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Abstract

We propose and investigate several complex versions of extensions and restrictions of the Skyrme model 
with a well-defined Bogomolny-Prasad-Sommerfield (BPS) limit. The models studied possess complex 
kink, anti-kink, semi-kink, massless and purely imaginary compacton BPS solutions that all have real 
energies. The reality of the energies for a particular solution is guaranteed when a modified antilinear CPT -
symmetry maps the Hamiltonian functional to its parity time-reversed complex conjugate and the solution 
field to itself or a new field with degenerate energy. In addition to the known BPS Skyrmion configurations 
we find new types that we refer to as step, cusp, shell, and purely imaginary compacton solutions.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Skyrme model [1] has been introduced as a potential candidate for a low energy effective 
field theoretical description of a strongly interacting matter theory, i.e. Quantum Chromodynam-
ics, more than fifty years ago. It took a fairly long time to demonstrate that the model could 
indeed arise as such type of low energy effective theory in a limit for which the number of quark 
colours is taken to be very large [2,3]. The Skyrme model is perfectly tailored to the nonper-
turbative nature of that energy regime and successfully describes various key characteristics of 
atomic nuclei. The topological soliton solutions of the model, the Skyrmions, are identified as 
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Baryons with integer topological charges B being elements in the third homotopy group for the 
SU(2)-group valued fields, B ∈ Z � π3(SU(2)). The field excitations around a trivial vacuum 
are identified as pions [4–6] and there exist also variants of the model that include ρ, ω and A1

vector mesons [7,8]. Early on in the exploration of the model it was also noticed that Skyrmions 
allow for a fermionic interpretation [9] and that one may formulate gauge theoretical versions of 
them [10]. Atiyah and Manton established the remarkable fact that static Skyrmion solutions in 
R3 can be approximated well by holonomies of SU(2) Yang-Mills instantons in R4 [11,12].

Despite the success of the model on qualitative and conceptual aspects, it is still way off on 
a quantitative level when comparing numerical solutions to experimental measurements [13], as 
most quantities differ by a fair amount, such as for instance the magnetic moments for the protons 
and neutrons which are too small by about 30%. The Euler-Lagrange equation associated to the 
Skyrme model is a complicated nonlinear wave equation for which various solutions have been 
obtained numerically for small and large Baryon numbers [14–16,5,17–19]. The energies for 
all these solutions show that the binding energy, that is the energy required to separate a multi-
Skyrmion solution into single Skyrmions normalized by the Baryon number, is far too large when 
compared to what is expected from experiments. Motivated by trying to address this discrepancy, 
different variants of the original Skyrme model have been explored. Especially promising are 
versions of the model with a well-defined Bogomolny-Prasad-Sommerfield (BPS) [20,21] limit 
as originally proposed in [22].

These models exhibit a number of very appealing features: Firstly, they allow for the con-
struction of elegant exact analytical solutions in form of topological solitons that satisfy the 
Bogomolny bounds. Secondly they reproduce the linear relation between the binding energies 
and the baryon number for small and large values. Thirdly, and most importantly, they resolve 
the issue of the discrepancy of the large binding energies in the original Skyrme model. In fact, 
in the BPS versions of the model the binding energies are zero and one may adopt the view that 
quantum corrections will only introduce small variations, hence producing the expected smaller 
values for the binding energies. Taking corrections from collective coordinate quantization of 
spin and isospin, the electrostatic Coulomb energies, and small explicit breaking of the isospin 
symmetry into account lead to a very good agreement between theory and experimental values 
for the binding energy as shown in [23–25]. For a recent review on these type of BPS Skyrme 
models see [26].

Motivated by the success of the BPS versions of the original Skyrme model, we explore 
here further possible variants that include complex non-Hermitian versions of these models. We 
demonstrate that some of their static solutions have real topological energies despite being com-
plex and thus these solutions may also be associated to well-defined physical objects.

In order to overcome the so-called auxiliary field problem and emergence of fourth-order 
time derivatives when introducing supersymmetry, complex versions of the Skyrme model were 
previously studied [37,38], by taking the fields to be valued in a complexification of SU(N), 
i.e. SL(N, C). Besides trying to overcome the above mentioned problems, these studies were 
guided by the fact that the introduction of supersymmetry into the Skyrme model is almost in-
evitably forcing the introduction of complex structures as the underlying manifolds need to be of 
Kähler type for this purpose. However, complex solutions and their reality conditions were not 
considered previously.

As argued in [27] the reality of the energy for some scalar field solutions φi , i = 1, 2, . . ., to 
the BPS equations or the equations of motion is guaranteed when the following three conditions 
are met:
2
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(i) There exists a modified CPT -symmetry that maps the Hamiltonian functional to its parity 
time-reversed complex conjugate

CPT :H[φ(xμ)] → H†[φ(−xμ)], (1.1)

with CPT 2 = I. Here CPT -symmetry is not to be taken literally as a simultaneous parity, 
time reversal and charge conjugation, but be understood simply as an antilinear map of any 
kind in the sense described by Wigner in [28].

(ii) Two solutions φi and φj , not necessarily distinct, are related to each other by the modified 
CPT -symmetry as

CPT : φi(xμ) → φj (−xμ). (1.2)

(iii) The energies E[φ] of the two solutions φi and φj are degenerate

E[φi] = E[φj ]. (1.3)

Evidently when φi = φj this condition holds trivially and the energy is automatically guar-
anteed to be real. When φi �= φj we must ensure that the energies are degenerate to reach 
the same conclusion. As we shall see below this is often a consequence of some symmetries 
in some coupling or integration constants or by the fact that energies for solutions of the 
self-dual and anti-self-dual BPS equations are identical as argued in [27].

For a more detailed reasoning on why these conditions and further examples we refer the 
reader to [27] and references therein. We will present examples below for models with solutions 
satisfying all three conditions so that their energies are real, but we shall also explore the broken 
CPT -regime by presenting counter examples for solutions with complex energies for which 
either or both conditions (ii) and (iii) do not hold.

Our manuscript is organized as follows: In section 2 we recall a general Lagrangian density 
that encompasses a whole set of extensions and restrictions of the standard version of the Skyrme 
model. In sections 3 we discuss a complex, albeit pseudo Hermitian, version of the Skyrme model 
that possess new types of solutions that satisfy all three conditions (1.1)-(1.3) and have therefore 
real energies. In section 4 we discuss a version of the BPS Skyrme model with a potential that 
leads to solutions that behave asymptotically as kinks but with finite values a zero and also 
massless solutions with zero energy. In section 5 we discuss a version of the model involving a 
whole ray of Bender-Boettcher type potentials that possess fractional compacton and semi-kink 
solutions with real energies. In section 6 we explore the broken CPT -regime by discussing a 
model for which either condition (ii) and/or condition (iii) are not satisfied. Section 7 contains 
a discussion of a Skyrmion submodel with complex semi-kink and soliton-like solutions. Our 
conclusions are stated in section 8.

2. The Skyrme model - extensions and restrictions

To establish our notations and conventions we briefly recall some key aspects and definitions 
of the Skyrme model. Largely following [22,26], we consider an extended version of the standard 
Skyrme model described by variants of a Lagrangian density of the general form

L = L̃0 +L2 +L4 +L6 +L0, (2.1)

where the different terms are defined as
3
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L2 := −f 2
π

2
Tr

(
LμLμ

)
, L4 := 1

16e2 Tr
(
[Lμ,Lν]2

)
,

L6 := −λ2N2
0 BμBμ, L0 := −μ2V, (2.2)

with Lie algebraic currents in form of right Maurer Cartan forms, topological current and SU(2)-
group valued Skyrme fields

Lμ := U†∂μU, Bμ := 1

N0
εμνρτ Tr

(
LνLρLτ

)
, U := eiζ(σ ·�n), (2.3)

respectively. Here fπ can be interpreted as the pion decay constant and the dimensionless 
constant e is referred to as the Skyrme parameter. As is well known, these parameters can 
be scaled away, so that we may set them both to 1 in what follows. Moreover, we denote 
by σ the standard Pauli matrices and take the three component unit vector to be of the form 
�n = (sin cos�, sin sin�, cos) rather than the rational map or stereographic projection of-
ten used instead in this context, see e.g. [29]. Our space-time metric g is taken to be diagg =
(1, −1, −1, −1). The normalization constant N0 is chosen in such a way that the Baryon number 
B = ∫

B0d
3x ∈ Z becomes an integer as it should be for a two flavour theory to guarantee that 

Baryons with an even and odd number of quarks are Bosons and Fermions, respectively. See for 
instance [3] for a more detailed reasoning on this issue. For a standard static compacton solution 
the normalization constant is usually taken to be N0 = 24π2.

Dropping and decomposing terms or further specifying the potential in the general Lagrangian 
L gives rise to different versions of the model. The original Skyrme model [1] is comprised of the 
sum of the sigma model term L2 and the Skyrme term L4 with occasionally the potential term 
L̃0 added which is of the same functional form as L0. The BPS version of the model introduced 
in [22] consists of the sum of L6, that mimics the interactions generated by the vector mesons, 
and the potential term L0.

Consistent submodels may be obtained by further decomposing terms in L. With our choice of 
the parameterization for the SU(2)-group valued element U the various parts of the Lagrangian 
take on the following forms: For reasons that will become clear below, we decompose the sigma 
model and the Skyrme term as

L2 = L(1)
2 +L(2)

2 , and L4 = L(1)
4 +L(2)

4 , (2.4)

with

L(1)
2 = sin2 ζ

(
μμ + �μ�μ sin2 

)
, (2.5)

L(2)
2 = ζμζμ, (2.6)

L(1)
4 = sin2 ζ

[
μζμνζ

ν − μμζνζ
ν + sin2 

(
�μζμ�νζ

ν − �μ�μζνζ
ν
)]

, (2.7)

L(2)
4 = sin4 ζ sin2 

(
μ�μν�

ν − μμ�ν�
ν
)
. (2.8)

The extended part computes with

Bμ = 1

2N0
sin2 ζ sinBμ, Bμ := εμνρτ ζνρ�τ (2.9)

to

L6 = −λ2

sin4 ζ sin2 BμBμ = λ2

sin4 ζ sin2 
[
ϕa

0Qi
aϕ

b
0Qi

b −B0B0

]
, (2.10)
4 4

4
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where Qi
a := 1

2εabcε
ijkϕb

j ϕc
k , ϕ := (ζ, , �) and a, b, c, i, j, k ∈ {1, 2, 3}.

Finally, the pion mass term in the standard BPS version of the model (BPSS) LBPSS
0 = −μ2V

is taken to involve the potential V = 1
2 Tr (I−U) = 1 − cos ζ , but we will allow here other forms 

of the potential as well. Further extensions, including for instance a sextic derivative term [30]
or multiplying the terms with field dependent coupling constants [31] have also been studied.

In what follows we shall investigate different combinations of various complex extended or 
deformed versions of different parts of this model related to the form of L in (2.1).

3. Pseudo Hermitian variants of Skyrme models

In this section our first guiding principle is to identify a CPT -symmetry in a Hermitian 
Hamiltonian and extend the model by deforming or adding complex terms to convert it into a 
non-Hermitian Hamiltonian that still respects this symmetry. Subsequently we try to identify a 
pseudo Hermitian counterpart in a similar fashion as what is by now standard for non-Hermitian 
quantum mechanical systems [32,33]. For BPS systems in 1+1 dimensions this approach was 
recently applied successfully in [27]. We shall now demonstrate that it can also be applied to 3+1 
dimensional theories with complex topological solutions.

3.1. Complex boosted BPS Skyrme models

We start with the standard BPS Skyrme model consisting of L6 +LBPSS
0 by noting that it re-

mains invariant under the antilinear CPT -transformation: ζ → −ζ , ı → −ı. Thus we may intro-
duce a complex shift in ζ → ζ + ıκ with κ ∈ R without breaking that symmetry. We denote here 
and in what follows the imaginary unit as ı := √−1 to distinguish it from indices i. Choosing κ =
− arctanh ε with ε ∈ R and using the identities 

√
1 − ε2 sin (ζ − ı arctanh ε) = sin ζ − ıε cos ζ , √

1 − ε2 cos (ζ − ı arctanh ε) = cos ζ + ıε sin ζ , we obtain a CPT -symmetrically extended BPS 
Skyrme model of the form

Lb = −λ2

4
(sin ζ − ıε cos ζ )4 sin2 BμBμ − μ2

(√
1 − ε2 − cos ζ − ıε sin ζ

)
, (3.1)

after re-scaling the coupling constants as λ → λ(1 − ε2), μ → μ(1 − ε2)1/4. By design, for 
vanishing ε the model reduces to the standard BPS Skyrme model limε→0 Lb = L6 + LBPSS

0
as introduced and discussed in [22]. We shall now demonstrate that the energies for the topo-
logical solutions to the equations of motion resulting from Lb and its corresponding Hermitian 
counterpart are identical and real.

3.1.1. Topological energies for the real solutions of the Hermitian counterpart
At first we derive the Hamiltonian corresponding to Lb in the standard fashion by computing 

the conjugate canonical momenta

�a = δLb

δϕa
0

= Gacϕ
c
0, with Gac = λ2

2
(sin ζ − ıε cos ζ )4 sin2 Qi

aQi
c, (3.2)

so that

Hb = 1

2
�aG−1

ac �c −Lb, with G−1
ac = 2ϕa

i ϕc
i

J 2λ2 (sin ζ − ıε cos ζ )4 sin2 
, (3.3)

where J := 1εabcε
ijkϕaϕbϕc.
2 i j k

5
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While overall our considerations are mainly classical, we now briefly appeal to the quantum 
field theoretic version of the model, by assuming the standard canonical equal time commuta-
tion relation 

[
ϕa(r, t),�b(r ′, t)

] = iδabδ(r − r ′) between the fields ϕa(r, t) and their conjugate 
momentum operators �a(r, t). We then use a slightly modified version of the Dyson operator as 
employed in [34,27]

η = exp

[
− arctanh ε

∑
a

∫
dx�a(r, t)

]
, (3.4)

to map the non-Hermitian Hamiltonian functional Hb to a Hermitian counterpart hb by means of 
the adjoint action of η

hb = ηHbη
−1 = 1

2
�aG−1

ac �c + λ̃2

4
sin4 ζ sin2 BμBμ + μ̃2(1 − cos ζ ). (3.5)

We notice that hb is in fact the standard BPS Skyrme model with reversing the previous re-scaling 
of the coupling constants as λ → λ̃ = λ(1 − ε2), μ → μ̃ = μ(1 − ε2)1/4.

In this case the static BPS solution that saturates the Bogomolny bound is known to be 
computable exactly [22] when using spherical space-time coordinates (x, y, z) → (r, θ, φ) with 
r ∈ [0, ∞), θ ∈ [0, π), φ ∈ [0, 2π) and the identifications  = θ , � = nφ with n ∈ Z together 
with the assumption that ζ is a function of r only. In this case one obtains a well-defined real 
compacton solution, see e.g. [35] for what that entails in general,

ζr (r) =
⎧⎨
⎩ 2 arccos

(
1√
2

∣∣∣ μ̃

nλ̃

∣∣∣1/3
r

)
for r ∈

[
0, rc = √

2
∣∣∣nλ̃

μ̃

∣∣∣1/3
]

0 otherwise
, (3.6)

with real energy

E = 8πμ̃2
∫ rc

0
r2V [ζr (r)]dr = 64

15

√
2 |n| μ̃λ̃π(1 − ε2)5/4. (3.7)

Next we show that there are in fact more solutions in this case and how the same energy results 
from a direct computation for the complex solution of the non-Hermitian system (3.1).

3.1.2. Energies for the complex solutions of the non-Hermitian system
We adopt here and below the approach proposed in [36], which slightly reformulates the BPS 

theory and exploits the self-duality and anti-self-duality between certain fields. For this purpose 
we first note that the Hamiltonian density for static solutions may be expressed as

Hb = A2 + Ã2, (3.8)

with

A := λ

2
(sin ζ − ıε cos ζ )2 sinB0, Ã = μV = μ

(√
1 − ε2 − cos ζ − ıε sin ζ

)1/2
.

(3.9)

The self-duality and anti-self-duality between the fields A and Ã

A = ±Ã, (3.10)

is then interpreted as being identical to the BPS equations [20,21]. The energy functional for the 
solutions of (3.10) therefore acquires the form
6
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Eb =
∫

d3x
(
A2 + Ã2

)
= ±2

∫
d3x AÃ. (3.11)

Note that since the fields A and Ã are now complex, the energy of the static BPS solutions Eb
may no longer saturate the Bogomolny bound.

Explicitly the BPS equations (3.10) may be written as

λ

2

(sin ζ − ıε cos ζ )2

μ
√

V
sinεijk∂iζ ∂j∂k� = ±1. (3.12)

Since εijkζij�k is simply the Jacobian for the variable transformation (x, y, z) → (, � , ζ )

the multiplication of (3.12) by the volume element d3x leads to

λ

2

(sin ζ − ıε cos ζ )2

μ
√

V
sindζdd� = ±r2 sin θdrdθdφ, (3.13)

where we used spherical coordinates on the right hand side. With the same identifications 
between (r, θ, φ) and (ζ, , �) as chosen in the previous section and together with the afore-
mentioned trigonometric identities the relation (3.13) converts into

nλ̃

2r2 sin2 (ζ − ı arctanh ε)
dζ

dr
= ±μ̃

√
1 − cos (ζ − ı arctanh ε). (3.14)

These equations is easily integrated out by separating variables. Corresponding to the different 
branches we obtain different types of solutions

ζ±
i,m(r) = ζ̃±

i,m(r) + ı arctanh ε = 2 arccos

[
ωi (nλ̃c ∓ μ̃r3)1/3

√
2n1/3λ̃1/3

]
+ 2πm + ı arctanh ε,

(3.15)

for i = 0, 1, 2, m ∈ Z and ω = e2πı/3 denoting the third root of unity. We analytically con-
tinue here the arccos-function to the entire complex plane by the well-known formula arccosz =
−ı ln

(
z ± √

z2 − 1
)

. Note that for the Hermitian case, i.e. ε = 0, all these solutions also arise, 
but in that case one simply discards the complex solutions or the parts of the solutions that be-
come complex after a certain value of r , by requiring solutions to be real. In order to identify 
possible compacton solutions in the real part we need to specify the critical values r0 for which 
the solution vanish, ζ̃±

i (r0) = 0, and also those values rπ for which ζ̃±
i (rπ ) = π . We obtain

r±
0,i := ωi

[
±nλ̃

(
c − 23/2

)
μ̃

]1/3

, and r±
π,i := ωi

(
±nλ̃c

μ̃

)1/3

. (3.16)

These values are irrelevant when complex, whereas when real they may produce different types 
of scenarios depending on their ordering and signs of the constants. In Fig. 1 we depict some 
interesting possibilities.

It is clear from Fig. 1 that we may construct compacton type solutions in various ways. Obvi-
ous choices are

ζ̃BPS(r) :=
{

ζ̃−
0,0 for 0 ≤ r ≤ r−

0
0 for r−

0 < r
, ζ̃St(r) :=

⎧⎨
⎩

ζ̃−
1,0 for 0 ≤ r ≤ r−

π

ζ̃−
0,0 for r−

π ≤ r ≤ r−
0

0 for r− < r

. (3.17)
0

7
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Fig. 1. The ζ̃ -part of the solutions of the BPS equation (3.14) for different scenarios with n = λ̃ = 1, μ = 3/2 and 
different choices for c. The different relative orderings are: panel (a) rπ ≤ 0 ≤ r0 with c = 1/2, panel (b) 0 ≤ rπ ≤ r0
with c = −1/2, panel (c) r0 ≤ 0 ≤ rπ with c = 1/2 and panel (d) 0 ≤ r0 ≤ rπ with c = 7/2. Real parts correspond to 
solid lines and imaginary parts to dotted ones.

Noting that r+
π,i(c) = r−

π,i(−c), we may also glue together solution that are self-dual with 
those that are anti-self-dual as

ζ̃Cusp(r) :=
⎧⎨
⎩

ζ̃+
0,0 for 0 ≤ r ≤ r+

π = r−
π

ζ̃−
0,0 for r−

π ≤ r ≤ r−
0

0 for r−
0 < r

,

ζ̃Shell(r) :=

⎧⎪⎪⎨
⎪⎪⎩

0 for r < r+
0

ζ̃+
0,0 for r+

0 ≤ r ≤ r+
π = r−

π

ζ̃−
0,0 for r−

π ≤ r ≤ r−
0

0 for r−
0 < r

. (3.18)

A purely imaginary compacton solution is obtained as ζ̃iBPS(r) := ζ̃+
0,0 for r < r+

0 and 0 other-
wise. Here and below our terminology is inspired by the radial profile of our solutions. We have 
dropped the second subscript on r±

0,i and r±
π,i as the branch that produces a real values depends 

on the values of λ̃, μ̃ and c. It appears that in this way one is combining solutions from different 
equations. However, noting that the equation of motion resulting from (3.1) is simply the square 
of the BPS equations (3.14), see e.g. [22] for a derivation when ε = 0, we adopt here the view 
that the latter is more fundamental. Hence, we are combining solutions for one single equation 
with different choices of integration constants in different domains. Whilst the first order deriva-
tive are discontinuous at the ‘gluing points’ r±

0 and r±
π in the solutions in (3.17) and (3.18), we 

may argue here in a similar way as in [22] to establish that the solutions are in fact well defined 
8
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Fig. 2. The BPS solution ζ̃BPS with n = 1, c = 1/2, μ̃ = 3/2, λ̃ = 1, the step solution ζ̃St with n = 1, −c = 1/2, μ̃ = 3/2, 
λ̃ = 1, the cusp solution ζ̃Cusp with n = 1, c = 3/2, μ̃ = 3/2, λ̃ = 1, the shell solution ζ̃Shell with n = 1, c = 11/2, 
μ̃ = 3/2, λ̃ = 1 and the purely imaginary solution ζ̃iBPS with n = 1, c = 11/2, μ̃ = 3/2, λ̃ = 1. (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Different types of solutions to the equations of motion as defined in (3.18) - (3.17) with parameters n = λ̃ = 1, 
μ̃ = 3/2 and c = 1/2 in panel (a), c = −1/2 in panel (b), c = 3/2 in panel (c), c = 11/2 in panel (d).

solutions. The derivative dζ̃ /dr always occurs multiplied with a sin2 ζ̃ in the BPS equations, so 
that the left and right limits of this combination is always finite at the gluing points, but might 
differ by a sign. Since this sign is irrelevant in the equations of motion the solutions are well 
defined and lead to meaningful values for the energy density and the Baryon number density. We 
depict the configurations (3.18) - (3.17) in Fig. 2.

In Fig. 3 we present the Skyrmion solutions of compacton type (3.18) - (3.17) as slices in form 
of level curves. We may compare with Fig. 2. In panel (a) we have a standard real (fractional) 
Skyrmion ζ̃BPS starting at a finite value at r = 0 and then decaying to zero at some critical 
value r−

0 . In panel (b) we depict the solution ζ̃St taking on the form of a step like function 
with an inflection point at r−

π . The solution ζ̃Cusp shown in panel (c) has a discontinuous first 
order derivative at r = r+

π = r−
π , which is usually referred to as peakons in the context of 1+1 

dimensional integrable systems. The most interesting structure ζ̃Shell is seen in panel (d), which 
corresponds to a real shell with a peakon structure. We may even change this solution in the 
region r < r+

0 , by defining it as ζ̃Core(r) = ζ̃+
0,0 for r < r+

0 , hence adding a purely imaginary core 
to it. It turns out that this is consistent as the core has also real energies despite the fact that it is 
complex.

Next we demonstrate that all types of solutions depicted in Figs. 2 and 3 possess real energies. 
We compute these energies on some domain r ∈ [r̃c, rc] by using the general expression (3.11)
9
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E = ±λ̃μ̃

∫
d3x (sin ζ − ıε cos ζ )2 sinB0

(√
1 − ε2 − cos ζ − ıε sin ζ

)1/2
(3.19)

= ±4πλ̃μ̃n

∫ rc

r̃c

dr sin2 (ζ(r) − ı arctanh ε)
√

1 − cos (ζ(r) − ı arctanh ε)
dζ

dr
(3.20)

= 8πμ̃2
∫ rc

r̃c

drr2V [ζ(r)] . (3.21)

In the last step we used once more equation (3.14). For the solutions ζ̃BPS, ζ̃St and ζ̃Cusp we 
calculate

EBPS/St,Cusp = 8

15
nμ̃λ̃π

(
8
√

2 ∓ 10c ± 3c5/3
)

, (3.22)

for c ≥ 0 on the domains as indicated in Fig. 1. The upper signs stand here for BPS and lower 
signs for the step and cusp solutions, which have the same energies. As expected, the expressions 
(3.22) reduce to the energy of the standard real case (3.7) in the limit c → 0, since in that case the 
fractional BPS Skyrmions become full BPS Skyrmions with ζ(r = 0) = π . For the shell solution 
ζ̃Shell and the purely imaginary core solution ζ̃iBPS we obtain the real energies

EShell = 128

15

√
2nμ̃λ̃π, and EiBPS = −EBPS, (3.23)

respectively. The reality of the solutions is ensured by verifying that the respective solutions 
satisfy all three conditions (1.1)-(1.3) for a particular CPT ′-symmetry. With condition (1.1) we 
identify here the symmetry to

CPT ′ : ζ(xμ) → ζ ∗(−xμ) + 2ı arctanh ε = ζ(−xμ). (3.24)

We are considering static solutions in which the angle dependence has already been eliminated, 
so that our solutions only depend on r . Hence the change in the arguments of the fields xμ → −xμ

is automatically satisfied. The CPT ′-symmetry condition (3.24) is then easily verified for our 

solutions ζ±
i,m(r) in (3.15): ζ±

i,m(r) →
[
ζ±
i,m(r)

]∗ + 2ı arctanh ε = ζ±
i,m(r). Since the solutions 

are mapped to themselves, the condition (iii) is automatically satisfied and energies for these 
solutions must be real. Notice that the symmetry CPT ′ differs from the symmetry CPT we used 
for the construction of the model.

Apart from ζiBPS, the solutions of the Hermitian theory in this section are all real and given 
the above argument their corresponding energies therefore saturate the lower Bogomolny bound. 
However, we note that ζiBPS is nonphysical since its corresponding energy is not bounded from 
below. This is either seen from (3.23) or more generally from (3.11), which implies that for 
purely imaginary A and Ã the right hand side constitutes an upper bound for the energy.

We conclude this section with a brief comment on the values for the Baryon number, that 
in general is no longer integer valued. Taking the normalization constant to be N0 = 24π2 we 
obtain

B =
∫

B0d
3x = n

π

[
ζ±(r = 0) − 1

2
sin

[
2ζ±(r = 0)

]]
, (3.25)

which is no longer integer valued. However, choosing N0 differently we can always ensure that 
the Baryon number is integer valued.

It is worth pointing out that we may reach similar conclusions as in the boosted model dis-
cussed in this section for a model with complex rotated fields. With a slight modification of the 
10
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Fig. 4. Panel (a): Purely imaginary and real compacton and semi-kink solutions (4.3) resulting from the potential VSK(ζ )

with parameter choices n = λ = 1, μ = 2 and c = ±1 for γ = ∓1. Panel (b): Complex solutions with zero energy 
resulting from the potential Vm0(ζ ) with parameter choices n = λ = 10, μ = 2 and c = ±25.15 for γ = ∓1. Real parts 
correspond to solid lines and imaginary parts to dotted ones.

Dyson map used in [39], having the effect on the fields is that they transform as ϕa → e−iθaϕa

and �a → eiθa�a , we may construct a new complex models. The model obtained in this manner 
also possess complex BPS solutions with real energies.

4. Skyrme model with semi-kink and massless solutions

While most Skyrmion solutions are of compacton type, there exist also interesting variants of 
the model L0 + L6 with potentials that lead to solutions which are partly of kink type with real 
energies. We consider here the potential

VSK(ζ ) = sin2 ζ(1 + cos ζ )2. (4.1)

The corresponding BPS equations

tan

(
ζ

2

)
dζ

dr
= ±2μ

nλ
r2, (4.2)

are easily solved to

ζ±
s (r) = 2s arccos

(
e∓ μr3

3nλ
−c

)
, (4.3)

with s = ±1 and c denoting an integration constant. A similar solutions to s = 1 was found 
in [24]. Evidently we have ζ±

s (r±
0 ) = 0 for r±

0,i = ωi(∓3nλc/μ)1/3 and asymptotically ζ±
s ac-

quires a finite value limr→∞ ζ±
s (r) = sπ for ±μ/nλ > 0. We depict some sample solutions in 

Fig. 4 panel (a). For r < r0 we notice the previously observed standard real or purely imaginary 
compacton solutions, but for r > r0 the solutions ζ+± exhibit the interesting feature of being of 
compacton type at r = r0 and of kink type when r → ∞.

Crucially, it turns out that the energies of these solutions are all real and finite. From the 
general expression (3.21) we compute

Esemi-kink
(
ζ−
s

) = 16nλμπ

3
, (4.4)

Ereal compacton
(
ζ−
s

) = −
(

4e−6c − 3e−8c − 1
)

Esemi-kink, (4.5)

Epurely imaginary compacton
(
ζ+
s

) =
(

4e6c − 3e8c − 1
)

Esemi-kink, (4.6)
11
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for c > 0 and nλμ > 0.
Another interesting variant emerges when considering the potential Vm0(ζ ) = −VSK(ζ ). 

In this case the solutions become ζ̌±
s (r) = 2s arccos(e∓ı

μr3

3nλ
−ıc), which vanish for r±

0,i =
ωi(∓3nλ(c + 2πm)/μ)1/3 with m ∈ Z and ζ̌±

s (r±
π,i) = 2πs for r±

π,i = ωi[∓3nλ(c + 2π(m +
1/2))/μ]1/3. A sample solution is depicted in Fig. 4 panel (b). We observe a re-occurring com-
plex periodic shell solution that becomes squeezed for increasing r . Interestingly the energies for 
these type of shell solutions is vanishing

8πμ2
∫ r−

0

r+
0

drr2Vm0

[
ζ̌±
s (r)

]
= 0. (4.7)

This suggests that the shell solutions may be interpreted as massless Skyrmions.
We observe from (1.3) that the energies of the solutions are ensured to be real by the 

CPT ±-symmetries: ζ(r) → ±ζ ∗(r). For the same reasons as in the previous subsection there 
is no effect on the arguments of the fields. For the complex solution ζ̌±

s this reads CPT ±: 
ζ±
s (c) → [

ζ±±s(c)
]∗ = ζ∓±s(−c). Thus in this case this CPT ±-symmetries map solutions to dif-

ferent solutions. However, invoking condition (1.3) and noting that the energies for ζ̌±
s (r) are the 

same for both BPS equations and independent of s, c, they must be real.

5. Skyrme model with a Bender-Boettcher type potential

We will now investigate further variants of the model L0 +L6 by allowing for a wider range 
of potentials in L0, including the possibilities of functions of Tr [U(ζ )] and even Tr [U(ıζ )]. As 
a first example we consider the potential

VBB(ζ ) = (ıζ )ε sin4 ζ, ε ∈ R. (5.1)

This potential closely resembles the classical prototype potential studied in PT -symmetric quan-
tum mechanics [40], remaining invariant under the CPT -transformation: ζ → −ζ , ı → −ı. 
Using the same parameterization and reasonings as in the previous sections, the BPS equations 
derived in analogy to (3.14) read

nλ

2μ

sin2 (ζ )√
VBB

dζ = ±r2dr ⇒ dζ

dr
= ±2μ

nλ
(ıζ )ε/2 r2 . (5.2)

These equations are easily integrated, acquiring the following Gaussian form

ζ±
m (r) =

[∣∣∣∣ nλ

μ(ε − 2)

∣∣∣∣ 1

(c + r3/3)

] 2
ε−2

e
ıπ

(
3s

2−ε
− 1

2

)
e2πı 2m

ε−2 , s = ±1, c ∈R,m ∈Z . (5.3)

In principle the integration constant c could be complex, but we only obtain real energies 
for c ∈ R so we ignore that possibility in what follows. We have defined the constant s :=
sign[±nλ/μ(ε − 2)] where as above sign denotes the signum function. The last factor accounts 
for all the branches of ζ , as can either be seen by inserting 1 = e2πım into the square bracket or 

by noting that ζ → ζe2πı 2m
ε−2 is a symmetry of equation (5.2). The BPS solutions ζ±

m (r) exhibit 
two different types of qualitative behaviour. When c ∈R−, ε < 2 we obtain compacton solutions 
with finite values at r = 0 and ζ±

m [(3 |c|)1/3] = 0. For c ∈ R+, ε > 2 the solutions are finite at 
r = 0 and tend to zero only for r → ∞. We illustrate these types of behaviour in Fig. 5.
12
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Fig. 5. BPS solutions ζ±
m (r) for a Skyrme model with a Bender-Boettcher type potential for the parameter choices λ = 1, 

μ = 2, n = 1. In panels (a), (b) we have taken c = −2 and in panels (c), (d) we have c = 0.2.

By the same reasoning as in the previous subsections the energies for these solutions are 
computed to

E±
BB = 8πμ2

∫ rc

0
drr2V

[
ζ±
m (r)

]
, (5.4)

where rc = (3 |c|)1/3 for the compacton solutions and rc → ∞ for the unbounded ones. As is 
evident from (5.1) these energies can be real when ζ is either purely imaginary or real. Together 
with (5.3) real energies are found when

ζ ∈ −ıR+: ε = 4m + 4� − 3s

2�
, �,m ∈N, (5.5)

ζ ∈ ıR+: ε = 2 + 4m + 4� − 3s

1 + 2�
, m,ε ∈N,� ∈N0, (5.6)

ζ ∈ R: ε = 2(1 + 4m + 2� − 3s)

1 + 2�
, �,m ∈ N0,�, ε ∈ 4N. (5.7)

Examples for these solutions are depicted in Fig. 5. In panel (b) of that figure we also displayed a 
two solution real solutions with ε /∈ 4N . Next we plot the corresponding energies for these cases 
as functions of ε in Fig. 6.

We observe from Fig. 6 that the energies are finite and follow distinct curves for the different 
cases. Moreover, for the case ζ ∈ −ıR+ the curve is fairly dense and becomes more connected 
when including more values for � and m, hence ε. In the other cases this can not be achieved due 
to the additional restriction on ε so that the distribution is more sparse. The transition at ε = 2 is 
not smooth.

For these models the CPT ′-symmetry identified from (1.3) must act as ζ → −ζ ∗. For our so-
lutions in (5.3) this becomes ζ± → −(ζ±)∗ = ζ∓−m. Noting now that ε(m, �, s) = ε(−m, −�, −s)
m m

13
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Fig. 6. Real energies E±
BB of the compacton (panel a) and unbounded (panel b) BPS solutions for the cases (5.5) - (5.7)

with λ = 1, μ = 2, n = 1 and c = 0.2 for several values of �, m.

in (5.5) and ε(m, �, s) = ε(−m, −� − 1, −s) in (5.6), (5.7), we simply have to choose a new 
�′ = −�, �′ = −� − 1, respectively, to obtain the same value for ε. This establishes that 
E[ζ±

m ] = E[ζ∓−m] so that condition (iii) in (1.3) also holds and the energy must therefore be real. 
Notice once more that the CPT ′-symmetry that ensures the reality of the energies is different 
from CPT , that was observed initially for VBB(ζ ).

6. Skyrme model with complex trigonometric potentials

Next we study a model for which the Hamiltonian respects again the CPT -symmetry: ζ →
−ζ , ı → −ı, but which has solutions transforming under a CPT ′-symmetry to satisfy (1.1) with 
conditions (1.2) and/or (1.3) violated. Thus we are in the broken CPT ′-regime. For this purpose 
we consider the variant of the model L0 +L6 involving the trigonometric potential

VT (ζ ) = sin4 ζ cos4(ζ + iε), ε ∈R. (6.1)

We notice that unlike as in the pseudo Hermitian model discussed in section 3 only one of the 
factors in the potential is shifted so that the potential is not simply boosted and most likely not 
pseudo Hermitian. The BPS equations take the form

nλ

2μ

sin2 ζ√
VT

dζ = ±r2dr ⇒ dζ

dr
= ±3α cos2(ζ + iε)r2, (6.2)

where we abbreviated α := 2μ
3nλ

. Integrating this equation we find the solutions

ζ±
α,γ (r) = −iε ± arctanα(r3 + γ ) , (6.3)

with integration constant γ ∈ C. The symmetry identified from condition (i) in (1.1) acts 

as CPT ′: ζ±
α,γ → − 

(
ζ±
α,γ

)∗ = ζ∓
α,γ . Thus the second condition (1.2) still holds. However, 

the energies of the two solutions related in this manner are in general not degenerate, i.e. 
E[ζ+

α,γ ] �= E[ζ−
α,γ ]. Depending on the nature of the integration constant γ we find two differ-

ent types of behaviour and we can still find discrete values for the two CPT ′ related solutions 
that have degenerate energies.

6.1. Real integration constants γ ∈ R

Computing the energy E±
α,γ as in the previous sections, the real and imaginary part acquire 

the form
14
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ReE±
α,γ = 1

32

(
π

α
− 2γ

α2γ 2+1

)

+ 1

48

(
2γ

(
α2γ 2+3

)
(
α2γ 2+1

)2 −π

α

)
cosh 2ε + γ

(
α2γ 2−3

)
cosh 4ε

72
(
α2γ 2+1

)3

+ γ (2 cosh 2ε−3)

48α
arctanαγ , (6.4)

ImE±
α,γ = ∓ sinh 2ε

([3α2γ 2−1] cosh(2ε)+3+3α2γ 2
)

36α
(
α2γ 2+1

)3 . (6.5)

This in general the energy is complex and we have E+
α,γ =

(
E−

α,γ

)∗
and the model is in the 

broken CPT ′-phase. However, we note that the imaginary part vanishes when parameterizing 
the integration constant as

γ�(α, ε) = �sech ε

√
cosh 2ε−3√

6α
, � = ± . (6.6)

In this case we have also satisfied condition (iii) in (1.3) with E[ζ+
α,γ ] = E[ζ−

α,γ ] and the 
CPT ′-symmetry is restored. In order to keep the condition γ ∈ R, we must restrict |ε| ∈
[ 1

2 arccosh 3, ∞).

6.2. Purely imaginary integration constants γ ∈ iR

Taking now γ to be purely imaginary the CPT ′-symmetry acts as CPT ′: ζ±
α,γ → − 

(
ζ±
α,γ

)∗ =
ζ∓
α,−γ . The real and imaginary parts of the energies become now

ReE±
α,γ = π

32α

(
1 − 2

3
cosh 2ε

)
, (6.7)

ImE±
α,γ = ± sinh 2ε

([1+3α2γ 2] cosh 2ε−3+3α2γ 2
)

36α
(
1−α2γ 2

)3 + γ
(2 cosh 2ε−3)

48α
arctanαγ

− γ

72

(
α2γ 2+3

)
cosh 4ε + (

1−α2γ 2
) (

3−α2γ 2
)

cosh 2ε

(1−α2γ 2)3 . (6.8)

Interestingly the real part becomes very simple and does not depend on the integration constant 
γ . We may, however, still find values for γ as function of α and ε for which the imaginary part 
(6.8) vanishes, but not in a closed form as in (6.6). In this case condition (iii) in (1.3) becomes 
E[ζ+

α,γ ] = E[ζ−
α,−γ ] and the CPT ′-symmetry is also restored.

7. A new Skyrme submodel with complex BPS solutions and real energy

By decomposing the sigma model and the Skyrme term, Adam, Sanchez-Guillen and 
Wereszczynski noticed in [41] that one may define further consistent and solvable submodels 
by combining terms from either decomposition as

L(1)
+ := L(1) +L(1)

, and L(2)
+ := L(2) +L(2)

.
2 4 2 4
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Choosing the coupling constant in front of L4 to be negative relative to L2, we consider now a 
slight modification of the second submodel defined by the Lagrangian densities

L(2)
− := λ

(
L(2)

2 −L(2)
4

)
, λ ∈C. (7.1)

The corresponding Hamiltonian density for static solutions may then be written as

H(2)
− = λ(�ζ )2 − λ sin4 ζ sin2 (� × ��)2 = A2 + Ã2, (7.2)

where the dual fields are defined as

Ai = √
λζi, and Ãi = ı

√
λ sin2 ζ sinεijkj�k. (7.3)

Thus, the Hamiltonian density is of the same generic form as for the class of general BPS models 
discussed in [36]. Hence, following the same reasoning, the imposition of a self-duality and 
anti-self-duality between Ai and Ãi ,

Ai = ±Ãi (7.4)

selects out the BPS equations [20,21]. Thus the energy functional E(2)
− for the solutions of (7.4)

therefore acquires the form as in equation (3.11).
We now solve the BPS equations (7.4) and subsequently compute the energies E(2)

− for the 
solutions obtained. Multiplying (7.4) by i , �i , ζi and summing over i we obtain the respective 
equations

ζii = 0, ζi�i = 0, and ζiζi = ±ı sin2 ζ sinεijkζij�k. (7.5)

The first two constraints are satisfied by a suitable choice of the space-time dependence of 
, �, ζ . Since εijkζij�k is simply the Jacobian for the variable transformation (x, y, z) →
(, � , ζ ), the multiplication of the last equation by the volume element d3x in (7.5) leads to

(�ζ )2d3x = ±ı sin2 ζ sindd�dζ. (7.6)

Similarly as above, we choose spherical space-time coordinates (x, y, z) → (r, θ, φ) with r ∈
[0, ∞), θ ∈ [0, π), φ ∈ [0, 2π), identify  = θ , � = nφ with n ∈Z and assume ζ(r) ∈ C. These 
choices will automatically solve the first two equations in (7.5), whereas the last one reduces to

dζ

dr
= ±ı

n

r2 sin2 ζ. (7.7)

Apart from the ı, this equation coincides with equation (3.6) in [41] derived for L(2)
+ by express-

ing the unit vector �n by means of a stereographic projection. We solve equation (7.7) to

ζ
(m)
± (r) = ı arccoth

(
c ∓ n

r

)
+ mπ, c ∈ C,m ∈ Z. (7.8)

As seen in Fig. 7 the imaginary parts of these solutions tend to zero for r → ∞, whereas the 
real parts approach asymptotically the constant value mπ + c̃/2 when taking c = ı cot(c̃/2), 
c̃ ∈R\{2nπ} with n ∈Z. Moreover limr→0 ζ

(m)
± (r) = mπ .

At first sight the solution (7.8) may seem to be unattractive due to its complex nature. How-
ever, first of all it is continuous throughout the entire range of r and thus overcomes an issue of 
the real solutions ζ (m)

r = arccot
(
c − n

r

) + mπ found for L(2)
+ in [41], which are discontinuous at 

r = n/c. Moreover the energies for these solutions are real. We compute
16
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Fig. 7. Complex BPS solutions ζ (0)
− for different values of n and the initial condition c for L(2)

− . Real parts as solid and 
imaginary parts as dotted lines.

E
(2)
− (ζ ) = ±2ıλ

∫
d3x sin2 ζ sinεijkζij�k (7.9)

= ±2ınλ

∫
sin2 ζ sin θdθdφ dζ

= ±8πınλ

∞∫
0

sin2 ζ
dζ

dr
dr

= ±8πınλ

ζ(∞)∫
ζ(0)

sin2 ζdζ = ±2πınλ [2ζ − sin(2ζ )]|ζ(∞)

ζ(0) . (7.10)

Thus taking now the complex coupling constant to be of the form λ = ıλ̃, λ̃ ∈ R, we obtain for 
solutions ζ (m)

± the real energies

E
(2)
−

(
ζ

(m)
±

)
= ±2πnλ̃

[
sin(c̃) − c̃

]
. (7.11)

We identify the CPT -symmetry from (7.2) as CPT : ζ → ζ ∗, which for our solution (7.8)

becomes ζ (m)
± (c̃) →

[
ζ

(m)
± (c̃)

]∗ = ζ
(−m)
∓ (−c̃). Since E(2)

−
[
ζ

(m)
± (c̃)

]
= E

(2)
−

[
ζ

(−m)
∓ (−c̃)

]
, the en-

ergies are guaranteed to be real by the antilinear symmetry CPT .

8. Conclusions

We have studied several variants of the Skyrme Lagrangian density L in equation (2.1). Our 
main focus has been on finding complex solutions to the self-dual and anti-self-dual versions 
of the BPS-equation or equation of motion. Identifying the CPT -symmetries for these models 
from the requirement in (1.1) allowed us to check the remaining conditions (ii), (iii) in (1.2), (1.3)
for the constructed solutions, which when satisfied ensures the reality of the energy. The broken 
CPT -regime was also investigated by providing a sample model in section 7 that is not pseudo 
Hermitian possessing generic solutions for which neither of the conditions (ii) or (iii) holds. 
However, when taking the integration constant to be real or purely imaginary and parameterizing 
it in terms of the coupling constants of the model the reality of the energy could be restored, 
which is also reflected in the restored CPT -symmetry of the model.
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We found a number of novel Skyrmion configurations. Besides the standard compacton or 
fractional compacton shapes of the BPS-Skyrmions, we found new types of configurations such 
as complex kink, anti-kink, semi-kink, massless solutions and purely imaginary compactons.

For the model treated in section 3 we have demonstrated that the solutions are mapped to stan-
dard solutions for BPS Skyrmion models. This was possible as in that case the explicit Dyson 
map was constructed. We showed that in the pseudo-Hermitian approach the energies are pre-
served when transforming from the non-Hermitian to the Hermitian system by means of a Dyson 
map. Legitimised in this way, we focused in sections 4-7 on the energies of several variants of the 
BPS Skyrme model. Despite being complex, the topology of our field solutions at infinity deter-
mine unambiguously the energy of such solutions by their asymptotic behaviour. In these models 
one needs to be cautious of over-interpreting other properties of the solutions within the context 
of non-Hermitian theories that will not be preserved when transformed by means of Dyson maps 
to solutions of the corresponding Hermitian system.
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