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Evolution of optimal Lévy-flight strategies in human mental searches
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Recent analysis of empirical data [F. Radicchi, A. Baronchelli & L.A.N. Amaral. PloS ONE 7,
e029910 (2012)] showed that humans adopt Lévy flight strategies when exploring the bid space in
on-line auctions. A game theoretical model proved that the observed Lévy exponents are nearly
optimal, being close to the exponent value that guarantees the maximal economical return to players.
Here, we rationalize these findings by adopting an evolutionary perspective. We show that a simple
evolutionary process is able to account for the empirical measurements with the only assumption that
the reproductive fitness of the players is proportional to their search ability. Contrarily to previous
modeling, our approach describes the emergence of the observed exponent without resorting to any
strong assumptions on the initial searching strategies. Our results generalize earlier research, and
open novel questions in cognitive, behavioral and evolutionary sciences.

PACS numbers: 05.40.Fb, 02.50.Le, 87.23.Ge

I. INTRODUCTION

Lévy flights are a special class of random walk whose step
lengths follow a power-law tailed distribution [1]. They
have been proved to be the most efficient type of space ex-
ploration that can be adopted by a random searcher look-
ing for scarce resources in an unknown environment [2].
Probably for this reason, there are plenty of empirical
evidences that movement patterns are compatible with
Lévy flights in many different contexts where efficiency
matters [3–12]. In particular, Lévy flights appear recur-
rently in the description of the motion of animals in real
space (see [13] for a review). Animals explore the en-
vironment mainly for searching food resources, and it
is therefore plausible to ascribe the optimality of their
search strategies to a selective evolutionary process.

Recently, Radicchi et al. have provided empirical ev-
idence that also human players participating in on-
line auctions explore the bid space performing Lévy
flights [15]. The exploration of the bid space represents a
search process, but purely mental because performed in
an abstract space. Interestingly, players adopt nearly op-
timal Lévy flight exponents, in the sense that the values
of the exponent used in real auctions are close to the one
that maximizes their economic return. In [15], the search
process in the bid space is studied as a game theoretical
model, where the optimal exponent value corresponds to
a Nash equilibrium [16].

Here, we propose an evolutionary model in which the
reproductive fitness of the individuals is proportional to

∗Electronic address: f.radicchi@gmail.com
†Electronic address: a.baronchelli.work@gmail.com

their ability to win the auctions, and we show that the
values of the Lévy flight exponents to which the model
converges are very close to those measured in real data.
This approach relaxes some of the assumptions made in
the traditional game theoretical analysis, and deepens
the understanding of the results: The optimality of the
strategies adopted by bidders in on-line auctions can be
seen as the outcome of a (evolutionary) learning process.

The paper is organized as follows. In section II, we pro-
vide a detailed description of the type of auctions studied
and modeled in this paper. Section III is devoted to the
description of the model and its analytical treatment.
In particular, section IIIA describes the case in which all
players can choose only a bid value, while, in section IIIB,
we generalize the model to the case in which players can
place an arbitrary number of bids. Section IIIC is dedi-
cated to the evolutionary game theoretical implementa-
tion of the model. Sections IV and V are respectively
devoted to the description of the numerical simulations
of the model and to the estimation of the computational
complexity needed to simulate or solve the model. In sec-
tion VI, we provide a detailed description of the results
of the model. Finally, in section VII, we draw our final
comments and considerations.

II. LOWEST UNIQUE BID AUCTIONS

Lowest Unique Bid (LUB) auctions are a recent genera-
tion of online games where the winners of the auctions
may purchase expensive goods for strikingly small prices:
cars, boats and even houses can be bought for only tens or
hundreds of dollars (or euros, pounds, etc.). The mech-
anism of the game is very simple. At the beginning of
the auction, a good, whose typical market price is higher
than a thousand dollars, is put up for auction. The game
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duration is a priori fixed and generally two or three weeks
long. A bid can be any amount (in cents) from one cent
to a certain maximum value M , generally lower than one
hundred dollars. For placing a bid, a player has to pay a
fee, whose entity ranges from one to ten dollars depend-
ing on the game. During the auction, players know only
the status of their own bids meaning whether they are
winning or not. None of the players knows where the
others have placed their bids until the end of the game.
Multiple bids on the same value from the same player are
allowed, but do not influence the outcome of the auction
since a bid is considered as unique when a unique player
has bid that value even if more than once. When the
time dedicated to the auction expires, the winner is the
player who made the LUB and can finally purchase the
good for the value of the winning bid. For example, if at
the end of the auction bid value i = 1 is occupied by two
bids (n1 = 2), while n2 = 3, n3 = 1, n4 = 2 and n5 = 1
are the number of bids placed on values i = 2, 3, 4 and
5, respectively, then the winner is the player who has bid
on value i = 3 because this is the lowest bid among all
unique bid values.
A similar mechanism is also used in Highest Unique Bid
(HUB) auctions. In this type of the games, the rules are
the same as those of LUB auctions, with the only differ-
ence that the winning value is the unmatched bid closest
to the maximal bid value admitted in the game (i.e., M).
LUB and HUB auctions represent competitive arenas
where players perform searches for a single target whose
position is determined by the bids of the whole popu-
lation. It is important to stress that, during the game,
players are not aware of the values on which the other
players have placed their bids, and therefore the explo-
ration of the bid space of each player can be considered
independent. Also, since the cost of each bid is much
larger than the natural unit of the game (one cent), the
number of steps that can be performed by a single player
is limited and allows only a partial exploration of the bid
space. Players need therefore good strategies in order
to maximize their winning chances and simultaneously
maintain limited their investments.

In our previous work [15], we have studied in detail
the dynamical features of the bid space exploration per-
formed by players in real LUB and HUB auctions. We
have found that the exploration of the bid space is bursty:
consecutive bid values are generally close to each other,
but from time to time players perform longer jumps. In
particular, the probability density function (pdf) P (d)
of the bid change amount d (d is defined as the abso-
lute value of the difference between two consecutive bid
values) is consistent with a power-law P (d) ∼ d−α (see
Fig. 1). The exploration of the bid space is therefore
consistent with a discrete version of a Lévy flight [14].
More importantly, we have found that the pdf g (α) of
the Lévy flight exponents, adopted in real auctions, is
peaked around the average value 〈α〉 ≃ 1.4 and with
standard deviation equal to σ ≃ 0.2.
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Figure 1: (Color online) In the main panel, we plot dt the
absolute value of the difference between the two consecutive
bid vales bt+1 and bt. t indicates the rank position of each
bid in a ranking in which bids have been sorted accordingly
to their time stamp. In the inset, we plot the pdf P (d) of
the bid change amounts d (red circles). The pdf is fitted
with a power-law function and the best estimate of the decay
exponent is 1.5±0.1 (black dashed line). This figure refers to
the exploration of the bid space performed by a single player
in a single auction. A complete analysis of the movement
patterns of hundreds of players was performed in our previous
work [15].

The empirical observation of Lévy flights provided in [15]
is by far the most significant evidence of this phenomenol-
ogy in natural search processes. Differently from previ-
ous studies regarding biological [2, 4–6, 10, 11] and mobil-
ity [7, 8] systems where “two orders of magnitude of scal-
ing can represent a luxury” [13] , the power-law decay can
be clearly observed even over four orders of magnitude.
The reason is that the space is not strictly physical and
movements of tens of thousands cents can be performed
at the same price of those one cent long: players explore
the bid space in a effectively super-diffusive fashion, and
steps are made at a virtually infinite velocity.

III. MODELING BIDDING STRATEGIES

In this section, we provide an analytical model for LUB
auctions, but the model can be easily extended also to
HUB auctions. Supported by empirical evidence, in our
model we assume that players explore the bid space per-
forming Lévy flights. In our previous work [15], we have
provided a model based on stronger assumptions. In par-
ticular, we have studied the winning chances of a player
participating in an auction against a population of play-
ers using exactly the same exponent value. Here dif-
ferently, we do not make any assumption regarding the
choice of the exponents. We let the exponents to be ran-
dom variates extracted from a generic pdf, and study an
evolutionary theoretical version of the game. Indepen-
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dently of the initial pdf, the pdf of the adopted expo-
nents naturally evolves to a stable distribution centered
around a value remarkably close to the one of the expo-
nents measured in real auctions.

A. First bid

We consider a population of N players whose strategies
α are randomly extracted from a pdf g (α). Without loss
of generality, we assume that g (α) ≥ 0 if α ∈ (α1, α2),
and g (α) = 0 otherwise. During the game, each player
can place bids only on integer values i ∈ [1,M ]. Since,
at the beginning of the game, none of the players knows
on which values the others will bid, it is natural to think
that a generic player, with strategy α, sits at the leftmost
site of the lattice. From this initial positions, the player
places a bid on value i with probability

s (i, α) =
i−α

m (α)
g (α) , (1)

where m (α) =
∑M

i=1 i−α is the proper normalization
constant. The probability that a generic player bids on
value i can be calculated by simply integrating Eq. (1)
as

p (i) =

∫ α2

α1

dα s (i, α) . (2)

After all players have bid, there will be nk bids on the
k-th bid value. The probability to observe a particular
configuration {n} = (n1, n2, . . . , nk, . . . , nM ) is simply
given by the multinomial distribution

P ({n}) = N !

M
∏

k=1

[p (k)]
nk

nk!
, (3)

whose weights given by Eq. (2) and obeying the con-

straint N =
∑M

k=1 nk. In particular, the probability that
only one bid has been made on value i (i.e., the bid on
value i is unique) is

u (i) =
∑

∑
k 6=i

nk=N−1

P ({n}) = Np (i) [1− p (i)]
N−1

.

(4)
The probability that the bid on value i is the unique
and lowest bid can be exactly calculated by summing the
probability of Eq. (3) over all configurations {n} which
satisfy this constraint (i.e., ni = 1 and nj 6= 1 for all
j < i). Unfortunately, such enumeration cannot be easily
computed. A good approximation, valid for sufficiently
low values of p (i) and u (i), is to consider the uniqueness
of the i-th bid value as independent of the uniqueness of
the other bid values and write

l (i) =

{

u (i) , if i = 1
u (i)

∏

k<i [1− u (k)] , otherwise
, (5)

as the probability that the bid on value i is the lowest bid
among all the unique bids. The r.h.s. of Eq. (5) is the
product of two terms: u (i) is the probability that only
one bid has been made on bid value i;

∏

k<i [1− u (k)] is
the probability that none of the bid values smaller than
i are occupied by a single bid (if i = 1 this probability
is automatically equal to one since i = 1 is the minimal
bid amount allowed). Finally, the probability w (α) that
the Lévy flight exponent α is the winning strategy in the
game can be inferred with

w (α) =

M
∑

i=1

v (α |i ) l (i) =

M
∑

i=1

s (i, α) l (i)

p (i)
. (6)

v (α |i ) = s (i, α) /p (i) is the conditional probability to
observe α given i. This quantity is then convoluted over
all bid values i, where the weight of each bid value is given
by the probability that i is the winning bid value, that is
l (i). Notice that Eqs. (4), (5) and (6) explicitly depend
on the number of players N and the upper bid value M .
We have suppressed both variables in the notation only
for clarity and shortness.

B. Multiple bids

The same theoretical approach can be applied for the
determination of the best strategy in a game where ev-
ery player may perform multiple bids. We consider the
simplest case in which each player bids T times, but the
theory may be simply extended also to the case in which
the number of bids of each player is extracted from an
arbitrary pdf.
In order to solve this game, we need to calculate sT (i)
which stands for the probability that, in T bids, a generic
player has placed a bid on value i. If α is the player’s
strategy, the player will place the first bid on value i
with probability q1 (i|α) = i−α/m (α). For the subse-
quent bids, we need to define a transition matrix Qα.
The generic element (Qα)ji represents the probability to
place a bid on value i when the previous bid was placed
on value j. In our model, we have

(Qα)ji =
|i− j|−α

mj (α)
, (7)

for all i and j in the interval [1,M ]. The normalization

constantmj (α) =
∑M

i=1 |i− j|−α
ensures the proper def-

inition of the transition matrix. The matrix Qα describes
a random walker which follows uncorrelated Lévy flights
with exponent α. At a generic step t, the probability
that the player with strategy α sits on value i is

qt (i |α ) =

M
∑

j=1

(Qα)ji qt−1 (j |α ) . (8)
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The probability that this player placed a bid, in T bids,
on value i is then

sT (i |α ) = 1−
T
∏

t=1

[ 1− qt (i |α ) ] . (9)

The term 1 − qt (i |α ) counts the probability that the
player has not placed a bid on value i at stage t. The
probability that the player has not bid on value i at any
stage is therefore the product of this single step probabil-
ities. Finally, the probability that the player has placed
a bid on value i at least once is calculated as the proba-
bility to have bid on value i an arbitrary number of times
minus the probability to have never bid on value i. No-
tice that the model assumes that players have no memory
because they are allowed to bid on the same value more
than once. This is, however, unlikely to happen in the
Lévy and ballistic regimes (i.e., α < 3). Also, as in the
case of real auctions, if the same player bids more than
once on the same value this fact does not invalidate the
uniqueness of the bid which is still considered as unique
unless another player places a bid on that value.
The probability that a generic player, performing T total
bids, has placed a bid on value i is then

pT (i) =

∫ α2

α1

dα sT (i |α ) g (α) (10)

and can be used in place of the one appearing in Eq.(2) in
order to calculate the remaining quantities uT (i), lT (i)
and wT (α) by using Eqs. (4), (5) and (6), respectively.

C. Evolutionary Model

In order to understand how an optimal strategy can be-
come shared across individuals, it is natural to adopt an
evolutionary framework [19]. In this respect, our model
can be implemented in terms of competing individuals
that are selected on the basis of their success in the
searching process. In the spirit of the fundamental Moran
process [20], at the end of each game, the winner of the
auction generates an offspring to which transmits her/his
search exponent α. The new individual enters the popu-
lation endowed with an exponent α + ξ (with ξ random
mutation), while a randomly extracted individual is re-
moved in order to maintain the population size constant.
Basically, the pdf of the winning exponents of the for-
mer generation corresponds to the fitness function of the
evolutionary model.

1. Absence of mutations

Let us first consider the case in which losers copy the
strategy of the winners without errors. Imagine to have
N players at each generation. They play the game by
performing T bids each. Denote with e the number of

the generation. At the beginning, we set e = 1. Then we
follow the scheme:

1. Players randomly pick strategies α from the pdf
g(e) (α);

2. They play the game. The result is the pdf w
(e)
T (α),

which quantifies the probability that α was a win-
ning strategy;

3. Set g(e+1) (α) = w
(e)
T (α), increment e → e+1, and

go back to point 1.

The former procedure describes the evolution of a
population of players under repeated games. Setting

g(e+1) (α) = w
(e)
T (α) ensures that the players of the new

generation have the tendency to pick winning strategies
instead of losing ones. This can be better understood by
writing the master equation

g(e+1) (α)− g(e) (α) =

w
(e)
T (α)

[

1− g(e) (α)
]

−
[

1− w
(e)
T (α)

]

g(e) (α) ,
(11)

from which one can easily obtain g(e+1) (α) = w
(e)
T (α).

Eq. (11) tells us that the variation in the population of
players with exponent α increases as the probability that

a player with strategy α wins [w
(e)
T (α)] times the proba-

bility to have other players with strategies different from
α [1 − g(e) (α)], and decreases as the probability that a

player with strategy different from α wins [1 − w
(e)
T (α)]

times the probability to find a player with strategy equal
to α [g(e) (α)]. In other words, the probability of re-
production of a player is proportional to the ability of
player to win the game. The evolution rules resemble a
Moran process where selection is made according to a fit-
ness function here defined as the probability to win the
game [20].

2. Random mutations

A more natural assumption is to formulate a model
where, each time a losing player changes strategy, she/he
copies the exponent of the winner plus some random vari-
ation. Assume that the variation ξ is randomly extracted
from a pdf y (ξ, α, ~µ), explicitly dependent on α and a
set of parameters ~µ. The master equation describing the
evolution becomes

g(e+1) (α) − g(e) (α) =

+
∫

dβ
∫

dξ δ (α− β + ξ) y (ξ, β, ~µ)×
w

(e)
T (β)

[

1− g(e) (β)
]

−
[

1− w
(e)
T (α)

]

g(e) (α)

,

with δ (x) = 1 if and only if x = 0, while δ (x) = 0 oth-
erwise. The gain term stands for the probability that
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Figure 2: (Color online) Probability density function of the
winning strategy w (α) in the case in which players’ strategies
are randomly extracted from a uniform probability density
function g (α) defined over the interval (0, 5). We set N = 100
and M = 1000 (parameter values similar to those observed in
real auctions [15]), and consider for simplicity only the case of
a single bid T = 1 and the case in which all players perform
T = 10 bids. We show in both cases the comparison between
the results obtained with numerical simulations (T = 1 filled
black circles, T = 10 empty black squares) and those obtained
with the numerical integrations of the various equations [T =
1 full (lower) line, T = 10 dashed (upper) line]. Note that
the optimal value of α depends on T and also the parameters
values N and M . However, this is a weak dependence and
the peak value of probability density function of the winning
strategy is in the range 1.2 to 1.7 for a wide range of possible
values of N and M and a moderately broad range of values
of T .

the generic exponent β represents the winning strategy

[w
(e)
T (β)] times the probability to have other players with

exponent different from β [1−g(e) (β)]. This term is then
convoluted with the noise over all possible values of β:
this quantifies the probability that a random mutation
changes the exponent from β to α [δ (α− β + ξ)]. The
loss term is simply the probability that α is not the win-

ning strategy [1 − w
(e)
T (α)] and therefore players with

exponent α moves away from it at rate g(e) (α). The
delta function imposes the condition α − β + ξ = 0 and
the former equation reduces to

g(e+1) (α) =

+w
(e)
T (α) g(e) (α)

+
∫

dβ y (β − α, β, ~µ) w
(e)
T (β)

[

1− g(e) (β)
]

. (12)

The pdf of the adopted strategies converges to stability
whenever exists e for which g(e+1) (α) = g(e) (α), which

automatically implies that w
(e+1)
T (α) = w

(e)
T (α).

IV. NUMERICAL SIMULATIONS

The former analytical formulation of the model does not
allow to obtain explicit expressions regarding the distri-
butions of the winning strategies. The various equations
can, in fact, be only numerically integrated to provide a
solution of the model. Moreover, some of the equations
contain approximations, and it is therefore worth ask-
ing whether the solutions obtained with the numerical
integration of the equations are compatible with those
obtained by directly simulating the model.
Simulating our model is straightforward. In each simu-
lation, we use the following scheme:

1. Extract the exponent values of each of the N play-
ers from the given pdf g (α);

2. Simulate the game: for each of the N players, ex-
tract T integer bid values from the corresponding
power-law distribution, and determine the winner
of the auction (the player who made the LUB) on
the basis of these extractions.

In the case of the evolutionary game model, at the end
of the game we need to change the exponent value of
one of the losing players, by copying (with or without
random mutations) the strategy of the winner. We then
repeat the game. A generation corresponds to N expo-
nent changes. The pdf of the winning strategies of each
generation is computed by repeating the entire procedure
many times.

V. COMPUTATIONAL COMPLEXITY

One could argue why use a complicated and approxi-
mated set of equations instead of simple and straightfor-
ward numerical simulations. The reason is that the com-
putational time required for the numerical integration of
the model’s equations is much much lower than the one
needed for obtaining good estimates with numerical sim-
ulations. For clarity, we provide here an estimation of the
computational complexity required in both approaches to
the solution of the model.
Consider first the case T = 1 (i.e., players make a single
bid). In the case of numerical simulations with fixed val-
ues of the exponents, the time required to simulate the
game grows as M + N log (M)G. M is the number of
possible bid values and indicates also the computational
time required to calculate the transition matrix from the
starting position in the bid space (i.e., the origin of the
lattice) to all M possible bid values. N is the number of
players. The bid value on which each player places a bid
can be calculated in a time that scales as log (M). Fi-
nally G is the number of times that we need to simulate
the same auction model in order to obtain a good esti-
mation of the pdf w (α). The computational complexity
of the numerical solutions of equations is M , since the
computation of Eqs. (1), (2), (4), (5) and (6) require a
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Figure 3: (Color online) Probability distribution function w(e) (α) of the winning strategies at generation e. Here we set
M = 1000, N = 100 and T = 1. The mutation ξ is randomly extracted from a uniform distribution centered in zero and width
2µ: we consider the cases µ = 0.0 (panels A and B, absence of mutation) and µ = 0.5 (panels C and D). In A and C, the starting

distribution for the exponents is g(1) (α) = 1/5 if α ∈ (0, 5) and zero otherwise. Already after one generation (e = 1, lower
black line), the peak of the distribution is around α ≃ 1.5. As the number of generations increases, the distribution becomes
more and even more peaked around a specific value of α, and reaches a stationary distribution. The asymptotic distribution
has finite width for µ > 0, while is a delta function for µ = 0. As a term of comparison, we show also the results obtained
with numerical after e = 20 generations (black circles). In B and D, we consider initial distributions for the exponents of the

type g(1) (α) ∼ α−λ if α ∈ (0, 5) and g(1) (α) = 0 otherwise. We show the results for the three cases: λ = 0 (uniform, black
full line), λ = 2 (power-law, red dashed line) and λ = 5 (exponential, blue dot-dashed line). The asymptotic distribution does
not depend on the initial distribution and the peak value of the asymptotic probability density function does not depend on
µ. Independently of the value of λ, as the number of generations e increases, the average value 〈α〉 and the standard deviation
σ approach the same stationary values: 〈α〉 ≃ 1.3 for any µ, while σ = 0 (as 1/

√
e, thin black line in panel B) for µ = 0.0 and

σ ≃ 0.4 for µ = 0.5.

computational time that grows as M .
For general values of T , the computational complexity of
numerical simulations is simply incremented by a factor
T and grows therefore as T M+T N log (M)G. The time
required for the numerical integration of the equation dif-
ferently grows as T M2. The most computationally ex-
pensive calculation is the one of Eq. (8) that requires
a time growing as M2, and this computation has to be
repeated T times.

VI. RESULTS

In all results, we consider the values N = 100 and
M = 1000. The choice of these parameter values is jus-
tified because they are of the same order of magnitude
as those measured in real auctions [15]. In Fig. 2, we
plot the pdf w (α) for T = 1 and T = 10. In both cases,
g (α) = 1/5 if α ∈ (0, 5), while g (α) = 0 otherwise.
Players randomly choose strategies that correspond to
ballistic motion (α ≤ 1), diffusive motion (α > 3) and
super-diffusive motion or Lévy flight (1 < α ≤ 3). As-
signing a flat initial distribution corresponds to assuming
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Figure 4: (Color online) Same as figure 3, but with different parameter values. Here we set M = 1000, N = 100 and T = 10,
and consider µ = 0.0 in panels A and B, while µ = 0.5 in panels C and D. The asymptotic pdf of the winning strategies have
average values 〈α〉 ≃ 1.5 for any value of µ. The standard deviation is σ = 0 (as 1/

√
e) for µ = 0.0, and σ = 0.3 for µ = 0.5.

For any value of µ, the best strategy (i.e., the peak of the pdf) is placed at α∗ ≃ 1.5.

that players don’t know which strategy is better for win-
ning the game and all strategies are therefore a priori

equivalent. It is interesting to see that already in this
situation there is a clear advantage for players that per-
form Lévy flights and whose exponents are in the range
1.2 − 1.5. It is also worth noting that the solutions ob-
tained with the numerical integration of the equations
are perfectly consistent with the results obtained with
numerical simulations.
More interesting is the case of evolutionary games. For
simplicity, here we consider the case in which the distri-
bution of the random mutations is a rectangular window
of width 2µ: if α is the winning strategy, the new expo-
nent is equal to a random number taken from the uniform
distribution into the interval (α− µ, α+ µ). In the case
in which the possible values of the exponents are bounded
in the interval (α1, α2), we have to include the effect of
the boundaries and write

y (ξ, α, α1, α2, µ) =

{

[ℓ1 + ℓ2]
−1

, if ξ ∈ (−ℓ1, ℓ2)
0 , otherwise

,

(13)
where ℓ1 = min (α− α1, µ) and ℓ2 = min (α2 − α, µ).

We show in Fig. 3 the results valid for T = 1 and in
Fig. 4 those obtained for T = 10. These figures show
results that are slightly different, but qualitatively iden-
tical. The asymptotic pdf w(∞) (α) of the winning strate-
gies does not depend on the initial distribution g(1) (α).
In absence of mutation, the limiting pdf is a delta func-
tion centered around an optimal strategy α∗. The con-
vergence to such pdf is only asymptotic, since the width
of the distribution goes to zero as 1/

√
e and is therefore

finite at any finite generation e. If mutations are allowed
(i.e., µ > 0), w(∞) (α) is reached after a finite number
of iterations. The asymptotic distribution has a finite
width. The number of iterations required to reach sta-
bility depend on the initial pdf and the mutation rate µ,
while its shape only on µ. In particular, the peak of the
pdf is still at α∗, the same value as the one measured in
absence of mutations. The value of α∗ depends on the
parameters of the model N , M and T but, for values con-
sistent with those of real auctions (N = 50 to N = 200,
M = 500 to M = 10000 and T = 1 to T = 100), α∗

ranges from 1.2 to 1.7.
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VII. CONCLUSIONS

A large wealth of empirical evidences suggest that ani-
mals have a specific, and apparently innate, strategy to
search an unknown physical environment [13]. The dis-
tances between two consecutive positions in the space are
distributed according to a power-law probability density
function. More interestingly, the exponent of the power-
law distribution is close to the one that guarantees the
most efficient search in an environment with scarce re-
sources. Evolutionary considerations account for the high
efficiency of the searching strategies of animals, since in
a competitive environment only the fittest are able to
survive and reproduce.
A similar behavior has been observed also in how human
players explore the bid space in on-line auctions [15]. In
this case, the environment is not physical but abstract.
Nevertheless players adopt searching strategies for the
winning bid value that are close to optimality: bid change
amounts are power-law distributed, and the exponents of
the power-laws are close to the value that can guarantee
the highest winning chances.
In this paper, we have provided a novel interpretation of
this empirical evidence and used evolutionary considera-
tions to explain the optimality of the observed exponents.
We have introduced a Moran-like model in which the re-
productive fitness of the players is proportional to their
success in searches [20]. The player winning the auction
reproduces, in the sense that the strategy of the winner
is transmitted to another randomly extracted individual.
We have considered both the cases of error-free repro-
duction and of transmission with mutation. We have de-

scribed the model analytically through a set of equations
whose numerical solution is in excellent agreement with
direct agent-based simulations. We have shown that the
model is extremely robust with respect to the choice of
the different parameters, producing results in good agree-
ment with the ones observed in the empirical data.

In summary, looking at activity patterns in the web [21],
our previous work [15] suggested that humans and other
animals share the same, apparently innate, strategy to
search in an unknown, physical or mental, environment.
Here we have shown that an evolutionary approach allows
to account for the optimality of the observed exponents,
in agreement with the view according to which the abil-
ity to understand and be effective in the natural world
is likely to be innate [22]. This is the case for example
of locomotion and perceptual-motor control [23], hunting
and foraging [24] or nest building [25]. We have provided
a new example with the remarkable novelty that it con-
cerns a mental search process. While it is well known
that humans share the intuition that numbers map into
space [26], our work indicates that they might have de-
veloped an innate knowledge about the best way to move
in it.
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