

City, University of London Institutional Repository

Citation: Nuseibeh, B., Kramer, J. & Finkelstein, A. (1994). A framework for expressing the

relationships between multiple views in requirements specification. IEEE Transactions on
Software Engineering (TSE), 20(10), pp. 760-773. doi: 10.1109/32.328995

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26493/

Link to published version: https://doi.org/10.1109/32.328995

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

- 1 -

A Framework for Expressing the Relationships Between
Multiple Views in Requirements Specification

Bashar Nuseibeh Jeff Kramer Anthony Finkelstein

Department of Computing, Imperial College
180 Queen’s Gate, London, SW7 2BZ, UK

Email: {ban, jk, acwf}@doc.ic.ac.uk.

Abstract†

Composite systems are generally comprised of
heterogeneous components whose specifications are
developed by many development participants. The
requirements of such systems are invariably elicited from
multiple perspectives which overlap, complement and
contradict each other. Furthermore, these requirements are
generally developed and specified using multiple methods
and notations respectively. It is therefore necessary to
express and check the relationships between the resultant
specification fragments.

In this paper we deploy multiple “ViewPoints” that
hold partial requirements specifications, described and
developed using different representation schemes and
development strategies. We discuss the notion of inter-
ViewPoint communication in the context of this
ViewPoints framework, and propose a general model for
ViewPoint interaction and integration. We elaborate on
some of the requirements for expressing and enacting
inter-ViewPoint relationships - the vehicles for
consistency checking and inconsistency management.
Finally, while we use simple fragments of the
requirements specification method CORE to illustrate
various components of our work, we also outline a
number of larger case studies that we have used to validate
our framework. Our computer-based ViewPoints support
environment, The Viewer, is also briefly described

1. Introduction

1.1. Motivation

Heterogeneity is inevitable in most composite
systems of significant size, and no single
development process and representation will be

† IEEE Transactions on Software Engineering, October 1994.

sufficient for their development. This is
particularly true of the requirements engineering
phase of the software development life-cycle.
Requirements engineering encompasses activities
ranging from requirements analysis and elicitation
to specification, conflict resolution and validation.
Even a single activity such as requirements
elicitation, is likely to involve multiple
development participants who will hold multiple
perspectives on a single domain.

This heterogeneity of representations and
processes poses challenging research problems of
integration: (1) the integration of the methods
used to specify system requirements, (2) the
integration of the tools that support these methods,
and (3) the integration of the multiple
specification fragments produced by applying
these methods and tools. By explicitly deploying
“views” that encapsulate partial specifications
together with the development techniques by
which they are produced, a framework is in place
within which the problems of integration outlined
above may be addressed. However, the difficulties
of expressing, invoking and applying the
relationships between multiple views need to be
resolved, before integration in this setting may be
achieved.

1.2. Views in Requirements Engineering

Views are vehicles for separation of concerns.
They allow development participants to address
only those concerns or criteria that are of interest,
ignoring others that are unrelated. In our earlier
work [23], we have used the term “multiple
perspectives problem” to describe the class of
problems surrounding the development of
composite systems [18] by many development

 - 2 -

participants who deploy sundry representation
schemes, use a variety of development strategies
and hold diverse domain knowledge. We have also
proposed an object-based framework deploying
“ViewPoints” within which the above problems
may be tackled. ViewPoints in our framework
serve to separate the concerns of different
developers and the different development
techniques and notations that these participants
employ.

The term “viewpoint” has been defined and
deployed in a variety of settings in software
engineering, particularly in the domain of
requirements engineering. For example, in
Structured Analysis [50] a viewpoint expresses an
interest in some aspect of a system, while in CORE
[42] it represents any information processing
entity. Kotonya and Sommerville [31] treat
viewpoints as service recipients, whereas Ainsworth
et al. [2] regard them as formal partial
specifications. Leite makes a further distinction
between “views”, “perspect ives” and
“viewpoints”, and proposes a technique for the
early validation of viewpoint-based requirements,
termed “viewpoint resolution” [36].

The ViewPoints framework described in this
paper, generalises the notion of a “viewpoint” to
facilitate its manipulation in composite system
development. ViewPoints in this framework draw
together the notion of an “actor”, “knowledge
source”, “role” or “agent” with the notion of a
“view” or “perspective” held by the former. As
such, the framework is organisational - facilitating
separation of concerns and the structuring of
software development knowledge.

1.3. Scope of Paper

Michael Jackson accurately points out that
“... having divided to conquer, we must reunite to
rule.” [29]. In other words, having decomposed a
system into different components (ViewPoints), it
is then necessary to achieve some level of
integration between these components.

To integrate mult iple requirements
specification ViewPoints, overlaps must be
identified, complementary participants made to
interact and cooperate, and contradictions
resolved. In this paper, we address the notion of

inter-ViewPoint communication as a vehicle for
ViewPoint integration. The ViewPoint interaction
model we present straddles both the method
construction stage during which inter-ViewPoint
relationships are expressed, and the method
application stage during which these relationships
are enacted (invoked and checked). We illustrate
the model by constructing part of the
requirements specification method CORE† [42,
43], and applying it to specify a simple problem.

We argue that successful inter-ViewPoint
communication - guided by a model of the
development process - holds the key to achieving
integration in a heterogeneous, possibly
distributed, setting. Thus, there is a need to express
relationships between ViewPoints, enact these
relationships (e.g., check consistency and transfer
information), and resolve conflicts (if and when it
is necessary to do so).

Although we examine the application of
ViewPoints for requirements specification, we
further argue that requirements engineering from
multiple perspectives, multiparadigm specification
[63] and multiparadigm programming [40, 62],
are all facets of the same generic (multiple
perspectives) problem.

We begin by presenting an overview of the
ViewPoints framework emphasising its
organisational nature and decentralised
architecture. The next section describes the
method engineering process within the ViewPoint
framework, which is followed by an account of
how requirements methods are used to develop
requirements specifications in this context. A
model of ViewPoint interaction is then presented
and illustrated using the simple examples
introduced in the preceding two sections. A review
of our experiences in using the framework and
associated interaction model are then described,
which includes and account of case studies and
automated tool support that we have developed
and used, respectively, to validate our approach.
Finally, overlapping and related research work is
presented, some conclusions are drawn, and an
agenda for further research is outlined.

† Since CORE uses the term “viewpoint” as part of its
terminology, we substitute the term “agent” in its place to
avoid the clash in nomenclature.

 - 3 -

SPECIFICATION
= partial system description

WORK RECORD
= development history

DOMAIN
= area of concern

WORK PLAN
= development actions, strategy and process

STYLE
= notation

Representation Knowledge

Development Process Knowledge

Specification Knowledge

Fig. 1: The five slots of a ViewPoint.

2. ViewPoints

We define ViewPoints to be loosely coupled,
locally managed, distr ibutable objects
encapsulating partial representation knowledge,
development process knowledge and specification
knowledge, about a system and its domain. This
knowledge is assigned to five ViewPoint slots
(Fig. 1):
• the style slot, in which the representation

scheme used by the ViewPoint is described,
• the work plan slot, in which the development

actions, process and strategy of the ViewPoint
are described,

• the domain slot, which identifies the area of
concern of the ViewPoint with respect to the
overall system under development (i.e., it is a
partial identifier or label of a ViewPoint),

• the spec i f i ca t i on slot, which describes
(specifies) the ViewPoint domain in the
notation described in the style slot - and
developed using the strategy described in the
work plan slot, and

• the work record slot, in which the development
state and history of the ViewPoint specification
is maintained (in terms of the work plan actions
performed). It is the vehicle by which
traceability (to and from requirements) may be
achieved, and some form of development
rationale may be recorded.

A ViewPoint Template is a ViewPoint “type”
in which only the style and work plan slots have
been elaborated. A ViewPoint template, when
instantiated, yields a ViewPoint - which can then
be elaborated to produce a specification for a

particular domain. A ViewPoint template is
therefore a reusable description of a development
technique (notation and process) which may be
instantiated many times to produce many
ViewPoints. A software engineering method in this
context is then a configuration (structured
collection) of ViewPoint templates (and their
relationships), that together constitute the
development techniques deployed by the method.

A ViewPoint owner is responsible for enacting
the process model of a ViewPoint described in its
work plan. ViewPoint owners are normally, but not
always, human development participants. A non-
human ViewPoint owner may, for example, be
some form of “intelligent” tool or expert system.

3. Method Engineering

Like many methods, the requirements
specification method CORE, comprises a number
of development stages which deploy a number of
different representation schemes. These stages are
used to incrementally and iteratively produce a
system requirements specification. In our
ViewPoints terminology, CORE: the method may
be described using a number of ViewPoint
templates. Since each stage in CORE deploys a
single, simple representation scheme, one way to
describe CORE would be to describe each stage as
a single ViewPoint template. Figs. 2 and 3 are
sample, informal ViewPoint template descriptions
of the agent structuring (AS) and the tabular
collection (TC) stages of CORE, respectively.
These stages support, respectively, problem
decomposition in an agent hierarchy, and agent

 - 4 -

Object: Agent

Attributes Types Values

Name
Identifier
Icon

String
Integer
Bitmap

Relation Part-of(Agent, Agent)

Attributes Types Values

Icon Bitmap

STYLE

Assembly Actions: add(Agent), remove(Agent),
 connect(Agent, Agent, Part-of), disconnect(Agent,
 Agent, Part-of)
In-ViewPoint Check Actions: all-agents-connected,
 each-child-has-parent, no-name-clashes, ...
Inter-ViewPoint Check Actions: For each agent in the
 agent hierarchy there must be one ViewPoint
 instantiated from a TC template, ...
ViewPoint Trigger Actions: For each leaf agent create
 a new ViewPoint instantiated from a TC template, ...

WORK PLAN

Fig. 2: An informal description of CORE’s agent
structuring (AS) ViewPoint template.

elaboration in a tabular collection form (see
Figs. 5 and 6 in the next section for examples of
ViewPoints instantiated from each template).

3.1. The Style Slot

For simplicity and convenience, the style slot of
each template is described in terms of objects and
relations, each having attributes with types and
values (a BNF description may be more
appropriate for text-based notations). We use a
dot (.) to separate (from left to right) relations,
objects, attributes and values. Thus, the term:

Object1.Attribute1

identifies “the value of Attribute1 of Object1”. For
example, if a “Process” in a data flow diagram
has a “Name” attribute, then to identify the value
of that attribute one would write:

Process.Name

Similarly, the term:

Relation1(Object1, Object2).Object1.Attribute1

identifies “the value of Attribute1 of Object1 in the
Relation1(Object1, Object2)”.

Object: Source

Attributes Types Values

Name
Icon

String
Bitmap

Relation Connected-to(Object, Object)

Attributes Types Values

Icon Bitmap

STYLE

Object: Output

Object: Input

Object: Destination

Object: Action

Assembly Actions: add(Source), remove(Source),
 add(Input), remove(Input), ..., connect(Source, Input,
 Connected-to), disconnect(Source, Input,
 Connected-to), ...
In-ViewPoint Check Actions:
 all-sources-connected-to-inputs,
 all-inputs-connected-to-actions,
 no-actions-name-clashes, ...
Inter-ViewPoint Check Actions: every Source or
 Destination in a tabular collection diagram has a
 corresponding agent with the same name in the
 agent hierarchy, the Output produced by one agent in
 a tabular collection diagram must be consumed as an
 Input in the tabular collection diagram another agent,
 ...
ViewPoint Trigger Actions: Create a ViewPoint
 instantiated from an AS template if one does not
 already exist, ...

WORK PLAN

Attributes Types Values

Name
Icon

String
Bitmap

Attributes Types Values

Name
Icon

String
Bitmap

Attributes Types Values

Name
Icon

String
Bitmap

Attributes Types Values

Name
Icon

String
Bitmap

Fig. 3: An informal description of CORE’s tabular
collection (TC) ViewPoint template.

 - 5 -

VP 1 VP 2

Two ViewPoints may be independent,
non-overlapping and unrelated (except
in that the method from which they are
created requires both ViewPoints to
exist). For example, a method may
require the development of a ViewPoint
describing the functional decomposition
of a software system and another
ViewPoint documenting the financial
resources available to the project.

VP 1 VP 2

Two ViewPoints may be non-
overlapping, but there is some
existential relationship in which the
existence of one depends in some way
on the existence of the other. For
example, the Z method requires that for
each Z schema (ViewPoint), there is an
associated textual description
(ViewPoint).

VP 1 VP 2

Two ViewPoints may be partially
overlapping, with a partial specification
in one related to a partial specification in
the other. For example, CORE requires
that a source agent in a tabular
collection diagram is a named agent in
the agent hierarchy.

VP 1

VP 2

Two ViewPoints may be totally
overlapping; that is, they describe the
same domain in the same representation
scheme. We may (1) require that any
conflicts, discrepancies or
inconsistencies be eventually resolved
so that the two ViewPoints are made to
say the same thing, or (2) accept that
the two ViewPoints represent two
different “views” of the same domain
(e.g., different solutions to the same
problem) that require evaluation and a
choice to be made between them.

Fig. 4: Inter-ViewPoint relationships. Shaded areas
represent overlaps between ViewPoints.

A relationship itself may also have an attribute
(e.g. the “label” of a transition arrow in a state
transition diagram):

Relation1(Object1, Object2).Attribute1

This identifies “the value of Att r ibute1 of
Relation1 between Object1 and Object2”.

Particular values in a specification (c . f .
constants) may also be represented by
concatenating them to the above expressions, and
enclosing them in single quotes. For example, in
state-transition diagram for a switch (which can be
“On” or “Off”), the “On” state may be
identified by:

State.Name.‘On’

while:

Transition(On, Off).Name.‘Button-press’

identifies the Transition “Button-Press” between the
“On” and “Off” states.

3.2. The Work Plan Slot

In describing the work plan slot, we identify
four generic categories of development actions.

Assembly actions are those basic actions
required to assemble (construct) a specification in
the representation scheme defined in the style slot.
They can be thought of as a collection of basic
“editing” actions that one would expect a CASE
tool supporting such a ViewPoint to provide.

 In-ViewPoint check actions are those actions
required to check that a ViewPoint specification is
locally (syntactically) consistent. Such syntactic
checks partially define the semantics of a
ViewPoint’s representation, and therefore define
what a method designer decides is a “well-
formed” specification in that representation.

Inter-ViewPoint check actions, are those actions
required to check the consistency between
(overlapping or interacting) specifications residing
in different ViewPoints. The relationships between
such ViewPoints are described by inter-ViewPoint
rules. We make no distinction between intra-
template rules (that describe relationships between
ViewPoints instantiated from the same template)
and inter-template rules (that describe
relationships between ViewPoints instantiated from
different templates). However, it is useful from a

method engineering point of view to note the
different relationships that may exist between
ViewPoints in general (Fig. 4), since they may
impact upon the way in which methods are used.

For example, some ViewPoints use informal
representations, and therefore the relationships
they have with other ViewPoints are difficult to
express concisely. Others are much more formal
which makes expressing the relationships between
them easier (providing these relationships exist
and have been identified by a method designer).
This is not to say that two ViewPoints which
deploy formal representations are easier to relate.

 - 6 -

Relating Z [55] and CSP [28] for example is non-
trivial, as is relating natural language text with data
flow diagrams. The key to expressing the
relationships between multiple ViewPoints is
therefore based on an understanding of the
representation schemes deployed by both, and the
identification of the areas of overlap or
association. It is particularly challenging to
describe inter-ViewPoint relationships in a generic
manner, more so if the two ViewPoint
specifications being related use representation
styles with different underlying data models or
schemas. Inter-ViewPoint check actions can,
however, also use inter-ViewPoint rules to
t rans form information between ViewPoint
specifications.

While this paper concentrates on relationships
that express “static semantics” (which, for
example, apply to semi-formal representation
schemes, functional specifications and context-
sensitive aspects of well-formedness), the
ViewPoints framework, in general, may also be
used to organise and describe formal techniques
and “dynamic semantics” (such as behaviour
analysis for example).

Finally, ViewPoint trigger actions must be
performed in order to create new ViewPoints (i.e.,
instantiate ViewPoint templates) - very often “on-
the-fly”. These actions are normally, but not
always, performed as a consequence of one of the
other development actions; e.g., adding an agent
in an agent hierarchy should trigger the creation
of a new ViewPoint for that agent, instantiated
from the tabular collection template. A ViewPoint
trigger action may also be regarded as a kind of
inter-ViewPoint check action, since its scope is
beyond that of the ViewPoint from which it is
performed (see section 5 for an example).

What the work plans in Figs. 2 and 3 do not
show are the process models or process
descriptions that may be used to guide ViewPoint
owners in building ViewPoint specifications using
the above actions. In particular, our approach,
based as it is on the decentralisation of software
development knowledge, requires local ViewPoint
process models to coordinate and control
development in this setting [16, 46]. A “precondition
→ [Action] postcondition” notation [11] may be used

to describe such process models; e.g.,

empty-spec → [Assembly Actions] spec.
spec → [Assembly Actions] spec.
spec → [In-ViewPoint Check Actions]

(consistent-in-VP-spec ∨ spec).
consistent-in-VP-spec

→ [Inter-ViewPoint Check Actions]
(consistent-inter-VP-spec ∨ spec).

consistent-inter-VP-spec → [] end.

Clearly however, the above is a very simple
process model that says “construct a partial
specification by means of some assembly actions,
and perform some checks from time to time, until
inter-ViewPoint consistency is reached”. To
provide “richer” process models, we have been
exploring ways of “deriving” a ViewPoint
specification state from the ViewPoint work
record, and specifying finer-grain actions that may
be performed if that ViewPoint is in one of the
identified states. We have also constructed a
prototype implementation that illustrates this, in
which multiple (decentralised) process models
interact to coordinate consistency checking
between ViewPoint specifications [37].

Of course, each ViewPoint work plan may
deploy its own particular process modelling or
process programming [48] language to elaborate
its individual specification development process
(which greatly complicates ViewPoint interaction,
and is not currently addressed in our work). Thus,
a variety of process modelling languages may be
used, such as the visual software process language
proposed in [53] and many others [22].

The definition of multiple ViewPoints’ process
models in this way also allows individual
ViewPoint development processes to be modelled
at different levels of granularity, to provide the
appropriate level of method guidance for different
developers [46]. Process integration [41] however,
which in our setting means the integration of
multiple process models to produce an overall,
coherent development process, remains a
problematic research area. One technique for such
integration is proposed by Barghouti [5], which is
based on a concurrency control mechanism
developed for a co-operative software
development environment.

We believe that ViewPoint development process

 - 7 -

Library World

v0

Library

v1

Staff

v2

Borrowers

v3

Administrator

v21

Librarian

v22

Catalogue

v4

WORK PLAN
Assembly Actions
In-ViewPoint Check Actions
Inter-ViewPoint Check Actions
ViewPoint Trigger Actions
+ Process Model

Agent structuring notation definition

SPECIFICATION

WORK RECORD

DOMAIN

add(Library World), add(Library), add (staff),
connect(Library World, Library, Part-of),
add(Borrower), connect(Library, Staff, Part-of),
connect(Library World, Borrower, Part-of), ...

Library World

STYLE

Fig. 5: A sample ViewPoint instantiated from an
agent structuring ViewPoint template. It describes
the domain “Library World” in terms of an agent
hierarchy.

models can be partly described by inconsistency
handling rules, that specify how to act in the
presence of inconsistency [21]. These rules can
then be used to drive the development process
both within and between individual ViewPoints,
and are therefore vehicles for process integration.
More generally, method engineering in the
ViewPoints framework is discussed at length in
[47].

4. Method Use: Requirements
Specification

Once a requirements method has been designed
and constructed, it may then be deployed to
specify system requirements. Problem-specific
(domain-specific) ViewPoints may be created by
instantiating the appropriate ViewPoint templates,
and their ViewPoint specifications developed by
following individual ViewPoint work plans. The
result of this development process is a
configuration (structured collection) of
ViewPoints which together form the total system
requirements specification. At any point during
development, different ViewPoint specifications
may be overlapping and/or inconsistent with each
other. Tolerating inconsistency [4] is fundamental
to the ViewPoints approach, with consistency
checking and conflict resolution not (necessarily)
performed as a matter of course. Consistency
checking may only be appropriate at specific
stages of the development life-cycle and detection
of inconsistency may not require immediate
resolution, but left for later action, or even not
resolved at all. This is in the nature of software
development in general, and requirements
engineering in particular, where contradictory
requirements and alternative design solutions are
commonplace. This approach to consistency
management is echoed by Gabbay and Hunter
[24] who argue for “making inconsistency
respectable” and develop a logic-based
framework in which “INCONSISTENCY implies
ACTION”. In fact, as outlined in the last section, we
have examined the applicability of such an
inconsistency handling approach in the context of
the ViewPoint framework [21] (see section 5.4 for
a summary).

Example

The first graphical stage in CORE, agent
structuring (AS), identifies the information
processing entities (agents) in the problem
domain, and arranges them in a hierarchy. The
relation between child and parent in the hierarchy
is that a child node is “part-of” a parent node. In
specifying a computer-based library cataloguing
system for example, the root of an agent hierarchy
might be “Library World”. This is then
decomposed into its constituent agents, which may
then be decomposed further, and so on. Thus, we
may develop a ViewPoint instantiated from the AS
template for the domain “Library World”, with
the specification shown in Fig. 5. The work record
lists the “primitive” work plan actions that were
performed to produce the current specification.
These actions may be meaningfully annotated to
provide a development rationale for the
specification. One may however, wish to record
“higher level” (specifier) actions, such as
“decompose” and “backtrack”, which are

 - 8 -

implemented in terms of more the more primitive
(editing) operations. Souquières and Lévy [54]
propose a framework for expressing both the
incremental construction of a specification and the
development rationale for the construction
process.

At this point during development, in-ViewPoint
actions may be performed to check that the
specification of the ViewPoint in Fig. 5 conforms
to the syntactic rules imposed on its representation
style. Inter-ViewPoint actions may also be
performed, but no other ViewPoints have been
created in this example yet. Performing ViewPoint
trigger actions on the other hand causes the
instantiation of the tabular collection (TC)
template, one for each of the leaf agents in the
agent hierarchy (as specified in the ViewPoint
trigger actions part of the work plan of the AS
template in Fig. 2). Thus, from the agent hierarchy
in Fig. 5, five further ViewPoints (one for each
leaf agent in the hierarchy) containing blank
specifications (tables) are created. Each may then
be developed separately by its ViewPoint owner
who enacts the ViewPoint’s individual work plan.
One such tabular collection ViewPoint (for the
“Borrower” agent), in which some assembly
actions have been performed, is shown in Fig. 6.

It is again possible at this point to perform any
of the ViewPoint’s work plan actions. One of the
inter-ViewPoint actions for example, checks that
every source and destination in the tabular
collection specification is a named agent shown in
the agent hierarchy in the AS ViewPoint. This
check was specified textually in the inter-
ViewPoint check actions part of the work plan of
the TC template in Fig. 3. If such a check fails,
then some form of conflict resolution strategy
must be employed in order for the check to
succeed. Conflict resolution for this check in
particular, implies that either a new agent must be
added to the agent hierarchy specification in the
AS ViewPoint, or the inconsistent source or
destination must be renamed or removed from the
specification of the TC ViewPoint. Approaches to
conflict resolution (as distinguished from
inconsistency handling) in the ViewPoints context
have been examined, and models of conflict
resolution proposed [15, 17]. A treatment of these

WORK PLAN
Assembly Actions
In-ViewPoint Check Actions
Inter-ViewPoint Check Actions
ViewPoint Trigger Actions
+ Process Model

SPECIFICATION

WORK RECORD
add(Library), add(Borrower), add(publication),
connect(Library, publication, Connected-to),
connect(publication, borrow, Connected-to),
add(borrow), add(return), ...

Source Input Action Output Destination

Library publication borrow

return

Library

SPECIFICATION

publication

DOMAIN
Borrower

Tabular collection notation definition
STYLE

Fig. 6: A sample ViewPoint instantiated from a
tabular collection ViewPoint template. It partially
describes the activities of “Borrower” in terms of a
tabular collection diagram.

however, is beyond the scope of this paper.

Although it is possible, in principle, to perform
any of the generic work plan actions at anytime
during specification development, each ViewPoint
process model should prescribe when and under
what circumstances it is appropriate to do so. For
example, it would be unreasonable in most cases to
perform inter-ViewPoint checks between two
ViewPoints before the in-ViewPoint consistency of
at least one of the two ViewPoints has been
checked and established.

5. ViewPoint Integration

Heterogeneity of notations, processes and
specifications inevitably poses problems of
integration. Within the ViewPoints framework, the
relationships between ViewPoints need to be
expressed, so that they may then be used to check
consistency, and transfer and transform
information between ViewPoint specifications.
Thus, there is a need to define inter-ViewPoint
rules that describe these relationships, specify

 - 9 -

when they may be invoked and how they should
be applied. These activities straddle the processes
of ViewPoint-oriented method construction and
ViewPoint-oriented requirements specification.
They are generic in that they do not prescribe how
inter-ViewPoint rules are represented, or what
mechanisms should be used for invoking and
applying them. They are shown schematically in
Fig. 7.

Inter-ViewPoint Rule
DEFINITION

Inter-ViewPoint Rule
INVOCATION

Inter-ViewPoint Rule
APPLICATION

ViewPoint
Trigger Action

Inter-ViewPoint
Relationship Holds

New ViewPoint(s)

No
Destination
ViewPoint

success fail

Inconsistency Handling
(eg, Conflict Resolution)

Method
Engineering

M
et

h
o

d
 U

se

Fig. 7: A model of ViewPoint integration activities.
A labelled arrow indicates a precondition for the next
step to be performed.

5.1. Step 1: Inter-ViewPoint Rule Definition

Inter-ViewPoint rules are defined in ViewPoint
t e m p l a t e work plans and thus describe
relationships between ViewPoints (instances) that
have not yet been created. In other words, they
describe relationships between ViewPoint
templates or “types”. They are of the general
form:

∀ VPS , ∃ VPD such that VPS ℜ VPD

where VPS is the source ViewPoint in which the
rule will reside, VPD is the destination ViewPoint
(instantiated from a particular template) with
which the relationship ℜ holds, and VPS ≠ VPD.
VPS is universally quantified to indicate that the
rule applies to every ViewPoint derived from the
template in which the rule is defined. Once VPS
has been instantiated from its template, this
quantifier can be dropped, since all source
ViewPoints instantiated from this template will

contain the rule.

The broken lines in Fig. 8a illustrate the status of
inter-ViewPoint rules at the definition stage of our
model. Such rules relate hypothetical ViewPoints,
VPS and VPD, with a hypothetical relationship, ℜ .
That is, rules at this stage of the model refer to
ViewPoint “types” (templates), rather than to
actual “instances” (ViewPoints). In other words,
they express what the method designer decides are
the relationships between ViewPoints instantiated
from particular ViewPoint templates. Thus, a
method designer expressing the relationships
between two ViewPoints is in fact stating that: if the
ViewPoints VPS and VPD exist, then there should be
a relationship ℜ that holds between them. The
inclusion of such inter-ViewPoint rules in
individual templates maintains the loose coupling
and local management of each ViewPoint, which
in turn facilitates the deployment of ViewPoints in
a distributed environment.

ℜ

ℜ

ℜ

Step 1: Definition

Step 2: Invocation

Step 3: Application

ℜ
 Rule Holds

s
VP D

VP

s
VP

s
VP

s
VP

D
VP

D
VP

D
VP

Fig. 8: An interpretation of ViewPoint integration at
various stages of the model. A broken line indicates that
a ViewPoint or relation can exist or hold, but has not
necessarily been established yet.

Now consider the existential quantifier in the
general form of an inter-ViewPoint rule. Say for
example we wish to write an inter-ViewPoint rule
for the tabular collection stage of CORE which
asserts that every source in a tabular collection
diagram must be a named agent in the agent
hierarchy. This rule makes a statement about every
source in a tabular collection diagram, and can
therefore be defined in the ViewPoint template
describing tabular collection (TC). Furthermore, it
requires information defined in the agent
structuring (AS) ViewPoint template, and therefore

 - 10 -

will require information outside the boundaries of
the ViewPoint in which it is defined in order to get
this information. Thus, what is required is a means
of identifying the ViewPoint from which this
information will be obtained; that is, a means of
identifying VPD . Since there is no prior
knowledge of what ViewPoints will be created
during specification, one way to identify a
ViewPoint is by specifying the template from
which it will be instantiated, and perhaps the
domain with which it will be concerned. Thus, a
ViewPoint can be identified at rule definition time
by a tuple:

(t, d)

where t specifies the template from which the
ViewPoint will be instantiated, and d specifies its
domain (label) which is given by:

d ∈ { Dp , Da , Ds , Dd }
where,
Dp denotes a particular (named) domain,
Da denotes any domain not known at template

construction time,
Ds denotes the domain of the source ViewPoint,
Dd denotes a different domain from the current

(source) ViewPoint.
Therefore, the general form of an inter-ViewPoint
rule may be rewritten as:

partial-spec-1 ℜ VP(t, d): partial-spec-2

where the par t ia l -spec-1 describes a partial
specification in the ViewPoint, VPS, created from
the template in which the rule is defined, and
which therefore does not require a ViewPoint
identifier. The partial-spec-2 describes a partial
specification in the ViewPoint (VPD) with domain
d and instantiated from template t (denoted by the
predicate VP(t, d)). A rule of the above form asserts
that for every partial-spec-1 there should exist at
least one partial-spec-2 with which the relationship
ℜ holds. In this paper, partial-spec-1 and partial-spec-
2 actually denote individual partial specification
components rather than partial specifications per
se.

Returning to the CORE rule we wish to define,
it may be written in the TC ViewPoint template
work plan as follows:

Source.Name = VP(AS, Dd): Agent.Name

This rule states that every Name attribute of
Source objects in each VPS (instantiated from the
TC template in which the rule resides), has an
equal value Name attribute of Agent object in a VPD
(instantiated from the AS template and relating to a
domain, Dd, different from the source ViewPoint
domain).

A similar rule may be written to assert that
every destination in a tabular collection diagram
must be a named agent in the agent hierarchy:

Destination.Name = VP(AS, Dd): Agent.Name

Rules expressing the relationships between
ViewPoints instantiated from the same template
may also be written in the same way. Take the rule
in CORE which asserts that every output from a
tabular collection diagram must be an input in
another tabular collection diagram for another
agent (the destination agent for the original
input). This rule (rule 1 in Fig. 9) may be written
as:

Connected-to(Output, Destination).Output.Name =
VP(TC, Destination.Name):

Connected-to(Ds, Input).Input.Name

where Destination.Name denotes the value of the
particular (named) domain Dp.

In many cases, a converse of each rule must
also be included in the destination ViewPoint
template, so that the rule may be invoked and
applied by either ViewPoint. The converse of the
above rule in this case also applies (rule 2 in
Fig. 9). That is, every input from a source in a
tabular collection diagram must have been
produced as an output by the tabular collection
diagram of that source agent:

Connected-to(Source, Input).Input.Name =
VP(TC, Source.Name):

Connected-to(Output, Ds).Output.Name

where Source .Name denotes the value of the
particular (named) domain Dp.

Not every rule in CORE however has a valid
converse; e.g., every agent in an agent hierarchy
does NOT necessarily have to be a named source
or destination in a tabular collection diagram.
CORE however does require that the AS ViewPoint
template contain a rule which asserts that every
agent in an agent hierarchy must have a tabular

 - 11 -

ViewPoint B (domain = "Y")

ViewPoint A (domain = "X")

Source Input Action Output Destination

X J K J L

M

Source Input Action Output Destination

W

V C

D

E J Y

N P
Rule 2

Rule 1

Fig. 9: An example of the relationships between two different tabular collection diagrams in two
different ViewPoints, A and B. ViewPoint A contains rule 1, while ViewPoint B contains its
converse, rule 2. Both rules are described in the text below.

collection diagram associated with it† . This may
be written as:

Agent → VP(TC, Agent.Name)

The above rule simply states that for every
Agent object there should be (→) a new ViewPoint
instantiated from a tabular collection template, and
concerned with the domain Dp (whose value is
given by Agent.Name). This is in fact a variation of
the general form of inter-ViewPoint rules, in which
the rule expresses some “existence” relationship,
as opposed to the an “agreement” relationship.

The above rules demonstrate the feasibility of
expressing the relationships between multiple
ViewPoints, once these relationships have been
identified. The interested reader is referred to [16]
for a more detailed account (and examples) of a
variety of inter-ViewPoint rules for different
methods, and in particular, the use of logical
connectives to express, for example, patterns of the
form “there may not exist”.

† In fact, CORE also has so-called “indirect” agents which
only receive information, and which therefore do not have
tabular collection diagrams associated with them. We
ignore these for simplicity.

5.2. Step 2: Inter-ViewPoint Rule Invocation

Inter-ViewPoint rules are invoked by the owner
of the ViewPoint in which they reside. At
invocation time (Fig. 8b), an inter-ViewPoint rule
asserts that for the ViewPoint VPS (which now
exists because the rule was invoked from it), there
should be at least one ViewPoint VPD, such that
V P S ℜ VPD . If VPD does not exist, then a
ViewPoint trigger action to create it must be
performed before rule application (step 3) may be
performed. The inter-ViewPoint rule invocation
step is required for ensuring that the two
ViewPoints, between which consistency needs to be
checked or information transferred, are identified.
A ViewPoint process model defines when inter-
ViewPoint rules should be invoked; e.g., “if
condition X holds in VPS, then check that VPS ℜ
VPD”. In [46] we discuss three approaches to rule
invocation: the “constrained”, in which rules are
constantly invoked; the “pragmatic”, in which
rule invocation may be turned on and off by the
user; and the “process-oriented”, in which the
process model guides rules invocation.

 - 12 -

5.3. Step 3: Inter-ViewPoint Rule Application

The inter-ViewPoint rules defined in step 1
express the relationships between partial
specifications residing in different ViewPoints.
Inter-ViewPoint rule application is the process of
checking the consistency between two ViewPoints
whose consistency relationships are expressed by
these rules.

Consistency checking between two ViewPoints
requires the interacting ViewPoints to engage in a
communication protocol in which information in
either or both ViewPoints is exchanged and
compared. In a distributed setting, this includes the
physical transfer of information from one
ViewPoint to another, and typically, the
transformation of this information into a form
understood by the other ViewPoint. The
mechanism for such interaction therefore also
needs to be specified.

The nature of any communication protocol
however, depends on the requirements or goals of
the interaction. Thus for example, a
communication protocol between nodes in a wide
area network, differs from that between
cooperative, intelligent agents.

Most inter-ViewPoint rules that traditional
software engineering methods deploy, require
some form of pattern matching to check that
values of certain types of objects are related by
simple binary relations (e.g., =, <, >). For example,
it is frequently necessary to check that the string
values of various named objects have been
preserved or that integer values are within certain
numerical limits. Other rules are more complex in
that the relationships between the partial
specifications are not simply a comparison
between typed values. Instead the rules express a
correspondence between different types of objects
in different specifications. To avoid having to
define all the rules from scratch during method
definition, it should also be possible to define the
relationships separately (in the form of a
computer-based tool for example). Ideally, a
method designer would be provided with a
predefined library of relationships at his/her
disposal, which can be adapted or customised. Of
course, a method engineer, in designing a software

development method, should also choose many
simple ViewPoint templates (that deploy simple
representation schemes) thereby simplifying the
relationships that need to be defined between these
different templates.

In our ViewPoint integration model, inter-
ViewPoint rule application takes method users
through two general stages. On application of an
inter-ViewPoint rule, the two ViewPoints VPS and
VPD exist, but it is not yet known whether or not
the relationship ℜ holds between them (Fig. 8c).
Successful application of the rule, directly or after
some conflict resolution (say), results in a valid
relationship ℜ that holds between these two
specific ViewPoints (Fig. 8d). The confirmation
that a rule holds between two ViewPoints is an
incremental step towards achieving greater
ViewPoint integration.

To pass through the above stages, ViewPoints
need to exchange information. VPS needs to
obtain a partial specification from VPD, and if
necessary transform it into a form it can
understand and manipulate (so that pattern
matching, for example, can be performed). If the
relationship ℜ fails to hold, then VPD needs to be
made aware of this failure (i.e., another transfer),
and some form of conflict resolution needs to be
performed. In a typical software engineering
setting, time constraints on such transfers may be
insignificant, but if the ViewPoints are deployed in
a real-time distributed environment (following a
client-server model for example), then traditional
problems such as communication load overhead
or a high rate of change of fetched server
information may become much more significant
[52], and need to be considered in the design of
an inter-ViewPoint communication protocol.

We identify two modes of application of an
inter-ViewPoint rule:
Check Mode - in which question ?ℜ is asked;
that is, does the relation ℜ hold between VPS and
V P D . Consequently, either ℜ holds or
inconsistency handling may be performed to
make it, eventually, hold.
Transfer Mode - in which the function ƒ(ℜ , VPS,
V P D) is applied to transfer and transform
information between VPS and VPD, so that the
relation ℜ will hold between them. The function

 - 13 -

ƒ maps objects and relations in one ViewPoint to
corresponding objects and relations in another.
The key observation here is that ℜ expresses a
one-to-one relationship between ViewPoints in
which information is translated from one
ViewPoint to another directly (without the need
for an intermediary or global representation).

An invoked inter-ViewPoint rule is normally
applied in “check mode”. “Transfer mode” may
be used initially or later on if the rule fails.
Information transfers between ViewPoint
specifications may therefore be used as vehicles
for conflict resolution, although the effectiveness
of the resolution will depend on the granularity of
the transferred information and the nature of the
conflict or inconsistency. We discuss the notions
of conflicts and inconsistencies in more detail in
[16], where we observe that an inconsistency is the
result of the breaking of a rule, whereas a conflict
denotes the interference of one party’s goals with
the actions of another. Conflicts, of course, may
manifest themselves as inconsistencies.

Clearly, the infrastructure of ViewPoints needs
to be extended to handle the various transfers and
transformations that will occur during typical
inter-ViewPoint communication. One such
modification might be the addition of ViewPoint
interfaces to provide information hiding and other
transformation services. These interfaces may also
provide “mailboxes” to which information from
other ViewPoints may be “posted” rather than
forcibly transferred into destination ViewPoint
specifications. It is then left to the discretion of
individual ViewPoint owners to incorporate
information and/or guidance residing in their
ViewPoint mailboxes into their local ViewPoint
specifications.

5.4. Inconsistency Handling

It is worth reiterating our approach to
consistency management in the ViewPoints
framework, which is based on a philosophy of
inconsistency management.

We believe that maintaining consistency in
multi-perspective software development is not
always possible. In fact, we argue that at times it is
not even desirable, since it can unnecessarily
constrain the development process and lead to the

loss of important information. Indeed, the “real
world” (the domain of requirements engineers)
forces us to work with inconsistencies, and we
should therefore find ways to formalise some of
the usually informal ways of responding to them.
We do this, not by eradicating the inconsistencies,
but by inconsistency handling, in which rules that
specify how to act in the presence of inconsistency
are explicitly specified. Our approach to
inconsistency handling in this setting is discussed
at length in [21]. Fig. 10 summarises our
experimental inconsistency handling approach in
which:

• Partial specification knowledge in each
ViewPoint is translated to first order classical
logic;

• Logical inconsistencies are identified;
• Temporal logic (meta-level) rules are combined

with the inconsistencies identified to specify
inconsistency handling actions.

ViewPoint 1
Knowledge

ViewPoint 2
Knowledge

Translation

?check
consistency

Logical representation of ViewPoints and
inter-ViewPoint specification information

Inconsistent Data

Meta level inconsistency handling

+

Action(s)

Identification of inconsistency

Fig. 10: Inconsistency handling in the ViewPoints
framework. Selected knowledge in each of the
interacting ViewPoints is translated into logical
formulae and used to detect and identify inconsistencies.
The meta-level rules can then be used to act upon these
inconsistencies.

We are not of course claiming that classical
logic is a universal formalism into which any two

 - 14 -

representations may be translated. Rather, we
argue that for any two partial specifications, a
common representation may be found and used to
detect and identify inconsistencies.

5.5. Structural Consequences

Inter-ViewPoint rule definition, invocation and
application may be used to provide interesting
structural information about methods, processes
and specifications respectively, in the ViewPoints
framework.

From the ViewPoint templates and the inter-
ViewPoint rules defined within them (step 1), the
structure of a method may be observed (Fig. 11).

= Method
Template 1 Template 2

Template 3 Template 4

Fig. 11: Method structure: a method is a configuration
of ViewPoint templates, related by inter-ViewPoint rules.
Connecting arrows denote inter-ViewPoint rules.

A snapshot of a project at step 2 on the other
hand shows the ViewPoints that have already been
created for a project so far, and indicates what
ViewPoints may be created from this particular
configuration of ViewPoints. The snapshot
therefore provides a more method-specific
structural view of the development process
(Fig. 12).

ViewPoint 2 ViewPoint 3 ViewPoint 4

ViewPoint 5

ViewPoint 1

Fig. 12: ViewPoint-oriented development process: at
any point during a system’s development a number of
ViewPoints will be under development, with further
ViewPoints that need to be created from that point.
Broken lines denote ViewPoints not yet created, but
directly reachable from the source ViewPoint.

Finally, and by the end of step 3, a
configuration of ViewPoints has been created and
the relationships between them have been checked
and established. The configuration of ViewPoints
at this stage is therefore a structural view the system
specification at a particular point in time (Fig. 13).
Fig. 13 also illustrates the potential practical

problems of scaling-up the ViewPoints framework
to cope with large numbers of ViewPoints. Kramer
and Finkelstein [32] propose the use of structured
configurations to cope with this inevitable
complexity. We thus envisage the use of
“configuration” or “management” ViewPoints
to act as organisational “tools” for grouping
together closely related ViewPoints [16].

ViewPoint 1 ViewPoint 2

ViewPoint 3

ViewPoint 5

=
System Specification

ViewPoint 4

ViewPoint 6

Fig. 13: System specification (configuration)
structure. Arrows denote inter-ViewPoint relationships
that hold between the two connected ViewPoints.
Broken arrows denote relationships that do not yet hold.

6. Experiences

To validate and demonstrate our approach, a
number of case studies and computer-based tools
were developed - an outline description of which
follows. Related issues including conflict
resolution [17], negotiation and dialogue [20], and
configuration programming [32] were also
examined in this setting.

6.1. Tool Support

A generic, computer-based prototype
environment called The Viewer [45] has been built
in Objectworks/Smalltalk, to support the
ViewPoints framework. The Viewer (Fig. 14) runs
on a variety of platforms (e.g., Apple Macintosh,
PC/MS-Windows and Unix/X-Windows), and
provides tools for method construction and
deployment as outlined in sections 3 and 4 of the
paper. A number of simple graphical
diagramming techniques (such as hierarchical
structuring and tabular data flow forms) have been
described in ViewPoint templates and supported
by CASE tools. These tools are partially generated
from ViewPoint template descriptions using The
Viewer’s meta-CASE capabilities. Development
actions are automatically added to ViewPoint work
records, and may be annotated individually to
provide additional rationale or explanation of the

 - 15 -

development actions. Some annotations (such as
consistency checking results) are annotated to the
work record automatically.

Fig. 14: The startup window of The Viewer. The
“Method Designer” button invokes a “Template
Browser” that supports the method engineering
activities described in section 3. The “Method Use”
button invokes tools for creating, developing and
managing multiple ViewPoints.

The Viewer has also been extended in a variety
of ways to explore ViewPoint interaction and
integration as outlined in section 5. In particular,
various protocols for inter-ViewPoint consistency
checking and inconsistency handling have been
implemented [35, 57], although the inter-
ViewPoint rules in all these cases were hard-coded
into The Viewer.

Our implementations of inter-ViewPoint
consistency checking were based on our
experiences in a number of related projects.
Butcher [7] implemented a model of inter-
ViewPoint communication as dialogue in a
Smalltalk-based tool called ICDC. We also
constructed a simple toolset (called CoreDemo) to
support part of the CORE method, and
investigated several types of consistency checks
and information transfers between CORE’s
different stages [43]. Graubmann [26, 27]
constructed a tightly integrated toolset to support
ViewPoint templates describing a variant of Petri
Nets [25]. ViewPoints developed by this toolset are
managed by a hypertext-based environment called
HyperView [26].

Continued work on a variety of communication
models and their implementations is providing us
with valuable experience in the expression and
enactment of consistency checks and information
transfers between many partial specifications. Thus
for example, we were able to derive the general
form of the rules described in section 5.1 by

reverse-engineering the hard-coded checks. We
have designed, but have yet to implement, an
extension of The Viewer , to fully support the
model of ViewPoint integration described in this
paper; and in particular, to use it as a vehicle for
experimenting with a variety of inter-ViewPoint
communication protocols. However, both
academic and industrial experiences of using The
Viewer have been encouraging, and at the very
least have demonstrated “proof-of-concept” of
our ViewPoints-based approach.

6.2. Case Studies

We have also used the organisational and
structuring principles of the ViewPoints
framework in a number of case studies of various
sizes. In [35] the entire CORE method was
described using ViewPoint templates and The
Viewer. In [57], the Constructive Design Approach
(CDA) [33] to the development of distributed
systems was also developed, and supported by an
extension of The Viewer. Our CDA case study was
particularly illuminating, because we already had a
special-purpose tool [34] which supported the
CDA method and which maintained consistency
between views at all times. Our approach of
tolerating inconsistency in using The Viewer to
support the CDA proved to be comparably
effective.

In a collaborative case study with Hewlett-
Packard Research Labs (UK) [3], we tested the
feasibility of both our approach and HP’s newly
developed object-oriented method, FUSION [10].
The case study provided us with feedback about
the ViewPoints framework, and HP with feedback
about the documentation and structuring
capabilities of their method.

Siemens (Munich, Germany) have also used the
ViewPoints framework to develop their own Petri
Nets-based method, and have developed a special
purpose Petri Nets editor and simulator based on
the framework (the HyperView tool mentioned in
section 6.1).

Finally, we developed a method called VSCS
[8] (adapted from the Object Modelling
Technique (OMT) [51]) with an objective of
producing formal specifications in Modal Action
Logic [11]. The method was used to partly specify

 - 16 -

an automatic teller machine, and further
demonstrated the feasibility of our approach.

8. Related Work

Work in a number of software engineering
fields has made its mark on our ViewPoints
framework. Analogies of ViewPoints may be
found in multidatabases [6], including work on
interoperable, heterogeneous, multidatabase
systems [1, 38]. Multidatabases deploy many,
heterogeneous - possibly distributed - databases,
based on more than one data model or schema.
Many of the problems of checking consistency
between such databases are therefore identical to
the problems of checking and integrating multiple
ViewPoint representation styles and specifications
developed in those styles.

Research in the areas of method and tool
integration and integrated project support
environments also tackles many of the issues
surrounding integration in the ViewPoints setting
(e.g., [9, 30, 39, 59]). These issues include process
modelling and integrated CASE tool support.
Only a few integration models however, rely on
the controlled transfer of information between a
number of databases [56] in which objects are
related via inter-database relationships [13].

Furthermore, system specification from
multiple perspectives has been investigated in
various guises by a number of authors. Doerry et
al. [14] propose a model for composite system
design based on multiple cooperating/interacting
agents with individual behaviours and goals.
Dardenne et al. [12] describe a goal-directed
approach to composite system development, while
Feather [19] suggests using many, parallel
“evolutionary transformations”, which may then
be merged by replaying them sequentially.

Work on program transformation [60, 61]
provides an additional vehicle for tackling
consistency checks and information transfers
between different ViewPoints. Robinson [49]
proposes a multiple perspectives integration
architecture as part of a model of specification
design. Meyers and Reiss [40] study inter-
perspective (cf. inter-ViewPoint) communication,
and propose the development of a single canonical
representation for software specification. Finally,

Niskier et al. [44] propose a pluralistic
knowledge-based approach to software
specification in the style we favour - using
multiple overlapping views elaborated using
multiple representation schemes. However, their
implementation of this, PRISMA, tightly couples
the fixed views and uses a common, centralised
(bottle-necked) data structure to express
consistency checks.

9. Conclusions and Further Work

ViewPoints facilitate the partitioning of a
problem domain into loosely-coupled,
distributable objects that encapsulate partial
specifications described in different notations and
locally developed and managed according to
different work plans. Although representation,
development and specification knowledge are all
bundled into the same object to facilitate local
management and distribution, they are separated
within a single ViewPoint into slots to facilitate
their individual manipulation and enhance their
tailorability and reusability. Tolerating the
coexistence of multiple, heterogeneous ViewPoints
to specify system requirements brings to the fore
the problems of integration - these include the
integration of specification fragments described
using different notations, and the integration of
methods and tools used to develop such
descriptions.

In this paper we have explored the use of inter-
ViewPoint rules to express the relationships
between different ViewPoints. These rules are
defined during method construction, and invoked
and applied during specification development.
They frequently define the “regions of overlap”
between pairs of ViewPoints, and thus identify
“redundant” (but perhaps desirable) information.
Moreover, while these rules describe syntactic
relations between partial specifications in different
ViewPoints, we may also view these same rules as
definitions of semantic relations between these
partial specifications. Further work is still needed
however to describe more domain-specific
knowledge and rules (e.g., conceptual and
ontological relationships [58]). One avenue of
investigation may be to develop the role of
ViewPoint owners in providing this domain

 - 17 -

knowledge.

In general, inter-ViewPoint rules themselves
play a number of important roles in ViewPoint-
oriented requirements engineering. First, they
describe the relationships between different
development techniques that form methods. In this
context they are a vehicle for method integration.
Second, they describe the relationships between
the different tools that support the constituent
development techniques that form methods. In this
context they are a vehicle for tool integration.
Third, they describe the relationships between
various specification fragments found in different
ViewPoint specifications. In this context they may
be used to check consistency between partial
specifications, or to transfer and transform
information in one ViewPoint specification to
another. Finally, ViewPoints may also be used to
represent development participants, and therefore
inter-ViewPoint rules describe protocols of
interaction and behaviour between such
participants. In this context, they provide an
infrastructure for computer-supported cooperative
work (CSCW).

In this paper we have concentrated on the
problem of expressing these inter-ViewPoint rules
for the purposes of inter-ViewPoint consistency
checking. We have tried to describe these rules,
independent of the mechanisms or communication
protocols that will be deployed to invoke and
apply them. In fact we have also said very little
about the notation for describing the actual
relations, ℜ , between ViewPoints. These need to be
explored further by looking at more complex
relations than those demonstrated by our examples
(namely, “agreement” (=) and “entailment”
(→), which we nevertheless believe are typical of
many software engineering methods). We further
believe that these rules may have an alternative
mode of application to consistency checking,
namely, a transfer mode. This is analogous to
Prolog rules, for example, which may succeed, fail
or generate the solutions that satisfy a rule. The
mechanisms for using these modes of application
in the ViewPoints setting are currently being
investigated. We believe that the transfer mode of
inter-ViewPoint rule application deals with the
issue of language translation in our framework,

where more work is needed.

Finally, while we have not yet tested our
framework in any large industrial setting, the
feedback from the case studies we have performed
and The Viewer prototype have been very
encouraging. Purely from an organisational point
of view, the ViewPoints framework has proved
useful in understanding the way in which methods
are constructed and used. ViewPoints have also
served as vehicles for reducing the complexity of
software development of heterogeneous,
composite systems, by the simple application of
the separation of concerns principle. Thus, while a
number of software engineering problems remain
to be explored, we believe our framework has, at
the very least, clarified our research agenda. In
particular, it has allowed us to envisage the
consequences of “radical” decentralisation of
software engineering knowledge. The use of many
simple, distributed, pairwise rules between
ViewPoints whose invocation and application is
coordinated by ViewPoint process models, while
not conventional, has proved to be useful and
practicable.

Acknowledgements

We would like to gratefully acknowledge the extensive
constructive comments of Axel van Lamsweerde on an
earlier version of this paper. Thanks are also due to Steve
Easterbrook and the anonymous reviewers for their
feedback, and to Michael Goedicke for his contributions to
the ViewPoints framework. This work was partly funded
by the UK Department of Trade and Industry (DTI) as part
of the ESF project. An earlier version of this paper
appeared in the Proceedings of the 15th International
Conference on Software Engineering (IEEE CS Press).

References

[1] R. Ahmed, P. De Smedt, W. Du, W. Kent, M.
Ketabchi, W. Litwin, A. Rafii and M. Shan (1991);
“The Pegasus Heterogeneous Multidatabase
System”; Computer, 24(12): 19-27, December 1991;
IEEE Computer Society Press.

[2] M. Ainsworth, A. H. Cruickshank, L. G. Groves
and P. J. L. Wallis (1994); “Viewpoint Specification
and Z”; Information and Software Technology,
36(1): February 1994; Butterworth-Heinemann.

[3] L. A. R. Ballesteros (1992); “Using ViewPoints to
Support the FUSION Object-Oriented Method”;
M.Sc. Thesis, September 1992; Department of
Computing, Imperial College, London, UK.

 - 18 -

[4] R. Balzer (1991); “Tolerating Inconsistency”;
Proceedings of 13th International Conference on
Software Engineering (ICSE-13), Austin, Texas,
USA, 13-17th May 1991, 158-165; IEEE Computer
Society Press.

[5] N. Barghouti (1992); “Supporting Cooperation in
the MARVEL Process-Centered Environment
(Proceedings of ACM SIGSOFT Symposium on
Software Development Environments)”; Software
Engineering Notes, 17(5): 21-31, December 1992;
SIGSOFT & ACM Press.

[6] M. W. Bright, A. R. Hurson and S. H. Pakzad
(1992); “A Taxonomy and Current Issues in
Multidatabase Systems”; Computer, 25(3): 50-60,
March 1992; IEEE Computer Society Press.

[7] W. Butcher (1988); “ICDC - An Implementation of
Dialogue in Smalltalk-80”; M.Sc. thesis, September
1988; Department of Computing, Imperial College,
London, UK.

[8] J. Castro and A. Finkelstein (1991); “VSCS: An
Object Oriented Method for Requirements Elicitation
and Formalisation”; FOREST project report,
NFR/WP2.2/IC/R/002/A; October 1991;
Department of Computing, Imperial College,
London, UK.

[9] G. Clemm and L. Osterweil (1990); “A Mechanism
for Environment Integration”; Transactions on
Programming Languages and Systems, 12(1): 1-25,
January 1990; ACM Press.

[10] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H.
Gilchrist, F. Hayes and P. Jeremaes (1993); Object-
Oriented Development: The Fusion Method;
Prentice-Hall, Engelwood Cliffs, NJ, USA.

[11] R. Cunningham, A. Finkelstein, S. Goldsack, T.
Maibaum and C. Potts (1985); “Formal
Requirements Specification - The FOREST Project”;
Proceedings of 3rd International Workshop on
Software Specification and Design (IWSSD-3), IEEE
Computer Society Press.

[12] A. Dardenne, S. Fickas and A. van Lamsweerde
(1993); “Goal-directed Requirements Acquisition”;
Science of Computer Programming, 20: 3-50, 1993;

[13] K. R. Dittrich (1989); “The DAMOLKLES
Database System for Design Applications: Its Past,
its Present, and its Future”; (In) Software
Engineering Environments: Research and Practice;
K. H. Bennett (Ed.); 151-171; Ellis Horwood Ltd.,
Chichester, UK.

[14] E. Doerry, S. Fickas, R. Helm and M. Feather
(1991); “A Model for Composite System Design”;
Proceedings of 6th International Workshop on
Software Specification and Design (IWSSD-6) ,
Como, Italy, 25-26 October 1991, 216-219; IEEE
Computer Society Press.

[15] S. Easterbrook (1993); “Domain Modelling with
Hierarchies of Alternative Viewpoints”; Proceedings
of International Symposium on Requirements
Engineering (RE ‘93), San Diego, CA, USA, 4-6th
January 1993, 65-72; IEEE Computer Society Press.

[16] S. Easterbrook, A. Finkelstein, J. Kramer and B.
Nuseibeh (1994); “Coordinating Distributed
ViewPoints: The Anatomy of a Consistency
Check”; (to appear in) Concurrent Engineering:
Research and Applications, August 1994; CERA
Institute, West Bloomfield, USA.

[17] S. M. Easterbrook (1991); “Elicitation of
Requirements from Multiple Perspectives”; Ph.D.
Thesis, June 1991; Department of Computing,
Imperial College, London, UK.

[18] M. S. Feather (1987); “Language Support for the
Specification and Development of Composite
Systems”; Transactions on Programming Languages
and Systems, 9(2): 198-234, April 1987; ACM
Press.

[19] M. S. Feather (1989); “Constructing Specifications
by Combining Parallel Elaborations”; Transactions
on Software Engineering, 15(2): 198-208, February
1989; IEEE Computer Society Press.

[20] A. Finkelstein and H. Fuks (1989); “Multi-party
Specification”; Proceedings of 5th International
Workshop on Software Specification and Design
(IWSSD-5), Pittsburgh, Pennsylvania, USA, 19-
20th May 1989, 185-195; IEEE Computer Society
Press.

[21] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer
and B. Nuseibeh (1994); “Inconsistency Handling in
Multi-Perspective Specifications”; (to appear in)
Transactions on Software Engineering, IEEE
Computer Society Press (an earlier version of this
paper appeared in the Proceedings of 4th European
Software Engineering Conference - ESEC ‘93,
September 1993, LNCS 717, Springer-Verlag).

[22] A. Finkelstein, J. Kramer and B. Nuseibeh (Eds.)
(1994); Software Process Modelling and
Technology, Advanced Software Development
Series, Research Studies Press Ltd. (Wiley),
Somerset, UK.

[23] A. Finkelstein, J. Kramer, B. Nuseibeh, L.
Finkelstein and M. Goedicke (1992); “Viewpoints:
A Framework for Integrating Multiple Perspectives
in System Development”; International Journal of
Software Engineering and Knowledge Engineering,
2(1): 31-58, March 1992; World Scientific
Publishing Co.

[24] D. Gabbay and A. Hunter (1991); “Making
Inconsistency Respectable: A Logical Framework for
Inconsistency in Reasoning, Part 1 - A Position
Paper”; Proceedings of the Fundamentals of
Artificial Intelligence Research ‘91, 19-32; LNCS,
535, Springer-Verlag.

 - 19 -

[25] P. Graubmann (1990); “Definition of SPEC Nets”;
REX technical report, REX-WP3-SIE-008-V1.0;
July 1990; Siemens, Germany.

[26] P. Graubmann (1992); “The HyperView Tool
Standard Methods”; REX technical report, REX-
WP3-SIE-021-V1.0; January 1992; Siemens,
Germany.

[27] P. Graubmann (1992); “The Petri Net Method
ViewPoints in the HyperView Tool”; REX technical
report, REX-WP3-SIE-023-V1.0; January 1992;
Siemens, Germany.

[28] C. A. R. Hoare (1985); Communicating Sequential
Processes; Prentice-Hall International, Engelwood
Cliffs, New Jersey, USA.

[29] M. Jackson (1990); “Some Complexities in
Computer-Based Systems and Their Implications for
System Development”; Proceedings of International
Conference on Computer Systems and Software
Engineering (CompEuro ‘90), Tel-Aviv, Israel, 8-
10th May 1990, 344-351; IEEE Computer Society
Press.

[30] M. Jarke (1992); “Strategies for Integrating CASE
Environments”; Software, 35(3): 54-61, March
1992; IEEE Computer Society Press.

[31] G. Kotonya and I. Sommerville (1992); “Viewpoints
for Requirements Definition”; Software Engineering
Journal, 7(6): 375-387, November 1992; IEE on
behalf of the BCS and the IEE.

[32] J. Kramer (1991); “A Configurable Framework for
Method and Tool Integration”; Proceedings of
European Symposium on Software development
Environments and CASE Technology ,
Königswinter, Germany, June 1991, 233-257;
LNCS, 509, Springer-Verlag.

[33] J. Kramer, J. Magee and A. Finkelstein (1990); “A
Constructive Approach to the Design of Distributed
Systems”; Proceeding of 10th International
Conference on Distributed Computing Systems,
Paris, France, 28th May-1st June, 580-587; IEEE
Computer Society Press.

[34] J. Kramer, J. Magee, K. Ng and M. Sloman (1993);
“The System Architect’s Assistant for Design and
Construction of Distributed Systems”; Proceedings
of 4th Workshop on Future Trends of Distributed
Computing Systems, Lisbon, Portugal, September
1993, 284-290; IEEE Computer Society Press.

[35] F. K. Lai (1993); “CORE in The Viewer”; M.Sc.
Thesis, September 1993; Department of Computing,
Imperial College, London, UK.

[36] J. C. S. P. Leite and P. A. Freeman (1991);
“Requirements Validation Through Viewpoint
Resolution”; Transactions on Software Engineering,
12(12): 1253-1269, December 1991; IEEE
Computer Society Press.

[37] U. Leonhardt (1994); “Process Modelling in The
Viewer”; M.Eng. thesis, June 1994; Department of
Computing, Imperial College, London, UK.

[38] W. Litwin, L. Mark and N. Roussopoulos (1990);
“Interoperability of Multiple Autonomous
Databases”; ACM Computing Surveys, 22(3): 267-
293, September 1990; ACM Press.

[39] S. Meyers (1991); “Difficulties in Integrating
Multiview Development Systems”; Software, 8(7):
49-57, January 1991; IEEE Computer Society Press.

[40] S. Meyers and S. P. Reiss (1991); “A System for
Multiparadigm Development of Software Systems”;
Proceedings of 6th International Workshop on
Software Specification and Design (IWSSD-6) ,
Como, Italy, 25-26th October 1991, 202-209; IEEE
Computer Society Press.

[41] P. Mi and W. Scacchi (1992); “Process Integration
in CASE Environments”; Software, 35(3): 45-53,
March 1992; IEEE Computer Society Press.

[42] G. Mullery (1979); “CORE - a method for controlled
requirements expression”; Proceedings of 4th
International Conference on Software Engineering
(ICSE-4), 126-135; IEEE Computer Society Press.

[43] G. Mullery (1985); “Acquisition - Environment”;
(In) Distributed Systems: Methods and Tools for
Specification; M. Paul and H. Siegert (Eds.); LNCS,
190, Springer-Verlag,

[44] C. Niskier, T. Maibaum and D. Schwabe (1989); “A
Pluralistic Knowledge-Based Approach to Software
Specification”; Proceedings of 2nd European
Software Engineering Conference (ESEC ‘89),
University of Warwick, Coventry, UK, 11-15th
September 1989, 411-423; LNCS, 387, Springer-
Verlag.

[45] B. Nuseibeh and A. Finkelstein (1992);
“ViewPoints: A Vehicle for Method and Tool
Integration”; Proceedings of 5th International
Workshop on Computer-Aided Software Engineering
(CASE ‘92), Montreal, Canada, 6-10th July 1992,
50-60; IEEE Computer Society Press.

[46] B. Nuseibeh, A. Finkelstein and J. Kramer (1993);
“Fine-Grain Process Modelling”; Proceedings of 7th
International Workshop on Software Specification
and Design (IWSSD-7), Redondo Beach, California,
USA, 6-7 December 1993, 42-46; IEEE Computer
Society Press.

[47] B. Nuseibeh, A. Finkelstein and J. Kramer (1994);
“Method Engineering for Multi-Perspective Software
Development”; (to appear in) Information and
Software Technology, Butterworth Heinemann.

[48] L. Osterweil (1987); “Software Processes Are
Software Too”; Proceedings of 9th International
Conference on Software Engineering (ICSE-9),
Monterey, California, USA, 3rd March - 2nd April
1987, 2-13; IEEE Computer Society Press.

 - 20 -

[49] W. Robinson (1989); “Integrating Multiple
Specifications Using Domain Goals”; Proceedings of
5th International Workshop on Software
Specification and Design (IWSSD-5), Pittsburgh,
Pennsylvania, USA, 19-20th May 1989, 219-226;
IEEE Computer Society Press.

[50] D. T. Ross (1977); “Structured Analysis (SA): A
Language for Communicating Ideas”; Transactions
on Software Engineering, 3(1): 16-34, January 1977;
IEEE Computer Society Press.

[51] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy
and W. Lorensen (1991); Object-Oriented Modelling
and Design; Prentice-Hall, Inc., Engelwood Cliffs,
New Jersey, USA.

[52] M. Satyanarayanan (1991); “An Agenda for Research
in Large-Scale Distributed Data Repositories”;
Proceedings of International Workshop on Operating
Systems of the 90s and Beyond, Germany, July
1991, 2-12; LNCS, 563, Springer-Verlag.

[53] T. Shepard, S. Sibbald and C. Wortley (1992); “A
Visual Sof tware Process Language”;
Communications of the ACM, 35(4): 37-44, April
1992; ACM Press.

[54] J. Souquières and N. Lévy (1993); “Description of
Specification Developments”; Proceedings of
International Symposium on Requirements
Engineering (RE ‘93), San Diego, CA, USA, 4-6th
January 1993, 216-223; IEEE Computer Society
Press.

[55] J. M. Spivey (1989); The Z Notation: A Reference
Manual; Prentice-Hall International, UK.

[56] M. Stanley (1990); “Typing in an Object
Management System (OMS)”; Proceedings of
International Workshop on Environments, Chinon,
France, September 1989, 235-250; LNCS, 467,
Springer-Verlag.

[57] T. Thanitsukkarn (1993); “The Constructive
Viewer”; M.Sc. Thesis, September 1993;
Department of Computing, Imperial College,
London, UK.

[58] Y. Wand and R. Weber (1990); “An Ontological
Model of an Information System”; Transactions on
Software Engineering , 16(11): 1282-1292,
November 1990; IEEE Computer Society Press.

[59] A. I. Wasserman (1990); “Tool Integration in
Software Engineering Environments”; Proceedings
of International Workshop on Environments,
Chinon, France, September 1989, 137-149; LNCS,
467, Springer-Verlag.

[60] D. S. Wile (1986); “Local Formalisms: Widening
the Spectrum of Wide-Spectrum Languages”; (In)
Program Specification and Transformation
(Proceedings of IFIP TC2/WG2.1 Working
Conference on Program Specification and
Transformation, Bed Tölz, 15-17th April 1986); L.
G. L. T. Meertens (Ed.); 459-482; Elsevier Science
B.V., Holland.

[61] D. S. Wile (1992); “Integrating Syntaxes and their
Associated Semantics”; Technical report, RR-92-
297; 1992; USC/Information Sciences Institute,
University of Southern California, Marina del Rey,
California, USA.

[62] P. Zave (1989); “A Compositional Approach to
Multiparadigm Programming”; Software, 5(5): 15-
25, September 1989; IEEE Computer Society Press.

[63] P. Zave and M. Jackson (1993); “Conjunction as
Composition”; Transactions on Software
Engineering and Methodology, 2(4): 379-411,
October 1993; ACM Press.

