

City, University of London Institutional Repository

Citation: Nuseibeh, B., Kramer, J. and Finkelstein, A. ORCID: 0000-0003-2167-9844
(1993). Expressing The Relationships Between Multiple Views In Requirements
Specification. In: ICSE '93: Proceedings of the 15th international conference on Software
Engineering. (pp. 187-196). Washington, USA: IEEE Computer Society Press. ISBN
0897915887

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26490/

Link to published version: http://dx.doi.org/10.5555/257572.257610

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

 - 1 -

Proceedings of 15th International Conference on Software Engineering, Baltimore, USA, May 1993, IEE CS Press (to appear)

Expressing the Relationships Between Multiple
Views in Requirements Specification

Bashar Nuseibeh Jeff Kramer Anthony Finkelstein

Department of Computing, Imperial College
180 Queen’s Gate, London, SW7 2BZ, UK

Email: {ban, jk, acwf}@doc.ic.ac.uk.

Abstract
Composite systems generally comprise heterogeneous

components whose specifications are developed by many
development participants. The requirements of such
systems are invariably elicited from multiple perspectives
which will overlap, complement and contradict each
other. If these requirements are developed and specified
using multiple methods and notations respectively, then it
is necessary to express and check the relationships between
the resultant specification fragments.

In this paper we deploy multiple “ViewPoints” that hold
partial requirements specifications, described and
developed using different representation schemes and
development strategies. We discuss the notion of inter-
ViewPoint communication in the context of this ViewPoints
framework, and propose a general model for such
communication. We elaborate on some of the
requirements for expressing and enacting inter-ViewPoint
relationships, and use fragments of the requirements
specification method CORE to illustrate our model.

1. Introduction

1.1. Motivation
Heterogeneity is inevitable in most composite systems

of significant size, and no single development process
and representation will be sufficient for their
development. This is particularly true of the requirements
engineering phase of the software development life-cycle.
Requirements engineering encompasses activities ranging
from requirements analysis and elicitation to specification,
conflict resolution and validation. Even a single activity
such as requirements elicitation, is likely to deploy
multiple development participants who will hold multiple
perspectives of a single domain.

This heterogeneity of representations and processes
poses challenging research problems of integration: (1)
the integration of the methods used to specify system
requirements, (2) the integration of the tools that support
these methods, and (3) the integration of the multiple
specification fragments produced by applying these
methods and tools. By deploying “ViewPoints” that
encapsulate partial specifications with the development
techniques by which they are produced, a framework is in
place within which the problems of integration outlined

above may be addressed. Moreover, experience has
shown that the difficulties of expressing and enacting the
relationships between multiple ViewPoints need to be
resolved, before integration in this setting may be
achieved.

1.2. ViewPoints
We have used the term “multiple perspectives

problem” [15] to describe the class of problems
surrounding the development of composite systems [12]
by many development participants who deploy sundry
representation schemes, use a variety of development
strategies and hold diverse domain knowledge. We have
also proposed an object-based framework deploying
ViewPoints within which the above problems may be
tackled [15]. Issues relating to conflict resolution [10]
negotiation and dialogue [14], configuration
programming [24] and tool support [20, 21, 34] have
already been examined within this framework.

The term “viewpoint” has been defined and deployed
in a variety of settings in software engineering,
particularly in the domain of requirements engineering;
e.g., [23], [25], [31] and [38]. In our framework, we have
attempted to generalise and formalise the definition of a
viewpoint to facilitate its manipulation for composite
system development. The definition draws together the
notion of ‘actor’, ‘knowledge source’, ‘role’ or ‘agent’
with the notion of a ‘view’ or ‘perspective’ held by the
former. Thus, we define a ViewPoint to be a loosely-
coupled, locally managed object encapsulating
representation knowledge, development process
knowledge and partial specification knowledge about a
system and its domain. This knowledge is assigned to five
ViewPoint slots (figure 1):

• the style slot, in which the representation scheme
used by the ViewPoint is described,

• the work plan slot, in which the development actions,
process and strategy of the ViewPoint are described,

• the domain slot, which describes the area of concern
of the ViewPoint with respect to the overall system
under development,

• the specification slot, which describes the ViewPoint
domain in the notation described in the style slot - and

 - 2 -

developed using the strategy described in the work
plan slot, and

• the work record slot, in which the development state
and history of the ViewPoint specification is
maintained (in terms of the work plan actions
performed). It is the vehicle by which traceability (to
and from requirements) may be achieved.
A ViewPoint Template is a ViewPoint ‘type’ in which

only the style and work plan slots have been elaborated.
A ViewPoint template, when instantiated, yields a
ViewPoint - which can then be elaborated to produce a
specification for a particular domain. A ViewPoint
template is therefore a reusable description of a
development technique (notation and process) which may
be instantiated many times to produce many ViewPoints.
A software engineering method in this context is then a
collection or configuration of ViewPoint templates and
their relationships, that together constitute the
development techniques deployed by the method.

A ViewPoint owner is responsible for enacting the
process model of a ViewPoint which appears in its work
plan. ViewPoint owners are normally, but not always,
human development participants. A non-human
ViewPoint owner may be some form of ‘intelligent’ tool
or expert system for example.

SPECIFICATION
= partial system description

WORK RECORD
= development history

DOMAIN
= area of concern

WORK PLAN
= development process

STYLE
= notation

Representation Knowledge

Development Knowledge

Specification Knowledge

Figure-1: The five slots of a ViewPoint.

1.3. Scope of Paper
In attempting to integrate multiple requirements

specification ViewPoints, overlaps must be identified and
expressed, complementary participants made to interact
and cooperate, and contradictions resolved. In this paper,
we address the notion of inter-ViewPoint communication
as a vehicle for ViewPoint integration. The
communication model we present straddles both the
method construction stage during which inter-ViewPoint
relationships are expressed, and the method application
stage during which these relationships are enacted
(checked). We illustrate the model by constructing part of
the requirements specification method CORE [30, 31, 42],
and applying it to specify a simple problem.*

* Since CORE uses the term “viewpoint” as part of its
terminology, we substitute the term “agent” in its place to
avoid the clash in nomenclature.

We argue that successful inter-ViewPoint
communication - guided by a model of the development
process - holds the key to achieving integration in a
heterogeneous, possibly distributed, setting. Thus, there is
a need to express relationships between ViewPoints,
enact these relationships (e.g., check consistency and
transfer information), and resolve conflicts (if and when it
is necessary to do so).

Although we examine the application of ViewPoints
for requirements specification, we further argue that
requirements engineering from multiple perspectives,
multiparadigm specification [46] and multiparadigm
programming [29], are all facets of the same generic
(multiple perspectives) problem.

The next section of the paper describes the method
construction process within the ViewPoint framework,
which is followed by a description of how requirements
methods are used to develop requirements specifications
in this context. A model of inter-ViewPoint
communication is then presented and illustrated using the
examples introduced in the preceding two sections.
Finally, overlapping and related research work is
presented, some conclusions are drawn, and an agenda
for further research is outlined.

2. ViewPoint-Oriented Method
Construction

Like most methods, the requirements specification
method CORE, comprises a number of development
stages which deploy a number of different representation
schemes. These stages are used to incrementally and
iteratively produce a system requirements specification. In
ViewPoints terminology, CORE: the method may be
described using a number of ViewPoint templates. Since
each stage in CORE deploys a single, simple
representation scheme, one way to describe CORE would
be to describe each stage as a single ViewPoint template.
Figures 2 and 3 are sample, informal ViewPoint template
descriptions of the agent structuring (AS) and the tabular
collection (TC) stages of CORE, respectively. These stages
support problem decomposition into an agent hierarchy
and agent elaboration in a tabular form respectively (see
§3 for a domain-specific example of each). For simplicity,
the style slot of each template is described in terms of
objects and relations, each having attributes with types and
values . A BNF description may be more appropriate for
text-based notations.

In describing the work plan slot, four generic
categories of development actions are identified. The
assembly actions are those basic actions required to build
(assemble) a specification in the current representation
style. In-ViewPoint check actions are those actions that can
be performed to check that a specification is syntactically
consistent. Inter-ViewPoint check actions, are those
actions that can be performed to check the consistency
between (overlapping or interacting) specifications
residing in different ViewPoints. These actions may also
be used to transfer information between ViewPoint

 - 3 -

Object: Agent

Attributes Types Values

Name
Identifier
Icon

String
Integer
Bitmap

Relation Part-of(Agent, Agent)

Attributes Types Values

Icon Bitmap

STYLE

Assembly Actions: add(Agent), remove(Agent),
connect(Agent, Agent, Part-of), disconnect(Agent, Agent,
Part-of)
In-ViewPoint Check Actions: all-agents-connected,
each-child-has-parent, no-name-clashes, ...
Inter-ViewPoint Check Actions: For each agent in the
agent hierarchy there must be one ViewPoint instantiated
from a TC template, ...
ViewPoint Trigger Actions: For each leaf agent create
a new ViewPoint instantiated from a TC template, ...

WORK PLAN

Figure-2: An informal description of CORE’s agent
structuring (AS) ViewPoint template.

Object: Source

Attributes Types Values

Name
Icon

String
Bitmap

Relation Connected-to(Object, Object)

Attributes Types Values

Icon Bitmap

STYLE

Object: Output

Object: Input

Object: Destination

Object: Action

Assembly Actions: add(Source), remove(Source), add(Input),
remove(Input), ..., connect(Source, Input, Connected-to),
disconnect(Source, Input, Connected-to), ...
In-ViewPoint Check Actions: all-sources-connected-to-inputs,
all-inputs-connected-to-actions, no-actions-name-clashes, ...
Inter-ViewPoint Check Actions: every Source or Destination
in a tabular collection diagram has a corresponding agent with
the same name in the agent hierarchy, the Output produced by
one agent in a tabular collection diagram must be consumed as
an Input in the tabular collection diagram another agent, ...
ViewPoint Trigger Actions: Create a ViewPoint instantiated
from an AS template if one does not already exist, ...

WORK PLAN

Attributes Types Values

Name
Icon

String
Bitmap

Attributes Types Values

Name
Icon

String
Bitmap

Attributes Types Values

Name
Icon

String
Bitmap

Attributes Types Values

Name
Icon

String
Bitmap

Figure-3: An informal description of CORE’s tabular
collection (TC) ViewPoint template.

specifications. It is particularly challenging to describe
inter-ViewPoint relationships in a generic manner, more
so if the two ViewPoint specifications being related use
representation styles with different underlying data
models or schemas. ViewPoint trigger actions must be
performed in order to create new ViewPoints (i.e.,
instantiate ViewPoint templates) ‘on-the-fly’. These
actions are normally performed as a consequence of one
of the other development actions; e.g., adding an agent in
an agent hierarchy should trigger the creation of a new
ViewPoint for that agent, instantiated from the tabular
collection template.

What the work plans in figures 2 and 3 do not show
are the process models or process descriptions that may
be used to guide a ViewPoint owner in building a
ViewPoint specification. A “precondition → [A c t i on]
postcondition” notation [6] may be used to describe such
process models; e.g.,

empty-spec → [Assembly Actions] spec.
spec → [Assembly Actions] spec.
spec → [In-ViewPoint Check Actions]

(consistent-in-VP-spec ∨ spec).
consistent-in-VP-spec → [Inter-ViewPoint Check Actions]

(consistent-inter-VP-spec ∨ spec).
consistent-inter-VP-spec → [] end.

Furthermore, each ViewPoint work plan may deploy
its own particular process modelling or process
programming [35] language to elaborate its individual
specification development process. Other process
modelling languages may also be used such as the visual
software process language proposed in [40] or the RADs
used by [36].

The use of multiple ViewPoints also allows individual
ViewPoint development processes to be modelled at
different levels of granularity, to provide the appropriate
level of guidance for different developers [16]. Process
integration [27] however, which in our setting means the
integration of multiple process models to produce an
overall, coherent development process, remains a
problematic research area. In [2], one technique for such
integration is proposed, based on a concurrency control
mechanism developed for a co-operative software
development environment.

 - 4 -

Library World

v0

Library

v1

Staff

v2

Borrowers

v3

Administrator

v21

Librarian

v22

Catalogue

v4

WORK PLAN
Assembly Actions
In-ViewPoint Actions
Inter-ViewPoint Actions
ViewPoint Trigger Actions
+ Process Model Description

Agent structuring notation definition

SPECIFICATION

WORK RECORD

DOMAIN

add(Library World), add(Library), add (staff),
connect(Library World, Library, Part-of),
add(Borrower), connect(Library, Staff, Part-of),
connect(Library World, Borrower, Part-of), ...

Library World

STYLE

Figure-4: A sample ViewPoint instantiated from an
agent structuring ViewPoint template.

Finally, ViewPoint development process models may
be partly described by precise inconsistency handling
rules, that specify how to act in the presence of
inconsistency [17]. These rules may therefore be used to
drive the development process both within and between
individual ViewPoints.

3. ViewPoint-Oriented Requirements
Specification

Once a requirements method has been constructed, it
may then be deployed to specify system requirements.
Problem-specific ViewPoints may be created by
instantiating the appropriate ViewPoint templates, and
their ViewPoint specifications developed by following the
individual ViewPoint work plans. The result of this
development process is a collection or configuration of
ViewPoints which together form the total system
requirements specification. At any point during
development the different ViewPoint specifications may
be overlapping and/or inconsistent with each other. This
inconsistency is tolerated by the ViewPoints approach
and not checked or corrected as a matter of course, but
invoked on a “check-when-needed” basis. Integrity
checking may only be appropriate at specific stages of the
development life-cycle and detection of inconsistency
may not require immediate resolution, but left for later
action, or even not resolved at a particular stage at all.
This approach to consistency checking is developed
further in [18] who argue for “making inconsistency
respectable”, and develop a logic-based framework in
which “INCONSISTENCY implies ACTION”. In [17] we explore
the applicability of this inconsistency handling technique
in the context of the ViewPoint framework.

Example
The first graphical stage in CORE, agent structuring

(AS), identifies the information processing entities (agents)
in the problem domain, and arranges them in a hierarchy.
The relation between child and parent in the hierarchy is
that child is a “part-of” parent. In specifying a library
system for example, the root of an agent hierarchy might
be “Library World”. This is then decomposed into its
constituent agents, which may then be decomposed
further and so on. Thus we may build a ViewPoint
instantiated from the AS template for the domain “Library
World” and with the specification shown in figure 4. The
work record lists the work plan actions that were
performed to produce the specification in its current state.
The work record actions may be meaningfully annotated
to provide a development rationale for the specification.

At this or any point in-ViewPoint actions may be
performed to check that the specification of the ViewPoint
in figure 4 follows the syntactic rules imposed on its
representation style. Inter-ViewPoint actions may also be
performed, but no other ViewPoints have been created in
this example as yet. Performing ViewPoint trigger actions
on the other hand causes the instantiation of the tabular
collection template, once for each of the leaf agents in the
agent hierarchy (as specified in the ViewPoint trigger

actions section of the work plan of the AS template in
figure 2). Thus from the agent hierarchy in figure 4, five
further ViewPoints (one for each leaf agent in the
hierarchy) containing blank specifications (tables) are
created. Each may then be developed separately by their
ViewPoint owner who enacts their individual work plans.
One such tabular collection ViewPoint (for the ‘Borrower’
agent) in which some assembly actions have been
performed is shown in figure 5.

It is again possible at this point to perform any of the
ViewPoint’s work plan actions. One of the inter-
ViewPoint actions for example, checks that every source
and destination in the tabular collection specification is a
named agent shown in the agent hierarchy in the AS
ViewPoint. This check was specified textually in the inter-
ViewPoint check actions section of the work plan of the
TC template in figure 5. If such a check fails, then some
form of conflict resolution strategy must be employed in
order for the check to succeed. Conflict resolution for this
check in particular, implies that either a new agent must
be added to the agent hierarchy specification in the AS
ViewPoint, or the inconsistent source or destination must
be renamed or removed from the specification of the TC
ViewPoint. Approaches to conflict resolution in the
ViewPoints context have been examined in [10], and a
model of conflict resolution proposed.

Although it is possible, in principle, to perform any of
the generic work plan actions at anytime during
specification development, each ViewPoint process

 - 5 -

WORK PLAN
Assembly Actions
In-ViewPoint Actions
Inter-ViewPoint Actions
ViewPoint Trigger Actions
+ Process Model Description

SPECIFICATION

WORK RECORD
add(Library), add(Borrower), add(publication),
connect(Library, publication, Connected-to),
connect(Borrower, publication, Connected-to),
add(check out), add(check in), ...

Source Input Action Output Destination

Library publication check out

check in Library

Borrower

Borrower

SPECIFICATION

publication

DOMAIN
Borrower

Tabular collection notation definition
STYLE

Figure-5: A sample ViewPoint instantiated from a
tabular collection ViewPoint template.

Inter-ViewPoint Rule
DEFINITION

Inter-ViewPoint Rule
INVOCATION

Inter-ViewPoint Rule
APPLICATION

ViewPoint
Trigger Action

Inter-ViewPoint
Relationship Holds

New ViewPoint(s)

No
Destination
ViewPoint

success fail

Conflict Resolution

Method
Construction

M
et

h
o

d
 U

se

Figure-6: A model of inter-ViewPoint communication
activities. A labelled arrow indicates a precondition for
the next step to be performed.

model should prescribe when and under what
circumstances it is appropriate to do so. For example, it
would be unreasonable in most cases to perform inter-
ViewPoint checks between two ViewPoint before the in-
ViewPoint consistency of at least one of the two
ViewPoints has been checked and established.

4: Inter-ViewPoint Communication
Heterogeneity of notations, processes and

specifications inevitably poses problems of integration.
Within the ViewPoints framework, the relationships
between ViewPoints need to be expressed, so that they
may then be used to check consistency, transfer and
transform information between ViewPoint specifications.
Thus, there is a need to define inter-ViewPoint rules that
describe these relationships, specify when they may be
invoked and how they should be applied. These activities
straddle the processes of ViewPoint-oriented method
construction and ViewPoint-oriented requirements
specification. They are generic in the sense that they make
no comment about how inter-ViewPoint rules are
represented or about the mechanisms for invoking and
applying them. They are shown schematically in figure 6.

4.1. Step 1: Inter-ViewPoint Rule Definition
Inter-ViewPoint rules are defined in ViewPoint

template work plans and thus describe relationships
between ViewPoints that have not yet been created. They
are of the general form:

∀ VPS , ∃ VPD such that VPS ℜ VPD

where VPS is the source ViewPoint in which the rule
resides, and VPD is the destination ViewPoint with which

the relation ℜ holds. The broken lines in figure 7a
illustrate the status of inter-ViewPoint rules at the
definition stage of the model. They relate hypothetical
ViewPoints, VPS and VPD , with a hypothetical

relationship, ℜ - that is, they express what the method
designer decides are the relationships between
ViewPoints instantiated from particular ViewPoint
templates. Their inclusion in the individual ViewPoint
templates enhances the loose coupling and local
management of each ViewPoint, which in turn facilitates
the deployment of ViewPoints in a distributed
environment.

Say for example we wish to write an inter-ViewPoint
rule for the tabular collection stage of CORE which asserts
that every source in a tabular collection diagram must be
a named agent in the agent hierarchy. This rule makes a
statement about every source in a tabular collection
diagram, and can therefore be defined in the ViewPoint
template describing tabular collection (TC). Furthermore, it
requires information defined in the agent structuring (AS)
ViewPoint template, and therefore will require information
outside the boundaries of the ViewPoint in which it is
defined in order to get this information. What is thus
required is a means of identifying the ViewPoint from
which this information will be obtained. Since there is no
prior knowledge of what ViewPoints will be created
during specification, the only way to identify a ViewPoint
is by specifying the template from which it will be
instantiated, and perhaps the domain with which it will be
concerned. Thus, a ViewPoint can be identified at rule
definition time by a tuple:

VP(t, d)
where t specifies the template from which the ViewPoint

 - 6 -

Note on notation: A dot (.) in the rules above
separates (from left to right) relations, objects,
attributes and values. For example, the term

Object1.Attribute1

reads “the value of Attribute1 of Object1”. While:

Relation(Object1, Object2).Object1.Attribute1

reads “the value of Attribute1 of Object1 in the
Relation(Object1, Object2)”. Other terms include:

Relation1(Object1, Object2).Attribute1
(the value of Attribute1 of Relation1)

and:

Object1.Attribute1.25
(the value ‘25’ for the Attribute1 of Object1)

will be instantiated,

and d ∈ { Dp , Da , Ds , Dd }

where,

Dp refers to a particular (named) domain,
Da refers to any domain not known at template

construction time,
Ds refers to the same domain as the current ViewPoint (if

applicable),
Dd refers to a different domain from the current

ViewPoint (if applicable).

Therefore, the general form of an inter-ViewPoint rule may
be rewritten as:

partial_specification_1 ℜ VP(t, d): partial_specification_2

where the partial_specification_1 describes a partial
specification in the ViewPoint, VPS, created from the
template in which the rule is defined, and which therefore
does not require a ViewPoint identifier. The
partial_specification_2 describes a partial specification in
the ViewPoint with domain d and instantiated from
template t. A rule of the above form asserts that for every
partial_specification_1 there should exist at least one

partial_specification_2 with which the relationship ℜ
holds.

Returning to the CORE rule we wish to define, it may
be written in the TC ViewPoint template work plan as
follows:

Source.Name = VP(AS, Dd): Agent.Name

This rule states that the Name attribute of the Source
object in the source ViewPoint, VPS (instantiated from the
TC template in which the rule resides), has the same value
(=) as the Name attribute of the Agent object in the
destination ViewPoint, VPD (instantiated from the AS
template and relating to a domain different from the
source ViewPoint domain).

A similar rule may be written to assert that every
destination in a tabular collection diagram must be a
named agent in the agent hierarchy:

Destination.Name = VP(AS, Dd): Agent.Name

Rules expressing the relationships between
ViewPoints instantiated from the same template may also
be written in the same way. Take the rule in CORE which
asserts that every output from a tabular collection
diagram must be an input in another tabular collection
diagram for another agent (the destination agent for the
original input). This rule may be written as:

Connected-to(Output, Destination).Output.Name =
VP(TC, Destination.Name):

Connected-to(Ds, Input).Input.Name

In many cases, a converse of each rule must also be
written in the destination ViewPoint template, so that the
rule may be invoked and applied by either ViewPoint. The
converse of the above rule in this case also applies. That

is, every input from a source in a tabular collection
diagram must have been produced as an output by the
tabular collection diagram of that source agent:

Connected-to(Source, Input).Input.Name =
VP(TC, Source.Name):

Connected-to(Output, Ds).Output.Name

Not every rule in CORE however has a valid converse;
e.g., every agent in an agent hierarchy does NOT
necessarily have to be a named source or destination in a
tabular collection diagram . CORE does require however,
that the AS ViewPoint template contain a rule which
asserts that every agent in an agent hierarchy must have
a tabular collection diagram associated with it. This may
be written as:

Agent → VP(TC, Agent.Name)

The above rule simply states that every Agent object
triggers (→) the creation of a new ViewPoint instantiated
from a tabular collection template, and concerned with
the domain Dp= Agent.Name.

4.2. Step 2: Inter-ViewPoint Rule Invocation
Inter-ViewPoint rules are invoked by the owner of the

ViewPoint in which they reside. At invocation time (figure
7b), an inter-ViewPoint rule asserts that for the ViewPoint
VPS (which now exists because the rule was invoked
from it), there should be at least one ViewPoint VPD, such

that VPS ℜ VPD. If VPD does not exist, then a ViewPoint
trigger action to create it must be performed before rule
application (step 3) may be performed. The inter-
ViewPoint rule invocation step is required for establishing
that the two ViewPoints, between which consistency
needs to be checked or information transferred, are
identified. The ViewPoint process model may define
when inter-ViewPoint rules should be invoked; e.g., “if

condition X holds in VPS, then check that VPSℜ VPD”. In

 - 7 -

ℜ

ℜ

ℜ

a) Definition

b) Invocation

c) Application

ℜ
d) Relationship Holds

s
VP D

VP

s
VP

s
VP

s
VP

D
VP

D
VP

D
VP

Figure-7: An interpretation of inter-ViewPoint
communication at various stages of the model. A broken
line indicates that a ViewPoint or relation can exist or
hold, but has not necessarily been established yet.

[16] we discuss three approaches to rules invocation: the
“stupid”, in which rules are constantly invoked; the
“pragmatic”, in which rule invocation may be turned on
and off by the user; and the “problematic”, in which the
process model guides rules invocation.

4.3. Step 3: Inter-ViewPoint Rule Application
The inter-ViewPoint rules defined in step 1 express the

relationships between partial specifications residing in
different ViewPoints. It is a relatively simple task for the
human observer to parse and interpret the rules mentally,
but computer-support for inter-ViewPoint communication
requires an explicit step to describe the process and
mechanism of rule application. While a full description of
such a mechanism is beyond the scope of this paper, an
outline of the issues involved and the techniques that
need to be deployed is given below.

Most inter-ViewPoint rules that traditional software
engineering methods deploy require some form of pattern
matching to check that values of certain types of objects
are related by simple binary relations (e.g., =, <, >). For
example, it is frequently necessary to check that the string
values of various named objects have been preserved or
that integer values are within certain numerical limits.
Other rules are more complex in that the relationships
between the partial specifications are not simply a
comparison between typed values. Instead the rules
express a correspondence between different types of
objects in different specifications. To avoid having to
define all the rules during method definition, it should
also be possible to define the relationships separately in
the form of, say, a computer algorithm or program for
example. Ideally, a method designer would be provided
with a predefined library of relationships at his/her
disposal, with the option of defining any further
relationships if required.

Inter-ViewPoint rules at this stage of the model pass
through two states. On application of an inter-ViewPoint
rule, the two ViewPoints VPS and VPD exist, but it is not

yet known whether or not the relationship ℜ holds
between them (figure 7c). Successful application of the
rule, directly or after some conflict resolution, results in a

valid relationship ℜ that holds between these two specific
ViewPoints (figure 7d). To pass through these states,
ViewPoints need to exchange information. VPS needs to
obtain a partial specification from VPD, and if necessary
transform it into a form it can understand and manipulate
(so that pattern matching, for example, may be

performed). If the relationship ℜ fails to hold, then
VPDneeds to be made aware of this failure (i.e., another
transfer), and some form of conflict resolution needs to
be performed. In a typical software engineering setting,
time constraints on such transfers may be insignificant,
but if the ViewPoints are deployed in a real-time
distributed environment (following a client-server model
for example), then traditional problems such as
communication load overhead or high rate of change of
fetched server information may become much more
significant [39].

There are two modes of application of an inter-
ViewPoint rule:

Check Mode - in which question ?ℜ is asked, that is,

does the relation ℜ hold between VPS and VPD.

Consequently, either ℜ holds or conflict resolution
must be performed to make it hold.

Transfer Mode - in which the function ƒ(ℜ , VPS,
VPD) is applied to transfer and transform information

from one ViewPoint to another so that the relation ℜ
will hold between them.

An invoked inter-ViewPoint rule is normally applied
in ‘check mode’ to begin with, after which a ‘transfer
mode’ may be entered into if the rule fails. Information
transfers between ViewPoint specifications may therefore
be regarded as a form of conflict resolution, although the
effectiveness of the resolution will depend on the
granularity of the transferred information. Inconsistency
handling in this setting is discussed in more detail in [17].

Clearly, the infrastructure of ViewPoints needs to be
extended to handle the various transfers and
transformations that will occur during typical inter-
ViewPoint communication. One such modification might
be the addition of ViewPoint interfaces to provide
information hiding and other transformation services.
These interfaces may also provide ‘mailboxes’ to which
information from other ViewPoints may be ‘posted’ rather
than forcibly transferred into destination ViewPoint
specifications. It is then left to the discretion of individual
ViewPoint owners to incorporate information and/or
guidance residing in their ViewPoint mailboxes into their
local ViewPoint specifications.

4.4. Structural Consequences
The above three inter-ViewPoint communication steps

may be used to provide interesting structural information
about ViewPoint-oriented methods, processes and

 - 8 -

specifications. From the ViewPoint templates and the
inter-ViewPoint rules defined within them (step 1), the
structure of a ViewPoint-oriented method may be
observed (figure 8).

= Method
Template 1 Template 2

Template 3 Template 4

Figure-8: Method structure: a method is a configuration
of ViewPoint templates, related by inter-ViewPoint rules.
Connecting arrows indicate inter-ViewPoint rules.

A snapshot of a project at step 2 on the other hand
shows the ViewPoints that have already been created for a
project so far, and indicates what ViewPoints may be
created from this particular configuration of ViewPoints.
The snapshot therefore provides a more method-specific
structural view of the ViewPoint-oriented development
process (figure 9).

ViewPoint 2 ViewPoint 3 ViewPoint 4

ViewPoint 5

ViewPoint 1

Figure-9: ViewPoint-oriented development process: at
any point during a system’s development a number of
ViewPoints will be under development, with further
ViewPoints that need to be created from that point.
Broken arrows point to ViewPoints not yet created, but
reachable from the source ViewPoint.

Finally, and by the end step 3, a configuration of
ViewPoints has been created and the relationships
between them have been checked and established. The
configuration of ViewPoints at this stage is therefore a
structural view the system specification at a particular
point in time (figure 10). Figure-10 also illustrates the
potential practical problems of scaling-up the ViewPoints
framework to cope with large numbers of ViewPoints.
Kramer and Finkelstein [24] propose the use of structural
configurations to cope with this inevitable complexity. We
thus envisage the use of “configuration ViewPoints” to
act as organisational tools for grouping together closely
related ViewPoints.

ViewPoint 1 ViewPoint 2

ViewPoint 3

ViewPoint 5

=
System Specification

ViewPoint 4

ViewPoint 6

Figure-10: System specification (configuration)
structure. Arrows indicate inter-ViewPoint relationships
that hold between the two connected ViewPoints.

5. Tool Support
A generic, computer-based prototype environment

called The√iewer [34] has been built in Objectworks/
Smalltalk, to support the ViewPoints framework.
The√iewer (Figure-11) runs on a variety of platforms (e.g.,
Apple Macintosh, PC/MS-Windows and Unix/X-
Windows), and provides tools for method construction
and deployment as outlined in sections 3 and 4 of this
paper. A number of simple graphical development
techniques (such as hierarchical structuring and tabular
data flow diagramming) have been described in
ViewPoint templates and supported by CASE tools. These
tools are partially generated from ViewPoint template
descriptions using The√iewer’s meta-CASE capabilities.

Figure-11: The startup window of The√iewer.

The model of inter-ViewPoint communication
described in this paper is still under development and has
not been incorporated into The√iewer. Nevertheless, a
number of sub-projects have studied various
implementations of inter-ViewPoint communication
protocols. In [4], a model of inter-ViewPoint
communication as dialogue was implemented in a
Smalltalk-based tool called ICDC. In [33], we constructed a
simple toolset (called CoreDemo) to support part of the
CORE method, and investigated several types of
consistency checks and information transfers between
CORE stages. In [20, 21], a tightly integrated toolset was
constructed to support ViewPoint templates describing a
variant of Petri Nets [19]. ViewPoints developed by this
toolset are managed by a hypertext-based environment
called HyperView [20].

The use of ViewPoints as a vehicle for method and
tool integration has also been investigated in the context
of the REX [11] project, the objectives of which
encompassed the development of reconfigurable and
extensible distributed systems [24].

Continued work on a variety of communication
models and their implementations is providing us with
valuable experience in the expression and enactment of
consistency checks and information transfers between
many partial specifications. Thus for example, we derived
the general form of the rules described in §4.1 by reverse-
engineering hard-coded checks. We hope to extend
The√iewer to support the model of inter-ViewPoint
communication described in this paper, and use it as a
vehicle to further demonstrate the ViewPoints approach.

 - 9 -

6. Related Work
Work in a number of software engineering fields has

made its mark on our ViewPoints framework. Analogies
of ViewPoints may be found in multidatabases [3], where
much of the research on interoperable, heterogeneous,
multidatabase systems [1, 26] is relevant. Multidatabases
deploy many, heterogeneous - possibly distributed -
databases, based on more than one data model or
schema. Many of the problems of checking consistency
between such databases are therefore identical to the
problems of checking and integrating multiple ViewPoint
representation styles and specifications developed in
those styles. Furthermore, research in the areas of method
and tool integration and integrated project support
environments [e.g., 5, 22, 28, 43] tackles many of the issues
surrounding integration in the ViewPoints setting such as
process modelling and tool support. A few integration
models rely on the controlled transfer of information
between a number of databases [41] in which objects are
related via inter-database relationships [8].

Furthermore, system specification from multiple
perspectives has been researched in various guises by a
number of authors. Doerry et al [9] propose a model for
composite system design based on multiple
cooperating/interacting agents with individual behaviours
and goals. In Dardenne et al [7] a goal-directed approach
to composite system development is described, while
Feather [13] suggests using many, parallel “evolutionary
transformations”, which may then be merged by replaying
them sequentially. Leite [25] demonstrates a viewpoint
analysis strategy for early validation of the requirements
elicitation process (so-called viewpoint resolution).

Work on program transformation [44, 45] provides an
additional vehicle for tackling consistency checks and
information transfers between different ViewPoints.
Robinson [37] proposes an multiple perspectives
integration architecture as part of a model of specification
design. Meyers and Reiss [29] study inter-perspective (cf.
inter-ViewPoint) communication, and propose the
development of a single canonical representation for
software specification. Finally, Niskier et al [32] propose a
pluralistic knowledge-based approach to software
specification in the style we favour - using multiple
overlapping views elaborated using multiple
representation schemes. Their implementation (PRISMA)
of this however, tightly couples the fixed views and uses a
common, centralised (bottle-necked) data structure to
express consistency checks.

7. Conclusions and Further Work
ViewPoints facilitate the partitioning of a problem

domain into loosely-coupled, distributable objects that
encapsulate partial specifications described in different
notations and locally developed and managed according
to different work plans. Although representation,
development and specification knowledge are all
bundled into the same object, they are separated within a
single ViewPoint into slots, to facilitate their individual

manipulation and enhance their tailorability and
reusability. Tolerating the coexistence of multiple,
heterogeneous ViewPoints to specify system requirements
brings to the fore the problems of integration - these
include the integration of specification fragments
described using different notations, and the integration of
methods and tools used to develop such descriptions.

In this paper we have explored the use of inter-
ViewPoint rules to express the relationships between
different ViewPoints. These rules are defined during
method construction, and invoked and applied during
specification development. They define the “regions of
overlap” between pairs of ViewPoints, and thus identify
“redundant” (but perhaps desirable) information.
Moreover, while these rules describe syntactic relations
between partial specifications in different ViewPoints, we
may also view these same rules as definitions of semantic
relations between these partial specifications. Further
work is still needed however to describe more domain-
specific knowledge and rules. One avenue of
investigation may be to develop the role of ViewPoint
owners in providing this domain knowledge.

Inter-ViewPoint rules themselves play a number of
important roles in ViewPoint-oriented requirements
engineering. First, they describe the relationships between
different development techniques that form methods. In
this context they are a vehicle for method integration.
Second, they describe the relationships between the
different tools that support the constituent development
techniques that form methods. In this context they are a
vehicle for tool integration. Third, they describe the
relationships between various specification fragments
found in different ViewPoint specifications. In this
context they may be used to check consistency between
partial specifications, or to transfer and transform
information in one ViewPoint specification to another.
Finally, ViewPoints may be used to represent
requirements specification development participants, and
therefore inter-ViewPoint rules describe protocols of
interaction and behaviour between such participants. In
this context, they are a useful vehicle for computer-
supported cooperative work (CSCW).

In this paper we have concentrated on the problem of
expressing these inter-ViewPoint rules for the purposes of
inter-ViewPoint consistency checking. We have tried to
describe these rules, independent of the mechanisms or
communication protocols that will be deployed to invoke
and apply them. In fact we have also said very little about
the notation for describing the actual relations, ℜ ,
between ViewPoints. These need to be explored further
by looking at more complex relations than those
demonstrated by our examples (namely, = and →, which
we nevertheless believe are typical of software
engineering methods). We further believe that these rules
may have an alternative mode of application to
consistency checking, namely, a transfer mode. This is
analogous to Prolog rules which may succeed, fail or
generate the solutions that satisfy a rule. The mechanisms

 - 10 -

for using these modes of application in the ViewPoints
setting are currently being investigated. We believe that
the transfer mode of inter-ViewPoint rule application
deals with the issue of language conversion in our
framework - an area where more work is needed.

Acknowledgements
The authors would like to thank the anonymous reviewers for

their constructive comments on an earlier version of the paper.
This work was partly funded by the UK SERC SEED project, and
the Department of Trade and Industry (DTI) ESF project.

References
[1] R. Ahmed, P. De Smedt, W. Du, W. Kent, M. Ketabchi, W.

Litwin, A. Rafii & M. Shan, “The Pegasus Heterogeneous
Multidatabase System”, IEEE Computer, 24(12), December
1991, 19-27.

[2] N. Barghouti, “Supporting Cooperation in the MARVEL
Process-Centered Environment”, ACM Software Engineering
Notes, 17(5), December 1992, 21-31.

[3] M.W. Bright, A.R. Hurson & S.H. Pakzad, “A Taxonomy and
Current Issues in Multidatabase Systems”, IEEE Computer,
25(3), March 1992, 50-60.

[4] W. Butcher, “ICDC - An Implementation of Dialogue in
Smalltalk-80”, M.Sc. Thesis, Department of Computing,
Imperial College, London, September 1988.

[5] G. Clemm & L. Osterweil, “A Mechanism for Environment
Integration”, ACM Trans. on Prog. Languages and Sys., 12(1),
January 1990, 1-25.

[6] R. Cunningham, A. Finkelstein, S. Goldsack, T. Maibaum & C.
Potts, “Formal Requirements Specification - The FOREST
Project”, Proc. of 3rd Int. Work. on Spec. and Design, IEEE
CS Press, 1985.

[7] A. Dardenne, S. Fickas & A. van Lamsweerde, “Goal-directed
Concept Acquisition in Requirements Elicitation”, Proc. of
6th Int. Work. on Soft. Spec. and Design, Como, Italy,
October 1991, IEEE CS Press, 14-21.

[8] K.R. Dittrich, “The DAMOLKLES Database System for
Design Applications: Its Past, its Present, and its Future”, In
“Software Engineering Environments: research and
practice”, K.H. Bennett (ed.), Ellis Horwood Ltd., Chichester,
1989, 151-171.

[9] E. Doerry, S. Fickas, R. Helm & M. Feather, “A Model for
Composite System Design”, Proc. of 6th Int. Work. on Soft.
Spec. and Design, Como, Oct. 1991, IEEE CS Press, 216-219.

[10] S.M. Easterbrook, “Elicitation of Requirements from
Multiple Perspectives”, Ph.D. Thesis, Department of
Computing, Imperial College, London, June 1991.

[11] REX Technical Annex, ESPRIT Project 2080, European
Economic Commission, March 1989.

[12] M. Feather, “Language Support for the Specification and
Development of Composite Systems”, ACM Trans. on Prog.
Languages and Systems, 9(2), April 1987, 198-234.

[13] M.S. Feather, “Detecting Interference when Merging
Specification Evolutions”, Proc. of 5th Int. Work. on Soft.
Spec. and Design, USA, May 1989, IEEE CS Press, 169-176.

[14] A. Finkelstein & H. Fuks, “Multi-party Specification”, Proc. of
5th Int. Work. on Soft. Spec. and Design, Pittsburgh, USA,
May 1989, IEEE CS Press, 185-195.

[15] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein & M.
Goedicke, “Viewpoints: A Framework for Integrating Multiple
Perspectives in System Development”, Int. J. of Soft. Eng.
and Know. Eng., 2(1), March 1992, World Scientific
Publishing Company, 31-58.

[16] A. Finkelstein & B. Nuseibeh, “Fine-Grain Process
Modelling”, Draft Proposal, 1993.

[17] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer & B.
Nuseibeh, “Inconsistency Handling in Multi-Perspective
Specifications”, Tech. Rep. DoC 93/2, Imperial College, 1993

[18] D. Gabbay & A. Hunter, “Making Inconsistency Respectable:
A Logical Framework for Inconsistency in Reasoning, Part 1
- A Position Paper”, Proc. of Fundamentals of Artificial
Intelligence Research ‘91, LNCS 535, Springer-Verlag, 19-32.

[19] P. Graubmann, “Definition of SPEC Nets”, REX technical
report REX-WP3-SIE-008-V1.0, Siemens, Munich, July '90.

[20] P. Graubmann, “The HyperView Tool Standard Methods”,
REX tech. rep. REX-WP3-SIE-021-V1.0, Siemens, Munich,
Germany, January '92.

[21] P. Graubmann, “The Petri Net Method ViewPoints in the
HyperView Tool”, REX technical report REX-WP3-SIE-023 -
V1.0, Siemens, Munich, Germany, January '92.

[22] M. Jarke, “Strategies for Integrating CASE Environments”,
IEEE Software, March 1992, 54-61.

[23] G. Kotonya & I. Sommerville, “Viewpoints For Requirements
Definition”, Soft. Eng. J., 7(6), November 1992, IEE, 375-387.

[24] J. Kramer & A. Finkelstein, “A Configurable Framework for
Method and Tool Integration”, Proc. of European Symp. on
Soft. Development Environments and CASE Technology,
Konigswinter, Germany, June 1991, Springer-Verlag.

[25] J.C.S.P. Leite, “Viewpoint Analysis: A Case Study”, Proc. of
5th Int. Work. on Soft. Spec. and Design, Pittsburgh,
Pennsylvania, May 1989, USA, IEEE CS Press, 111-119.

[26] W. Litwin, L. Mark & N. Roussopoulos, “Interoperability of
Multiple Autonomous Databases”, ACM Computing Surveys,
22(3), September 1990, 267-293.

[27] P. Mi & W. Scacchi, “Process Integration in CASE
Environments”, IEEE Software, March 1992, 45-53.

[28] S. Meyers, “Difficulties in Integrating Multiview
Development Systems”, IEEE Software, January 1991, 49-57.

[29] S. Meyers & S.P. Reiss, “A System for Multiparadigm
Software Systems”, Proc. of 6th Int. Work. on Soft. Spec. and
Design, Como, Italy, Oct. 1991, IEEE CS Press, 202-209.

[30] G. Mullery, “CORE - a method for controlled requirements
specification”, Proc. 4th Int. Conf. Soft. Eng., 126-135, IEEE
CS Press, 1979.

[31] G. Mullery, “Acquisition - Environment”, (In) M. Paul & H.
Siegert (eds.), Distributed Systems: Methods and Tools for
Specification, LNCS 190, Springer-Verlag, 1985.

[32] C. Niskier, T. Maibaum & D. Schwabe, “A Pluralistic
Knowledge-Based Approach to Software Specification”,
Proc. of European Soft. Eng. Conf. (ESEC 89), 1989.

[33] B. Nuseibeh, “CoreDemo: An Investigation into the Use of
Object-Oriented Techniques for the Construction of CASE
Tools”, M.Sc. Thesis, Department of Computing, Imperial
College, London, September 1989.

[34] B. Nuseibeh & A. Finkelstein, “ViewPoints: A Vehicle for
Method and Tool Integration”, Proc. of 5th Int. Work. on
Computer-Aided Soft. Eng. (CASE ‘92), Montreal, Canada, 6-
10th July 1992, IEEE CS Press, 50-60.

[35] L. Osterweil, “Software processes are software too”, Proc. of
9th Int. Conf. on Soft. Eng. (ICSE-9), March-April 1987, IEEE
Computer Society Press, 2-14.

[36] R. Wharton, “Doing it with RADs”, IOPener, 1(3), February
1992, IOPT Meeting Report: Modelling Processes in
Organisations, Praxis Systems plc., UK, 2-4.

[37] W.N. Robinson, “Integrating Multiple Specifications Using
Domain Goals”, Proc. of 5th Int. Work. on Soft. Spec. and
Design, Pittsburgh, USA, May 1989, IEEE CS Press, 219-226.

[38] D.T. Ross, “Structured Analysis (SA): A Language for
Communicating Ideas”, IEEE Trans. on Soft. Eng., 3(1),
January 1977, 16-34.

[39] M. Satyanarayanan, “An Agenda for Research in Large-Scale
Distributed Data Repositories”, Proc. of Int. Work. on
Operating Systems of the 90s and Beyond, July 1991, LNCS
563, Springer-Verlag, 2-12.

[40] T. Shepard, S. Sibbald & C. Wortley, “A Visual Software
Process Language”, Communications of the ACM, 35(4),
April 1992, 37-44.

[41] M. Stanley, “Typing in an Object Management System
(OMS)”, Proc. of Int. Work. on Env., Chinon, France, Sept.
1989, F. Long (ed.), LNCS 457, Springer-Verlag, 1990, 235-250.

[42] System Designers, "CORE - the Method", System Designers
Plc., Issue 1.0, November 1985.

[43] A.I. Wasserman, “Tool Integration in Software Engineering
Environments”, Proc. of Int. Work. on Env., Chinon, Sept.
1989, F. Long (ed.), LNCS 457, Springer-Verlag, 1990, 137-149.

[44] D.S. Wile, “Local Formalisms: Widening the Spectrum of
Wide-Spectrum Languages”, Prog. Spec. & Transf., L.
Meertens (ed.), April 1986, Elsevier Science Pub., 459-482.

[45] D.S. Wile, “Integrating Syntaxes & their Associated
Semantics”, USC/ISI Technical Report, 1991.

[46] P. Zave & M. Jackson, “Conjunction as Composition”, ACM
Trans. on Soft. Eng. and Methodology (to appear), 1993.

