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Abstract

We propose a novel flexible framework for the joint evolution of stock log-returns and

their volatility based on time changed Lévy process. The novelty of the approach stems from

the generality of the jump structure we endow our model with, and the ability of the model

to generate leverage effects out of the pure jump component. We derive the characteristic

function and the forward characteristic function of the log-returns, which allow for the efficient

pricing of vanilla and forward-start-like option contracts by Fourier transform methods. The

proposed framework achieves robust calibration performance properties especially in the case

of pure jump specifications. The results offered in this paper could have potentially interesting

implications in terms of design of models and hedging strategies, and their development.
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1 Introduction

An extensive empirical literature has documented that stylized features of equity log-returns in-

clude, amongst others, the non-normality of their distribution due to evidence of skewness and

excess kurtosis, the stochastic evolution over time of their volatility, and the so-called leverage

effect, i.e. the (negative) correlation between log-returns and their variance. Numerous attempts

to develop generalizations of the Black and Scholes (1973) paradigm have appeared in the litera-

ture, by allowing the inclusion of either randomness in the log-returns volatility or jumps or both.

Stochastic volatility models began to appear relatively soon after the Black and Scholes (1973)

model, amongst which we mention the Heston (1993) model due to its high level of parsimony,

tractability and robust out-of-sample performance. Jumps-based models were introduced as well

soon after Black and Scholes (1973), starting from Merton (1976) to more recent contributions

such as Carr and Wu (2004) amongst others.

From the point of view of the financial industry, the usefulness of sophisticated option pricing

models is measured primarily by the accuracy with which they can represent the market implied
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volatility surface and its dynamics over time. Indeed, as in real life delta-hedging is not sufficient

due to higher order risk terms, such as the gamma effect, the book of options - both vanilla and

exotics - is usually hedged with other (vanilla) options (see for example Bergomi, 2015, for more

details), and hence the attention to the calibration error of the model with respect to the quotes

of traded options. Additional identifiers of suitable models include, amongst others, the ability to

generate flexible forward smile patterns which allow to satisfactorily price exotic contracts such as

forward start options (and the closely related cliquet structures). For example, Schoutens et al.

(2005) document a relatively flat forward smile originating out of the Heston (1993) model, which

might lead to significantly underprice these contracts.

The main purpose of this paper is to develop a family of joint models for the processes of the

stock log-returns and their volatility consistent with vanilla options market quotes, and based on

time changed Lévy processes (TCLPs) in the spirit of Carr et al. (2003), Carr and Wu (2004),

Huang and Wu (2004), Carr and Wu (2017). In contrast to these contributions, though, our

proposed construction is fairly general as it enables the generation of (stochastic) volatility and

(stochastic) leverage through jumps as well as diffusion processes, and can be augmented for

multiple stochastic volatility factors in a straightforward manner. Indeed, the novelty of our

approach stems from the ability to generate dependence effects from pure jump processes, by

means of both time varying jump intensity and distributions. The model retains a high level of

mathematical tractability as the relevant characteristic functions, which enable option pricing,

calibration and risk management are accessible for a relatively large number of specifications.

Further, the proposed setup allows for rich dynamics by both discontinuous movements, i.e.

jumps, and stochastic volatility features which can accommodate the levels of skewness and excess

kurtosis observed in financial data over both short and long horizons (see Aı̈t-Sahalia, 2004,

for example). This additional distribution flexibility can prove very important in reducing any

potential mispricing of forward volatility dependent products as well, which is exemplified in

general by more convex forward volatility surfaces. Finally, the model remains interpretable as it

is possible to identify which parameter accounts for which change in the asset price dynamics.

In light of the practical interest in calibration errors discussed above, in this paper we focus

on the calibration to vanilla options quotes and the resulting performance of a general family

of models in terms of reproducing implied volatility surfaces over time. We refer to the equity

market in which options represent the most actively traded product: in 2018 single stock options

and stock index options accounted respectively for 32.6% and 31.6% of the total equity derivatives

volume, and OTC contracts accounted for up to 55% of the notional amount outstanding (WFE,

2019, BIS, 2019).

The proposed setup encompasses a large number of models available in the literature, such as

Heston (1993), Bates (1996), Barndorff-Nielsen and Shephard (2003), Pan (2002), Eraker et al.

(2003), Eraker (2004), Sepp (2008) just to mention a few. It is important though to distinguish

our work from that of these contributions: although the large majority of the stochastic volatility

models in the literature restricts the behaviour of jumps to compound Poisson processes (see

Duffie et al., 2000, as well) and includes them mainly in the dynamics of the log-returns, our

model uses a very general structure for the jumps, and incorporates them also in the dynamics of

the relevant volatility process.

We achieve this by means of discontinuous processes built out of the family of tempered stable
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distributions (for an overview, we refer to Fallahgoul and Loeper, 2019, and references therein),

exploiting the very rich ‘fine structure’ (in the sense of Carr et al., 2002) offered by these processes,

with jumps spanning from finite activity to infinite variation. This feature allows us to ‘learn’

from market quotes the nature of the infinitely small changes in the log-returns which fill the

gaps between the very infrequent big jumps, potentially suggesting the need to substitute the

Brownian motion component.

Thus, our paper promotes the general meaning of ‘jump’ as discontinuous movements associ-

ated with small and intermediate sizes occurring with high frequency, and not just rare ‘crashes’

(which usually the word ‘jump’ evokes in the collective mind). In other words, our focus is on

more agile distributions for the log-returns, which are able to capture the actual levels of skew-

ness and excess kurtosis, and their evolution over time in a flexible and parsimonious manner,

moving beyond the long standing ‘dichotomy‘ between stochastic volatility and jumps. Indeed

the evidence put forward by Eberlein and Keller (1995), Huang and Wu (2004), and Ornthanalai

(2014), to mention a few, highlights the superior performance of jumps of small size occurring

with high frequency, which could be mis-identified as diffusions, as opposed to rare changes with

much larger severities, i.e. low frequency compound Poisson jump specifications.

We summarize the main contributions of this paper as follows.

First, we show how leverage can be introduced in a stochastic volatility model exclusively

by means of purely discontinuous processes. This allows us to identify, out of the given general

setting, an efficient and parsimonious model devoid of diffusion components, and characterised

by infinite variation, i.e. jumps of small size occurring with high frequency, and self-exciting

structure, as any change in the driving process simultaneously affects the log-return process, its

variance and the intensity of future adverse changes. This model could be considered as the pure

jump version of the Heston (1993) model - hence we christened it ‘JH’ model.

Second, we provide useful results for both the characteristic and forward characteristic func-

tions of all models encompassed by our general setting, which are necessary for the pricing of

derivative contracts, such as options and skew dependent products.

Third, we test the robustness of our results in a number of directions. To begin with, we

find that the JH specification offers robust performance in portraying the joint dynamics of the

underlying security and its associated volatility surface. Further, we show the ability of the JH

model in reproducing the dynamics of the volatility surface over time by updating a minimal

number of parameters, and in originating plausible patterns for the forward volatility smile.

Fourth, we highlight the potential implications of our results at managerial level. Indeed, our

analysis can provide indications regarding which model feature(s) needs to be prioritized, as it

shows the importance of both discontinuous risk factors as drivers for both log-returns and their

variance, and features such as stochastic volatility of volatility, covariance and leverage in enabling

the model to fit the data better. This last point is of particular significance in view of possible

extensions of the model to the multivariate case in order to maintain a parsimonious dimensional

complexity of the parameter space.

Finally, we note that the ability of the proposed construction to generate more realistic forward

smile patterns could be relevant towards model risk reduction; in this sense the analysis offered

in this paper shows that risk management considerations need to include not just the risk of a

(rare) crash, but also and most importantly risk of (very frequent) small and intermediate sized
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jumps.

The paper is organised as follows. The preliminary concepts on TCLPs and the general

framework for the financial model are offered in Sections 2 and 3 respectively. The empirical

performance of different model specifications catered by the proposed setup is illustrated in Section

4. Section 5 offers some concluding remarks. Detailed mathematical proofs are deferred to

Appendix A in the online supplementary material.

2 Background: time changed Lévy processes

2.1 From Lévy processes to time changed Lévy processes

A Lévy process, L(t), on a filtered probability space (Ω,F, {Ft}t≥0,P) is a continuous time process

with independent and stationary increments, whose distribution is infinitely divisible, so that its

characteristic function is ϕ(u; t) = etφ(u), u ∈ R with

φ(u) = iαu− u2

2
σ2 +

∫
R

(
eiux − 1− iux1|x|≤1

)
ν(dx),

where α ∈ R, σ ∈ R+ and ν is a positive measure on R such that

ν ({0}) = 0,

∫
R

(
|x|2 ∧ 1

)
ν(dx) < ∞.

The triplet (α, σ2, ν(dx)) represents the generating triplet, or differential characteristics denoted

as ∂Π(L|P), of L(t) and φ(·) denotes the characteristic exponent.

As the core of the application is option pricing, the following assumption is required to ensure

that any risk neutral martingale measure is well defined (see for example Eberlein, 2013 and

references therein).

Assumption 1 There exists a constant M > 1 such that∫
|x|>1

euxν(dx) < ∞ for all u ∈ [−M,M ], (1)

i.e. the exponential moment of the first order of L is finite.

Time changed Lévy processes (TCLP) are obtained by observing the Lévy process L(t), the so

called base process, on a time scale governed by a stochastic clock, i.e. a non-negative, non-

decreasing stochastic process T (t), which is right-continuous with left limits satisfying the usual

regularity conditions. Specifically, we assume that T (t) is an absolutely continuous finite time

change, i.e. a process defined by the pathwise integral

T (t) =

∫ t

0
v(s)ds, (2)

where v(t) is a positive càdlàg process representing the instantaneous activity rate of the clock.

Further, we assume the following holds (see Küchler and Sørensen, 1997, for example)

Assumption 2 The time change T (t) is L-continuous, i.e. L is constant on all intervals

[T (u−), T (u))], u > 0.
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Then X(t) = L (T (t)) is a TCLP with differential characteristics ∂Π(L|P) = (αv(t−), σ
2v(t−),

ν(dx)v(t−)) (see Eberlein and Kallsen, 2019, and references therein). This construction recognizes

that price changes are caused by imbalances in demand and supply due to trades. Thus uncertainty

originates from the timing of the change and its magnitude. The former is modelled by the clock

T (t), which can be interpreted as business time, the latter is captured by the base process L(t).

In what follows we assume that the process of the integrated variance is given by the predictable

quadratic variation process, which for the given TCLP X(t) is

⟨X⟩(t) = Var(L(1))
∫ t

0
v(s)ds

(see Carr et al., 2003, for example). Further, we define the (squared) volatility process as

V (t) = Var(L(1))v(t), (3)

so that
∫ t
0 V (s)ds = ⟨X⟩(t). Assumption 1 guarantees that all of the above are well defined (see

Kallsen et al., 2011, as well). Thus, the activity rate v(t) controls the variance process of X(t) as

the clock T (t) represents its integrated variance: the faster the clock ticks (i.e. the more active

the market is), the higher the volatility. In this respect, the time change of Lévy processes is a

tool to equip this class of processes with stochastic volatility features (see also Carr et al., 2003).

Following the same line of reasoning, as long as v(t) has finite moments, we can define the

process q(t) such that ∫ t

0
q(s)ds = ⟨V ⟩(t) = Var2(L(1))⟨v⟩(t), (4)

and the ‘instantaneous covariance’ process C(t) such that∫ t

0
C(s)ds = ⟨X,V ⟩(t) = Var(L(1))⟨X, v⟩(t). (5)

Therefore, the activity rate v(t) also controls the processes q(t) and C(t), which in the context of

option pricing represent the (squared) volatility of volatility and the so-called leverage effect, i.e.

the observed tendency of an asset’s volatility to be (negatively) correlated with the asset’s returns.

In particular, we note that X(t) presents stochastic volatility of volatility if the increments of the

activity rate have stochastic conditional variance, and leverage is present if the base process and

the time change are dependent on each other. More detailed expressions for V (t), q(t) and C(t)

depend on the specific assumptions concerning the process v(t) and how dependence is captured.

2.2 Characteristic function and the leverage-neutral measure

For financial applications, we require the knowledge of the characteristic function of the process

X(t), ϕX(u; t) = E
(
eiuL(T (t))

)
, u ∈ R. Under the assumption of a stochastic clock independent of

the base process, the characteristic function reduces to ϕX(u; t) = ϕT (−iφ(u); t). For the general

case in which the base process and time change are dependent one of the other, the characteristic

function can be recovered by a change of measure to the so-called leverage-neutral measure M
developed by Carr and Wu (2004). This measure M, which is absolutely continuous with respect
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to P, is defined by the complex-valued exponential martingale

Mu(t) = eiuX(t)−φ(u)T (t)

and aims at removing, so to speak, dependence from the model. Then

ϕX(u; t) = E
(
Mu(t)e

φ(u)T (t)
)

= EM
(
eφ(u)T (t)

)
= ϕM

T (−iφ(u); t)

(for full details we refer to Carr and Wu, 2004, Huang and Wu, 2004).

Thus, regardless of the dependence in place, the characteristic function of the TCLP X(t)

reduces to the characteristic function of the time change T (t), which is tractable under specific

assumptions for the dynamics of the process chosen as activity rate, v(t). A possible choice is

the family of affine processes (see Duffie et al., 2000, Kallsen, 2006, for example), which is the

case considered in this note; alternative specifications could include linear quadratic models as in

Cheng and Scaillet (2007), Santa-Clara and Yan (2010), and Li and Wu (2019), for example.

Finally, we observe that under Assumption 2 the dynamics under theM-measure of the process

X(t) can be recovered from the one of the base Lévy process L(t) (see Küchler and Sørensen,

1997). As the M-measure is of Esscher type, standard results (see also Eberlein and Kallsen,

2019, for example) imply that that the characteristic exponent of L(t) under M satisfies

φM,u(z) = φ(z + u)− φ(u), u, z ∈ R (6)

(for ease of notation, we drop the superscript u when the meaning is clear). The corresponding

dynamics follow directly. Unless otherwise stated, all the assumptions listed in this section hold

throughout the rest of the paper.

3 Log-returns, stochastic volatility and leverage effects

In this section we provide a general setup for the financial market, we analyse its features and

we discuss possible subclasses of models. After deriving the required characteristic functions, we

present the extension to a multifactor stochastic volatility setting.

3.1 The market model

Consider a stock price process of the form S(t) = S(0)e(r−q)t+X(t) under a risk neutral pricing

measure1 P, for r ≥ r̄ the continuously compounded interest rate (with suitably chosen lower

bound r̄), q ≥ 0 the dividend yield, and X(t) a semimartingale process, with X(0) = 0. Further,

let T (t) be a stochastic clock governed by the activity rate v(t) - see equation (2).

Although other choices are possible, in the following we assume a joint affine specification

for (v(t), X(t)), which allows for known characteristic function of the clock T (t), maintaining the

tractability of the model. Consequently, we also assume that all the admissibility conditions in

1We note that the proposed market model is incomplete and consequently the risk neutral martingale measure
is not unique. Hence, we follow standard practice for incomplete markets and fix the risk neutral measure through
the prices of derivative contracts traded in the market.
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Kallsen (2006) are satisfied. Thus, for v(0) > 0 denoting the initial value of the activity rate,

v(t) = v(0) + Y0(t) + Y1(T (t)) (7)

X(t) = L0(t) + L1(T (t)), (8)

for Lévy process Yj(t), Lj(t), j = 0, 1, satisfying the stochastic differential equations

dY0(t) = κθdt− η0,JdJ̃0(t), η0,J ≥ 0 (9)

dY1(t) = −κdt+ η1,DdZ1(t)− η1,JdJ̃1(t), η1,D, η1,J ≥ 0 (10)

dL0(t) = −φ0(−i)dt+ σ0,JdJ0(t), σ0,J ∈ R, (11)

dL1(t) = −φ1(−i)dt+ σ1,DdW1(t) + σ1,JdJ1(t), σ1,D ≥ 0, σ1,J ∈ R, (12)

with

φ0(u) = φJ0(σ0,Ju), u ∈ R

φ1(u) = −u2

2
σ2
1,D + φJ1(σ1,Ju), u ∈ R.

It follows that the characteristic exponent of Lj(t) is

φLj (u) = −iuφj(−i) + φj(u) j = 0, 1, u ∈ R. (13)

3.1.1 A detailed look at the model features

In equations (7)–(12), W1(t) is a standard Brownian motion, and Jj(t), j = 0, 1 are indepen-

dent pure jump Lévy processes with characteristic exponent φJj (u) and triplets ∂Π(Jj |P) =

(αj , 0, νj(dx)), j = 0, 1. Therefore, the terms φj(−i), j = 0, 1 in equation (11)–(12) are the

exponential compensators of Jj(t) required to ensure, together with Assumption 1, that the dis-

counted stock price process is a martingale under the chosen risk neutral probability measure P.
The independence of L0 and L1 is required for the application of the leverage-neutral measure.

Further, in equations (9)–(10), Z1(t) is a standard Brownian motion and J̃j(t), j = 0, 1 are inde-

pendent (non-positive) pure jump Lévy processes with characteristic exponent φJ̃j
(u), and triplet

∂Π(J̃j |P) = (α̃j , 0, ν̃j(dx)), j = 0, 1.

Thus, X(t) is formed by two independent Lévy processes, one of which is time changed by

a stochastic clock T (t) governed by the activity rate v(t). The same structure is adopted for

the process v(t). The coefficients σ1,D, σj,J , for j = 0, 1, capture the proportional scale on the

risk processes movements. The model also allows for mean reversion, controlled be the positive

parameters κ, θ, reflecting the empirical observation that the volatility changes associated with

stock returns appear to smooth out quickly.

Dependence between the log-returns process and the activity rate is assumed to originate

from both diffusion and jump part. Thus, Z1,W1 are correlated Brownian motions, so that

⟨Z1,W1⟩(t) = ρt, ρ ∈ [−1, 1]; dependence between the jump parts of X(t) and v(t) is induced

by a factor construction based on which the corresponding risk sources are decomposed in their

systematic and idiosyncratic components. This choice is mainly motivated by the construction

parsimony and flexibility as it only requires the characteristic function in explicit form. Factor
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constructions for multivariate Lévy processes have been explored by Ballotta and Bonfiglioli

(2014), Ballotta et al. (2017, 2019) amongst others.

For this purpose, we distinguish between the positive and negative jumps of the process

Jj(t), so that Jj(t) = Jj,+(t) + Jj,−(t), φJj (u) = φJj ,+(u) + φJj ,−(u) and ∂Π(Jj |P) = (αj =

αj,+ + αj,−, 0, νj(dx) = νj,+(dx) + νj,−(dx)), j = 0, 1. As the instantaneous activity rate of

the clock is required to be a positive process, and the correlation between the processes of the

log-returns and their volatility is usually negative, we identify the process of the negative jumps

Jj,−(t), j = 0, 1 as the systematic risk component and, after suitable rescaling, we choose it as

the risk driver of the jumps of v(t), i.e. J̃j(t) = Jj,−(t), j = 0, 1. This ensures that the log-

returns and the activity rate might jump together: the covariance between the jump processes

driving the log-returns and the activity process is in fact governed by the systematic source of

risk Jj,−(t), j = 0, 1. Detailed expressions for the covariance depend on the parameters choice,

in a sense discussed in Section 3.1.2. Note that in the interest of model parsimony, we assume

zero idiosyncratic part in the activity rate process, but the framework could be easily extended

to cater for this additional risk process.

Therefore, the proposed construction focuses on dependence effects between log-returns and

volatility originated by ‘bad news’ (negative jumps), and reflects the observed empirical regular-

ities that negative returns have a stronger impact on volatilities, whilst positive returns usually

show a much weaker effect, or none at all.

We conclude by considering the variance V (t), the (squared) volatility of volatility q(t) and

the leverage C(t): it follows from equations (3)–(5) that

V (t) = γ0 + γ1v(t), (14)

q(t) = γ21
(
η21,Dv(t) + qJ(t)

)
, (15)

C(t) = γ1 (σ1,Dη1,Dρv(t) + CJ(t)) , (16)

with qJ(t), CJ(t) denoting respectively the volatility of volatility and ‘instantaneous’ covariance

of the jump parts of v(t) and X(t), and γj = σ2
j,D + σ2

j,JVar (Jj(1)) denoting the instantaneous

variance of the Lévy processes Lj(t), j = 0, 1 (see Appendix A for full details).

The above expressions show that the process L0(t) contributes to the current level of the

processes of (squared) volatility by means of the level of its instantaneous variance; however, it

plays no role in the corresponding dynamics. Moreover, specific expressions for qJ(t) and CJ(t)

depend on the specific construction of the jumps of X(t) and v(t); a few examples are discussed

in the following Section.

3.1.2 Choosing the driving jump process: two-sided tempered stable processes

Although in theory Jj(t) could be any Lévy process of choice, particular mathematical tractability

and modelling flexibility are offered by the class of two-sided tempered stable processes, with Lévy

measure

ν(dx) =

(
C+

t+(x)

x1+Y+
1x>0 + C−

t−(x)

|x|1+Y−
1x<0

)
dx, Y± < 2.

In other words, this is obtained by multiplying the Lévy measure of a stable process by a func-

tion t±(x) whose scope is to temper the large jumps of the process, ensuring finite (high order)
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moments, while retaining flexibility of the ‘fine structure’ of the small jumps, controlled by the

parameters Y±.

In some more detail, mathematical tractability arises from the immediate identification of

the processes of the positive and negative jumps. Flexibility of the ‘fine structure’ arises from

the parameters Y±: for Y± < 0 the process exhibits a finite number of jumps in any finite time

period (i.e. finite activity) and its behaviour is the one typical of a compound Poisson process;

for Y± ∈ (0, 1) the process has trajectories of infinite activity and finite variation, so that relative

calmness is observed between big jumps. Finally for Y± ∈ (1, 2) the process shows a high degree

of activity near zero as many small oscillations are observed between big jumps (i.e. infinite

variation).

The class of two-sided tempered stable processes encompasses a large number of processes

used in the literature, according to the choice of the tempering function t±(x). We recover the

CGMY process of Carr et al. (2002) in correspondence of an exponential tempering and C+ = C−,

Y+ = Y−, with the Variance Gamma process of Madan et al. (1998) a limiting case for Y → 0.

The Modified Tempered Stable process follows by tempering with a modified Bessel function of

the second kind, whilst the Rapidly Decreasing Tempered Stable process is obtained by adopting

a Gaussian tempering function (for full details, we refer to Fallahgoul and Loeper, 2019, and

references therein).

The market model summarized in the system (7)–(8) includes as a special case for σ·,J =

η·,J = 0 the Heston (1993) model, in virtue of the Dambis, Dubins-Schwarz theorem (see Revuz

and Yor, 1991, for example). Other particular constructions of interest which can be obtained

out of the system (7)–(8) are the pure jump versions of both the Heston (1993) (henceforth JH)

and the Barndorff-Nielsen and Shephard (2003) (JBNS) model which are novel to the literature

and analysed in the following. For ease of exposition, we summarize the detailed specification of

all the discussed models in Table 1.

JH and 1SVFSE models. Let us set σ0,J = σ1,D = 0, η0,J = η1,D = 0 and J̃1(t) = J1,−(t)

(so that φJ̃1
(u) = φJ1,−(u)); the activity rate process v(t) is then driven by the process of the

negative jumps of L1(t) time changed by the stochastic clock T (t), i.e.

dv(t) = κ(θ − v(t))dt− η1,JdJ1,−(T (t)),

dX(t) = − (φ1,+(−iσ1,J) + φ1,−(−iσ1,J)) v(t)dt+ σ1,JdJ1(T (t)).

This specification can be interpreted as the pure jump analogue of the Heston model due to its

construction and the self-exciting nature of the model (see, for example Carr and Wu, 2017, and

references therein), as the occurring of a downside movement in the log-return process simulta-

neously affects the intensity of future downside events and their variance.

Table 1.B shows that the JH model presents stochastic (squared) volatility, volatility of volatil-

ity and covariance processes; these are all driven by the activity rate process v(t). The correlation

process ρ(t) = C(t)/
√
V (t)q(t) though is constant, due to the multiplicative nature of the quan-

tities involved in its definition. These features are also shared by the classic Heston model (the

only difference being that the processes in question are all pure diffusion).

Further, as ⟨J1,−, J1⟩(t) = Var(J1,−)t, the sign of the leverage effect, i.e. the sign of the

covariance process, is controlled by the parameter σ1,J , i.e. the rescaling applied to the time

9



Figure 1: JH model: impact of parameters (σ1,J , η1,J) and time to maturity (T : 1 year, 6 months, 3 months,
1 months) on log-returns distribution skeweness and excess kurtosis (left hand side panels) and implied volatility
(right hand side panels). Base process: CGMY. Test parameters: S(0) = 100; v(0) = 0.06; κ = 0.14; θ = 1.97;
η1,J = 0.55; σ1,J = 0.24; C = 1.07; G = 0.38; M = 6.85; Y = 1.56; T = 1.

changed jump process in the process X(t). Figure 1 shows in the top two left-hand side panels

the role of the parameters σ1,J and η1,J in controlling the skewness and the excess kurtosis of

the log-returns distribution. When ‘translated’ in terms of option implied volatility, we notice

in the top two right-hand side panels the link between the sign of the distribution skewness and

the slope of the volatility smile/smirk - negative skewness corresponding to a volatility smirk

(reverse skew), positive skewness corresponding instead to a volatility forward skew - and the

level of excess kurtosis and curvature/convexity of the volatility smirk. This is consistent with

the intuition from the approximation formula of Backus et al. (2004). The bottom two panels,

instead, focus on the behaviour of both the log-returns distribution and the resulting implied

10



v(t) = v(0) + Y0(t) + Y1(T (t)) or (equivalently) dv(t) = dY0(t) + dY1(T (t))
X(t) = L0(t) + L1(T (t)) or (equivalently) dX(t) = dL0(t) + dL1(T (t))

PANEL A - Parameter Specification Model Stochastic Differential Equation

η0,J = η1,D = 0 Pure Jump Heston dv(t) = κ(θ − v(t))dt− η1,JdJ1,−(T (t))
σ0,J = σ1,D = 0 (JH) dX(t) = − (φ1,+(−iσ1,J) + φ1,−(−iσ1,J)) v(t)dt+ σ1,JdJ1(T (t))

η1,J = η1,D = 0 Pure Jump BNS dv(t) = κ(θ − v(t))dt− η0,JdJ1,−(t)
σ0,J = σ1,D = 0 (JBNS) dX(t) = − (φ1,+(−iσ1,J) + φ1,−(−iσ1,J)) v(t)dt+ σ1,JdJ1(T (t))

η0,J = η1,J = 0 Heston dv(t) = κ (θ − v(t)) dt+ η1,D
√
v(t)dZ1(t)

σl,J = 0, l = 0, 1 (Heston, 1993) dX(t) = −σ2
1,Dv(t)/2dt+ σ1,D

√
v(t)dW1(t)

η0,J = 0 1 Factor Self-Exciting dv(t) = κ (θ − v(t)) dt+ η1,D
√
v(t)dZ1(t)− η1,JdJ1,−(T (t))

σ0,J = 0 (1SVFSE) dX(t) = −
(
σ2
1,D/2 + φ1,+(−iσ1,J) + φ1,−(−iσ1,J)

)
v(t)dt+ σ1,D

√
v(t)dW1(t) + σ1,JdJ1(T (t))

η1,J = 0 1 Factor Heston + OU dv(t) = κ (θ − v(t)) dt+ η1,D
√
v(t)dZ1(t)− η0,JdJ1,−(t)

σ0,J = 0 (1SVFHOU) dX(t) = −
(
σ2
1,D/2 + φ1,+(−iσ1,J) + φ1,−(−iσ1,J)

)
v(t)dt+ σ1,D

√
v(t)dW (t) + σ1,JdJ1(T (t))

PANEL B - Parameter Specification Model V (t) q(t) C(t)

η0,J = η1,D = 0 JH σ2
1,JVar (J1(1)) v(t) σ4

1,Jη
2
1,JVar (J1(1))

2Var (J1,−(1)) v(t) −σ3
1,Jη1,JVar (J1(1))Var (J1,−(1)) v(t)

σ0,J = σ1,D = 0

η1,D = η1,J = 0 JBNS σ2
1,JVar (J1(1)) v(t) σ4

1,Jη
2
0,JVar (J1(1))

2Var (J1,−(1)) −σ3
1,Jη0,JVar (J1(1))Var (J1,−(1)) (1 + v(t))

σ0,J = σ1,D = 0

η0,J = η1,J = 0 Heston σ2
1,Dv(t) σ4

1,Dη
2
1,Dv(t) σ3

1,Dη1,Dρv(t)

σl,J = 0, l = 0, 1

η0,J = 0 1SVFSE γ1v(t) γ21

(
η21,D + η21,JVar (J1,−(1))

)
v(t) γ1 (σ1,Dη1,Dρ− σ1,Jη1,JVar (J1,−(1))) v(t)

σ0,J = 0

η1,J = 0 1SVFHOU γ1v(t) γ21

(
η21,Dv(t) + η20,JVar (J1,−(1))

)
γ1 (σ1,Dη1,Dρv(t)− σ1,Jη0,JVar(J−(1)) (1 + v(t)))

σ0,J = 0

Table 1: Panel A: Under each class of parameter configurations, entries summarize the Stochastic Volatility model specifications nested in the setup given by
equations (7)–(8). Panel B: Main features of the corresponding Stochastic Volatility model specifications. Features: squared volatility process, V (t), squared
volatility of volatility process, q(t), ‘instantaneous covariance’ process, C(t) - see Section 3.1. Note: η1,D ≥ 0, ηj,J ≥ 0, σj,D ≥ 0, σi,J ∈ R for j = 0, 1; finally
⟨W1, Z1⟩(t) = ρt, ρ ∈ [−1, 1]. γ1 = σ2

1,D + σ2
1,JVar (J1(1)). Proof of results in Panel B: see Appendix A.
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volatility surface over different time horizons. For short time periods, corresponding to short

maturity contracts, the JH distribution is strongly skewed and leptokurtic, which translates in a

very convex implied volatility (see the steepness of the curve around the at-the-money - ATM -

strike). Skewness and excess kurtosis tend to fade over longer periods of time, which causes the

volatility surfaces to flatten out for longer dated contracts.

The patterns observed in Figure 1 are consistent with the empirical evidence reported by,

amongst other, Gatheral (2006) and Aı̈t-Sahalia et al. (2021); this shows the ability of the JH

model to reproduce realistic volatility patterns.

A more general specification retaining the self-exciting structure described above can be ob-

tained by ‘switching back on’ the diffusion components of both processes (v(t), X(t)), i.e. allow-

ing for η1,D, σ1,D > 0. We term this specification the one stochastic volatility factor self-exciting

(1SVFSE) model, due to the link between the changes in the log-return process and the intensity

of future changes and their variance, which are originated in this case by both the continuous

and discontinuous parts of the risk driver. The Heston and JH models can then be recovered

as special cases by suitable setting of the parameters. The role of the parameters is shown in

Figure 2, in which we specifically focus on ρ and η1,D and their impact respectively on the sign

of the skewness and the level of the excess kurtosis (top two panels on the left-hand side), as in

the classical Heston model, and the corresponding effect on the smirk/smile shape of the implied

volatility curve (top two panels on the right-hand side). In addition, we also study the impact of

σ1,J and η1,J : Figure 2 shows that the discontinuous part of the dynamics - controlled by these

parameters - offers increased flexibility in fitting the shape of the implied volatility. The model

is also capable of producing steep slopes of the ATM volatility, as shown in the bottom panels

of Figure 2; however such steepness, as well as the excess kurtosis of the log-returns distribution

tend to persist even for longer maturities.

JBNS and 1SVFHOU models. By setting σ0,J = σ1,D = 0, η1,J = η1,D = 0 and J̃0(t) =

J1,−(t) (so that φJ̃0
(u) = φJ1,−(u)) we obtain the pure jump analogue of the BNS model, although

leverage is in this case originated by the dependence between the base process of X(t) and the

background driving Lévy process (BDLP) of the activity rate. The system, in fact, reads

dv(t) = κ(θ − v(t))dt− η0,JdJ1,−(t),

dX(t) = − (φ1,+(−iσ1,J) + φ1,−(−iσ1,J)) v(t)dt+ σ1,JdJ1(T (t)).

Indeed the activity rate follows a mean-reverting non-Gaussian Ornstein-Uhlenbeck (OU) process

as in Barndorff-Nielsen and Shephard (2003), with J1,−(t) as BDLP. Thus, volatility suddenly

jumps up due to a (negative) jump in the asset log-return process and calms down afterwards with

exponential decay. From Table 1.B, we observe that the JBNS model is characterised by constant

squared volatility of volatility, as expected as the increments of the corresponding conditional

variance are independent and stationary. The correlation coefficient, though, is stochastic. As

⟨J1,−, J1⟩(t) = Var(J1,−)t also for this model, the parameters σ1,J and η0,J play a similar role as

σ1,J and η1,J in the JH model (results available upon request).

Similarly to the case above, we can generate a more general one stochastic volatility factor

version for this modified BNS model by letting η1,D, σ1,D > 0; we term this specification one

stochastic volatility factor Heston-OU (1SVFHOU) model. This construction retains randomness
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Figure 2: 1SVFSE model: impact of parameters (ρ, η1,D), (σ1,J , η1,J) and time to maturity (T : 1 year, 6 months,
3 months, 1 months) on log-returns distribution skeweness and excess kurtosis (top panels) and implied volatility
(bottom panels). Base process: CGMY. Test parameters: S(0) = 100; v(0) = 0.06; κ = 0.14; θ = 1.97; η1,D = 0.24;
ρ = −0.9;σ1,D = 0.28; η1,J = 0.55; σ1,J = 0.24; C = 1.07; G = 0.38; M = 6.85; Y = 0.8; T = 1.

in both the squared volatility of volatility and correlation process, due to the superposition of the

square root process and the OU process in the activity rate - see Table 1.B.

This analysis also shows that, contrary to common belief, one stochastic volatility factor

models can indeed generate stochastic correlation as long as jumps are included in the relevant

dynamics, and are not generated exclusively by means of TCLP.

Finally, a large number of models proposed in the option pricing literature can be rewritten

in terms of the specification given in (7)–(8) by suitably setting the model parameters and jump

structure. Other specifications that can be recovered by our setting include for example the ones

of Barndorff-Nielsen and Shephard (2003), Bates (1996), Eraker et al. (2003), Eraker (2004), Pan
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(2002), Carr et al. (2003), the SV1 and SV3 specifications of Huang and Wu (2004), and the

models encompassed by Coqueret and Tavin (2016) amongst others.

3.2 Characteristic function

As mentioned in Section 2, we obtain the characteristic function of the log-returns process by

means of the leverage-neutral measure introduced by Carr and Wu (2004). For the specific case

of the framework set out in Section 3.1, the leverage-neutral measure M is defined by the complex-

valued exponential martingale

Mu(t) = eiuL0(t)−φL0
(u)t+iuL1(T (t))−φL1

(u)T (t); (17)

consequently, the characteristic function of X(t) reads

ϕX(u; t) = ϕM
T (−iφL1(u); t) e

φL0
(u)t. (18)

Useful mathematical expressions for equation (18) can be recovered once the characteristic

function of the integrated process is specified. To this purpose, though, we need first to recover

the dynamics of the process v(t) under the new measure M, which follows from the M-dynamics

of the log-return process X(t) in virtue of the dependence in place. As observed in Section 2, it

suffices to recover the dynamics of the base process Lj(t), j = 0, 1, as given in the following.

Proposition 1 Consider the model setup given in equations (7)–(8) and the leverage neutral

measure M defined by the process Mu(t) given in (17). Then.

i) W1(t)−iuσ1,Dt is a M-Brownian motion; the pure jump processes driving the base of the log-

returns have characteristic exponent φM
Jj ,−(z) + φM

Jj ,+
(z), j = 0, 1, both satisfying equation

(6).

ii) ZM
1 (t) = Z1(t) − iuσ1,Dρt is a M Brownian motion; the pure jump Lévy processes driv-

ing the activity rate under M, J̃M
j (t), j = 0, 1, have characteristic exponent satisfying the

relationship

φM,u

J̃j
(z) = φJ̃j

(z + σl,Ju)− φJ̃j
(σl,Ju), j, l = 0, 1. (19)

The coefficient σ·,J detects the part of the base process which J̃j(t), j = 0, 1, shares a systematic

component with.

Thus, under the M-measure

v(t) = v(0) + Y M
0 (t) + Y M

1 (T (t))

for

dY M
0 (t) = κθdt− η0,JdJ̃

M
0 (t)

dY M
1 (t) = −κMdt+ η1,DdZ

M
1 (t)− η1,JdJ̃

M
1 (t);

with κM = κ− iuη1,Dσ1,Dρ. Due to the affine structure of the model, the following holds.
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Proposition 2 Consider the model setup given in equations (7)–(8). Then the process X(t)

admits characteristic function

ϕX(u; t) = eA(t)+B(t)v(0),

with the affine exponents A, B solutions to the system of Riccati-type ODEs

A′(t) = φL0(u) + κθB(t) + φM
J̃0

(iη0,JB(t)) ,

A(0) = 0 (20)

B′(t) = φL1(u)− κMB(t) +
η21,D
2

B(t) + φM
J̃1

(iη1,JB(t)) ,

B(0) = 0. (21)

The set up under consideration also gives access to the forward characteristic function, which

is necessary for pricing forward volatility/skew dependent contracts, such as forward start options.

The result is offered in the following.

Proposition 3 Consider the model setup given in equations (7)–(8). Then the process X(t)

admits forward characteristic function

ϕX(u; s, t) = E
(
eX(t)−X(s)

)
= eA(t−s)+C(s)+D(s)v(0), s ≤ t,

with the affine exponents C, D solutions to the system of Riccati-type ODEs

C ′(s) = κθD(s) + φJ̃0
(iη0,JD(s)) ,

C(0) = 0 (22)

D′(s) = −κD(s) +
η21,D
2

D(s) + φJ̃1
(iη1,JD(s)) ,

D(0) = B(t− s). (23)

and A(t− s), B(t− s) as in Proposition 2.

The affine exponents in Propositions 2 and 3 can be obtained in closed-form in specific cases

depending on the choice of the Lévy process of reference, the most notable of which is the classical

Heston model. For the model specifications introduced in this paper, the characteristic function

of the JH model can only be recovered numerically using the standard Runge-Kutta 4th-order

method; similar considerations hold for the 1SVFSE. In the case of the JBNS and 1SVFHOU

models instead semi-analytical solutions can be obtained (up to numerical integration). All the

relevant characteristic functions are reported in Table 2.

3.3 Enlarging the market model: two Stochastic Volatility Factors

Existing contributions in the literature (see Christoffersen et al., 2009, for example) highlight

that the shape of the smile is largely independent of the current volatility level, as data show

the presence of days with low volatility and both steep and flat volatility slopes (and viceversa).

However, they argue that one SV factor models such as the ones discussed so far are not flexible

enough in modelling this relationship between the volatility level and the slope of the smile. The

standard solution proposed in the literature is to augment the model with multiple stochastic
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ϕX(u; t) = eA(t)+B(t)v(0) ϕX(u; s, t) = eA(t−s)+C(s)+D(s)v(0), s ≤ t
Model A(t) B(t) C(s) D(s)

JH Numerically solve Numerically solve
A′(t) = κθB(t), A(0) = 0 C ′(s) = κθD(s), C(0) = 0
B′(t) = φL1(u)− κB(t) + φM

J1,− (iη1,JB(t)) , B(0) = 0 D′(s) = −κD(s) + φJ1,− (iη1,JD(s)) , D(0) = B(t− s)

JBNS φL1(u)θ (t− ε(κ; t)) +
∫ t
0 φ

M
J0,− (iη0,JB(s)) ds φL1(u)ε(κ; t) θB(t− s)(1− e−κs) +

∫ s
0 φJ0,−(iη0,JD(s))ds B(t− s)e−κs

ε(κ; t) =
(
1− e−κt

)
/κ

Heston κθ
η21,D

(
(κM − d)t− 2 ln 1−ge−dt

1−g

)
κM−d
η21,D

1−e−dt

1−ge−dt − 2κθ
η21,D

ln

(
1−B(t− s)

η21,D
2κ (1− e−κs)

)
B(t−s)e−κs

1−B(t−s)
η2
1,D
2κ

(1−e−κs)

d =
√
(κM)2 − 2η2φL1(u) g = κM−d

κM+d

κM = κ− iuη1,Dσ1,Dρ

1SVFSE Numerically solve Numerically solve
A′(t) = κθB(t), A(0) = 0 C ′(s) = κθD(s), C(0) = 0

B′(t) = φL1(u)− κMB(t) +
η21,D
2 B2(t) D′(s) = −κD(s) +

η21,D
2 D(s)

+φM
J1,− (iη1,JB(t)) , B(0) = 0 +φJ1,− (iη1,JD(s)) , D(0) = B(t− s)

κM as in the Heston model

1SVFHOU κθ
η21,D

(
(κM − d)t− 2 ln 1−ge−dt

1−g

)
κM−d
η21,D

1−e−dt

1−ge−dt − 2κθ
η21,D

ln

(
1−B(t− s)

η21,D
2κ (1− e−κs)

)
B(t−s)e−κs

1−B(t−s)
η2
1,D
2κ

(1−e−κs)

+
∫ t
0 φ

M
J0,− (iη0,JB(s)) ds +

∫ s
0 φJ0,−(iη0,JD(s))ds

d, g, κM as in the Heston model

Table 2: Affine exponents defining the characteristic function and the forward characteristic function of
X(t) (Propositions 2–3). φL1

(u) as in Equation (13).

volatility factors, see for example Christoffersen et al. (2009), Pun et al. (2015) and Andersen

et al. (2015) amongst other. In light of this argument, in the remainder of this section we explore

how our setup can be adapted to accommodate a two factor model construction.

To this purpose, the log-return driving process is now simplified to X(t) = L1(T (t)). Further,

let us re-write the base Lévy process as

L1(t) = −
σ2
1,D

2
t+ σ1,DW1(t)︸ ︷︷ ︸
L1,D(t)

−φ1,+(−iσ1,J)− φ1,−(−iσ1,J)t+ σ1,JJ1(t)︸ ︷︷ ︸
L1,J (t)

, σ1,D > 0, σ1,J ∈ R

= L1,D(t) + L1,J(t).

In order to incorporate more than one stochastic volatility factor, we decouple the clocks due to the

orthogonality of diffusion and jump processes, and we apply separate clocks to the diffusion part,

L1,D(t), and the jump process, L1,J(t). Thus, let us define two random clocks TD(t) =
∫ t
0 vD(s)ds

and TJ(t) =
∫ t
0 vJ(s)ds with activity rates

vD(t) = vD(0) + Y0,D(t) + Y1,D(TD(t))

vJ(t) = vJ(0) + Y0,J(t) + Y1,J(TJ(t)),

for
dY0,D(t) = κDθDdt, dY1,D(t) = −κDdt+ η1,DdZ1(t),

dY0,J(t) = κJθJdt− η0,JdJ̃0(t), dY1,J(t) = −κJdt− η1,JdJ̃1(t),

η1,D, η0,J , η1,J ≥ 0.
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Then, we set the driver of the log-return process as X(t) = L1,D(TD(t)) + L1,J(TJ(t)).

We observe the smilarity between the proposed construction and the double Heston SV model

of Christoffersen et al. (2009): the variance is now the sum of two independent factors that may

be individually correlated with stock returns. Indeed

V (t) = VD(t) + VJ(t)

q(t) = qD(t) + qJ(t)

C(t) = CD(t) + CJ(t),

i.e. they inherit the two-factor construction. The analytical expressions can then be recovered

from the entries in Table 1, according to the chosen parameter settings.

In this setting it is straightforward to obtain the two stochastic volatility factor version of the

self-exciting model (2SVFSE) by setting η0,J = 0 and J̃1(t) = J1,−(t); the two stochastic volatility

factor version based on OU jumps (2SVFHOU) is instead obtained by setting η1,J = 0 and

J̃0(t) = J1,−(t). The orthogonality between diffusion and jumps also implies that the characteristic

function is the product of the characteristic functions of the classic Heston model and the pure

jump model

ϕX(u; t) = E
(
eiuL1,D(TD(t))

)
E
(
eiuL1,J (TJ (t))

)
;

these can be read from the first three entries of Table 2. Similar arguments hold for the forward

characteristic function.

Other 2-factor constructions can be obtained out of the given setting, e.g. like the one in Fulop

et al. (2014), although they might carry a higher degree of complexity due to the increasing number

of ODEs to be simultaneously solved for the recovery of the required characteristic functions.

Further, we note the complexity of the parameter space: each model is described by the

3 ‘fixed’ parameters for each volatility dynamic, i.e. mean reversion, long run mean and initial

volatility level, 3 parameters for the diffusion part (σ1,D, η1,D, ρ), to which we add 2+n parameters

for the jump part, i.e. σ·,J , η·,J and the n parameters describing the pure jump process adopted

for the constructions offered in this paper. Then, the two stochastic volatility factors models are

described by 11 + n parameters, whilst the one stochastic volatility factor models are described

by 5+n parameters in the pure jump case (JH, JBNS) and 8+n parameters in the diffusion and

jump case (1SVFSE, 1SVFHOU). Other 2-factor constructions would inevitably come at the cost

of further increasing the parameter space.

4 Model performance analysis

The aim of this section is to analyse the relative performance of the models introduced in Section

3 in reproducing market option prices as closely as possible. As discussed in the Introduction,

this is an essential requirement for a successful hedging strategy based on vanilla options. For

illustration purposes, we consider the case of S&P500 options.

4.1 The setup

The base process. In order to make the modelling concrete, we choose the CGMY process of

Carr et al. (2002) as the relevant base Lévy process. The CGMY process is a 4-parameter version
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of a two-side tempered stable process with exponential tempering function; the corresponding

Lévy measure is

ν (x) = C

(
e−G|x|

|x|1+Y
1x<0 +

e−Mx

x1+Y
1x>0

)
,

for C > 0, G ≥ 0, M ≥ 0, Y < 2; the parameters G and M control the arrival of negative and

positive size jumps respectively, and consequently govern the skewness of the process distribution:

the process has positive (resp. negative) skewness if G > M (resp. G < M). Further, the process

distribution is leptokurtic and the excess kurtosis is controlled by the parameter C.

Thus, the characteristic exponents of the processes of the negative and positive jumps of the

CGMY are respectively

φ−(u) = CΓ (−Y )
(
(G+ iu)Y −GY

)
, φ+(u) = CΓ (−Y )

(
(M − iu)Y −MY

)
. (24)

Calibration to market data would allow us to learn about the structure of the jumps and their

frequency via the parameter Y which, as discussed in Section 3.1, permits to distinguish between

low frequency large jumps, and high frequency small jumps.

In the context of the model presented in Section 3.1, the terms defining equations (20)–(21)

are

φM
Jj ,−(u) = CΓ (−Y )

((
GM + iu

)Y
−
(
GM
)Y)

, j = 0, 1 (25)

GM = G+ iuσj,J , j = 0, 1.

Indeed, Proposition 1 implies that

φM(z) = CΓ (−Y )

((
GM + iz

)Y
−
(
GM
)Y

+
(
MM − iz

)Y
−
(
MM

)Y)
for GM = G+ iuσ·,J and MM = M − iuσ·,J .

The characteristic function of each model can then be obtained by substitution in the ex-

pressions reported in Table 2; finally we convert characteristic functions into option prices via an

efficient algorithm for Fourier inversion. We adopt the COS method of Fang and Oosterlee (2008);

other available methods are the ones proposed by Eberlein et al. (2010), and more recently by

Kirkby (2015), Callegaro et al. (2019) and Cui et al. (2019) amongst others.

Calibration and the optimization problem. The vector of the relevant admissible param-

eters for each model is obtained by a non-linear least squares optimizer which minimizes the total

calibration error across all quotes available on each observation date t. The error is defined as

ft(Θ, v(t)) =
∑
j

∑
l

(
Cmod(t,Kj , Tl; Θ, v(t))− Cmkt(t,Kj , Tl)

V ega(Kj , Tl)

)2

, (26)

with Θ denoting the model specific parameters and v(t) the activity rate level at the observation

date t - we note that in the two stochastic volatility factor setting v(t) would denote the vector

(vD(t), vJ(t)). Further, Cmod, Cmkt denote respectively the model and market option prices for

each maturity and strike, and V ega is the corresponding Black-Scholes Vega computed using the
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Black-Scholes implied volatilities2.

The objective function in equation (26) can be considered as an approximation to implied

volatility errors due to the rescaling of the option prices by the Vega (see Carr and Wu, 2007, for

example). This choice allows us to carry out the calibration procedure in an efficient way mainly

for the following two reasons. In the first place, a norm in implied volatility errors rather than

prices avoids the introduction of bias due to expensive in-the-money and/or long-dated options.

In second place, the rescaling by Vega allows us to bypass the recovery of the implied volatility via

Black-Scholes inversion of model prices, which might become very costly numerically. Finally, the

level of the activity rate is considered as another unknown to be calibrated from market quotes.

We note that as in Huang and Wu (2004), Christoffersen et al. (2009), we use only option prices

for the calibration; alternative approaches based on the series of the underlying returns to filter

volatility could be used, but are beyond the scope of this paper. We refer to Christoffersen et al.

(2009) for further discussions on advantages/disadvantages of this choice.

Further, we observe that in practice the parameters of financial models are usually distin-

guished as either market parameters, i.e. input reflecting market data and therefore requiring

regular updates before pricing and/or executing new deals, or model parameters, i.e. input re-

flecting modelling choices not necessarily subject to changes following daily market movements.

In our setting, the spot price and the spot volatilities at every observation time point represent

the market risk to the financial operator, and therefore are the market parameters. As a ‘good’

model should remain market consistent by updating the market parameters only, and the spot

volatility is a latent quantity, we perform the calibration through a two step procedure similar to

the one adopted in Huang and Wu (2004) and Christoffersen et al. (2009) amongst others, which

is organized as follows.

Let T denote the total number of observation dates in the dataset. In step one we solve the

aggregate optimization problem

min
Θ,v

T∑
t=1

ft(Θ, v), (27)

for all contracts in the dataset, and the objective function as in equation (26) with the spot

volatility kept constant across all dates at this stage. Let Θ∗ denote the resulting optimal model

parameter set. Then, step two consists of solving the optimization problems

min
v(t)

ft(Θ
∗, v(t)), t = 1, . . . , T, (28)

i.e., at each observation date t we choose the spot activity rate (vector) v(t) as to minimize the

calibration error by keeping the model specific parameters fixed to their optimal value.

Due to the choice of objective function, the calibration performance is measured by the implied

volatility root mean squared error (IVRMSE).

2The ratio in (26) is well defined for non-zero Vegas; vanishing Vegas can happen for options with very short
maturities and/or low implied volatility. The filters applied to our dataset - see Appendix B - have prevented such
instances.

19



4.2 Results

In this section, we assess the performance of the models described in this paper with respect to

the performance measures given in the previous section. In order to provide a term of comparison,

the benchmark for the calibration performance is the Heston (1993) model, which fits into the

general setting of equations (7)–(8). Due to the similarity between our proposed 2 SV factors

construction and the double stochastic volatility model of Christoffersen et al. (2009), we consider

the latter as well.

The analysis is organized in two calibration exercises. In the first one, we consider the case

in which the models are calibrated to the market volatility surface at a specific day, in line with

market practice. In the second calibration exercise, we consider a dataset spanning a longer period

of time non overlapping with the one used in the previous experiment, with the aim of discussing

the reliability of the calibration parameters, by means of a out-of-sample test of results.

Calibration Exercise 1. We consider option quotes on the S&P500 observed on April 24th

2017 on the Bloomberg platform; we build the full volatility surface using the SVI methodology

of Gatheral and Jacquier (2014) for a total of 1,573 points. The maturities of the option contracts

range from 25 to 970 business days; finally, for all maturities we use the same range of moneynesss

from 0.85 to 1.25 (full details of the dataset in Appendix B).

The calibrated parameters are obtained by solving the optimization problem (27)–(28). The

optimal solution and the corresponding performance measures for each model are reported in Table

3 (the breakdown of the IVRMSE generated by each model across maturities and moneyness is

reported in Appendix C).

With respect to the benchmark, all models provide a significant improvement in the perfor-

mance of the calibration across all maturities and level of moneyness, although the largest error

reduction occurs for short dated contracts. The best performing models in this respect are the

self-exciting structures (JH, 1/2SVFSE) and the 1SVFHOU model; their calibration performance

though is very similar.

Thus the implications on model designs are as follows: firstly, the model for the underlying

asset needs to allow for randomness not only in the volatility process, but also in the volatility

of volatility and the covariance process. Further, the model should have the ability to ‘learn’

from data the fine structure of the jumps, which in our setting is controlled by the value of the

Y parameter. Indeed, both the JH and the 2SVFSE structures show jumps of infinite variation

(Y > 1). The relatively unsatisfactory performance of the JBNS model seems indeed due to a

combination of these features - the calibrated value of the parameter Y in this model is less than

1, indicating finite variation jumps. However the calibration results do not reveal the presence of

(compound) Poisson-type of jumps: Y is always positive denoting infinite activity.

Finally, in the case of the self-exciting structures (JH, 1/2SVFSE), although the diffusion

component does contribute to a performance improvement compared to the pure jump case, its

added value does not seem to justify the increase in complexity of the parameter space: the

IVRMSEs generated by the 1SVFSE and 2SVFSE models are respectively 80% and 79% below

the benchmark, compared to 74% reduction offered by the JH model. Similar considerations can

be drawn from the analysis of other performance measures such as the average absolute error in

prices (APEs) - in particular we observe that the APEs of each model are below the 5% threshold
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1 SV Factor Models 2 SV Factor Models

Heston JH JBNS SVFSE SVFHOU Heston SVFSE SVFHOU

v(t)

v(0) 0.0080 0.0601 0.4020 0.0592 0.2932 0.0040 0.0086 0.0090 0.0490 0.0320 0.6122
κ 6.2669 0.1452 2.2777 14.9999 1.6780 1.2034 1.1828 0.0226 0.1056 1.0903 38.9138
θ 0.0304 1.9732 0.0009 0.0163 0.4783 0.0229 0.0357 1.2741 2.1060 5.6149 0.1662
η1,D 1.4782 - - 0.2355 1.3548 0.2339 1.5000 0.7146 1.5000
ρ -0.7217 - - -0.9930 -0.6988 -0.8287 -0.8376 -1.0000 -0.8701
η1,J - 0.5523 1.0000 0.7578 0.8163 - - 0.5038 0.3451

X(t)
σ1,D 1.0000 - - 0.2807 0.1511 1.0000 1.0000 0.5015 0.1860
σ1,J - 0.2358 0.2966 0.3336 0.2459 - - 0.3311 0.4389

CGMY

C - 1.0700 0.4809 2.9065 0.9719 - - 0.8534 0.2810
G - 0.3788 1.3619 1.8144 1.6223 - - 0.5994 2.0984
M - 6.8541 8.7153 9.9163 6.7453 - - 8.6046 13.8537
Y - 1.5641 0.8390 0.8614 0.1450 - - 1.4579 0.9843

IVRMSE 0.0090 0.0023 0.0068 0.0018 0.0020 0.0056 0.0019 0.0031
∆IVRMSE - -74.34% -23.66% -80.32% -77.86% -37.72% -79.01% -64.96%
APE Price (%) 1.90% 0.30% 1.70% 0.28% 0.40% 0.34% 0.23% 0.58%
N. Parameters 6 9 9 12 12 12 15 15

Table 3: Parameter Estimates and Option Fit: Calibration Exercise 1. Data: S&P500 options observed at 24/04/2017. Source Bloomberg. Base process: CGMY.
IVRMSE: implied volatility root mean square error. ∆IVRMSE = (IVRMSEmod − IVRMSEHeston)/IVRMSEHeston: reduction in the IVRMSE offered by given
model compared to Heston model. APE Price = (

∑
options |pricemod−pricemkt|)/mean option price: average absolute error in price as percentage of the mean option

price.

21



1 SV Factor Models 2 SV Factor Models

Date Heston JH JBNS SVFSE SVFHOU Heston SVFSE SVFHOU

IVRMSE 0.0217 0.0164 0.0165 0.0163 0.0162 0.0214 0.0156 0.0156
20/03/2020 ∆IVRMSE - -24.45% -24.34% -25.26% -25.43% -1.57% -28.08% -28.50%

APE Price (%) 2.15% 1.96% 1.98% 2.02% 2.00% 2.00% 1.91% 1.92%

IVRMSE 0.0187 0.0034 0.0120 0.0033 0.0037 0.0152 0.0039 0.0030
24/04/2020 ∆IVRMSE - -81.78% -35.91% -82.22% -80.47% -18.93% -79.03% -84.20%

APE Price (%) 2.30% 0.39% 1.43% 0.39% 0.41% 1.91% 0.38% 0.34%

IVRMSE 0.0087 0.0040 0.0078 0.0051 0.0039 0.0087 0.0027 0.0068
11/05/2021 ∆IVRMSE - -54.32% -10.89% -41.38% -55.19% -1.00% -69.18% -21.74%

APE Price (%) 1.26% 0.69% 1.01% 0.77% 0.54% 1.26% 0.36% 1.06%

N. Parameters 6 9 9 12 12 12 15 15

Table 4: Option Fit: Calibration Exercise 1. Data S&P500 options. Source Bloomberg. Base
Process CGMY. IVRMSE: implied volatility root mean square error. ∆IVRMSE = (IVRMSEmod −
IVRMSEHeston)/IVRMSEHeston: reduction in the IVRMSE offered by given model compared to Hes-
ton model. APE Price = (

∑
options |pricemod − pricemkt|)/mean option price: average absolute error in

price as percentage of the mean option price.

indicated by Carr et al. (2007). In this respect, the JH model proves to be very competitive

mainly due to its limited number of parameters which makes it a more parsimonious alternative

compared to other specifications.

The above reported analysis refers to a date characterised by a low level of the CBOE VIX

index: on 24/04/2017 in fact the VIX closed at 10.8. We further investigate the models calibration

performance for three other representative days in recent years with medium, high and exception-

ally high levels of the VIX. In details we consider S&P500 options quotes on 20/03/2020 with VIX

at 66 (exceptionally high level), 24/04/2020 with VIX at 35.9 (high level), and 11/05/2021 with

VIX at 21.8 (medium level). Quotes are extracted from Bloomberg, and the dataset for each date

has the same specifics as the one used above. In the interest of space, in Table 4 we report only

the IVRMSEs and APEs generated by the calibration of each model (fuller details concerning

the calibrated parameters are available upon request). The results confirm the conclusions from

the previous analysis. We note in particular the performance measures for March 2020, when

the financial markets were particularly unstable following the announcement that the COVID-19

outbreak had been declared a pandemic by the World Health Organization (WHO, 2020). Even in

such conditions the families of models studied in this paper manage to provide a good calibration

performance with respect to the measures considered so far.

Further insights into the performance of each model could be gained by studying their ability

of generating a plausible (meant as consistent with intuition as well as the no arbitrage principle)

forward implied volatility smile. We extract this surface from the prices at inception (time t = 0)

of forward start options with payoff (S(T )/S(t)− k)+, where T is the contract maturity, and

t ∈ (0, T ) denotes the determination date of the strike. This is defined via the strike ratio

k = K/S(t), so that the effective strike price K is a multiple of the underlying asset price at

t. Thus, the strike is determined at a later date t with respect to inception, however at t the

contract turns into a vanilla European option. Prices are computed using the COS method (Fang

and Oosterlee, 2008) with the forward characteristic function obtained in Proposition 3.

In order to investigate in details the features of the forward smile induced by the models,

22



Figure 3: Forward Volatility: JH vs Heston - determination date t = 1 month. Left hand side panel: time
to maturity T − t ranging from 11 to 59 months, i.e. contracts with maturity ranging from 1 to 5 years
from inception. Right hand side panel: T = 2 years, time to maturity T − t = 23 months. Forward start
options priced using the COS method and the forward characteristic function in Proposition 3. Parameter
set: Table 3

.

we consider the following two cases. The first one is the case of a forward start option with

determination date in 1 month. Given the close determination date, and the relatively long time

to maturity (T − 1 month), we would expect the forward volatility to be higher but relatively

close to the implied volatility extracted from vanilla options with the same time to maturity. The

second case instead is the one a forward start option with fixed time to maturity of 1 month, so

that the actual determination date is t = T − 1 month, i.e. quite further ahead in time compared

to the previous situation. This would mean higher uncertainty concerning both the price and

its volatility level. Consequently, we would expect significantly higher level of forward volatility

compared to the implied volatility obtained from corresponding vanilla options.

These two cases are illustrated in Figures 3 and 4 respectively, in which we focus our attention

primarily on the JH model and the benchmark Heston model. Both figures show patterns of the

JH forward volatility which are consistent with the intuition reported above. In comparison the

forward volatility surface under the Heston model is flatter and characterised by unrealistically

lower values: the right hand side panel of Figure 3 in particular shows it is counter-intuitively

lower than the corresponding implied volatility. The forward volatility surface of the JH model

is relatively convex for contracts with short time to maturity (left hand side panels of Figure 4);

however, the convexity effect is particularly accentuated in the 2SVFSE model (right hand side

panels of Figure 4). All the other models considered in this paper show very similar shapes for

the forward volatility, with the only exception of the JBNS model, which produces much lower

levels compared to the benchmark (full results available upon request).

More meaningful indications could be extracted from the joint calibration of the models to

market quotes for both vanilla and forward start options. However this is not possible at this stage

due to lack of publicly available quotes for these exotic instruments. Nevertheless, this experiment

shows that the increased distribution flexibility offered by some of the models included in our setup
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Figure 4: Forward Volatility: JH/2SVFSE vs Heston - time to maturity T − t = 1 month. Top panels:
determination date t ranging from 11 to 59 months, i.e. contracts with maturity ranging from 1 to 5 years
from inception. Bottom panels: T = 2 years, determination date t = 23 months. Forward start options
priced using the COS method and the forward characteristic function in Proposition 3. Parameter set:
Table 3.

enhances their ability to generate richer and plausible patterns for the forward volatility. In this

context, we further mention Rebonato (2020), who uses future conditional densities obtained by

superposition of log-normal distributions.

We conclude by observing that the calibrated value of the parameter Y is always positive,

indicating infinite activity jumps. Thus, in unreported experiments, we repeat this calibration

exercise by adding the constraint Y < 0, in order to study the resulting fit of a specification

corresponding to a compound Poisson jump structure with jump size following an asymmetric

double gamma distribution (Ballotta and Kyriakou, 2014), similar in spirit to the constructions

of Duffie et al. (2000) and Andersen et al. (2015) for example. The results indicate an overall

deterioration of the fit quality across all models considered so far, confirming the inadequacy of

the traditional low frequency compound Poisson specification (see also Huang and Wu, 2004, for

example).
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Figure 5: Volatility smirks: JH model for selected dates and maturities. Implied volatilities for options
on two different days: November 11, 2012, 45 days to maturity contracts; May 8, 2013, 227 days to
maturity options. Market Vol: market implied volatility. JH Vol: implied volatility from the calibrated JH
model. Data: S&P500 options. Observation period: 4/09/2012 - 29/08/2014. IVRMSE: 0.0049, 0.0052
respectively.

Calibration Exercise 2. We refer to Wednesday quotes for options on the S&P500 from

September 2012 to the end of August 2014; the dataset is then divided in two sub-dataset -

from September 4th 2012 to August 28th 2013 (20,525 contracts) and from September 4th 2013

to August 27th 2014 (18,066 contracts). Moneyness and maturities span respectively from 0.83

to 1.49 and 5 to 1031 business days (full details in Appendix B).

We use the first sub-dataset to calibrate all the models and select the parameters (‘in-sample’)

by solving the optimization problems (27)–(28) for T = 52 observation dates. Then, we update

only v(t) at each observation date in the second sub-dataset by solving the optimization problem

(28) for T = 50 observation dates with the set of model parameters Θ∗ fixed (‘out-of-sample’).

Results are summarized in Table 5.A (fuller analysis provided in Appendix C), and confirm

the findings of the Calibration Exercise 1, specifically the superior performance of the self-exciting

structures. The JH model, in particular, proves its competitiveness thanks to its relatively small

number of parameters and its robustness, for which it can offer a reduction of up to 54% in the

calibration error with respect to the benchmark. For illustration, in Figure 5 we report the market

implied volatilities on two different dates of the dataset together with the corresponding implied

volatilities generated by JH model. The figure includes a set of short dated options with relatively

high volatility and a set of long dated contracts with relatively low volatility. We note the jumps

have infinite variation (the optimal values of Y is 1.71).

Finally, in order to assess the models performances irrespective of the benchmark, and en route

identify possible discriminant model features, we carry out a pairwise Equal Predictive Accuracy

(EPA) test based on the following t-statistics, which uses as relevant loss function the (weekly)

implied volatility mean squared errors (IVMSE)

t-statistics =
sample average(IVMSEi − IVMSEj)

st. dev.(IVMSEi − IVMSEj)
, (29)
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(see Diebold and Mariano, 1995, and for a similar study Huang and Wu, 2004, as well). We

apply the Newey-West correction for heteroskedasticity and autocorrelation. A positive t-value

implies that the IVMSE from model i is significantly larger than the IVMSE from model j; in

other words, model j outperforms model i. A negative t-value implies the opposite. Results are

reported in Panels B–D of Table 5, which also show the corresponding p-values.

In details, we first investigate the best possible construction in terms of nature of the risk

drivers to be included in the relevant dynamics. Thus, in Table 5.B, we test the null hypothesis

of equal predictive ability of ‘pure diffusion’ models (i.e. Heston and its 2 SV factor version) in

comparison to models based on either purely discontinuous dynamics (JH and JBNS), or both

diffusive and discontinuous components (1/2SVFSE and 1/2SVFHOU). From these results, the

null hypothesis is rejected, as ‘diffusion-only’ models are not sufficient to reproduce accurately

the observed market volatility surfaces. Indeed, the Heston model and its 2 stochastic volatility

factor version return errors which are consistently larger than the ones generated by other models.

Secondly, in Table 5.C we compare the performance of the purely discontinuous models (JBNS

and JH) with their counterparts combining also diffusion (1/2SVFSE and 1/2SVFHOU). The

results confirm the relative competitiveness of the JH model, thus showing that jumps alone can

produce satisfactory model fit.

In Table 5.D, we test the predictive accuracy of both jump structures considered in this paper,

i.e. the finite variation non-Gaussian OU versus the infinite variation self-exciting class. Results

highlight the superior performance of the 2SVFHOU model when compared to models based on

the self exciting structure, with the only exception of the JH model (we note the ‘borderline’

p-value at 10% significance level).

We conclude this section with the following remark. The analysis of the ‘out-of-sample’ per-

formance metrics could be extended to longer datasets as to further investigate the stability of

the calibrated parameters in greater details. On the other hand, as markets are in general non

stable, in the financial industry model parameters are recalibrated with frequency depending on

the prevailing conditions. Furthermore, on occasions additional provisions based on sophisticated

risk measures such as Value at Risk, for example, might be included in order to address regula-

tory constraints, and instances of irrational market behaviour. Potential resulting fluctuations in

the relevant risk measure could be monitored via ‘devolatilization’ as discussed in Eberlein et al.

(2003) and references therein.

5 Conclusions

We propose a general framework for the joint evolution of stock log-returns and their volatility

using TCLP with stochastic volatility and leverage effects originating from both diffusion and

purely discontinuous processes. The setup admits analytical results for the characteristic function

and the forward characteristic function of the log-returns, which facilitate the efficient pricing

of vanilla and forward-start options. The framework shows robust performance in terms of cali-

bration to market quotes, as well as richer and plausible forward volatility smile patterns. The

analysis also identifies a versatile new pure jump construction, which we christened JH model.

The analysis of the forward volatility smile that can be extracted from the models proposed

in this paper indicates their potential also at controlling for model risk - a crucial issue faced by
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PANEL A: Calibration performance - model IVRMSE

Heston JH JBNS 1SVFSE 1SVFHOU Heston 2F 2SVFSE 2SVFHOU

‘In-Sample’ 0.0099 0.0073 0.0233 0.0090 0.0121 0.0073 0.0070 0.0067
‘Out-of-Sample’ 0.0187 0.0087 0.0165 0.0123 0.0107 0.0123 0.0071 0.0102

PANEL B: Pairwise EPA. Which risk factors perform best - Pure Diffusion vs ‘Non Diffusion’
‘In-Sample’

Heston JBNS 1SVFHOU 2SVFHOU JH 1SVFSE 2SVFSE

1 SV Factor -5.1642 -1.7012 5.2719 5.4334 1.4519 5.1466
(2.02E-06) (0.0475) (1.38E-06) (7.80E-07) (0.0763) (2.14E-06)

2 SV Factor -6.4290 -2.9293 2.6213 0.4085 -3.3742 1.3796
(2.17E-08) (0.0025) (0.0058) (0.3423) (0.0007) (0.0869)

‘Out-of-Sample’

Heston JBNS 1SVFHOU 2SVFHOU JH 1SVFSE 2SVFSE

1 SV Factor 1.2333 5.8633 7.4452 7.5652 4.7809 7.6701
(0.1117) (1.90E-07) (6.80E-10) (4.44E-10) (8.16E-06) (3.06E-10)

2 SV Factor -4.7645 2.2498 3.5324 5.5672 0.1402 6.1960
(8.63E-06) (0.0145) (0.0005) (5.39E-07) (0.4445) (5.83E-08)

PANEL C: Pairwise EPA. Which risk factors perform best - Pure Jump vs ‘Jump Diffusion’
‘In-Sample’

1 SVFHOU 2SVFHOU 1 SVFSE 2SVFSE

JBNS 4.7774 6.5050 5.8089 6.5719
(7.71E-06) (1.65E-08) (2.04E-07) (1.29E-08)

JH -2.8144 2.3949 -2.8055 2.3359
(0.0035) (0.0102) (0.0035) (0.0117)

‘Out-of-Sample’

1 SVFHOU 2SVFHOU 1 SVFSE 2SVFSE

JBNS 5.4312 5.2457 3.5895 6.8930
(8.68E-07) (1.66E-06) (3.82E-04) (4.86E-09)

JH -2.5717 -2.9659 -4.6142 6.8852
(0.0066) (0.0023) (1.43E-05) (4.99E-09)

PANEL D: Pairwise EPA. Which jump structure performs best - OU vs Self Exciting
‘In-Sample’ ‘Out-of-Sample’

JH 1SVFSE 2SVFSE JH 1SVFSE 2SVFSE

JBNS 6.4009 5.8089 6.5719 6.3373 3.5895 6.8930
(2.40E-08) (2.04E-07) (1.29E-08) (3.53E-08) (3.82E-04) (4.86E-09)

1SVFHOU 2.8144 2.4080 2.9379 2.5717 -1.9845 4.2585
(0.0035) (0.0098) (0.0025) (0.0066) (0.0264) (4.64E-05)

2SVFHOU -2.3949 -3.6169 -0.9801 2.9659 -2.5425 5.3776
(0.0102) (0.0003) (0.1658) (0.0023) (0.0071) (1.05E-06)

Table 5: Model IVRMSE from calibration to market data and pairwise EPA t-statistics. Data S&P500
options. Obervation period: 4/09/2012 - 29/08/2014. Source: OptionMetrics. Base process: CGMY. EPA
t-statistics defined in equation (29); corresponding p-values reported in parenthesis. Panel A - IVRMSE.
Panel B - Modeli: Heston (classic and 2 SV factor); Modelj : JBNS, 1/2SVFHOU, JH, 1/2SVFSE. Panel
C - Modeli: pure jump (JBNS, JH); Modelj : 1/2SVFHOU, 1/2SVFSE. Panel D - Modeli: non-Gaussian
OU based models (JBNS, 1/2SVFHOU); Modelj : self-exciting structure based models (JH, 1/2SVFSE).
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financial institutions for their risk management strategies. In this respect, it would be interesting

to further assess the performance of the models along the lines of Coqueret and Tavin (2016).

Indeed, given their results on the amount of model risk carried by pure jump models, which could

be broadly casted into the OU setting of our general framework, it would be appropriate to also

investigate the performance of our self exciting structures with endogenous stochastic volatility

of volatility and leverage; we leave this topic to further research.

Additional directions for further research could be articulated as follows. In primis, the study

of more efficient numerical schemes for models with no explicit expressions for the characteristic

function, like the ones explored in this paper is of interest. Artificial neural networks in the

spirit of Liu et al. (2019a,b) for example could prove particularly helpful in this respect, and

are currently being investigated. Given the attention of practitioners on the hedging of exotic

products (which in the equity market account for about 55% of the notional amount outstanding),

another possible avenue of research would be the investigation of the performance of the JH model

for the pricing of these products by suitably extending the numerical schemes proposed by Cui

et al. (2017, 2019) to cater for jump-induced leverage. Further research could also be carried

out to develop expansions of the shape characteristics of the implied volatility surface generated

by the models proposed in this paper on the line of Aı̈t-Sahalia et al. (2020, 2021). An equally

interesting topic would be the extension of the model-free approach to calibration of Cui et al.

(2021) to allow for time changes as advocated in this paper.

Other relevant directions would be the analysis of the performance of the general framework

proposed in this paper against VIX derivatives and other variance products in the spirit of Fouque

and Saporito (2018) and Kaeck and Seeger (2020), and in terms of joint calibration of the smile

of S&P options and VIX options (see Guyon, 2020, for further details).
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Küchler, U., Sørensen, M., 1997. Exponential Families of Stochastic Processes. Springer Series in Statistics,

Springer.

Li, C., Wu, L., 2019. Exact simulation of the Ornstein-Uhlenbeck driven stochastic volatility model.

European Journal of Operational Research 275, 768 – 779.

Liu, S., Borovykh, A., Grzelak, L.A., Oosterlee, C.W., 2019a. A neural network-based framework for

financial model calibration. Journal of Mathematics in Industry 9.

Liu, S., Oosterlee, C., Bohte, S., 2019b. Pricing options and computing implied volatilities using neural

networks. Risks 7, 16.

Madan, D.B., Carr, P., Chang, E., 1998. The Variance Gamma process and option pricing. European

Finance Review 2, 79–105.

Merton, R.C., 1976. Option pricing when underlying stock returns are discontinuous. Journal of Financial

Economics 3, 125–144.
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Appendix

A Time changed Lévy processes: the affine case. Setup and

proofs of Propositions

In the set up used to define the market model in Section 3, (v,X) is modelled as a R+ × R-
valued bivariate affine process with differential characteristic (B,Σ,K), relative to the canonical

truncation function, of the form

B =

(
κθ − η0,J α̃0

−φ0(−i) + σ0,Jα0

)
+

(
−κ− η1,J α̃1

−φ1(−i) + σ1,Jα1

)
v

Σ =

(
η21,D η1,Dσ1,Dρ

η1,Dσ1,Dρ σ2
1,D

)
v

K(G) = K0(G) +K1(G)v, ∀G ∈ B
(
R2
)
,

with K(·) denoting the measure of the compensator term in the differential characteristic of the

bivariate affine process (v(t), X(t)), and K0(·), K1(·) the Lévy measures of the bivariate jumps

process in v and X. These are functions of νj and ν̃j , j = 0, 1, the specification of which depends

on the parameter setting. For example, in the JH (and the 1SVFSE) model K0(·) = 0 and

K(G) =

(∫
1G(−η1,Jz, σ1,Jz)ν1,−(dz) +

∫
1G(0, σ1,Jy)ν1,+(dy)

)
v(t), G ∈ B(R2),

whilst in the JBNS (and the 1SVFHOU) model

K(G) =

∫
1G(−η0,Jz, 0)ν1,−(dz)

+

(∫
1G(0, σ1,Jz)ν1,−(dz) +

∫
1G(0, σ1,Jy)ν1,+(dy)

)
v(t), G ∈ B(R2).

We observe that the quadratic variation process of the TCLP X(t) = L(T (t)) introduced in

Section 2.1 is

[X](t) = σ2T (t) +

∫ t

0

∫
R
x2µ(dx, ds),

where µ(dx, dt) is the integer valued random measure of the jumps of X with compensator

ν(dx)v(t)dt. Therefore

⟨X⟩(t) = σ2T (t) +

∫ t

0

∫
R
x2ν(dx)v(s)ds = Var(L(1))T (t)

(see Eberlein and Kallsen, 2019, Carr et al., 2003, as well). Consequently, equation (14) fol-

lows from the above, in conjunction with equation (3) and bearing in mind that L0 and L1 are

independent.

Concerning equations (15) and (16), we illustrate the relevant argument using the 1SVFSE

model as an example, and recognizing that similar arguments hold for all other models analysed
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in this paper. Note, that for readability we use the differential notation. Thus

d⟨v⟩(t) =
(
η21,D + η21,JVar (J1,−(1))

)
v(t)dt,

and consequently by equation (4)

q(t) = γ21
(
η21,D + η21,JVar (J1,−(1))

)
v(t).

In this case the contribution from the jump part is qJ(t) = η21,JVar (J1,−(1)) v(t). Similarly, as

J1,− and J1,+ are independent, then

d⟨X, v⟩(t) = (σ1,Dη1,Dρdt− σ1,Jη1,JVar (J1,−(1))) v(t)dt

and the result for C(t) follows from equation (5), with CJ(t) = −σ1,Jη1,JVar (J1,−(1)) v(t).
In this setting, the characteristic function of the process X(t) driving the log-returns can be

recovered in two alternative ways. The first one is by means of the change of measure of Carr

and Wu (2004) reviewed in Section 2; the second one is by means of standard results on affine

processes as in Kallsen (2006). In what follows, we assume that all the admissibility conditions

in Kallsen (2006) are satisfied.

Proof of Proposition 1. The change of measure argument relies on two key observations.

Firstly, in order to recover the relevant dynamics of X(t) it suffices to consider the dynamics

of the base Lévy process by applying the random time transformations v(t) where required (see

Küchler and Sørensen, 1997, Jacod, 1979, for example). Secondly, the M-measure is an Esscher-

type probability measure, which implies that the characteristic exponent of the base processes

satisfies equation (6). Thus.

i) The Girsanov theorem implies thatW1(t)−iuσ1,Dt is aM-Brownian motion, and ∂Π(Jj |M) =

(αM
j , 0, νMj (dx)) for

αM
j = αj,+ +

∫
R
x1|x|≤1

(
eiuσj,Jx − 1

)
νj,+(dx) + αj,− +

∫
R
x1|x|≤1

(
eiuσj,Jx − 1

)
νj,−(dx)

= αM
j,+ + αM

j,−,

νMj (dx) = eiuσj,Jxνj(dx), j = 0, 1.

For an illustration, let us consider the case of the CGMY process of Carr et al. (2002). The

CGMY process is a Lévy process described by the Lévy measure

ν (x) = C

(
e−G|x|

|x|1+Y
1x<0 +

e−Mx

x1+Y
1x>0

)
,

for C > 0, G ≥ 0, M ≥ 0, Y < 2; the corresponding characteristic exponent is

φ(u) = CΓ (−Y )
(
(G+ iu)Y −GY + (M − iu)Y −MY

)
,

2



see Carr et al. (2002). It follows that

νM (x) = C

(
e−(G+iuσ·,J )|x|

|x|1+Y
1x<0 +

e−(M−iuσ·,J )x

x1+Y
1x>0

)
.

In other words, the parameters affected by the change of measure are the parameters G

and M ; specifically, under the leverage neutral measure the CGMY process has parameters

C,GM,MM, Y for GM = G+ iuσ·,J and MM = M − iuσ·,J . The characteristic exponent of

the process of the negative jumps follows directly.

ii) The M-dynamics of the process Yj(t), j = 0, 1, follows from Proposition 4 in Ballotta et al.

(2017) due to the factor construction in place. In details, we first observe that in the

present setup the loading coefficient applied to the diffusion part of Y1(t) is ρ, therefore

Z1(t) − iuσ1,Dρt is the M-Brownian motion driving Y1(t). Further, the loading coefficient

applied to the pure jump part of Yj(t) is −ηj,J , j = 0, 1.■

Proof of Proposition 2. The required characteristic function of T (t) can be recovered by

observing that (v(t), T (t)) are bivariate affine; consequently

EM
(
eiwv(t)+izT (t)

)
= eΨ0(w,z;t)+Ψ1(w,z;t)v(0),

with the affine exponents Ψ0, Ψ1 solutions to the system of Riccati-type ODEs

Ψ′
0(w, z; t) = κθΨ1(w, z; t) + φM

J̃0
(iη0,JΨ1(w, z; t)) ,

Ψ0(w, z; 0) = 0 (A.1)

Ψ′
1(w, z; t) = iz − κMΨ1(w, z; t) +

η21,D
2

Ψ2
1(w, z; t) + φM

J̃1
(iη1,JΨ1(w, z; t)) ,

Ψ1(w, z; 0) = iw. (A.2)

The required characteristic exponents under the probability measure M follow from Proposition

1. Equations (20)–(21) follow by setting w = 0, z = −iφL1(u), and noting that A(t) = φL0(u)t+

Ψ0(0, u; t) and B(t) = Ψ1(0, u; t).

We now use the argument based on the theory of affine processes, and show how the two

approaches can be reconciled leading to the same system of ODEs for the affine exponents. Under

the given assumptions, the characteristic function of the bivariate affine process (v(t), X(t)) is

E
(
eiwv(t)+iuX(t)

)
= eΦ0(w,u;t)+Φ1(w,u;t)v(0)

with the affine exponents Φ0, Φ1 solutions to the system of Riccati-type ODEs

Φ′
0(w, u; t) = (κθ − η0,J α̃0)Φ1(w, u; t)− iu(φ0(−i)− σ0,Jα0)

+

∫
R+×R

(
e−Φ1(w,u;t)η0,Jy+iuσ0,Jx − 1 + (Φ1(w, u; t)η0,Jy − iuσ0,Jx) 1y2+x2≤1

)
K0(dy × dx),

Φ0(w, u; 0) = 0

Φ′
1(w, u; t) = −(κ+ η1,J α̃1 − iuη1,Dσ1,Dρ)Φ1(w, u; t)− iu(φ1(−i)− σ1,Jα1)−

σ2
1,D

2
u2 +

η2
1,D

2
Φ2

1(w, u; t)

+

∫
R+×R

(
e−Φ1(w,u;t)η1,Jy+iuσ1,Jx − 1 + (Φ1(w, u; t)η1,Jy − iuσ1,Jx) 1y2+x2≤1

)
K1(dy × dx),

Φ1(w, u; 0) = iw.
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The characteristic function of the process X(t) follows by setting w = 0.

In order to reconcile this system of ODEs with equations (20)–(21), we use equation (13) to

rewrite the above system of ODEs under the P measure as

Φ′
0(w, u; t) = κθΦ1(w, u; t) + φL0(u)− φJ0,+(uσ0,J)− φJ0,−(uσ0,J)

+φ(J̃0,J0)
(iη0,JΦ1(w, u; t), uσ0,J) (A.3)

Φ0(w, u; 0) = 0

Φ′
1(w, u; t) = −(κ− iuη1,Dσ1,Dρ)Φ1(w, u; t) + φL1(u)− φJ1,+(uσ1,J)− φJ1,−(uσ1,J)

+
η21,D
2

Φ2
1(w, u; t) + φ(J̃1,J1)

(iη1,JΦ1(w, u; t), uσ1,J), (A.4)

Φ1(w, u; 0) = iw.

φ(J̃·,J·)
denotes the joint characteristic exponent of the bivariate pure jump Lévy process (J̃·, J·).

Bearing in mind that the factor construction in place in this paper requires only one source of

systematic risk, the following cases are pertinent to our setting.

Case I J̃0(t) = J0,−(t); J̃1(t), J1(t) independent. Then, from Ballotta and Bonfiglioli (2014)

φ(J̃0,J0)
(w, z) = φJ0,−(w + z) + φJ0,+(z) = φJ̃0

(w + z) + φJ0,+(z)

φ(J̃1,J1)
(w, z) = φJ̃1

(w) + φJ1,+(z) + φJ1,−(z).

After substitution in (A.3)–(A.4), equation (19) with σl,J = σ0,J leads to

Φ′
0(w, u; t) = φL0(u) + κθΦ1(w, u; t) + φM

J̃0
(iη0,JΦ1(w, u; t)),

Φ0(w, u; 0) = 0

Φ′
1(w, u; t) = φL1(u)− (κ− iuη1,Dσ1,Dρ)Ψ1(w, u; t) +

η21,D
2

Φ2
1(w, u; t)

+φM
J̃1
(−iη1,JΦ1(w, u; t)),

Φ1(w, u; 0) = iw.

Equations (20)–(21) follow bearing in mind the definition of kM, and setting w = 0, A(t) =

Φ0(0, u; t), B(t) = Φ1(0, u; t).

Case II J̃0(t) = J1,−(t); J̃1(t), J1(t) independent. Then, from Ballotta and Bonfiglioli (2014)

φ(J̃0,J0)
(w, z) = φJ1,−(w) + φJ0,+(z) + φJ0,−(z) = φJ̃0

(w) + φJ0,+(z) + φJ0,−(z)

φ(J̃1,J1)
(w, z) = φJ̃1

(w) + φJ1,+(z) + φJ1,−(z).

As equation (6) implies φ̃0(w) = φ̃M
0 (w), equations (20)–(21) follow from the same argument

as in Case I.

Case III J̃0(t), J0(t) independent; J̃1(t) = J0,−(t). Then, from Ballotta and Bonfiglioli (2014)

φ(J̃0,J0)
(w, z) = φJ̃0

(w) + φJ0,+(z) + φJ0,−(z)

φ(J̃1,J1)
(w, z) = φJ0,−(w) + φJ1,+(z) + φJ1,−(z) = φJ̃1

(w) + φJ1,+(z) + φJ1,−(z).

4



The required result follows from the same argument as in the previous cases.

Case IV J̃0(t), J0(t) independent; J̃1(t) = J1,−(t). Then, from Ballotta and Bonfiglioli (2014)

φ(J̃0,J0)
(w, z) = φJ̃0

(w) + φJ0,+(z) + φJ0,−(z)

φ(J̃1,J1)
(w, z) = φJ1,−(w + z) + φJ1,+(z) = φJ̃1

(w + z) + φJ1,+(z).

The required result follows from the same argument as above for σl,J = σ1,J . ■

Proof of Proposition 3 The argument is based on conditioning, the Bayes formula and the

Doob’s optional stopping theorem.

ϕX(u; s, t) = E
[
Es

(
eiu(L0(t)−L0(s)+L1(T (t))−L1(T (s)))

)]
= eφL0

(u)(t−s)E
[
Mu(s)

−1Es (Mu(s))EM
s

(
eφL1

(u)(T (t)−T (s))
)]

= eφL0
(u)(t−s)E

[
EM
s

(
eφL1

(u)(T (t)−T (s))
)]

.

From the proof of Proposition 2, it follows that

ϕX(u; s, t) = eA(t−s)E
(
eB(t−s)v(s)

)
(A.5)

Notice that now expectations are to be taken under the risk neutral martingale measure P. Solu-
tion to (A.5) follows from the fact that the activity rate is affine. ■

B Option Data

For the purpose of the empirical investigation, we use daily closing bid and ask quotes of standard

European options on the S&P500 index across different strikes and maturities. The data sets

contain matching spot prices (index level) and interest rates corresponding to each option quote.

By means of the put-call parity we recover the (implied) forward prices. We apply the following

filters to the data: time to maturity greater than five business days, strictly positive bid option

price, ask price no less than the bid price. After applying these filters, we also plot the mid-

implied volatility quote for each day and maturity against strike prices to visually check for and

remove the obvious outliers. These filtering rules follow Huang and Wu (2004). Finally, we only

use out-of-the-money call and put options.

For the Calibration Exercise 1, the option quotes are observed on April 24th 2017 on the

Bloomberg platform; we build the full volatility surface using the SVI methodology of Gatheral

and Jacquier (2014) for a total of 1,573 points. The maturities of the option contracts range from

25 to 970 business days; finally, we use the same range of strikes for all maturities ranging from

0.85 to 1.25. We summarize the data set in Table B.1, which reports in panel A the number of

option contracts per each category of maturities and moneyness, S/K, in panel B the average

option price in each category, and in panel C the average Black-Scholes implied volatility in each

category.

For the Calibration Exercise 2, instead, we use quotes from OptionMetrics covering the period

September 4th 2012 to August 27th 2014, i.e. a period of time non overlapping with the one chosen

5



for the 1 day calibration. In addition to the filters described above, we only refer to Wednesday’s

quotes, and restrict our attention to the more liquid options with moneyness between 0.83 and

1.49. Maturities in this case span from 5 to 1031 business days; Table B.2 summarizes the data

according to the same moneyness/day to maturity categories as above. We use the first year

of data (20,525 contracts) to estimate the parameters of the models considered in the previous

sections, and then the remaining year of data (18,066 contracts) to test the reliability of the

performance of the models.

DTM< 30 30<DTM<90 90<DTM<180 DTM>180 All

PANEL A: Number of Option contracts
S/K < 0.975 36 72 72 216 396
0.975 < S/K < 1 12 24 24 72 132
1 < S/K/1.025 12 24 24 72 132
1.025 < S/K < 1.05 11 22 22 66 121
1.05 < S/K < 1.075 10 20 20 60 110
S/K > 1.075 62 124 124 372 682
All 143 286 286 858 1573

PANEL B: Average Option Price
S/K < 0.975 0.48 3.36 9.21 66.92 38.83
0.975 < S/K < 1 10.72 26.42 43.64 122.80 80.69
1 < S/K/1.025 15.06 33.31 53.92 136.59 91.73
1.025 < S/K < 1.05 6.48 20.42 38.67 117.55 75.45
1.05 < S/K < 1.075 3.73 13.92 29.10 102.17 63.89
S/K > 1.075 1.26 5.68 13.61 65.68 39.44
All 3.59 10.86 21.41 83.27 51.62

PANEL C: Average Option Implied Volatility
S/K < 0.975 10.72% 8.88% 8.83% 11.88% 10.67%
0.975 < S/K < 1 8.71% 9.50% 10.37% 13.38% 11.70%
1 < S/K/1.025 10.64% 11.01% 11.66% 14.14% 12.80%
1.025 < S/K < 1.05 13.47% 12.77% 13.02% 14.90% 14.04%
1.05 < S/K < 1.075 16.40% 14.54% 14.33% 15.61% 15.25%
S/K > 1.075 26.27% 20.83% 18.92% 18.13% 19.51%
All 17.90% 14.99% 14.28% 15.40% 15.35%

Table B.1: S&P500 Option Data - Calibration Exercise 1. Spot value: 2,372.81. Observation date:
24/04/2017. Source Bloomberg. Implied volatilities extracted using the Black-Scholes formula.
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SUBSET 1

DTM<30 30<DTM<90 90<DTM<180 DTM>180 All
PANEL A: Number of Option contracts

S/K < 0.975 655 2007 805 888 4355
0.975 < S/K < 1 1192 1015 246 202 2655
1 < S/K/1.025 1156 957 260 216 2589
1.025 < S/K < 1.05 1081 847 187 147 2262
1.05 < S/K < 1.075 827 858 194 143 2022
S/K > 1.075 772 3396 1317 1157 6642
All 5683 9080 3009 2753 20525

PANEL B: Average Option Price
S/K < 0.975 1.87 4.61 10.52 28.74 10.21
0.975 < S/K < 1 7.89 18.78 36.41 77.36 19.98
1 < S/K/1.025 10.80 25.10 47.28 91.83 26.51
1.025 < S/K < 1.05 4.41 15.21 35.85 84.42 16.25
1.05 < S/K < 1.075 2.34 9.62 27.14 71.91 12.73
S/K > 1.075 1.42 3.83 9.22 36.70 10.35
All 5.44 9.52 17.89 45.82 14.49

PANEL C: Average Option Implied Volatility
S/K < 0.975 11.89% 11.37% 12.16% 13.83% 12.10%
0.975 < S/K < 1 11.98% 12.45% 13.78% 15.91% 12.62%
1 < S/K/1.025 14.12% 14.03% 14.77% 16.60% 14.36%
1.025 < S/K < 1.05 16.84% 15.67% 16.24% 17.44% 16.39%
1.05 < S/K < 1.075 19.57% 17.30% 17.23% 17.97% 18.27%
S/K > 1.075 23.04% 22.05% 22.79% 22.29% 22.35%
All 15.93% 16.73% 17.75% 18.17% 16.85%

SUBSET 2

DTM<30 30<DTM<90 90<DTM<180 DTM>180 All
PANEL A: Number of Option contracts

S/K < 0.975 445 1578 784 686 3493
0.975 < S/K < 1 1179 282 207 199 1867
1 < S/K/1.025 1292 556 116 209 2173
1.025 < S/K < 1.05 1124 805 78 165 2172
1.05 < S/K < 1.075 809 897 65 149 1920
S/K > 1.075 1275 3637 841 688 6441
All 6124 7755 2091 2096 18066

PANEL B: Average Option Price
S/K < 0.975 1.34 3.22 9.14 32.73 10.10
0.975 < S/K < 1 7.10 22.70 39.01 82.09 20.99
1 < S/K/1.025 10.02 22.35 54.98 105.30 24.74
1.025 < S/K < 1.05 3.73 11.82 42.99 93.69 14.97
1.05 < S/K < 1.075 2.18 7.21 33.84 77.80 11.47
S/K > 1.075 1.18 3.36 6.59 42.25 7.50
All 4.79 6.72 15.65 55.78 12.79

PANEL C: Average Option Implied Volatility
S/K < 0.975 11.99% 10.68% 10.79% 12.59% 11.25%
0.975 < S/K < 1 9.89% 13.12% 12.61% 14.35% 11.15%
1 < S/K/1.025 11.67% 13.45% 14.16% 15.31% 12.61%
1.025 < S/K < 1.05 14.57% 14.61% 15.66% 15.95% 14.73%
1.05 < S/K < 1.075 18.30% 16.23% 17.13% 16.62% 17.16%
S/K > 1.075 25.07% 21.47% 23.12% 20.39% 22.28%
All 15.55% 17.08% 16.50% 16.14% 16.38%

Table B.2: S&P500 Option Data - Calibration Exercise 2. Subset 1 Observation period: 4/09/2012 - 28/08/2013. Subset 2 Observation period: 4/09/2013 -
27/08/2014. Source OptionMetrics. Implied volatilities extracted using the Black-Scholes formula.
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C Further Results

1 SV Factor Model 2 SV Factor Model

Moneyness Days-to-Maturity Moneyness Days-to-Maturity
S/K Model <30 30 - 90 90 - 180 >180 All S/K Model <30 30 - 90 90 - 180 >180 All

<0.975 Heston 0.0188 0.0058 0.0060 0.0045 0.0075 <0.975 Heston 0.0232 0.0056 0.0017 0.0013 0.0075
JH 0.0098 0.0051 0.0027 0.0010 0.0039 SVFSE 0.0076 0.0041 0.0022 0.0007 0.0031
JBNS 0.0076 0.0077 0.0046 0.0072 0.0069 SVFHOU 0.0077 0.0050 0.0023 0.0021 0.0037
SVFSE 0.0068 0.0037 0.0020 0.0010 0.0028
SVFHOU 0.0049 0.0029 0.0019 0.0016 0.0024 0.975 - 1 Heston 0.0030 0.0019 0.0005 0.0008 0.0014

SVFSE 0.0041 0.0026 0.0002 0.0007 0.0018
0.975 - 1 Heston 0.0146 0.0074 0.0012 0.0047 0.0065 SVFHOU 0.0106 0.0059 0.0007 0.0018 0.0043

JH 0.0025 0.0018 0.0007 0.0010 0.0013
JBNS 0.0270 0.0177 0.0063 0.0045 0.0119 1 - 1.025 Heston 0.0070 0.0023 0.0008 0.0007 0.0024
SVFSE 0.0022 0.0017 0.0010 0.0009 0.0013 SVFSE 0.0014 0.0012 0.0002 0.0008 0.0009
SVFHOU 0.0006 0.0013 0.0003 0.0008 0.0008 SVFHOU 0.0037 0.0021 0.0010 0.0019 0.0020

1 - 1.025 Heston 0.0044 0.0033 0.0036 0.0052 0.0046 1.025 - 1.05 Heston 0.0075 0.0029 0.0004 0.0008 0.0027
JH 0.0024 0.0013 0.0008 0.0010 0.0012 SVFSE 0.0017 0.0015 0.0004 0.0008 0.0010
JBNS 0.0179 0.0106 0.0037 0.0033 0.0076 SVFHOU 0.0061 0.0027 0.0016 0.0019 0.0027
SVFSE 0.0032 0.0014 0.0007 0.0009 0.0013
SVFHOU 0.0018 0.0013 0.0010 0.0010 0.0011 1.05 - 1.075 Heston 0.0054 0.0029 0.0004 0.0010 0.0022

SVFSE 0.0008 0.0019 0.0004 0.0009 0.0011
1.025 - 1.05 Heston 0.0046 0.0067 0.0060 0.0058 0.0059 SVFHOU 0.0068 0.0033 0.0018 0.0018 0.0029

JH 0.0018 0.0009 0.0007 0.0010 0.0010
JBNS 0.0029 0.0034 0.0018 0.0021 0.0024 >1.075 Heston 0.0191 0.0027 0.0013 0.0014 0.0060
SVFSE 0.0021 0.0009 0.0005 0.0009 0.0010 SVFSE 0.0024 0.0015 0.0007 0.0010 0.0012
SVFHOU 0.0044 0.0012 0.0012 0.0015 0.0019 SVFHOU 0.0026 0.0051 0.0019 0.0019 0.0028

1.05 - 1.075 Heston 0.0026 0.0087 0.0074 0.0062 0.0067 All Heston 0.0175 0.0036 0.0012 0.0012 0.0056
JH 0.0017 0.0006 0.0005 0.0010 0.0010 SVFSE 0.0043 0.0025 0.0012 0.0009 0.0019
JBNS 0.0052 0.0010 0.0009 0.0016 0.0021 SVFHOU 0.0059 0.0047 0.0018 0.0020 0.0031
SVFSE 0.0004 0.0004 0.0004 0.0009 0.0008
SVFHOU 0.0041 0.0012 0.0010 0.0018 0.0019

>1.075 Heston 0.0291 0.0070 0.0080 0.0074 0.0113
JH 0.0031 0.0015 0.0012 0.0012 0.0015
JBNS 0.0121 0.0028 0.0026 0.0066 0.0063
SVFSE 0.0018 0.0013 0.0013 0.0011 0.0013
SVFHOU 0.0040 0.0017 0.0019 0.0017 0.0021

All Heston 0.0218 0.0066 0.0067 0.0062 0.0090
JH 0.0054 0.0029 0.0016 0.0011 0.0023
JBNS 0.0130 0.0074 0.0036 0.0059 0.0068
SVFSE 0.0038 0.0022 0.0014 0.0010 0.0018
SVFHOU 0.0040 0.0020 0.0016 0.0016 0.0020

Table C.1: IVRMSE by moneyness and days to maturity. Data: S&P500 options. Observation date:
24/04/2017. Base process: CGMY. Repricing: parameter set in Table 3.
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IN SAMPLE OUT OF SAMPLE

Moneyness Days-to-Maturity Days-to-Maturity
S/K Model < 30 30 - 90 90 - 180 >180 All < 30 30 - 90 90 - 180 >180 All

<0.975 Heston 0.0084 0.0063 0.0066 0.0089 0.0073 0.0194 0.0088 0.0106 0.0141 0.0121
JH 0.0078 0.0073 0.0067 0.0073 0.0073 0.0133 0.0093 0.0077 0.0116 0.0101
JBNS 0.0435 0.0302 0.0356 0.0312 0.0337 0.0102 0.0113 0.0155 0.0289 0.0170
SVFSE 0.0089 0.0061 0.0067 0.0077 0.0070 0.0251 0.0106 0.0085 0.0157 0.0140
SVFHOU 0.0104 0.0092 0.0115 0.0103 0.0101 0.0125 0.0099 0.0088 0.0138 0.0109

0.975 - 1 Heston 0.0069 0.0047 0.0057 0.0105 0.0064 0.0097 0.0093 0.0077 0.0121 0.0097
JH 0.0070 0.0048 0.0045 0.0089 0.0062 0.0062 0.0059 0.0057 0.0111 0.0068
JBNS 0.0292 0.0138 0.0120 0.0139 0.0220 0.0158 0.0147 0.0158 0.0222 0.0164
SVFSE 0.0079 0.0059 0.0060 0.0097 0.0072 0.0107 0.0084 0.0084 0.0155 0.0108
SVFHOU 0.0126 0.0095 0.0106 0.0110 0.0112 0.0097 0.0106 0.0077 0.0133 0.0101

1 - 1.025 Heston 0.0073 0.0051 0.0057 0.0107 0.0068 0.0101 0.0088 0.0081 0.0105 0.0097
JH 0.0091 0.0046 0.0046 0.0084 0.0073 0.0049 0.0050 0.0051 0.0104 0.0057
JBNS 0.0226 0.0132 0.0113 0.0168 0.0181 0.0145 0.0128 0.0139 0.0183 0.0144
SVFSE 0.0102 0.0069 0.0071 0.0097 0.0088 0.0110 0.0104 0.0083 0.0154 0.0112
SVFHOU 0.0147 0.0093 0.0100 0.0109 0.0122 0.0076 0.0093 0.0083 0.0138 0.0089

1.025 - 1.05 Heston 0.0110 0.0049 0.0057 0.0119 0.0089 0.0106 0.0080 0.0078 0.0100 0.0096
JH 0.0097 0.0037 0.0049 0.0091 0.0076 0.0060 0.0041 0.0045 0.0100 0.0058
JBNS 0.0149 0.0108 0.0132 0.0207 0.0139 0.0224 0.0142 0.0117 0.0152 0.0189
SVFSE 0.0112 0.0069 0.0082 0.0104 0.0095 0.0122 0.0092 0.0067 0.0153 0.0113
SVFHOU 0.0157 0.0092 0.0115 0.0123 0.0131 0.0091 0.0076 0.0080 0.0137 0.0090

1.05 - 1.075 Heston 0.0187 0.0053 0.0052 0.0112 0.0129 0.0244 0.0070 0.0060 0.0096 0.0168
JH 0.0095 0.0041 0.0044 0.0085 0.0072 0.0104 0.0042 0.0036 0.0088 0.0078
JBNS 0.0149 0.0107 0.0121 0.0262 0.0142 0.0214 0.0157 0.0084 0.0128 0.0180
SVFSE 0.0115 0.0077 0.0070 0.0095 0.0095 0.0138 0.0093 0.0065 0.0145 0.0118
SVFHOU 0.0151 0.0097 0.0104 0.0108 0.0123 0.0128 0.0072 0.0070 0.0130 0.0104

>1.075 Heston 0.0266 0.0080 0.0066 0.0139 0.0125 0.0546 0.0145 0.0097 0.0078 0.0270
JH 0.0106 0.0060 0.0062 0.0105 0.0076 0.0168 0.0081 0.0061 0.0070 0.0101
JBNS 0.0145 0.0149 0.0259 0.0344 0.0219 0.0177 0.0142 0.0160 0.0176 0.0156
SVFSE 0.0134 0.0096 0.0092 0.0117 0.0104 0.0165 0.0110 0.0107 0.0136 0.0125
SVFHOU 0.0162 0.0119 0.0138 0.0144 0.0133 0.0171 0.0103 0.0085 0.0108 0.0118

All Heston 0.0141 0.0066 0.0063 0.0117 0.0099 0.0280 0.0117 0.0096 0.0112 0.0187
JH 0.0090 0.0057 0.0059 0.0091 0.0073 0.0103 0.0074 0.0066 0.0098 0.0087
JBNS 0.0246 0.0186 0.0260 0.0301 0.0233 0.0178 0.0138 0.0154 0.0220 0.0165
SVFSE 0.0105 0.0078 0.0080 0.0101 0.0090 0.0142 0.0104 0.0093 0.0149 0.0123
SVFHOU 0.0143 0.0104 0.0123 0.0124 0.0121 0.0118 0.0096 0.0084 0.0128 0.0107

Table C.2: IVRMSE by moneyness and days to maturity. In/Out of Sample analysis. 1 Stochastic
Volatility Factor models. Data: S&P500 options. Obervation period: 4/09/2012 - 29/08/2014. Source:
OptionMetrics. Base process: CGMY.
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IN SAMPLE OUT OF SAMPLE

Moneyness Days-to-Maturity Days-to-Maturity
S/K Model < 30 30 - 90 90 - 180 >180 All < 30 30-90 90 - 180 >180 All

< 0.975 Heston 0.0080 0.0066 0.0058 0.0077 0.0069 0.0135 0.0089 0.0069 0.0140 0.0104
SVFSE 0.0069 0.0071 0.0071 0.0071 0.0071 0.0091 0.0080 0.0064 0.0097 0.0082
SVFHOU 0.0087 0.0064 0.0060 0.0081 0.0071 0.0125 0.0066 0.0063 0.0148 0.0096

0.975 - 1 Heston 0.0067 0.0039 0.0039 0.0099 0.0059 0.0063 0.0076 0.0052 0.0145 0.0077
SVFSE 0.0072 0.0047 0.0049 0.0084 0.0063 0.0054 0.0047 0.0045 0.0083 0.0056
SVFHOU 0.0065 0.0037 0.0042 0.0104 0.0058 0.0061 0.0051 0.0072 0.0156 0.0077

1 - 1.025 Heston 0.0067 0.0045 0.0037 0.0094 0.0060 0.0056 0.0066 0.0056 0.0142 0.0071
SVFSE 0.0097 0.0051 0.0045 0.0076 0.0076 0.0045 0.0047 0.0037 0.0083 0.0050
SVFHOU 0.0076 0.0043 0.0043 0.0100 0.0065 0.0050 0.0045 0.0075 0.0150 0.0067

1.025 - 1.05 Heston 0.0068 0.0036 0.0039 0.0088 0.0058 0.0069 0.0048 0.0055 0.0133 0.0069
SVFSE 0.0100 0.0042 0.0043 0.0081 0.0078 0.0057 0.0033 0.0032 0.0083 0.0051
SVFHOU 0.0075 0.0034 0.0044 0.0099 0.0063 0.0065 0.0031 0.0070 0.0146 0.0066

1.05 - 1.075 Heston 0.0111 0.0037 0.0044 0.0090 0.0080 0.0150 0.0044 0.0054 0.0124 0.0108
SVFSE 0.0084 0.0043 0.0039 0.0076 0.0065 0.0087 0.0035 0.0027 0.0070 0.0065
SVFHOU 0.0058 0.0039 0.0042 0.0098 0.0053 0.0128 0.0042 0.0053 0.0136 0.0096

>1.075 Heston 0.0151 0.0055 0.0076 0.0113 0.0087 0.0345 0.0076 0.0066 0.0090 0.0168
SVFSE 0.0068 0.0054 0.0073 0.0094 0.0068 0.0118 0.0071 0.0061 0.0067 0.0081
SVFHOU 0.0055 0.0061 0.0072 0.0112 0.0074 0.0196 0.0117 0.0059 0.0102 0.0130

All Heston 0.0091 0.0052 0.0062 0.0098 0.0073 0.0177 0.0073 0.0065 0.0125 0.0123
SVFSE 0.0084 0.0055 0.0065 0.0083 0.0070 0.0078 0.0064 0.0058 0.0082 0.0071
SVFHOU 0.0070 0.0054 0.0061 0.0100 0.0067 0.0115 0.0089 0.0063 0.0135 0.0102

Table C.3: IVRMSE by moneyness and days to maturity. In/Out of Sample analysis. 2 Stochastic
Volatility Factor models. Data S&P500 options. Obervation period: 4/09/2012 - 29/08/2014. Source:
OptionMetrics. Base process: CGMY.
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Figure C.1: Heston model calibration performance: 1-Day Calibration. Metrics: squared errors in volatil-
ity. σmod: model implied volatility. σmkt: market implied volatility. Spot value: 2,372.81. Data: S&P500
options observed on 24/04/2017. Source Bloomberg.

Figure C.2: JH model calibration performance: 1-Day Calibration. Metrics: squared errors in volatility.
σmod: model implied volatility. σmkt: market implied volatility. Spot value: 2,372.81. Data: S&P500
options observed on 24/04/2017. Source Bloomberg.
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Figure C.3: JBNS model calibration performance: 1-Day Calibration. Metrics: squared errors in volatility.
σmod: model implied volatility. σmkt: market implied volatility. Spot value: 2,372.81. Data: S&P500
options observed on 24/04/2017. Source Bloomberg.

Figure C.4: 1SVFSE model calibration performance: 1-Day Calibration. Metrics: squared errors in
volatility. σmod: model implied volatility. σmkt: market implied volatility. Spot value: 2,372.81. Data:
S&P500 options observed on 24/04/2017. Source Bloomberg.
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Figure C.5: 1SVFHOU model calibration performance: 1-Day Calibration. Metrics: squared errors in
volatility. σmod: model implied volatility. σmkt: market implied volatility. Spot value: 2,372.81. Data:
S&P500 options observed on 24/04/2017. Source Bloomberg.

Figure C.6: Heston 2F model calibration performance: 1-Day Calibration. Metrics: squared errors in
volatility. σmod: model implied volatility. σmkt: market implied volatility. Spot value: 2,372.81. Data:
S&P500 options observed on 24/04/2017. Source Bloomberg.
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Figure C.7: 2SVFSE model calibration performance: 1-Day Calibration. Metrics: squared errors in
volatility. σmod: model implied volatility. σmkt: market implied volatility. Spot value: 2,372.81. Data:
S&P500 options observed on 24/04/2017. Source Bloomberg.

Figure C.8: 2SVFHOU model calibration performance: 1-Day Calibration. Metrics: squared errors in
volatility. σmod: model implied volatility. σmkt: market implied volatility. Spot value: 2,372.81. Data:
S&P500 options observed on 24/04/2017. Source Bloomberg.
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