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An empirical investigation 
of deviations 
from the Beer–Lambert law 
in optical estimation of lactate
M. Mamouei1,2*, K. Budidha2, N. Baishya2, M. Qassem2 & P. A. Kyriacou2

The linear relationship between optical absorbance and the concentration of analytes—as postulated 
by the Beer-Lambert law—is one of the fundamental assumptions that much of the optical 
spectroscopy literature is explicitly or implicitly based upon. The common use of linear regression 
models such as principal component regression and partial least squares exemplifies how the linearity 
assumption is upheld in practical applications. However, the literature also establishes that deviations 
from the Beer-Lambert law can be expected when (a) the light source is far from monochromatic, 
(b) the concentrations of analytes are very high and (c) the medium is highly scattering. The lack of 
a quantitative understanding of when such nonlinearities can become predominant, along with the 
mainstream use of nonlinear machine learning models in different fields, have given rise to the use 
of methods such as random forests, support vector regression, and neural networks in spectroscopic 
applications. This raises the question that, given the small number of samples and the high number 
of variables in many spectroscopic datasets, are nonlinear effects significant enough to justify the 
additional model complexity? In the present study, we empirically investigate this question in relation 
to lactate, an important biomarker. Particularly, to analyze the effects of scattering matrices, three 
datasets were generated by varying the concentration of lactate in phosphate buffer solution, human 
serum, and sheep blood. Additionally, the fourth dataset pertained to invivo, transcutaneous spectra 
obtained from healthy volunteers in an exercise study. Linear and nonlinear models were fitted to each 
dataset and measures of model performance were compared to attest the assumption of linearity. 
To isolate the effects of high concentrations, the phosphate buffer solution dataset was augmented 
with six samples with very high concentrations of lactate between (100–600 mmol/L). Subsequently, 
three partly overlapping datasets were extracted with lactate concentrations varying between 0–11, 
0–20 and 0–600 mmol/L. Similarly, the performance of linear and nonlinear models were compared 
in each dataset. This analysis did not provide any evidence of substantial nonlinearities due high 
concentrations. However, the results suggest that nonlinearities may be present in scattering media, 
justifying the use of complex, nonlinear models.

Near Infared (NIR), Mid-Infrared (mid-IR) visible and Ultraviolet (UV) optical spectroscopy provide a low-cost 
and non-invasive alternative to electrode-based approaches in the characterization of chemical compounds and 
the quantification of analytes. Such applications necessitate training predictive models on datasets with sufficient 
variations in the concentration of absorbing species. However, the provision of such datasets is highly time—and 
resource-demanding, as a result, the number of samples are often small. Moreover, the identification of discrimi-
native optical patterns requires scanning broad ranges of the optical spectrum. Therefore, the acquired optical 
spectra contain absorbance values at hundreds or thousands of wavelengths. The limited sample sizes, n, along 
with the large number of wavelengths (variables), p, constitute the main features of most optical spectroscopy 
datasets; known as large p small n  problems1. While this poses a challenge for predictive modelling, two condi-
tions make the problem tractable:
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the presence of redundant variables and the multicollinearity of absorbance values mean the resulting covari-
ance matrices are low rank,
under uniform attenuation conditions, the Beer-Lambert law postulates a linear relationship between the 
absorbance of monochromatic light and the concentration of absorbing species,

where A denotes absorbance, Io and I are the intensity of beam before and after passing through the absorbing 
layer, N is the number of absorbing species in the matrix, ǫi is the molar decadic extinction coefficient for the  ith 
absorbing species, ci is the concentration, and l  is the path length of light.

These considerations justify the choice of Principal Component Regression (PCR) and Partial Least Squares 
(PLS) in spectroscopic  studies2,3. Both of these methods are linear. The former achieves dimensionality reduc-
tion by finding the axes of maximal variance in the space of independent variables, Xn×p , while the latter does 
so by finding the axes of maximal covariance between the independent variables and the dependent variable, 
Yn×1 . In spite of major differences in the interpretation of latent variables in PCR and PLS, they often deliver 
similar predictive  performances4. Minor improvements in predictive performance might be expected from PLS, 
particularly when noise constitutes much of the variance in the independent variables  space5–7.

While PLS and PCR remain workhorses of quantitative analytics in spectroscopic studies, it is also well-
understood that deviations from the linearity assumption can take place when the light source is not mono-
chromatic, the concentration of the analytes are high, and the medium is highly scattering. Mayerhöfer et al.8 
showed errors that arise from the Beer-Lambert law can exceed an order of magnitude compared to the exact 
solution of the Maxwell equations. Tolbin et al.9 derived analytical expressions for the critical concentration 
and the extinction coefficient beyond which deviations from the Beer-Lambert law become significant. Firstly, 
the expectation of nonlinearities that are challenging to quantify apriori, and secondly, the prevalence and suc-
cess of nonlinear Machine Learning (ML) models in different fields have paved the way for their application in 
spectroscopic studies. For  instance10, used Artificial Neural Networks (ANN) for classification of drug strength 
from NIR spectra. Santana et al.11 compared the application of discriminant PLS and Random Forest (RF) on 
classification of adulterated oil and spice samples from Fourier Transform Infrared (FT-IR) and NIR spectra. 
They reported that RF delivers a superior performance. Mekonnen et al.12 compared the performance of methods 
such as PLS, Support Vector Regression (SVR), ensemble decision trees, and ANNs on the estimation of the 
concentration of glucose in aqueous solutions. This comparison was conducted on an NIR dataset comprising of 
47 concentrations of glucose. SVR, ANN, and a variant of ensemble decision trees obtained better performances. 
Balabin and  Lomakinab13 compared the performance of PLS, SVR, and ANN on NIR spectra obtained from 
different petrochemical matrices. It was shown that ANN and SVR deliver comparable performances and both 
offer more accurate predictions than PLS; the authors concluded that SVR can provide a robust alternative to 
ANN. Similar investigations of linear and nonlinear regression models have been reported in the literature for 
the estimation of soil carbon content, sugar content of orange, active substance content of tablets, moisture, fat 
and protein content of meat, and finally protein content of wheat  in14–16. The PLS model is often found to deliver 
poorer performance compared to nonlinear models.

The present study focuses on lactate. The association of lactate with one of the most fundamental processes 
in the body, namely cellular respiration, makes it an important biomarker akin to glucose. Therefore, not sur-
prisingly, clinical literature underlines the diagnostic and prognostic value of lactate in relation to numerous 
life-threatening conditions and diseases, such as sepsis, diabetes, cancer, pulmonary and kidney  diseases17–20. 
Lactate has also been referred to as an important indicator of the risk of morbidity and mortality in critically ill 
 patients21. Currently, the gold standard in the measurement of lactate requires blood sampling. This limits the 
ability of intensivists to frequently monitor patients’ lactate levels; in spite of the calls for its routine measure-
ments in patients with  sepsis22. These considerations have given rise to the pursuit of non-invasive and continuous 
alternatives to intermittent blood sampling for lactate measurement.

Petibois et al.23 used the mid-IR region of the optical spectrum to estimate the concentration of lactate in 
plasma and reported a coefficient of determination, R2

T , of 0.94 in the test set and a Root Mean Square Error of 
Prediction (RMSEP) of 0.15 mmol/L. Lafrance et al.24 showed the potential of NIR spectra in the estimation 
of lactate concentration in blood, reporting a coefficient of determination of 0.96 with cross-validation,R2

CV . 
Mamouei et al.25 applied a number of variable selection methods to the mid-IR spectra of lactate and showed that 
highly accurate estimates, R2

CV = 0.996 , can be achieved with models that only use a small subset of wavelengths. 
Budidha et al.26 conducted a comprehensive comparison of the different regions of the optical spectrum, namely 
ultraviolet/visible, NIR, and mid-IR, for the measurement of lactate and highlighted the merits of mid-IR for 
in-vitro applications and NIR for transcutaneous applications.

In this study we adopt an empirical approach to investigate potential deviations from the Beer-Lambert law 
that arise from high concentrations of lactate and scattering matrices. To this end, we compare the performance 
of linear models, namely PCR, PLS, and linear SVR, with nonlinear models, specifically, SVR with quadratic, 
cubic, quartic, and Radial Basis Function (RBS) kernels. To isolate the effects of high concentrations, this com-
parison is performed on three partially overlapping datasets comprising of NIR spectra of lactate in PBS with 
concentrations in the range of 0–10 mmol/L, 0–20 mmol/L and 0–600 mmol/L. To investigate the effects of 
scattering matrices, the comparison is extended to incrementally more scattering matrices; from PBS to serum, 
whole blood, and in vivo transcutaneous spectra.

(1)A = log10 I0/I = l

N
∑

i=1

ǫici ,
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Results
The performance of seven linear and nonlinear models are compared to investigate the extent of nonlinearities 
caused by high concentrations and scattering matrices. The hypothesis is that if these factors introduce significant 
nonlinearities, nonlinear models are expected to perform better compared to linear models.

The performance of models is evaluated using cross-validation, with test sets of size three in each iteration. 
These test sets are randomly selected with uniform distribution and without replacement. This is referred to as 
the model evaluation cross-validation loop. For SVR models, hyperparameter optimization (to find the values 
of C, ǫ , and the kernel scale) is performed within each fold with another five-fold cross-validation routine and 
Bayesian optimizer. This (hyperparameter optimization) cross-validation is nested inside the model evalua-
tion cross-validation loop to ensure that the prediction results are representative of the external predictive 
performance while minimizing the risk of hyperparameter misspecification. Firstly, the model evaluation cross-
validation ensures that the predictive performance of each model is tested across all samples. The alternative 
approach of using a single test set, given the small sample size, can be susceptible to outliers and the selection 
of unrepresentative tests sets, therefore, it can lead to unreliable measures of predictive performance. Secondly, 
the nested hyperparameter tuning cross-validation reduces the risk of hyperparameter misspecification. The 
alternative approach of using a randomly selected validation set would result in less samples in the training set. 
Also, similarly, a single validation set might not be representative of the spectra and, therefore, lead to hyperpa-
rameter misspecification. After the completion of the model evaluation cross-validation loop, Root Mean Square 
Error of Cross-Validation (RMSECV) and R2

CV are calculated. Note the R2
CV presented here is the coefficient of 

determination pertaining to the cross-validation routine and is different from the R2 of calibration. This assesses 
the goodness of fit between the predicted values of the holdout spectra in the cross-validation routine and their 
reference values. Since in the model evaluation cross-validation routine, each spectrum is held out and predicted 
exactly once, the R2

CV demonstrates the predictive performance across all spectra.
As a result of the random sampling of the training and test sets within both cross-validation loops and due to 

the stochastic nature of the Bayesian optimizer, different hyperparameters and models may be found in different 
runs, leading to different results (RMSECV and R2

CV ). Therefore, the process (i.e. the main model evaluation 
cross-validation) is repeated 10 times; R2

CV values are visualized with boxplots and the lowest RMSECV among 
all ten runs is reported separately in Table 1. The presentation of results as boxplots helps capture the stochastic 
nature of the results as well as the convergence properties of the optimization in SVR models; a wider spread 
implies poorer convergence and model misspecification. Capturing this aspect is particularly important, as it is a 
direct cost of using more complex models compared to PLS and PCR. The inclusion of these considerations in the 
present study distinguishes the results presented here from our previous preliminary work on the PBS  spectra27.

In the interpretation of the results, it is worth noting that the PLS model is fitted directly on the spectra while 
the PCR and all SVR models are fitted to the PCs that present a loss of 0.01% in variance in the PBS, serum, and 
blood datasets, and a loss of 20% in the invivo dataset. Therefore, a major difference between the performance 
of PLS and PCR models can imply that a) the variance not captured by the PCs are important for predictions 
b) the ratio between the number of PCs and the number of observations is large, leading to poorer regression. 
Hence, the assessment of linear and nonlinear effects should be primarily based on the comparison of how well 
the PCR and the SVR with linear kernel perform relative to the nonlinear models. A fairer comparison may take 
the hyperparameter tuning requirements of the SVR models into account, restricting pairwise comparisons to 
SVR with linear kernel to SVR with nonlinear kernels.

Nonlinearities due to high concentration. To investigate the effect of high concentrations of lac-
tate, first the PBS dataset is analyzed where scattering due to compounds other than lactate is minimal. To 
this end, three partially overlapping datasets with concentrations of lactate ranging between 0–11, 0–20, and 
0–600 mmol/L are used to compare the performance of linear and nonlinear regression methods. The choice of 
the ranges of lactate levels was primarily motivated by computational considerations. The approach described 
above for hyperparameter tuning and model evaluation, while delivers more reliable results, is very computa-
tionally demanding. Performing this for SVR models takes multiple days for each dataset on a high-end worksta-
tion with a 10-core Intel® Xeon® Silver 4114 processor and 32 GB RAM . The preferable approach would be to 
incrementally increase the range of the dataset—by adding one or multiple samples at the time—and analyzing 

Table 1.  The comparison of pls, pcr and svr models with diefferent kernel functions in different matrices.

Model

RMSECV [mmol/L]

PBS Human Serum Sheep Blood Invivo

0–11 mmol/L 0–20 mmol/L 0–600 mmol/L 7.7–15 mmol/L 4.8–13.8 mmol/L 1.1–11.7 mmol/L

PLS 0.88 0.87 1.61 1.11 1.58 1.03

PCR 1.61 0.88 1.65 1.35 1.66 1.12

SVR-linear 1.60 0.87 1.53 1.23 1.65 1.08

SVR-quadratic 1.95 1.21 12.87 1.22 1.70 1.21

SVR-cubic 1.68 1.37 15.20 1.15 1.60 1.37

SVR-quartic 1.86 1.61 8.53 1.28 1.66 1.42

SVR-RBF 1.77 2.18 38.25 1.32 1.54 1.30
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the trends in model performance, however, due to the high computational time this was not feasible. Instead, we 
allocated the spectra to the three aforementioned sets to present significant increase in the range of lactate levels. 
Since the model evaluation cross-validation loop sampled test sets of threes, minor adjustments were made to 
keep the number of spectra in the sets divisible by three. The third dataset was formed by adding six spectra per-
taining to lactate concentrations of 100, 200, 300, …, and 600 mmol/L to the data. These values are far outside the 
physiological range of lactate, but they were included to assess if extremely high concentrations of lactate cause 
nonlinearities. Figure 1. Depicts the results.

In all datasets—specifically in the datasets with medium and high concentrations of lactate—the linear models 
obtain the best performances. Therefore, this analysis does not provide any evidence of the presence of significant 
nonlinearities due to high concentrations of lactate.

Nonlinearities due to scattering matrices. Figure 2, summarizes the performance of models in increas-
ingly more scattering matrices, namely PBS, human serum, sheep blood and in transcutaneous spectra acquired 
from the participants of an exercise study.

While the results do not show a strong upward trend with increasing model nonlinearity, both in the serum 
dataset and the blood dataset interesting patterns emerge. Unlike PBS, in serum and blood, whether the best 
observed R2

CV in ten runs (top end of the top whisker) or the median R2
CV (the red bar) are considered, the trend is 

either almost flat or upward. In serum, the SVR model with cubic polynomial kernel shows a better performance 
than the linear SVR and PCR models when the top whisker is considered. This effect is much more pronounced 
in the blood dataset. The SVR model with RBF kernel obtains the best R2

CV , in terms of both the median and 
the best observed case. This is despite the fact that in small datasets, the complexity and the requirement of 
hyperparameter tuning for the SVR models puts them at a disadvantage compared to simpler PCR and PLS. 
This suggests that the nonlinearities must be substantial to compensate for and exceed the expected marginal 
loss of accuracy due to additional model complexity. The noticeably high nonlinearity observed in sheep blood 
relative to human serum, could be related to the differences between the two mediums. The composition of blood 
and the distribution of lactate between red blood cells and plasma are different in the two mediums, potentially 
contributing to differential scattering properties and optical absorbance profiles.

Surprisingly, the same pattern does not emerge in the invivo dataset. One possible explanation is that proxies 
of lactate concentration might have been detected rather than lactate itself. In the exercise study it was expected 
that other absorbing species, such as oxyhaemoglobin and deoxyhaemoglobin, can show highly correlated vari-
ations with lactate. The observations that RMSECV is lower and R2

CV is higher in this dataset relative to serum 
and blood, supports this possibility. Especially because in this dataset, a portable spectrophotometer with a much 
lower resolution and a shorter wavelength range was used, the number of observations was smaller, and baseline 

Figure 1.  The comparison of the performance of linear and nonlinear models is datasets with low, medium, 
and high ranges of lactate concentrations. The boxplots summarise the results pertaining to ten runs of cross-
validation for each model. After each run, an estimate of the coefficient of determination, R2

CV
 , is obtained.
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differences in optical properties of the four participants are expected to be far greater. Table 1. Shows the best 
RMSECV obtained in ten different runs of the cross-validations routine.

Discussion and conclusion
This study focused on the optical behavior of lactate; an important and fundamental biomarker that, if meas-
ured routinely and accurately, can shed light on numerous diseases and health problems. Previous studies have 
underlined the potential of optical estimation of lactate as a noninvasive, inexpensive and continuous alterna-
tive to blood sampling. However, accurate and reliable optical measurements are still not within reach. A better 
understanding of the interactions of light and this biomarker is necessary to recognize the merits, limitations, 
and practical issues of optical sensing. Since previous attempts in the optical estimation of lactate have used lin-
ear models, we investigated potential deviations from the linearity assumption postulated by the Beer-Lambert 
law. To this end, a series of experiments were conducted to analyze potential nonlinear effects that can arise due 
to high concentrations of lactate and scattering matrices. The assumption was that if nonlinear effects become 
substantial, nonlinear models will deliver better accuracies than linear models.

Seven linear and nonlinear models were compared in datasets with concentrations of lactate ranging between 
0–11 mmol/L, 0–20 mmol/L, 0–600 mmol/L. For this investigation a minimally scattering matrix (PBS) was 
used to ensure potential deviations are mainly due to high concentrations. This analysis did not provide any 
evidence of significant nonlinearities. A similar comparison in incrementally more scattering matrices, namely 
human serum, sheep blood, and transcutaneous spectra, showed some merits to the use of nonlinear models. 
Both in serum and blood, nonlinear models obtained better performances than PCR and SVR with linear kernel.

In summary, (a) the results confirm the potential of optical measurements of lactate, both invitro and invivo, 
albeit the latter is likely to have been indirect. Therefore, more studies, with more participants, and in different 
scenarios is necessary to assess the feasibility of indirect optical sensing of lactate. (b) It was shown that concen-
trations of lactate, even far beyond the biological range, do not present substantially nonlinear absorbance. (c) 
Nonlinear models showed merits in direct measurement of lactate when the medium is scattering, i.e. serum 
and blood.

Finally, the authors would like to emphasize that the RMSECV presented in Table 1 is not representative of 
the best accuracies that can be achieved. Previous studies have shown that major improvements may be observed 
when nonlinear baseline corrections are used and redundant wavelengths are excluded. In the present study, since 
the primary objective was the analysis of nonlinear absorbance, the aforementioned topics were not covered.

Figure 2.  The comparison of the performance of linear and nonlinear models in increasingly more scattering 
matrices. The boxplots summarise the results pertaining to ten runs of cross-validation for each model. After 
each run, an estimate of the coefficient of determination, R2

CV
 , is obtained.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13734  | https://doi.org/10.1038/s41598-021-92850-4

www.nature.com/scientificreports/

Methods
The datasets. All datasets were produced after obtaining approval by the Senate Research Ethics Commit-
tee (SREC) at City, University of London (SREC 17–18 05 6ii 27.06.2018) and all methods were carried out in 
accordance with the relevant guidelines and regulations.

PBS. The dataset consists of 57 NIR spectra of different concentrations of lactate in a Phosphate Buffer Solu-
tion (PBS). The procedure for the preparation of the solutions and acquisition of the spectra is detailed  in27. The 
dataset contains 31 samples with concentrations of lactate between 0–10 mmol/L (increments of 0.25 mmol/L), 
21 samples between 10.5–20 mmol/L (increments of 0.5 mmol/L) and finally, six samples with extremely high 
concentrations of 100–600 mmol/L (increments of 100 mmol/L). Spectra were acquired using the Lambda 1050 
dual-beam UV/Vis/NIR spectrophotometer (Perkin Elmer Corp, Massachusetts, USA), with a spectral resolu-
tion of 1 nm. The light source used in the spectrophotometer was a halogen tungsten lamp. Indium gallium 
arsenide (InGaAs) and the lead sulfide detectors (PbS) were used to detect the transmitted NIR light in the range 
between 800 and 2600 nm. Baseline correction was performed on the spectrophotometer prior to the acquisition 
of a spectra, at 100% Transmission / 0% absorbance to remove background noise. Once, background correction 
was performed, 300 µl of each sample was transferred to in a macro quartz cuvette (Hellma GmbH & Co.KG, 
Jena, Germany) with a path length of 1 mm to acquire the three NIR spectra of each sample in the desired wave-
length range. The three spectra were then averaged, and the resulting spectrum of each sample was considered 
for further analysis.

Serum. The dataset consists of 36 NIR spectra of lactate in human blood serum. Mixed pool human serum col-
lected from healthy volunteers was purchased from TCS Biosciences Ltd., (Buckingham, UK). The base lactate of 
the purchased serum was 7.7 mmol/L. Thirty-five serum samples of 29 mL were then serially diluted with 1 mL 
of stock solutions containing varying concentration of lactate in PBS. The concentration of the serum samples 
was measured before the acquisition of spectra using the ABL 825 Flex (Radiometer UK Limited, Crawley, West 
Sussex, UK). The concentration of lactate within the samples ranged between 7.7 and 15 mmol/L with an average 
increment of 0.20 mmol/L.

Once the samples were prepared and the concentration measured, the spectra of each sample was acquired 
again in transmission mode using the Lambda 1050 dual-beam UV/Vis/NIR spectrophotometer (Perkin Elmer 
Corp, Massachusetts, USA). The acquisition procedure of serum spectra was similar to that of the PBS spectra, 
as detailed above.

Sheep blood. The dataset consists of 36 spectra of lactate in sheep blood acquired using the Lambda 1050 
dual-beam UV/Vis/NIR spectrophotometer (Perkin Elmer Corp, Massachusetts, USA) equipped with 100 mm 
InGaAs Integrating Sphere. All the spectra were acquired in reflectance mode using a 300 µl sample in the range 
between 900 and 2500 nm. The procedure for the preparation of the solutions and acquisition of the spectra is 
detailed  in28. The concentration of lactate is within the range of 4.8–13.8 mmol/L and the average increment is 
around 0.25 mmol/L. The spectral resolution and acquisition setup used to acquire blood spectra were similar 
to that of PBS.

Invivo. The dataset consists of 27 reflectance spectra obtained from four healthy participants during maxi-
mal effort cycling on a spinning bike (WattBike Pro, Wattbike Ltd, Nottingham, UK). The participants were 
22–31 years old and gave informed written consents before commencing the experiment. Since blood lactate is 
known to increase with physical effort, the experiment was designed to induce changes in participants’ blood 
lactate levels over the course of the exercise study. The participants were asked to cycle for as long as they can at 
a fixed peddle speed and magnetic resistance, the air resistance was increased after every minute until volitional 
exhaustion of the volunteer or upon reaching 90% of predicted maximal heart rate (derived using the equation 
max heartrate = 220 − age in years). A 45 s rest was allowed after every minute of cycling. During the rest period, 
optical spectra were acquired from the right index of the volunteer and a drop of blood was drawn from the 
left index finger using a sterile lancet. The capillary blood was collected on a finger stick and the lactate level 
in blood was measured using the portable Lactate Pro 2 analyzer. The concentration of lactate measured was 
within the range of 1.1–11.7 mmol/L and the average increment was 0.41 mmol/L. As intended, overall, the 
participants’ lactate levels followed an upward trend, however, significant variations in patterns of increase and 
maximum lactate levels were observed amongst the participants. For instance, for one of the participants, who is 
a semi-professional cyclist, the highest lactate level was around 4 mmol/L after 20 min of exercise, while another 
volunteer reached exhaustion and a lactate of around 8 mmol/L only after 5 min.

Invivo spectra in the 900–1700 nm range were acquired using the NIRQUEST 512–1.9 NIR Spectrophotom-
eter (Ocean Optics Inc., Florida, USA). A reflectance optical fiber probe (600 um fibers) was used to transmit 
and detect NIR light reflected from the finger of health volunteers. A small slit of 25 µm was chosen to improve 
optical resolution and stop the detector from saturating. While it would be preferable to use the same spectro-
photometer across all datasets, NIRQUEST was selected for the invivo study due to its high sampling rate. This 
allowed us to collect a sufficiently large number of spectra during the 45-s rest periods and average them to 
minimize the motion artifacts. The same could not be achieved with the Lambda 1050 spectrophotometer that 
has a much lower sampling rate.

Figure 3. depicts the raw spectra in each dataset.
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Preprocessing of spectra. In the PBS and serum datasets, wavelengths between 1900–1980 nm and 2450–
2600 nm show high levels of noise and are hence removed. This noise is caused by the oversaturation of the lead 
sulfide detector in the transmittance mode due to water absorption peaks. The PBS spectra were processed using 
Multiplicative Scattering Correction (MSC) and a Savitzky-Golay (SG) filter with the window length of 135, 
second order polynomial and second order derivative. The serum spectra, were processed with MSC and SG 
filter with window length of 151, third order polynomial and second order derivative. The blood spectra were 
acquired in reflectance mode and subsequently transformed to absorbance. Therefore, no noise was observed 
in the aforementioned regions, however, for consistency, they were removed. The transcutaneous spectra were 
processed with SG filter, polynomial order of three, window length of seven and derivative order of three.

Dimensionality reduction. Principal Component Analysis (PCA) is applied to all datasets to reduce the 
dimensionality of the spectra prior to model fitting. For the in-vitro sets the number of components is selected 
such that 99.99% of the variance is explained by the PCs. This led to the selection of 12, 14, 13 PCs in the PBS 
datasets with low, medium, and high ranges of concentrations respectively, 16 PCs in the serum dataset, and 22 
PCs in the blood dataset. For the tissue dataset, given the noisy nature of the data, this criterion led to a large 
number of PCs and, consequently, overfitting. The explained variance of 80% was found to produce good results 
across all models and was therefore selected. This led to 8 PCs.

For the PLS model the number of Latent Variables (LVs) was selected as the point where the Predicted 
Residual Error Sum of Squares (PRESS) plateaus. This criterion led to 11, 9 and 8 LVs for the PBS datasets with 
low, medium, and high ranges of concentrations respectively, 10 LVs for the serum dataset, 12 LVs for the blood 
dataset, and 6 LVs for the invivo dataset.

Linear and nonlinear models. The linear models used in this study are of PCR, PLS, and SVR,

In SVR the objective is to find the flattest line while the prediction error shows minimal deviation beyond ǫ . 
Therefore, given the training set 

(

xi , yi
)

 , i ∈ {1, 2, . . . , n} , w∗ is defined as

(2)f (x) = w · x + b,

Figure 3.  Raw absorbance of spectra of lactate in (a) PBS (b) human serum (c) sheep blood (d) invivo human 
tissue.
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where � · � is the Euclidean norm, and ζi , ζ *i  are slack variables that absorb excess errors when a solution is not 
possible that guarantees errors restricted to ǫ boundaries. With an ǫ-insensetive loss, ζi is defined as,

where C is the capacity control parameter that determines the tradeoff between higher loss values and higher 
norm w2 (less flat plane).

The incorporation of nonlinearities can be achieved by using nonlinear transformations, φ(x) , to map the 
explanatory variables into new hyperdimensinoal spaces. For instance, a quadratic polynomial augmentation 
of a two-dimensional feature space ( x1,x2 ) ⊂ R

2 may include all polynomial terms of degree two ( x1,x2, x1.x2 , 
x21,x

2
2 ) ⊂ R

5 . In high-dimensional data the explicit use of such nonlinear transformations, φ(x), can be intrac-
table. However the use of the “kernel trick” provides a computational effective way to achieve this. Specifically, 
solving the optimization above necessitates the calculation of φ(x)T .φ

(

x′
)

 , these computationally demanding 
transformations can be avoided by finding the equivalent kernel, K

(

x, x′
)

 = φ(x) · φ
(

x′
)

 . Therefore, the four main 
parameters that need to be selected are the scaling of features, the kernel function, K

(

x, x′
)

 , the loss function, ǫ 
, and the capacity control parameter, C29,30.

In the present sudy, different kernel functions are compared, namely polynomial kernels,

and Radial Basis Function (RBF),

The value of C, ǫ , and the kernel scale are optimized.
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