neutrally stable equilib-

ria in zero-sum games tend to be stabilised by mutation, such that the behaviour of

MBL-DPU can be anticipated in specific situations.

This qualitative difference in understanding is illustrated by the results for the

RPS variants where the more complex algorithms are initially well-behaved, i.e., ap-

proach regions close to the Nash equilibrium, but for larger actions sets start exhibit-

ing more complex trajectories which do not approach the Nash equilibrium, while

MBL-DPU shows almost no qualitative changes in the larger RPS variants. In par-

ticular, due to the relation to (RMD), we can check whether MBL-DPU would not

converge for any choice of parameters, whereas it is difficult to decide, whether the

loss of convergence to the Nash equilibrium for MBL-LC, FAQ and WoLF-PHC is a

matter of principle or whether there are parameters to recover learning. This is illus-

trated in the 3MP game, where all algorithms fail to learn for the chosen parameters.

For concrete games it is however possible, e.g., to check the eigenvalues of the equilib-

ria in order to determine convergence of MBL-DPU, as opposed to the more complex

algorithms. For algorithms based on Q-learning, it is further important that at each

time point the Q-values are a reliable estimate for the current situation, which quickly

draws in questions from stochastic approximation theory addressed in [58].

In this sense, the results present an answer to the question of what the conceptu-
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ally simplest approach to MARL algorithms should contain in order for convergence

towards sensible equilibria to be rigorously guaranteed at least in some classes of set-

tings. This consideration of a conceptual lower bound, loosely speaking, is warranted

if one is interested in seeking a mathematically rigorous foundation and a general

understanding beyond experimental benchmark simulations.

6.5 Proofs of propositions 6.2.1 and 6.2.2

The proofs employ a result proved in [72, p. 118], which we state in the following and

then proceed to prove propositions 6.2.1 and 6.2.2.

6.5.1 A theorem on learning with small steps

The result from [72] we employ is phrased in the following situation: Let 𝐽 ⊂ ℝ>0 be

a parameter set with inf 𝐽 = 0 and 𝑁 ∈ ℕ, such that for every 𝜗 ∈ 𝐽, {𝑋𝜗𝑛 }𝑛≥0 ⊂ 𝐼𝜗 is

a Markov process with stationary probabilities and 𝐼𝜗 ⊂ ℝ𝑁 . We denote by 𝔼𝑥[𝑋𝜗𝑛 ]
the expected value of 𝑋𝜗𝑛 given 𝑋𝜗

0 = 𝑥. Let further 𝐼 be the minimal closed convex set

with ⋃𝜗 𝐼𝜗 ⊂ 𝐼. Define

𝐻𝜗𝑛 = Δ𝑋𝜗𝑛 /𝜗

and let 𝑤(𝑥,𝜗), 𝑆(𝑥,𝜗), 𝑠(𝑥,𝜗) and 𝑟(𝑥,𝜗) for (𝑥,𝜗) ∈ 𝐼 × 𝐽 be given as:

𝑤(𝑥,𝜗) = 𝔼[𝐻𝜗𝑛 |𝑋𝜗𝑛 = 𝑥] ∈ ℝ𝑁

𝑆(𝑥,𝜗) = 𝔼[(𝐻𝜗𝑛)2|𝑋𝜗𝑛 = 𝑥] ∈ ℝ𝑁×𝑁

𝑠(𝑥,𝜗) = 𝔼[(𝐻𝜗𝑛 − 𝑤(𝑥,𝜗))2|𝑋𝜗𝑛 = 𝑥] = 𝑆(𝑥,𝜗) − 𝑤2(𝑥,𝜗) ∈ ℝ𝑁×𝑁

𝑟(𝑥,𝜗) = 𝔼[‖𝐻𝜗𝑛‖3|𝑋𝜗𝑛 = 𝑥] ∈ ℝ .

where 𝑥2 = 𝑥𝑥𝑇 and ‖𝑥‖ = √𝑥𝑇𝑥 for 𝑥 ∈ ℝ𝑁 .

We can now state theorem 8.1.1 from [72, p. 118] (omitting part (C)):

Theorem 6.5.1 (Norman). In the above situation, let the following conditions be sat-

isfied:

The family of sets (𝐼𝜗)𝜗 satisfies

∀𝑥 ∈ 𝐼 ∶ lim
𝜗→0

inf
𝑦∈𝐼𝜗

‖𝑥 − 𝑦‖ = 0 . (a.1)
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There are functions 𝑤 and 𝑠 on 𝐼 such that:

sup
𝑥∈𝐼𝜗

‖𝑤(𝑥,𝜗) − 𝑤(𝑥)‖ ∈ 𝒪(𝜗) , (a.2)

sup
𝑥∈𝐼𝜗

‖𝑠(𝑥,𝜗) − 𝑠(𝑥)‖ → 0 for 𝜗 → 0 , (a.3)

where 𝒪 refers to the Bachmann–Landau notation.

The function 𝑤 is differentiable, i.e., there is a function 𝑤′ such that for all 𝑥 ∈ 𝐼:

lim𝑦→𝑥
𝑦∈𝐼

‖𝑤(𝑦) − 𝑤(𝑥) − 𝑤′(𝑥)(𝑦 − 𝑥)‖
‖𝑦 − 𝑥‖ = 0 . (b.1)

The function 𝑤′ is bounded:

sup
𝑥∈𝐼

‖𝑤′(𝑥)‖ < ∞ . (b.2)

The functions 𝑤′ and 𝑠 satisfy the Lipschitz condition:

sup
𝑥,𝑦∈𝐼,𝑥≠𝑦

‖𝑤′(𝑥) − 𝑤′(𝑦)‖
‖𝑥 − 𝑦‖ < ∞ , (b.3)

sup
𝑥,𝑦∈𝐼,𝑥≠𝑦

‖𝑠(𝑥) − 𝑠(𝑦)‖
‖𝑥 − 𝑦‖ < ∞ . (b.4)

The function 𝑟 is bounded:

sup
𝜗∈𝐽,𝑥∈𝐼𝜗

𝑟(𝑥,𝜗) < ∞ . (c)

Let further for 𝜗 ∈ 𝐽 and 𝑥 ∈ 𝐼𝜗, 𝜇𝑛(𝜗, 𝑥) = 𝔼𝑥[𝑋𝜗𝑛 ] and 𝜔𝑛(𝜗, 𝑥) = 𝔼𝑥[‖𝑋𝜗𝑛 −
𝜇𝑛(𝜗, 𝑥)‖2].

In this case, the following hold:

(A) 𝜔𝑛(𝜗, 𝑥) ∈ 𝒪(𝜗) uniformly in 𝑥 ∈ 𝐼𝜗 and 𝑛𝜗 ≤ 𝑇 for any 𝑇 < ∞.

(B) For any 𝑥 ∈ 𝐼, the differential equation

𝑓 ′(𝑡) = 𝑤(𝑓 (𝑡))

has a unique solution 𝑓 (𝑡) = 𝑓 (𝑡, 𝑥) with 𝑓 (0) = 𝑥. For all 𝑡 ≥ 0, we have 𝑓 (𝑡) ∈ 𝐼,

and

𝜇𝑛(𝜗, 𝑥) − 𝑓 (𝑛𝜗, 𝑥) ∈ 𝒪(𝜗)

uniformly in 𝑥 ∈ 𝐼𝜗 and 𝑛𝜗 ≤ 𝑇.

Remark 6.5.2. We note that parts (A) and (B) imply that for all 𝜀 > 0,

Pr(‖𝑋𝜗𝑛 − 𝑓 (𝑇, 𝑥)‖ > 𝜀) → 0

for 𝑛𝜗 → 𝑇, 𝜗 → 0, and given that 𝑋𝜗
0 = 𝑥 almost certainly for all 𝜗.
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6.5.2 Convergence of MBL-DPU

We restate the simple reinforcement-mutation rule of MBL-DPU, denoting the mixed

strategies with an upper-case 𝑋 to underscore that this is a random variable and

denoting the dependence on a parameter 𝜗, denoting the whole family of stochastic

processes as {(𝑋𝜗
𝑖ℎ(𝑛))𝑖,ℎ}𝑛≥0. Let 𝑈(𝑥) = (𝑈𝑖ℎ(𝑥))𝑖,ℎ be a discrete, non-negative

random variable whose probability distribution depends on 𝑥 ∈ 𝐼 with its support

being independent of 𝑥, and let 𝑀 < 𝑀 for some upper bound 𝑀 < ∞.

For an agent 𝑖 and a chosen strategy ℎ, the update rule then is given as follows:

𝑋𝜗
𝑖ℎ(𝑛 + 1) = 𝑋𝜗

𝑖ℎ(𝑛) + 𝜗 ((1 − 𝑋𝜗
𝑖ℎ(𝑛))𝑈𝑖ℎ(𝑋𝜗(𝑛))) + 𝜗𝑀 (𝑐𝑖ℎ − 𝑋𝜗

𝑖ℎ(𝑛))

𝑋𝜗
𝑖𝑘(𝑛 + 1) = 𝑋𝜗

𝑖𝑘(𝑛) + 𝜗 ((−𝑋𝜗
𝑖𝑘(𝑛))𝑈𝑖ℎ(𝑋𝜗(𝑛))) + 𝜗𝑀 (𝑐𝑖𝑘 − 𝑋𝜗

𝑖𝑘(𝑛)) for 𝑘 ≠ ℎ .
(6.5.1)

We can now show that this rule indeed approximates the replicator-mutator dy-

namics for 𝜗 → 0 in the sense of remark 6.5.2:

Proposition 6.5.3. There is 𝐽 such that the stochastic processes {(𝑋𝜗
𝑖ℎ(𝑛))𝑖,ℎ}𝑛≥0

given by (6.5.1) approximates the replicator-mutator dynamics for 𝜗 → 0 in the sense

of remark 6.5.2 if 𝑋𝜗(0) ∈ 𝐼 for all 𝜗 ∈ 𝐽.

Proof. The proof proceeds by showing that {(𝑋𝜗
𝑖ℎ(𝑛))𝑖,ℎ}𝑛≥0 satisfies the conditions

of theorem 6.5.1. For an agent 𝑖 and a chosen strategy ℎ, we have:

𝐻𝜗
𝑖ℎ(𝑛 + 1) = Δ𝑋𝜗

𝑖ℎ(𝑛 + 1)/𝜗 = (1 − 𝑋𝜗
𝑖ℎ(𝑛))𝑈𝑖ℎ(𝑋𝜗(𝑛)) + 𝑀(𝑐𝑖ℎ − 𝑋𝜗

𝑖ℎ(𝑛))

𝐻𝜗
𝑖𝑘(𝑛 + 1) = Δ𝑋𝜗

𝑖𝑘(𝑛 + 1)/𝜗 = −𝑋𝜗
𝑖𝑘(𝑛)𝑈𝑖ℎ(𝑋𝜗(𝑛)) + 𝑀(𝑐𝑖𝑘 − 𝑋𝜗

𝑖𝑘(𝑛)) for 𝑘 ≠ ℎ

Note that in this case, 𝐻𝜗
𝑖ℎ(𝑛+1) is independent of 𝜗 if 𝑋𝜗(𝑛) is given, which simplifies

the analysis. Let us set 𝑢𝑖ℎ(𝑥) = 𝔼[𝑈𝑖ℎ(𝑋𝜗(𝑛))|𝑋𝜗(𝑛) = 𝑥], where it is clear that

there is no dependence on 𝑛. Note that 𝑢 is polynomial in the components of 𝑥 and

hence smooth.

Condition (a.1): In our case, 𝐼 is given as the polyhedron ⨉𝑖 Δ𝑖 and 𝐼𝜗 = 𝐼 for all

𝜗 and thus condition (a.1) is satisfied. It remains to show that {(𝑋𝜗
𝑖ℎ(𝑛))𝑖,ℎ}𝑛≥0 ⊂ 𝐼.

Note that 𝑈𝑖ℎ is a discrete non-negative random variable and thus bounded by some

𝐶 < ∞. For 𝜗 < (𝐶 + 𝑀)−1, we have 𝜗𝑀 < 1. Assume that 𝑋𝜗
𝑖ℎ(𝑛) = 𝑥 ∈ 𝐼, then for

an agent 𝑖 and a chosen strategy ℎ we have

𝑋𝜗
𝑖ℎ(𝑛 + 1) = 𝑥𝑖ℎ + 𝜗 ((1 − 𝑥𝑖ℎ)𝑈𝑖ℎ(𝑛 + 1) + 𝑀(𝑐𝑖ℎ − 𝑥𝑖ℎ))

= 𝑥𝑖ℎ(1 − 𝜗𝑀) + 𝜗(1 − 𝑥𝑖ℎ)𝑈𝑖ℎ(𝑛 + 1) + 𝜗𝑀𝑐𝑖ℎ ≥ 0
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and for every other strategy 𝑘 ≠ ℎ, we have

𝑋𝜗
𝑖𝑘(𝑛 + 1) = 𝑥𝑖𝑘 + 𝜗 ((−𝑥𝑖𝑘)𝑈𝑖ℎ(𝑛 + 1) + 𝑀(𝑐𝑖𝑘 − 𝑥𝑖𝑘))

= 𝑥𝑖𝑘(1 − 𝜗(𝑈𝑖ℎ(𝑛 + 1) + 𝑀)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
<1

) + 𝜗𝑀𝑐𝑖𝑘 ≥ 0 .

A simple calculation shows that ∑𝑘 𝑋𝜗
𝑖𝑘(𝑛 + 1) = 1 if 𝑥 ∈ 𝐼. Thus we have that

{(𝑋𝜗
𝑖ℎ(𝑛))𝑖,ℎ}𝑛≥0 ⊂ 𝐼 if 𝑋𝜗(0) ∈ 𝐼 for all 𝜗 and we can choose 𝐽 = (0, (𝐶 + 𝑀)−1).

Conditions (a.2) & (a.3): Consider first the function 𝑤:

𝑤𝑖ℎ(𝑥,𝜗) = 𝐸[𝐻𝜗(𝑛)|𝑋𝜗(𝑛) = 𝑥]

= 𝑥𝑖ℎ(1 − 𝑥𝑖ℎ)𝐸[𝑈𝑖ℎ(𝑛 + 1)|𝑋𝜗(𝑛) = 𝑥] + 𝑥𝑖ℎ𝑀(𝑐𝑖ℎ − 𝑥𝑖ℎ)

+ ∑
𝑘≠ℎ

𝑥𝑖𝑘(−𝑥𝑖ℎ)𝐸[𝑈𝑖𝑘(𝑛 + 1)|𝑋𝜗(𝑛) = 𝑥] + 𝑥𝑖𝑘𝑀(𝑐𝑖ℎ − 𝑥𝑖ℎ)

= 𝑥𝑖ℎ
⎛⎜⎜
⎝

𝑢𝑖ℎ(𝑥) − ∑
𝑘

𝑥𝑖𝑘𝑢𝑖𝑘(𝑥)⎞⎟⎟
⎠

+ 𝑀(𝑐𝑖ℎ − 𝑥𝑖ℎ)

It is clear that 𝑤 does not depend on 𝜗 and that condition (a.2) is trivially satisfied.

Similarly, 𝑆(𝑥,𝜗) and 𝑠(𝑥,𝜗) do not depend on 𝜗 and condition (a.3) is trivially satis-

fied.

Conditions (b.1)–(b.4): Since the function 𝑢 is smooth, so is 𝑤. In particular, we

have that sup𝑥∈𝐼 ‖𝑤′(𝑥)‖ < ∞ because 𝐼 is compact and 𝑤′ is continuously differen-

tiable, from which follows that 𝑤′ satisfies the Lipschitz-condition (b.3) on 𝐼. Similarly,

𝑠 is smooth and satisfies (b.4).

Condition (c): Again, 𝑟 does not depend on 𝜗, and is smooth on 𝐼, which is compact.

Thus it is bounded on 𝐼 and condition (c) is satisfied.

As a consequence, we can apply theorem 6.5.1 to the family {𝑋𝜗(𝑛)}𝑛≥0 and with

remark 6.5.2 we have that for all 𝜀 > 0,

Pr(‖𝑋𝜗(𝑛) − 𝑓 (𝑇, 𝑥)‖ > 𝜀) → 0

for 𝑛𝜗 → 𝑇, 𝜗 → 0, and given that 𝑋𝜗(0) = 𝑥 for all 𝜗, where for all 𝑖 and ℎ, 𝑓 is the

unique solution to the differential equations

𝑓 ′
𝑖ℎ(𝑡) = 𝑤𝑖ℎ(𝑓 (𝑡)) = 𝑓𝑖ℎ(𝑡) ⎛⎜⎜

⎝
𝑢𝑖ℎ(𝑓 (𝑡)) − ∑

𝑘
𝑓𝑖𝑘(𝑡)𝑢𝑖𝑘(𝑓 (𝑡))⎞⎟⎟

⎠
+ 𝑀(𝑐𝑖ℎ − 𝑓𝑖ℎ(𝑡))

with 𝑓 (0) = 𝑥.

Proposition 6.5.4. Let 𝑥𝑀 be an equilibrium of (RMD) and 𝑈 an open neighbourhood

of 𝑥𝑀 . If 𝑥𝑀 is globally asymptotically stable, then there is 𝜗 > 0 such that the stochastic
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process {(𝑋𝜗
𝑖ℎ(𝑛))𝑖,ℎ}𝑛≥0 defined in (6.5.1) visits 𝑈 almost surely after finitely many

steps.

Proof. Let Φ𝑀(𝑥, ⋅) ∶ ℝ≥0 → Δ satisfy (RMD) with Φ𝑀(𝑥, 0) = 𝑥 for all 𝑥 ∈ Δ. Let

further 𝑈′ ⊂ 𝑈 such that ⋃𝑥∈𝑈′ 𝐵𝛿(𝑥) for some 𝛿 > 0, where 𝐵𝛿(𝑥) denotes an open

ball with radius 𝛿 around 𝑥. As 𝑥𝑀 is globally asymptotically stable, there is for each

𝑥 ∈ Δ a 𝑡′ < ∞ such that for all 𝑡 > 𝑡′: Φ𝑀(𝑥, 𝑡) ∈ 𝑈′.

This is because there is a neighbourhood 𝑉 ⊂ 𝑈′ of 𝑥𝑀 such that ∀𝑥0 ∈ 𝑉, 𝑡 >
0 ∶ Φ𝑀(𝑥0, 𝑡) ∈ 𝑈′ due to the Lyapunov stability of 𝑥𝑀 . Since 𝑥𝑀 is asymptotically

stable, for every 𝑥 there is a 𝑡 > 0 such that Φ𝑀(𝑥, 𝑡) ∈ 𝑉 and hence the solution will

remain in 𝑈′ afterwards.

Therefore, define 𝜏 ∶ Δ → ℝ such that:

𝜏(𝑥) = inf{𝑇 > 0 ∶ Φ𝑀(𝑥, 𝑇) ∈ 𝑉}

Since the RHS of (RMD) is continuously differentiable by assumption, it is also

Lipschitz continuous. Thus, Φ is continuous in the first argument and so is 𝜏 as the

following argument shows:

Let 𝑥 ∈ Δ and 𝜀1 > 0. Then there is 𝑡 > 𝜏(𝑥) such that Φ𝑀(𝑥, 𝑠) ∈ 𝑉 for 𝑠 ∈
(𝜏(𝑥), 𝑡]. Choose 𝑠 ∈ (𝜏(𝑥), 𝑡] such that |𝜏(𝑥) − 𝑠| < 𝜀1. Then Φ𝑀(𝑥, 𝑡) ∈ 𝑉 and

there is a neighbourhood 𝑈𝑥 of 𝑥 such that for all 𝑦 ∈ 𝑈𝑥, Φ𝑀(𝑦, 𝑠) ∈ 𝑉 . Hence

𝜏(𝑦) < 𝑠 < 𝜏(𝑥) + 𝜀1.

We also have 𝜏(𝑦) > 𝜏(𝑥)−𝜀1 due to the following: Consider 𝑑 ∶= inf{‖Φ𝑀(𝑥, 𝜏(𝑥)−
𝜀1) − 𝑣‖ ∶ 𝑣 ∈ 𝑉} > 0. Note that the Lipschitz condition implies that there is 𝐿 > 0
such that for all 𝑡 > 0 and all 𝑦 ∈ Δ

‖Φ𝑀(𝑥, 𝑡) − Φ𝑀(𝑦, 𝑡)‖ ≤ ‖𝑥 − 𝑦‖𝑒𝐿𝑡

and for all 𝑡 ∈ [0, 𝜏(𝑥) − 𝜀1]

‖Φ𝑀(𝑥, 𝑡) − Φ𝑀(𝑦, 𝑡)‖ ≤ ‖𝑥 − 𝑦‖𝑒𝐿(𝜏(𝑥)−𝜀1)

and w.l.o.g. we can assume that ∀𝑦 ∈ 𝑈𝑥, we have ‖𝑥 − 𝑦‖𝑒𝐿(𝜏(𝑥)−𝜀1) < 𝑑
2 . Thus we

have for all 𝑣 ∈ 𝑉

0 < 𝑑 ≤ ‖Φ𝑀(𝑥, 𝑡) − 𝑣‖ = ‖Φ𝑀(𝑥, 𝑡) − Φ𝑀(𝑦, 𝑡) + Φ𝑀(𝑦, 𝑡) − 𝑣‖

≤ ‖Φ𝑀(𝑥, 𝑡) − Φ𝑀(𝑦, 𝑡)‖ + ‖Φ𝑀(𝑦, 𝑡) − 𝑣‖

≤ ‖𝑥 − 𝑦‖𝑒𝐿(𝜏(𝑥)−𝜀1) + ‖Φ𝑀(𝑦, 𝑡) − 𝑣‖ < 𝑑
2 + ‖Φ𝑀(𝑦, 𝑡) − 𝑣‖
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and so for all 𝑦 ∈ 𝑈𝑥, we have inf{‖Φ𝑀(𝑦, 𝑡)−𝑣‖ ∶ 𝑣 ∈ 𝑉, 𝑡 ∈ [0, 𝜏(𝑥)−𝜀1]} ≥ 𝑑
2 > 0 and

thus 𝜏(𝑦) > 𝜏(𝑥) − 𝜀1. So 𝜏 is continuous on Δ. Let then 𝑇 ∶= sup𝑥∈Δ 𝜏(𝑥) < ∞. Note

that for all 𝑥 ∈ Δ we have that for all 𝑡 > 𝑇, Φ𝑀(𝑥, 𝑡) ∈ 𝑈′ and 𝐵𝛿(Φ𝑀(𝑥, 𝑡)) ⊂ 𝑈.

Let further 𝜂 > 0. Then with proposition 6.5.3, there are 𝜗 > 0, 𝑛𝜗 ∈ ℕ such that

for all 𝑥 ∈ Δ,

Pr(𝑋𝜗(𝑛𝜗) ∈ 𝐵𝛿(Φ𝑀(𝑥, 𝑇)) ⊂ 𝑈|𝑋𝜗(0) = 𝑥) > 𝜂

and so

Pr(𝑋𝜗(𝑛𝜗) ∈ 𝑈) > 𝜂.

From here it is easy to see that the first hit time of 𝑈 for {𝑋𝜗(𝑡)}𝑡∈ℕ0 is almost

surely finite, i.e., the earliest time 𝑡 for which 𝑋𝜗(𝑡) ∈ 𝑈: Let 𝑍(𝑘) ∶= 𝑋𝜗(𝑘𝑛𝜗) for

𝑘 ∈ ℕ0 and let 𝑆 be the first hit time of 𝑈 for {𝑍(𝑘)}𝑘∈ℕ0 , such that 𝑆 is a random

variable with values in ℕ0 ∪ {∞}. Clearly the first hit time of 𝑈 for {𝑋𝜗(𝑡)}𝑡∈ℕ0 is

smaller than for {𝑍(𝑘)}𝑘∈ℕ0 .

We have that for all 𝑧 ∈ Δ and all 𝑘 ∈ ℕ:

Pr(𝑍𝑘+1 ∈ 𝐵𝛿(Φ𝑀(𝑧, 𝑇)) ⊂ 𝑈|𝑍𝑘 = 𝑧) > 𝜂

and hence

Pr(𝑍𝑘+1 ∈ 𝑈) > 𝜂.

Then we have for 𝑆,

Pr(𝑆 ≤ 𝑘 + 1) = Pr(𝑆 ≤ 𝑘) + (1 − Pr(𝑆 ≤ 𝑘)) Pr(𝑍𝑘+1 ∈ 𝑈) > Pr(𝑆 ≤ 𝑘)(1 − 𝜂) + 𝜂

and a quick induction argument yields

Pr(𝑆 ≤ 𝑘 + 1) > 1 − (1 − 𝜂)𝑘(1 − (1 − 𝜂) Pr(𝑆 = 0))

The probability of a finite hitting time is then:

Pr(𝑆 ∈ ℕ0) = lim
𝑘→∞

Pr(𝑆 ≤ 𝑘 + 1) ≥ 1 − lim
𝑘→∞

(1 − 𝜂)𝑘(1 − (1 − 𝜂) Pr(𝑆 = 0)) = 1

In particular, the hitting time of 𝑈 for {𝑋𝜗(𝑡)}𝑡∈ℕ0 is finite almost surely.

It immediately follows that:

Corollary 6.5.5. If 𝑥𝑀 is a globally asymptotically stable equilibrium of (RMD) and

𝑈 an open neighbourhood of 𝑥𝑀 , then there is 𝜗 > 0 such that the stochastic process

{𝑋𝜗(𝑛)}𝑛≥0 defined in (6.5.1) visits 𝑈 infinitely often almost surely.
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Proof. Consider for any finite 𝑡′ ∈ ℕ0 the probability that {𝑋𝜗(𝑛)}𝑛≥0 will not visit 𝑈
afterwards. This is clearly the same as the probability that the process {𝑍𝜗(𝑛)}𝑛≥0

induced by (6.5.1) and starting in 𝑋𝜗(𝑡′), i.e., 𝑍𝜗(0) = 𝑋𝜗(𝑡′) almost surely, will

not visit 𝑈 at all. The previous proposition shows that this probability is 0, which

concludes the proof.
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7 Discussion

The present thesis has striven to formulate a common perspective on evolutionary

and learning dynamics in multi-agent settings and to demonstrate that a common

perspective can help in furthering the understanding of the parallels and the differ-

ences of these. Besides the formal correspondence between the evolution of interact-

ing populations and the evolution of players’ mixed strategies, we have shown that

evolutionary dynamics can indeed provide a sensible foundation for learning algo-

rithms. Similar ideas have been explored with respect to Cross learning and the un-

perturbed multi-population (RD) in [13]. However, we are not aware of attempts to

provide rigorous results regarding the stability of multi-population (RD) in order to

enable the study of convergence in corresponding multi-agent reinforcement learning

algorithms nor of attempts to formulate learning in artificial neural networks in the

language of evolutionary game dynamics. Understanding the stability properties and

limitations of the unperturbed (RD) also helps to understand the inevitable difficulties

which Cross learning encounters in simple games already, e.g., when the only Nash

equilibrium is in the interior, in which case there can be no asymptotic stability of

the equilibrium. The proof ideas for this as well as the general ideas of evolution have

pointed towards the significant effect mutation has in this respect. An often used

approach in evolutionary game theory is to assume that we can make a separation of

time-scales between mutation and selection, where we assume that selection happens

faster than mutation such that individuals are perfect replicators. We have consid-

ered how relaxing this assumption affects the stability properties of the dynamics.

In particular, we have derived from the general replicator-mutator equation [77] an

infinite background-fitness formulation in which selection and mutation become addi-

tive. Our further assumption of memoryless mutation has led to mutation becoming a

linear perturbation on the multi-population replicator dynamics. These assumptions

have allowed us to study the dependence of the dynamics on the choice of mutation

parameters and to prove that certain properties are independent of this choice, i.e.,

to prove the existence of mutation limits. Further, we have formulated the concept
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of attracting mutation limits relating the equilibria of the unperturbed (RD) to the

stability properties of the mutation equilibria under a range of mutation parameters,

i.e., any choice of 𝑐 ∈ Δo and for every positive 𝑀 in some open interval around 0. We

were further able to demonstrate that this setting allows us to prove the existence of

attracting mutation limits for all two-player zero-sum games and for all 2 × 2 games,

including such with non-linear fitness functions.

The explicit consideration of mutation has enabled us to strengthen the relation

between evolutionary dynamics and learning by exploiting the relation between (RD)

and Cross learning and formulating the MBL algorithm as a parallel to (RMD) and we

proved that MBL-DPU is describable by (RMD) in a precise sense. This and the ana-

lytical results regarding stability allowed us to compare MBL-DPU in numerical ex-

periments to other well-known MARL algorithms, which perform well in certain cases

but lack the theoretical guarantees we have established for MBL-DPU. The signifi-

cance of these guarantees was demonstrated by the deterioration of the performance

of the other algorithms in the RPS-5 and RPS-9 settings, in which MBL-DPU contin-

ued to show the theoretically predicted behaviour. Furthermore, a simple eigenvalue

analysis of the Nash equilibrium of the three-player MP game in (RD) would show that

the Jacobian of (RD) has eigenvalues with positive real parts at the Nash equilibrium

and hence is not an attracting mutation limit. Therefore, convergence of MBL-DPU

towards the Nash equilibrium should not be expected and does indeed not occur. This

systematic relation between a mathematically tractable ODE system and the learn-

ing algorithm is not given for FAQ or WoLF-PHC and hence it is not clear to what

to attribute their behaviour and to anticipate how these would behave in a range of

situations.

Overall, we have shown that evolutionary processes can be qualitatively sensitive

to assumptions about mutation—and we have imposed some assumptions ourselves

where the sensitivity of results on these assumptions is still an open question. Given

that evolutionary game theoretical approaches are used to study a large variety of

phenomena including the emergence of cooperation, conflict or multi-cellularity, it

seems important to point out that the models employed can yield qualitatively dif-

ferent outcomes when strong assumptions are relaxed only slightly. Of course, the

present results were obtained under a number of assumptions, e.g., frequency de-

pendent selection, specific mutation mechanisms, a focus on interspecific interactions

which are independent of intraspecific effects and asexual reproduction among oth-
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ers. Where such assumptions are appropriate for biological populations, the present

results imply that even simple mutation can have a significant effect on the long-

term evolution of populations. In such settings, the deterministic fitness value of a

trait might be thought of as the expected reproductive output of individuals with that

trait, resulting from stochastic discrete interactions given the current population com-

positions. A more complex population structure, e.g., accounting for life stages, would

require a suitable extension of the current formulation and the results should not be

expected to translate to such a setting without considerable effort, if at all, due to the

fact that we assume no intraspecific effects. This would probably be violated by addi-

tional life stage transition dynamics resulting in a different dynamics, e.g., as derived

in [3]. If life stages remain simple and interactions happen only at one stage, there

is hope of simplifying the dynamics. However, this should still be expected to result

in a system of delay-differential equations structurally sufficiently distinct from the

system considered here. Although, depending on the specific structure, some results

or techniques might be translatable.

We have further illustrated the benefits of considering evolutionary processes and

learning processes side-by-side and establishing formally rigorous relations between

idealised ODE models and discrete stochastic processes as they inevitably arise in

computational settings. This side-by-side consideration illustrates the parallels be-

tween the role of mutation in evolutionary processes and that of exploration in dy-

namic programming algorithms, such as reinforcement learning, showing a similar

trade-off between accuracy and convergence. Overall, these results demonstrate that

such a common perspective can indeed be fruitful and beneficial for both areas of in-

quiry. It should be noted, of course, that this common perspective is an abstract one

and does not imply that an actual biological process of natural selection occurs when

individual organisms learn. It is rather highlighting that both, reinforcement learn-

ing and natural selection, can be modelled by differential increases of the probability

masses of game theoretic strategies resulting from interaction outcomes.

Additionally, analysis of the replicator-mutator dynamics has shown that there

are at least formal parallels with so-called interior-point methods in constrained op-

timization, also known as barrier methods. In particular, the mutation strength 𝑀
resembles the duality gap in interior-point methods (IPMs). It would therefore be sen-

sible for future research to specify the relation between (RMD) and MBL-DPU on the

one hand and IPMs on the other hand. In particular, IPMs have a well established
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theory of when they converge and well-established schedules for the reduction of the

duality gap. As we have seen, reducing 𝑀 leads to the mutation equilibrium moving

closer to the Nash equilibrium, but reducing it too quickly slows down convergence

unnecessarily. In this respect, the results and methods related to duality gap reduc-

tion schedules in IPMs can provide a guideline for sensible reduction schedules for 𝑀
in MBL-DPU.

Finally, a main motivation for the present analyses is the study of the evolution of

interaction networks and in particular the evolution of network topologies induced by

population strategies. Therefore, the explicit consideration of more complex strate-

gies, in particular with state dependencies, is a main area of further development of

the present approach. We have preliminarily considered interacting populations at

the beginning of this thesis. Although we have not further specified such interactions

in the formulation of the replicator-mutator dynamics, we have taken care to keep the

formulation general enough to include multiple interacting populations and to include

potential dependencies of strategies on observed actions of other players. Any future

analysis including an explicit dependence of strategies will significantly benefit from

the results we have obtained, allowing us to approach the study of evolving topologies.

A main question in specifying an appropriate setting for this analysis is which formu-

lation of such dependencies will indeed result in a replicator or replicator-mutator

dynamics. Regarding the applicability of this approach to learning in artificial neural

networks, it will be of particular interest to exploit the properties of potential games,

since it is to be expected that there is only very limited antagonism between neurons

in neural networks. This will provide a contrast to the purely antagonistic settings

we have considered in the present thesis as a kind of worst-case setting.
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