

City, University of London Institutional Repository

Citation: Nuseibeh, B. and Finkelstein, A. ORCID: 0000-0003-2167-9844 (1992).
Viewpoints - a vehicle for method and tool integration. In: Proceedings of the Fifth
International Workshop on Computer-Aided Software Engineering. (pp. 50-60). New York,
USA: IEEE Computer Society Press. ISBN 0-8186-2960-6

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26497/

Link to published version: http://dx.doi.org/10.1109/CASE.1992.200130

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

IEEE Proc. of Int. Workshop on CASE (CASE 92), 6-10th July 1992, Montreal, Canada, pp.50-60.

ViewPoints: A Vehicle for Method and Tool Integration

Bashar Nuseibeh Anthony Finkelstein

Department of Computing
Imperial College, London, SW7 2BZ

Email: ban@doc.ic.ac.uk

Abstract

This paper proposes an object-based framework for the
development of heterogeneous, composite systems. Such
systems require the use of multiple notations and
development strategies to describe multiple developer
perspectives. The framework employs coarse-grain objects,
called ViewPoints, that represent “agents” having “roles-
in” and “views-of” a problem domain. These ViewPoints
are loosely coupled, locally managed encapsulations,
integrated via inter-ViewPoint consistency relations and
transformations.

Tool integration is treated as a special case of method
integration, and is demonstrated by The√iewer - a
prototype support environment presented in this paper.
The√iewer supports the proposed framework, and
illustrates how ViewPoints may be used for method
design, description, integration and use. Developed in
Objectworks/Smalltalk, it maps the object-based
framework onto an object-oriented implementation. The
top level architecture and implementation of The√iewer is
also briefly presented.

1: Introduction

The development of heterogeneous, composite systems
requires the use of a number of different methods at
different stages of the development process. These methods
employ different notations and development strategies that
must be integrated to produce system specifications.

This paper proposes an object-based, organisational
framework for systems engineering methodology. The
framework uses ViewPoints [4] to describe system
development participants, their roles in the development
process, and their views of the problem domain. The
framework is used as a basis for the provision of integrated
environment support for the specification, design and
implementation of large, heterogeneous, composite
systems [16]. Such systems deploy a variety of different
technologies and require a variety of expertise for their
development. The ViewPoints framework acknowledges

the need to support different development notations and
strategies, and attempts to provide a mechanism for their
customisation and integration.

2: ViewPoints

Large systems development projects typically consist
of a number of participants, engaging in the partial
specification of system components. These participants
frequently employ different notations and development
strategies to produce descriptions of different (or the same)
problem domains. We define a ViewPoint as a loosely
coupled, locally managed object, encapsulating
representation knowledge, development knowledge and
specification knowledge of a particular problem domain. A
ViewPoint encapsulates this systems development
knowledge in five separate slots:

(1) style: the notation or representation style used

(2) work plan: the development actions and strategy

that use the notation defined in the style slot

(3) domain: the problem domain which the

ViewPoint describes

(4) specification: the actual partial specification:

produced according to the development strategy

defined in the work plan slot, described in the

notation defined in the style slot, for that part of the

overall problem defined in the domain slot

(5) work record: the development history, rationale

and current development state of the specification

produced in the specification slot

Each ViewPoint is associated with a particular
development participant called the ViewPoint owner. The
ViewPoint owner is responsible for enacting the

ViewPoint work plan to produce a ViewPoint
specification, in the ViewPoint style, for the owner’s
domain of responsibility.

Clearly, a number of ViewPoints may employ the
same style (eg, functional decomposition) and the same
work plan (eg, a top-down process), to produce different
specifications for different domains. We therefore define a
reusable ViewPoint Template (Figure-1) in which only the
style and work plan slots are elaborated.

STYLE
Definition of the representation language (eg, using BNF
or Entity-Relationship-Attributes as meta-languages).

WORK PLAN
Development actions and rules:
1) assembly actions: basic editing actions,
2) check actions: in- and inter-ViewPoint consistency,
3) guide actions: what to do next and how to do it).

Figure-1: The two slots of a ViewPoint Template.

A ViewPoint template is in effect a ViewPoint type,
such that a single ViewPoint template may be instantiated
several times to yield several different ViewPoints (Figure-
2), and by extension several ViewPoint specifications
(e.g., the sample ViewPoint in Figure-3).

ViewPoint Template

STYLE

WORK PLAN

ViewPoint 1 ViewPoint 2 ViewPoint n

...

Figure-2: A single ViewPoint Template (describing a single
development technique: notation and process), may be
instantiated to produce several ViewPoints, each ViewPoint
containing a specification for a different domain in the overall
problem. Thus one might envisage producing several dataflow
diagrams in the course of a system specification project - but
the notation and development strategy for producing dataflow
diagrams would be defined only once in a ViewPoint template.

A ViewPoint instantiated from a
Functional Decomposition Template

STYLE:
* 'Function' of type "String" and graphical representation:

* 'Part-of' relation of type "Function X Function", and graphical
 representation:

WORK PLAN:
* Assembly actions:
 add function, remove function, link functions, unlink functions
* In-ViewPoint actions:
 check syntax (eg, unconnected functions, name clashes, etc),

 completeness, ...
* Inter-ViewPoint actions:
 check consistency with and/or transfer information to and/or from
 other ViewPoints, create ViewPoints
* Guide actions:

"process model" of what to do and when to do it
 (eg, using a "precondition -> [Action] postcondition" notation)

DOMAIN: Library Computer System

SPECIFICATION:

WORK RECORD:
* History: add(Library System), add(Borrow),
 link(Library System, Borrow), ...
* Rationale: The library computer must process the borrowing and
 returning of books
* Development State: Incomplete

Library System

Borrow Return

Figure-3: A simplified example of a “typical” ViewPoint
instantiated from a Functional Decomposition Template.
Many such ViewPoints may be instantiated from that single
template, each producing a different functional hierarchy
(specification) for a different domain. The Functional
Decomposition Template is simply a ViewPoint with only the
Style and Work Plan slots filled.

A software engineering method in this context is a
collection of ViewPoint templates, representing the
constituent development techniques of the method.
Customised methods, or combinations of methods, may
thus be constructed by grouping together the relevant
templates. The binding of these templates is via Inter-
ViewPoint Rules that relate the style components of the
various templates. These rules are effectively the method
integration mechanism, and are used to check consistency
between ViewPoints.

This ViewPoint-Oriented Systems Engineering (VOSE)
framework has a number of analogies in the object-oriented
world [2]. The framework is “object-based” as opposed to

“object-oriented” to highlight the (deliberate) omission of
inheritance. Strictly speaking, the provision of ViewPoint
templates (types) means VOSE is “class-based” [17]. It is
however, a systems development paradigm rather than a
language, with more emphasis on objects (ViewPoints)
rather than classes (Templates). Table-1 lists some of the
mechanisms and terminology commonly used in object-
oriented paradigms, with their VOSE equivalents where
applicable.

Object-Orientation VOSE

Object

Class

Encapsulation of state
and behaviour

Information Hiding:
Objects can only be
changed by object
operations

Inheritance

Polymorphism: the
binding of a message to
different methods,
depending on the type of
the receiving object

Message Passing

ViewPoint

Template

Encapsulation of state in the
specification, domain and work
record slots; and behaviour in
the style and work plan slots

Information Hiding: ViewPoint
specifications can only be
changed by work plan actions

Not Available (deliberately
omitted to maximise
encapsulation of templates
and distribution of ViewPoints
... inheritance works against
efficient distribution)

Polymorphism simulated (as
we neither have inheritance
nor dynamic binding): identical
work plan actions may be used
to build different specifications,
depending on the ViewPoint
Template instantiated

Message Passing - available,
but not in the strict
object-oriented sense; rather,
in the distributed software
engineering context: via
inter-ViewPoint consistency
checking mechanisms and
bindings

Table-1: Analogous mechanisms and terminology
between object-oriented [2] and ViewPoint-oriented systems
engineering (VOSE).

The omission of inheritance reflects the firm
commitment of VOSE to distributed development by a
number of participants in a cooperative setting.
Inheritance, by its nature, imposes dependency between

classes (templates) and the superclasses from which they
inherit. In a distributed environment, classes and their
superclasses may be located on different nodes that are
separated geographically. The implementation of
inheritance in such settings is likely to be, at least,
inefficient. Furthermore, each ViewPoint template is
essentially the description of a specification development
technique. Thus, it is a reusable component that may be
customised and used in different methods. A coupling
relationship, such as inheritance, between it and another
template reduces its reusability.

In addition to ViewPoint template reuse, VOSE also
provides the opportunity for the reuse of actual
specifications and designs. A ViewPoint (ie, an
instantiated Viewpoint template) encapsulates a
specification and its development rationale for a particular
problem domain. This encapsulation and modularity makes
ViewPoints highly reusable, although mechanisms for
managing and integrating reuse into the development
process are still required - a remain elusive.

ViewPoint development, management and reuse all
benefit from automated support, and the next section
describes The√iewer - a prototype environment providing
such support.

3: Tool Support: The√iewer

T h e √ i e w e r is a VOSE support environment
implemented in Objectworks/Smalltalk Release 4. The
smalltalk system was chosen as the development
environment for a number of diverse reasons:

(1) The inherent object-based nature of VOSE allows the
convenient representation of ViewPoints as smalltalk
objects.

(2) The suitability of the smalltalk environment for rapid
prototyping and exploratory programming facilitates
the evolutionary development of the VOSE framework.

(3) The accessibility of smalltalk on a number of different
platforms: The√iewer was developed on an Apple
Macintosh IIci, and runs under X-Windows on Sun
workstations and Windows on IBM PCs.

(4) The desire to offer, at the prototyping stage, a
programmable platform for the VOSE tool developer.

(5) Previous experience in implementing graphical CASE
tools and consistency checking mechanisms in
smalltalk [13].

3.1: Scope

The startup window of The√ i ewer (Figure-4)
conveniently illustrates the scope of the VOSE
environment. On the one hand, a “method designer” is
provided with the opportunity to design, describe and
integrate ViewPoint templates that constitute a method.
On the other hand, a “method user” may instantiate pre-
defined templates to yield concrete ViewPoints, whose
specifications may be developed, checked and managed
within the boundaries of a system development project.

Figure-4: The startup window of The√iewer defining the
scope of the VOSE environment. The "Method Designer"
button creates a Template Browser (Figure-5), while the
"Method User" button creates a ViewPoint Configuration
Browser (Figure-6).

3.2: Method Design

In the VOSE context, method design takes the form of
ViewPoint template description and integration. The
constituent techniques of “the method” are chosen, and then
a template for each is elaborated. The√iewer provides a
Template Browser (Figure-5) to facilitate such activities. In
Figure-5 a customised example method is being defined. It
consists of three simple graphical development techniques:
functional decomposition, object structuring and action
tables. The functional decomposition template has been
selected in this example.

In Figure-5a, the style slot of the functional
decomposition template is being described, while Figure-5b
shows part of the work plan description. The consistency
relations and transformations between templates of the
method are defined in the “Inter-ViewPoint Checks” part of
the work plan (shown but not selected in Figure-5b).

The Graphics Editor at the bottom right of the Template
Browser provides the method designer with tools to draw
and customise icons that may be part of a representation
style and that may then become part of method user tools.

Functional Decomposition

Function

(a)

Functional Decomposition

Assembly Actions

(b)

Figure-5: Two snapshots of The√iewer’s Template Browser.
ViewPoint template names are listed in the top left window
pane. For a selected template the user may describe (a) the
style, by clicking on the ‘style’ button, or (b) the work plan,
by clicking on the ‘work plan’ button’. The descriptions may
be textual (bottom left) and/or graphical (bottom right). The
‘Process Modeller’ button provides tools defining ViewPoint
state transitions and context-sensitive guidance.

Digital Storage Oscilloscope

Figure-6: The√iewer’s

ViewPoint Configuration

Browser. The list of

projects created is shown

in the top left window pane,

and the panel of command

buttons below it apply to

the ViewPoint selected

from the ViewPoint

Configuration Diagram in

the bottom window pane.

The "Project Report"

button produces the

Project Analyser shown in

Figure-7.

Digital Storage Oscilloscope Project

3.3: Method Use

Development (Project) Management: In VOSE, a
systems engineering project revolves around instantiating
ViewPoint templates, developing ViewPoint
specifications, and checking for consistency between them.
A project under development therefore consists of a
number of ViewPoints, instantiated from the constituent
templates of the method on which the project is based.
These ViewPoints are displayed in a ViewPoint
Configuration Diagram, which tabulates ViewPoints
instantiated from the same template in columns, and those
relating to the same domain in rows. The√iewer employs a
ViewPoint Configuration Browser (Figure-6) as the overall
project management tool. This browser allows the creation
of projects based on pre-defined methods, the instantiation
of the methods’ constituent templates, and the presentation
of selected projects’ ViewPoint configuration diagrams. A
ViewPoint configuration diagram may be navigated by
selecting the required ViewPoint and executing the required
command.

The ViewPoint Configuration Browser also provides a
number of monitoring tools such as the Project Analyser
(Figure-7) and the Work Record Inspector (Figure-8).

The Project Analyser simply lists the selected project’s
constituent ViewPoints and their current state of
development (taken from their respective work records). It
provides overall project monitoring, and is a step towards
automatic report generation.

The Work Record Inspector for a selected ViewPoint
provides a detailed view of that ViewPoint’s work record.
This allows for the ViewPoint’s state, development
history, rationale and annotations to be inspected by the
development manager. Furthermore, since work record
inspection may be performed while the ViewPoint is still
under development, the Work Record Inspector provides
up-to-date (read-only) monitoring of ViewPoint
development progress.

Figure-7: A Project Analyser. This is a project
management tool. It lists all ViewPoints created for a
selected development project, and summarises their
annotations and development status. It is a step towards
automatic report generation.

add Function "Borrow Functions"

Figure-8: A Work Record Inspector. It provides the
project development manager with a view of the selected
ViewPoint's work record. The development history for a
selected ViewPoint is displayed, and annotations of
individual development steps may be inspected. The Work
Record Inspector is a useful development monitoring tool.

ViewPoint Deve lopment : Actua l p ro jec t
development occurs in projects’ constituent ViewPoints.
“Developing” a ViewPoint in the ViewPoint
Configuration Diagram provides a ViewPoint Inspector on
that ViewPoint (Figure-9). Several ViewPoint Inspectors
may be active simultaneously, opening the possibility for
distributed ViewPoint development, with each ViewPoint
owner developing a different ViewPoint on a different
workstation. Clearly however, a mechanism for
concurrency control is also needed.

The ViewPoint Inspector provides the mechanisms for
editing and checking ViewPoint specifications - both
internally and across other ViewPoints. Editing commands
appear under the “Assemble” button and are derived from
the “Assembly Actions” description in the corresponding
ViewPoint template (Figure-5b). Consistency checking
may be performed by a Consistency Checker (Figure-10),
and coarse-grain, context-sensitive method guidance is also
available. The work record automatically keeps track of all
actions performed on the specification, and the user may
optionally annotate some or all of these actions to explain
or provide a rationale for various design decisions.

add Function "Set Channel 2 Amplitude"

Figure-9: A ViewPoint Inspector. This window provides a toolkit for the development of ViewPoint specifications.
This toolkit includes tools for editing (assembling) specifications and checking their consistency. The figure shows a
"typical" functional hierarchy (specification), with the work record shown in the two top right window panes.

Figure-10: A ViewPoint Consistency Checker. The
scope of the checks is selected first: In- or Inter-
ViewPoint. Inter-ViewPoint checks have two modes of
application: (1) resolve - answers ‘success’ or ‘fail’
when checks are executed, (2) transfer - passes on the
necessary information to and/or from other Viewpoints
to maintain inter-ViewPoint consistency. The list of
appropriate checks is displayed and may be selected and
executed individually or in groups.

4: Integration

Integration is central to the VOSE framework, where
its scope extends to three activities:

(1) Method Integration
(2) ViewPoint Integration
(3) Tool Integration

Activities (1) and (2) are directly supported by
The√ iewer, while activity (3) is supported by the
underlying smalltalk implementation.

4.1: Method Integration

In VOSE, a method is treated as the union of the
techniques that make up that method. In other words, it is
composed of the set of ViewPoint templates that describe
those techniques (Figure-11). The inter-dependencies
between the techniques (which also form part of the

method) are specified by the method designer, and are
described in the local ViewPoint work plans as “Inter-
ViewPoint Checks”.

Template 1 Template 2

Template 3 Template 4

Inter-ViewPoint Relations

= "Method"

Figure-11: A software engineering method is a
configuration of ViewPoint templates, integrated via a
series of inter-ViewPoint relations.

Therefore, to “package” a method, its constituent
templates are described using the Template Browser, and
then collectively stored and distributed as “a method”.

Alternatively, single templates may be described and
stored individually in a Templates Database. These
templates may then be used by different method designers,
who must elaborate their inter-ViewPoint rules in order to
integrate them into their own particular methods. The
templates themselves may also be customised to fit
designers’ own stylistic and strategical requirements.

4.2: ViewPoint Integration

A project in VOSE is a configuration of ViewPoints.
These ViewPoints are linked by relationships defined in
the respective templates from which they were instantiated.
While templates describe general inter-ViewPoint
relationships, the actual ViewPoints that constitute
projects are related via instantiations of these relationships.
For example, a general inter-ViewPoint rule that relates a
‘Function’ in a Functional hierarchy to an ‘Action’ in an
Action Table, would, on instantiation, relate an actual
function in the specification of one ViewPoint to an actual
action in the specification of another. Figure-12 shows
two ViewPoint specifications produced by The√iewer, in
which the function ‘search by author’ and the action
‘search by author’ are related by an identity relationship.

Figure-12: Two simple ViewPoint specifications produced by The√iewer. A Functional Hierarchy and an
Action Table. A general Inter-ViewPoint rule might require a Function in the Functional Hierarchy to have a
corresponding Action in an Action Table. An instance of this general rule would (1) select the Function
‘search by author’ and compare it with all the Actions in the Action Table, (2) detect the Action ‘search by
author’, (3) succeed, then (4) check the next Function in the hierarchy.

Currently, a project is an integrated collection of
ViewPoints arranged in a rectangular lattice. This
collection represents the project’s system specification,
consisting of the individual ViewPoint specifications and
their instantiated inter-ViewPoint relations.

A multi-layered approach to ViewPoint organisation
and integration is also being investigated [10]. This is
based on configuration programming [8], which treats
ViewPoints as atomic or as configurations of yet more
ViewPoints. The√iewer does not currently support this
model, but it is clear that some form of ViewPoints’
structuring is needed to manage large ViewPoint lattices.

4.3: Tool Integration

The VOSE framework was constructed with tool
support and integration in mind. An emphasis was made
on providing a framework where effective tools could be
constructed to support methods’ constituent techniques,
and to ensure that these tools were both integrated and
reusable. To achieve this, the problem of tool construction
and integration was treated as a subset of the wider
problem of method development and integration. The
framework, and The√iewer, were constructed to allow the
addition of individual tools to support individual

development techniques, which could then be integrated
and reused in a manner analogous to the integration and
reuse of ViewPoint templates. This was achieved by
recognising the need to separate declarative from
algorithmic information [3].

A ViewPoint template encapsulates within its two
slots (style and work plan) declarative information about
the development technique which it describes. How this is
supported by a CASE tool is left to the tool implementor.
Different tool implementors may choose different
algorithms, indeed different implementation languages, to
support the same template. What these tools must
conform to however, is the declarative information
supplied to them by the templates they support. In
particular, the inter-ViewPoint, and hence inter-Tool, rules
must be picked up from the appropriate templates. These
rules, which provided the mechanism for method
integration, now also act as the tool integration
mechanism. Method tool support is then treated as the
union of the tools supporting the method’s constituent
templates (Figure-13).

Note: Currently, the mechanisms for tool integration and
reuse depend on the smalltalk architecture and
implementation of The√iewer and its tools.

+ =+ ..

supports supports supports supports supports

+ =+ ..

Tool 1 Tool 2 Tool 3 Tool n
Method X

Tool Support

Method XViewPoint
Template 1

ViewPoint
Template 2

ViewPoint
Template 3

ViewPoint
Template n

Figure-13: A “method” is the union of its constituent development techniques (ViewPoint
Templates). A “tool” supports an individual ViewPoint Template. “Method Tool Support” is the
union of all the tools supporting the method’s constituent ViewPoint Templates.

5: Implementation Architecture

The√ i ewer uses a very basic approach to tool
implementation and integration. Currently all the
ViewPoint template support tools are implemented in, and
depend on, smalltalk - with the architecture allowing for
their “easy” addition, modification and extension. Standard,
abstract classes are available to get skeleton tools
operational quickly, with mechanisms implemented for
picking up textual and graphical information from
template descriptions provided by the method designer. For
example, the graphical descriptions created in the template
style slots using the Graphics Editor may be picked up as
icons by the tools, while the assembly actions are treated
as items of pop-up menus by ViewPoint Inspectors. We
are currently examining ways of improving tool
construction using The√iewer by providing better meta-
CASE utilities, in order to make tool-building more
“implementor-friendly” [1].

In many ways, The√iewer is based on a “traditional”
smalltalk architecture. Most of the Browsers, Inspectors
and other tools employ Model-View-Controller (MVC)
triads [11] to model their behaviour, presentation and user-
interfaces. Of greater interest are the objects which the
various tools manipulate. A class Template was
implemented as a subclass of Object, with two principle
instance variables ‘style’ and ‘workPlan’. Class ViewPoint
was implemented as a subclass of Template with the
addition of three more instance variables ‘domain’,
‘specification’ and ‘workRecord’ (Figure-14). Clearly,
these classes implemented in smalltalk directly model the
VOSE framework - an acknowledged benefit of object-
oriented programming. Moreover, the direct mapping of
ViewPoints onto smalltalk objects facilitates the
incorporation of exploratory modifications of the VOSE
framework into The√iewer environment.

Class: Template
Superclass: Object

Instance Variables:
 style
 workPlan

Class: ViewPoint
Superclass: Template

Instance Variables:
 domain
 specification
 workRecord

subclass of

Figure-14: The√iewer implements the class “Template”
and its subclass “ViewPoint” which directly reflect the
objects manipulated in the model of the VOSE framework.

Templates and ViewPoints are stored in separate
smalltalk databases which may be selectively accessed by
the different tools of The√iewer. These databases may also
be saved to files and exported across smalltalk images.

The√iewer is a large prototype smalltalk application
implementing over 45 classes. It employs a number of
different clusters of classes and MVC triads - the most
common being a single model and controller with multiple
views. Frequently however, views also carry a substantial
part of the model functionality, to allow many views to
share a single model. The controller is sometimes also
combined with its view, particularly when direct
interaction with the view is required; eg, in the case of
ViewPoint Inspectors which allow users to manipulate
specifications directly using the mouse. Figure-15 shows
the top level architecture of The√iewer.

The√iewer is a prototype VOSE support environment
under development. Work is underway to improve
consistency checking and method guidance, and to provide
“hooks” to ViewPoint support tools written in languages
other than smalltalk.

VOSE Startup
MVC

ViewPoint Configuration Browser
MVC

ViewPoint Inspector
MVC

"Pluggable Tool"
(cf. "Pluggable View")

ViewPoints DBMS

Template Browser
MVC

Template

Templates DBMS

ViewPoint

model-view-controller

class(es)

MVC

KEY

creates

creates

creates

accesses

contains

uses

uses

uses

accesses

inherits

contains

contains

Figure-15: The top level architecture of The√iewer.

6: Conclusions and Future Work

The ViewPoints approach to software engineering
acknowledges the inevitable role played by a multitude of
development techniques in a single development project.
ViewPoints encapsulate development and specification
knowledge within a single object. Further modularity is
achieved by selecting ViewPoints that cover different
problem domains.

While this “separation of concerns” is clearly intuitive
and logical, the additional attraction of VOSE is its
support for integration. Integration is supported across the
framework, from method and tool design to method use.

The VOSE object-based architecture offers considerable
scope for reuse. Again, reuse is supported at the levels of
both method design and method use. ViewPoint templates
(classes) are the reusable components of representation and
development knowledge during method design and
construction. ViewPoints (instances) are the reusable
components of specification knowledge during method use.

Methods are treated as a union of ViewPoint templates,
and method tool support as the union of the individual
tools supporting the methods’ constituent templates. Tool
integration is a natural consequence of the method
integration provided by the VOSE framework via inter-
ViewPoint consistency checks and transformations.

VOSE is a proposed integration mechanism for the
ESPRIT II project REX [15], and is under development at
a number of European industrial and academic sites.
Several case studies [14] have been performed using

methods such as CORE [12] and the Constructive Design
Approach [9] from which valuable feedback has been
gained. Individual development techniques, including an
extended form of Petri Nets [5], have also been described
using ViewPoint templates, and special-purpose tools
constructed to support them [6, 7].

Our current research is focused on two areas: notation
and process modelling. We are particularly interested in
exploring suitable notations for expressing in- and inter-
ViewPoint consistency checking rules. One possibility is
to use an extended form of Prolog - extended because of the
need to handle distributed knowledge sources. Prolog rules
lend themselves to two “modes of application”: a
success/fail mode or solution generation (information
transfer) mode. These two modes are particularly
appropriate for inter-ViewPoint checking.

Our process modelling research is investigating a
number of issues, one of which is also notation. At one
level, we are interested in modelling the overall, method-
driven, systems development process. At another level -
that of individual ViewPoints - we are using a
“precondition-action-postcondition” notation to describe
our individual process models; however, a richer language
may be required for the finer-grained modelling of the
ViewPoint development process. In particular, we need to
provide support for method guidance at the level where
process meets representation.

ViewPoint Oriented Systems Engineering has taken a
multiple perspectives approach to the development of
heterogeneous, composite systems. Problems and

processes are divided into simpler, communicating units of
knowledge. Although the concepts of modularity,
encapsulation and cooperative work are not new, the
novelty lies in their realisation through ViewPoints which
provide a means for both heterogeneity and integration.

Acknowledgements

The authors would like to gratefully acknowledge the
contributions of their colleagues at the Distributed Software
Engineering Group at Imperial College. In particular,
Jonathan Moffett and Diomidis Spinellis provided
constructive feedback on earlier drafts of the paper. Special
thanks to Jeff Kramer, Michael Goedicke and Peter Graubmann
for their work on ViewPoints. This work was funded by the UK
Science and Engineering Research Council (SERC) and the
Commission of European Communities (CEC), as part of the
SEED (Software Engineering and Engineering Design) and
REX (Reconfigurable and Extensible Parallel and Distributed
Systems) projects, respectively.

References

[1] A. Alderson, “Meta-CASE Technology”, Proceedings of
European Symposium on Software Development
Environments and CASE Technology, Konigswinter,
Germany, June 1991, Published by Springer-Verlag.

[2] G. Booch, “Object-Oriented Design with Applications”,
Benjamin Cummings, Redwood City, CA, USA, 1991.

[3] G. Clemm and L. Osterweil, “A Mechanism for
Environment Integration”, ACM Transactions on
Programming Languages and Systems, Volume 12,
Number. 1, January 1990, pp. 1-25.

[4] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein
and M. Goedicke, “Viewpoints: A Framework for
Integrating Multiple Perspectives in System
Development”, To appear in the International Journal of
Software Engineering and Knowledge Engineering,
Special issue on “Trends and Future Research Directions
in SEE”, World Scientific Publishing Company, 1992.

[5] P. Graubmann, “Definition of SPEC Nets”, REX
technical report REX-WP3-SIE-008-V1.0, Siemens,
Munich, Germany, July '90.

[6] P. Graubmann, “The HyperView Tool Standard
Methods”, REX technical report REX-WP3-SIE-021-
V1.0, Siemens, Munich, Germany, January '92.

[7] P. Graubmann, “The Petri Net Method ViewPoints in the
HyperView Tool”, REX technical report REX-WP3-SIE-
023-V1.0, Siemens, Munich, Germany, January '92.

[8] J. Kramer, “Configuration Programming - A Framework
for the Development of Distributable Systems”,
Proceedings of IEEE International Conference on
Computer Systems and Software Engineering
(CompEuro 90), May 1990.

[9] J. Kramer, J. Magee and A. Finkelstein, “A Constructive
Approach to the Design of Distributed Systems”,
Proceedings of the 10th International Conference on
Distributed Computing Systems, Paris, France, 28th
May-1st June 1990.

[10] J. Kramer and A. Finkelstein, “A Configurable
Framework for Method and Tool Integration”,
Proceedings of European Symposium on Software
Development Environments and CASE Technology,
Konigswinter, Germany, June 1991, Springer-Verlag.

[11] G.E. Krasner and S.T. Pope, “A Cookbook for using the
Model-View-Controller User Interface Paradigm in
Smalltalk-80”, ParcPlace Systems, CA, USA, 1988.

[12] G. Mullery, “Acquisition - Environment”, (In) M. Paul &
H. Siegert (editors), Distributed Systems: Methods and
Tools for Specification, LNCS 190, Springer-Verlag,
1985.

[13] B.A. Nuseibeh, “CoreDemo: An Investigation into the
use of Object-Oriented Techniques for the Construction
of CASE Tools”, M.Sc. Thesis, Department of
Computing, Imperial College, London, September
1989.

[14] B.A. Nuseibeh, “VOSE: An Interim Report and Case
Study”, Internal Report, Department of Computing,
Imperial College, London, March 1991.

[15] REX Technical Annex, “ESPRIT Project 2080”,
European Economic Commission, March 1989.

[16] F. Tontsch, “Methods and Tools”, pp. 181-199, Chapter
10, Managing Complexity in Software Engineering,
R.J.Mitchell (editor), Peter Peregrinus Ltd. on behalf of
the IEE, London, 1990.

[17] P. Wegner, “Dimensions of Object-Based Language
Design”, Proceedings of OOPSLA ‘87, ACM, New York,
pp. 168-182.

