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Abstract 
In this paper we subject to scrutiny some recent advances in conservative reliability assessment of 2-channel fault-tolerant 
software, based on the probability of perfection of one of the channels. Our approach extends the previous works by looking 
in detail at the implications of the assumptions made in these previous works about the relationships between the probability 
of failure of the channels and of the system, which have not been explored before. We demonstrate that the assumptions 
made by others impose significant constraints on the epistemic uncertainty of the probability of system failure and explore 
the implications of these constraints to derive new conservative bounds.  

An important difference of this work from the prior works is that we use a white-box model of a 2-channel system, while 
in the previous works a black-box system model was used. We discuss the limitations of an assessment based on a black-
box model and compare our conservative results with those, derived by others using a black-box system model.   

Keywords: Bayesian inference, protection system, two-channel software system, black-box and white-box models, 
probability of failure on demand, probability of perfection, epistemic uncertainty. 

1. Introduction 
Reliability assessment of safety critical software is an essential part of developing safety-critical systems. Assessment is 
expected to demonstrate that critical software, as a part of a wider safety-critical system, is fit for purpose typically by 
showing that a software reliability target is met, i.e., that software reliability is no worse than the stated reliability target.  

Conservative assessment is a widely practiced and prudent way of dealing with various uncertainties in development and 
in the assessment of reliability. In conservative assessment, instead of trying to establish an accurate estimate of software 
reliability, the assessor is focused on deriving an estimate, which is known with certainty to be pessimistic, i.e., worse than 
the unknown system reliability, e.g., the probability of system failure.  

When a system is assessed conservatively and judged to be “good enough” (i.e., that the conservative estimate is better 
than the reliability target), the assessment is not merely acceptable. In this case the fact that a conservative reliability 
estimate is better than the target, provides extra assurance that the true system reliability is better than the reliability target, 
which is a highly desirable outcome of the reliability assessment. In some cases, however, the conservative assessment 
may produce estimates which are short of meeting a set reliability target. In such cases, the assessor is faced with a dilemma: 
is the system really not reliable enough or instead it is merely that the conservative reliability estimate is too conservative? 

This paper does not offer a solution to the above dilemma and instead explores the factors which impact the conservative 
software reliability assessment such as the system model used in the assessment and the assumptions under which the 
conservative assessment is conducted.  

The main contribution of this paper is highlighting the importance of scrutinising carefully all aspects used in a 
conservative reliability assessment of a 2-channel software system and in demonstrating that this effort pays-off:  

- Selecting a white-box system model1 which seems more complex in comparison with the simpler black-box 

 
1 In this paper the term “white-box model” is used merely to signify that the system architecture, which in this case consists of 2 separate 
channels, is accounted for. The “white-box” system model, therefore, is more detailed than a “black-box” system model, which ignores 
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model, may offer an insight that the simpler “black-box” model simply lacks. 
- Scrutinising fully the assumptions made in conservative assessment may lead to the discovery of non-obvious 

implications of the conservatism, e.g., that the assumptions are implausible. This is important as then an assessor 
may need to trade off the benefits from a conservative assessment against its plausibility.  

- The paper spells out in detail how Bayesian reliability assessment can be applied to a 2-channel software system 
using a white-box system model with a set of conservative assumptions, defined by others in the past.  

- We explore the space of conservative multivariate priors, suitable for predictions with a white-box model, 
consistent with the conservative assumptions defined by others in the past and identify the most conservative prior, 
which may be used as a lower bound for conservative predictions.  

- We offer useful analytical results which include: 
o How conservative assumptions are affected by the Bayesian inference for different observations of a 2-

channel system in operation/testing. We confirm that the conservative assumptions made in constructing 
the prior are retained in the posterior for the case of “no failures”, i.e., the predictions retain the properties 
of a conservative distribution. However, for the other possible observations – of channel and system 
failures – the conservatism is either not guaranteed (i.e., the predictions may become optimistic) or is 
not useful. These results extend the previous work on conservative Bayesian assessment. 

o Some of the analytical results reported from the white-box conservative assessment are counterintuitive, 
e.g., failures of the channel, not assumed perfect, will lead to predictions that the system is perfect with 
certainty. 

- We also scrutinised the recent works by others based on a black-box system model and in the process make a 
number of contributions: 

o The black-box system model does not respond adequately to observations with channel failures; In some 
cases inadequacy may become very significant, e.g. when the channel considered possibly perfect fails. 

o The black-box system model may produce more optimistic predictions than a white-box model: we 
provide evidence of this possibility for both “no failure” observed in operation/testing and for cases when 
operation/testing reveals channel and system failures. 

Although the paper is primarily focused on software reliability assessment, the approach we present can be applied to the 
broader class of systems with design faults, in which one or even both channels are implemented in hardware. Subtle design 
faults in hardware designs may lead to failures which are difficult to detect and very rare in operation. Complex hardware 
designs are developed with complex tools and may include “formal” proofs [3] leading to explicit or implicit statements of 
design perfection (e.g., “this design has been formally verified”). An example of complex hardware designs are protection 
systems implemented with field programmable gate arrays (FPGA). Designs may contain design faults introduced either 
by the respective designers in setting the high-level requirements, or due to subtle faults in the software tools used to 
develop the logic placed in an FPGA and to program the FPGA fabric. Conservative assessment based on the idea that one 
of the channels might be perfect can be used for such systems, too. We hope, therefore, that the work we present would be 
of interest to a wider audience, not merely to the community of colleagues interested in rigorous conservative software 
reliability assessment.  

The paper is organised as follows: Section 2 provides the motivation for the study; in Section 3 we develop the white-box 
system model under a small number of conservative assumptions about the channels’ reliabilities, which results in defining 
a 3-variate distribution consistent with the conservative assumptions made by others. In Section 4 we provide the main 
results of the paper – a set of results related to the conservative predictions of system reliability: i) for the special case of 
operation/testing when no failures occur, and ii) for the case of system operation/testing with arbitrary observations 
(including channel and system failures). In Section 5 we offer a contrived example illustrating the application of the 
approach in practice and highlight the difference between the predictions obtained with the black-box and the white-box 
models using conservative priors. In Section 6 we discuss the findings and the threats to their validity. In Section 7 we 
discuss the related research. Section 8 concludes the paper and outlines directions for future research.  

 
details about the system architecture. Our use of the term “white-box” is consistent with [1]. In other literature sources, e.g., dealing with 
software testing, the term “white-box” is often used to refer to different degrees of knowledge about the tested software, e.g., whether 
the source code is available or not, etc. [2] makes use of the structure of the code to develop a Bayesian method of reliability assessment. 
Our “white-box” system model neither requires nor assumes such detailed knowledge.   



2. Motivation  
This work was prompted by the recent effort by colleagues at the Centre for Software Reliability, at City, University of 
London, who explored the idea of conservative Bayesian assessment of a 2-channel on-demand software based on the 
assumption of a probable perfection of one of the channels. 

The acronyms and notations used throughout the paper are listed in Table 1. 
 
Table 1. Acronyms and notations 

pdf Probability density function 
Cdf Cumulative distribution function 
pfd Probability of failure on demand 
𝑓𝑓𝑃𝑃(⋅), 𝐹𝐹𝑃𝑃(⋅) Probability density and cumulative distribution functions, respectively, of the random 

variable P. 
𝑃𝑃𝐴𝐴 Probability of failure on demand of channel A (a random variable). 
𝑃𝑃𝐵𝐵 Probability of failure on demand of channel B (a random variable). 
𝑃𝑃𝐴𝐴𝐵𝐵  Probability of simultaneous failure on demand of channel A and channel B (a random 

variable). 
𝑓𝑓𝑃𝑃𝐴𝐴(⋅), 𝐹𝐹𝑃𝑃𝐴𝐴(⋅) Probability density and cumulative distribution functions of the probability of failure on 

demand of channel A. 
𝑓𝑓𝑃𝑃𝐵𝐵(⋅), 𝐹𝐹𝑃𝑃𝐵𝐵(⋅) Probability density and cumulative distribution functions of the probability of failure on 

demand of channel B. 
𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(⋅), 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵(⋅) Probability density and cumulative distribution functions of the probability of 

simultaneous failure on demand of channel A and channel B. 
𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵(⋅,⋅), 𝐹𝐹𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵(⋅,⋅) Joint probability density and cumulative distribution functions of the probabilities of 

failure on demand of channel A and channel B. 
𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(⋅,⋅,⋅) Joint probability density function of the probabilities of failure on demand of channel A, 

of channel B and of simultaneous failure of channel A and channel B. 

𝑓𝑓𝑃𝑃𝐵𝐵(⋅ |𝑃𝑃𝐴𝐴 = 𝑥𝑥) Conditional probability density function of the probability of failure on demand of 
channel B, conditional on the probability of failure on demand of channel A being equal 
to x. 

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(⋅ |𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦) Conditional probability density function of the probability of simultaneous failure of 
channel A and channel B, conditional on the probability of failure of channel A being 
equal to x and the probability of failure of channel B being equal to y, respectively. 

𝐿𝐿(𝑛𝑛, 𝑟𝑟|𝑃𝑃𝐴𝐴𝐵𝐵) Likelihood of observing r simultaneous failures of channel A and channel B in n 
independent demands, conditional on the probability of simultaneous failure of channel 
A and channel B being 𝑃𝑃𝐴𝐴𝐵𝐵 . 

𝐿𝐿(𝑛𝑛, 𝑟𝑟𝑎𝑎 , 𝑟𝑟𝑏𝑏 , 𝑟𝑟𝑎𝑎𝑏𝑏|𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵 ,𝑃𝑃𝐴𝐴𝐵𝐵) Likelihood of observing 𝑟𝑟𝑎𝑎 failures of channel A only, 𝑟𝑟𝑏𝑏 failures of channel B only and 
𝑟𝑟𝑎𝑎𝑏𝑏  simultaneous failures of channel A and channel B in n independent demands, 
conditional on the probability of failure of channel A being 𝑃𝑃𝐴𝐴, the probability of channel 
B being 𝑃𝑃𝐵𝐵 and the probability of simultaneous failures of channel A and channel B being 
𝑃𝑃𝐴𝐴𝐵𝐵 . 

𝛿𝛿(𝑥𝑥) Dirac Delta function. 
𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(⋅,⋅,⋅ |𝑛𝑛, 𝑟𝑟𝑎𝑎 , 𝑟𝑟𝑏𝑏 , 𝑟𝑟𝑎𝑎𝑏𝑏) Joint probability density function of the probabilities of failure on demand of channel A, 

of channel B and of simultaneous failure of channel A and channel B, conditional on 
observing 𝑟𝑟𝑎𝑎 failures of channel A only, 𝑟𝑟𝑏𝑏 failures of channel B only and 𝑟𝑟𝑎𝑎𝑏𝑏  
simultaneous failures of channel A and channel B in n independent demands. 

2.1. Overview of the prior work: On-demand 2-channel software 
We start with a brief introduction of the concept of a 2-channel on-demand software.  

Consider a safety-critical system as illustrated in Figure 1. The safety of a safety-critical Plant is achieved by deploying a 
protection system. A deviation of the plant state from a predefined safe envelop of operation should be detected by a 
protection system via the “sensed plant state variables”. When a dangerous deviation of the plant state is detected the 
protection system tries to bring the plant to a safe state via a set of actuators. For many safety-critical systems the safe state 
might be merely shutting the plant down.  



Reliability of the protection system is typically achieved via redundancy: as shown in Figure 1 the protection system 
consists of two functionally identical channels, channel A and channel B. Each of the two channels can bring on its own 
the plant to a safe state. A failure of one of the channels of the protection system, thus, is of no consequence for the safety 
of the plant 

The case that we consider in this work is of a protection system in which the functionality of each channel is achieved by 
a dedicated software (SW1 and SW2, respectively) run on dedicated hardware (HW1 and HW2, respectively). Redundancy 
in both hardware and software is necessary so that a single point of failure is avoided. Defence against design faults in the 
channels is typically achieved using design diversity [4]. 

Plant

Protection System

Channel A 

Hardware Software

Channel B 

Hardware Software

Sensed plant 
state variables

Parallel OR 
1-out-of-2 
actuators 

for shutdown

 

Figure 1. A simplified diagram of a safety-critical system with a 2-channel protection system. 

A catastrophic system failure of the safety-critical system shown in Figure 1 will occur when the plant enters an unsafe 
state and both channels of the protection system fail simultaneously to bring the plant to a safe state. This condition can be 
captured by a fault tree as is shown Figure 2.  

 

Figure 2. A simplified fault tree for the safety-critical system, illustrated in Figure 1. 

The top event in the fault tree is the occurrence of a catastrophic system failure, which occurs when the plant enters an 
unsafe state and the two channels of the protection system fail simultaneously to bring the plan to a safe state. Protection 
channels, in turn, may fail due to either hardware or the software failures in the respective channel.  

The fault-tree uses the following base events: i) unsafe state of the plant (USPS), ii) hardware failure (ChA HWF) of 



channel A, iii) software failure (ChA SWF) of channel A, iv) hardware failure (ChB HWF) of channel B, and v) a software 
(ChB SWF) failure of channel B. The top event “catastrophic system failure (CSF)” can then be expressed as: 

CSF = USPS ∧ (ChA HWF ∨ ChA SWF) ∧ (ChB HWF ∨ ChB SWF) 

After an obvious transformation, the expression can be rewritten as:  

CSF = USPS ∧ ChA HWF ∧ ChB HWF ∨ USPS ∧ ChA HWF ∧ ChB SWF ∨  

USPS ∧ ChB SWF ∧ ChA HWF ∨ USPS ∧ ChA SWF ∧ ChB SWF.   

The top event is expressed as a disjunction of four conjunctions of triplets of events, each of which can trigger the top event 
CSF: i) USPS, ChA HWF and ChB HWF, ii) USPS, ChA HWF and ChB SWF, iii) USPS ∧ ChA SWF ∧ ChB_HWF and 
iv) USPS ∧ ChA SWF ∧ ChB_SWF. While for the first three conjunctions one can make a reasonably convincing argument 
that the events involved can be assumed to occur independently and hence the probability of their occurring simultaneously 
can be computed as a product of the marginal probabilities of occurrence of the events, such an argument cannot be made 
for the last conjunction term in the expression above: USPS ∧ ChA SWF ∧ ChB SWF. The evidence against assuming 
statistical independence, especially between ChA SWF and ChB SWF, accumulated over many decades of using software-
based protection systems is overwhelming. This evidence suggests that even if software used in the two protection channels, 
as shown in Figure 1, is developed truly independently – either as a result of a bespoke development of the channels by 
independent teams or by deploying in the channels off-the-shelf software acquired from different (and “independent”) 
vendors, assuming that the failures of the two software channels will occur statistically independent is not credible. In the 
absence of such statistical independence computing the probability of the top event CSF becomes difficult, too. This paper 
addresses this difficulty – analysing the attempts by others to solve the problem conservatively. Consider “on-demand” 
software, i.e., software, which is invoked by sending to it demands for processing as in the case of software used in the two 
channels of a protection system shown in Figure 1. Typical examples of on-demand software are protection systems, e.g., 
of a nuclear power plant or of any other process control plant. In such systems, the system safety is typically achieved by 
defining a “safe state”, which the system should enter should the controlled process deviate dangerously from the intended 
safe envelop of operation. The sole purpose of a protection system (often implemented in software) is to react to the 
deviations of the plant from its safe operation.  

Processing a demand by a protection system may involve a very complex sequence of inputs coming from the operational 
environment – from the initial signal (e.g., that the pressure in the nuclear reactor has exceeded the normal/acceptable 
level), followed by the software reading multiple sensors until the nature of the anomaly is established with certainty (or 
high degree of confidence) and then a transition to a safe state is executed as needed. We call this entire sequence of sensor 
reading and transition to the safe state a demand. Typically, a complex plant may deviate from its safe operation in many 
different ways, hence, many different demands on the protection system are possible. Each demand is processed by the 
protection system either correctly or may result in a failure. 

It is common in safety-critical applications to use fault-tolerance, e.g. via design diversity [5]. 1-out-of-2 software system 
is commonly used2. The two channels of a 1-out-of-2 system process the demands independently and produce responses 
to them. The system is said to have processed a demand correctly if at least one of the channels has produced a correct 
response. If both channels have failed simultaneously on the same demand, then the system is said to have failed. Demands, 
processed correctly, will bring the plant to the predefined safe state. 

 Channel A Channel B 
i) Success Success 

ii) Success Fail 

iii) Fail Success 

iv) Fail Fail 
Table 2: White-box model 

 

 System 

i)– iii) Success 

iv) Fail 

Table 3: Black-box model 

With two channels there are 4 possible outcomes for the responses of the two channels on a random demand as shown in 
Table 2. The first 3 outcomes, i) – iii), despite the possible channel failures, represent a successful operation of the 1-out-
of-2 system. If the system is modelled as a black box (Table 3), these three different outcomes become indistinguishable – 

 
2 Other architectures, such as 2-out-of-3 and even 2-out-of-4 are also used in protection systems but are outside the scope of the paper.  



on all of them the system processes the demand successfully. If the system is modelled as a white-box, then clearly i) – iii) 
are recognised as different and may be treated differently (Table 2). The white-box model also allows one to learn about 
the dependence among the failure processes of the two channels. For instance, seeing many instances of outcomes ii) and 
iii) in operation will be evidence of negative correlation between the failures of the two channels. If instead, no instances 
of ii) and iii) are seen in operation would imply that failures of the channels are positively correlated. The only thing that 
one can learn with a black-box model is the probability of simultaneous failure of the two channels.  

2.2. Black – box model vs. white-box model 
Bayesian assessment can be applied to a 2-channel system using either a black-box model or a white box model. The black-
box model is simpler and requires less detailed info about the system architecture and less detailed observations about the 
system as is evident from Table 3 above. Bayesian inference with a white-box model is computationally more complex, 
the observations from operation, too, have to be recorded with greater detail (as shown in Table 2 above).  

The two models have been compared in the past [6] and here we summarise some of the known results:  

- The white box inference makes better use of the observations as Table 2 and Table 3 demonstrate. This is not a 
mere technicality, but as we established in [6] may affect the predicted system reliability and confidence. Using 
the full observations in some cases may allow one to get confidence in a system reliability target faster (or slower) 
than if a black-box model is used.   

- The black-box model only requires a description of the modelled system3 in terms of the probability of system 
failure, characterised by the probability distribution𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(∙), of the probability of system failure, 𝑃𝑃𝐴𝐴𝐵𝐵 , treated as a 
random variable. This probability (and the respective probability distribution, 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(∙)), however, must be 
somehow derived from the knowledge about the individual channels’ pfds (and their respective probability 
distributions). The channels may have been developed (or acquired) and seen some independent assessment. The 
outcomes of these assessments must somehow be aggregated into a form suitable for a black-box Bayesian 
inference with a 2-channel system. This author is not aware of a rational way of constructing anything meaningful 
about the probability of system failure, 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(∙), without making use of the channels’ assessments, and making 
additional assumptions about how channel reliabilities might be related (e.g., how the channel failures might be 
related). Assessment which only requires quantification of system reliability (i.e., about the probability of 
simultaneous failure of channel A and channel B) may seem appealing since the burden on domain experts to 
provide quantification is reduced to a single probability distribution, 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(∙). These experts, however, still would 
need to deploy a “mental” model in order to get the requested minimal information rationally and consistently 
with what is known about the channels used in the 2-channel system. The advantage of a black-box inference over 
the white-box counterpart in terms of simplifying the system description, therefore, seems rather questionable.  

- The spirit of Bayesian assessment is to allow for the epistemic uncertainty in the values of the probabilities of 
failures to be updated with the observations from system testing/operation. Black-box inference only allows one 
to learn (and update the epistemic uncertainty) about system reliability. The black-box model, however, does not 
allow one to learn from system testing/operation about the channel’s pfd. White-box inference, on the other hand, 
does allow one to learn from the observations/testing about both the system and the channels’ reliabilities and 
how their dependences evolve. This is not just a matter of taste. If an argument is built, e.g., based on assumptions 
that some of the channels might be perfect (i.e., free from design faults), this argument will be entirely destroyed 
if the channel assumed perfect fails in testing/operation. The black-box model may mask this sensitive outcome, 
e.g., if channel failures do not lead to system failures. Under the white-box model, instead, channel failures will 
lead naturally to setting the probability of perfection to 0. This difference between the predictions obtained using 
a black-box and a white-box model is examined in detail in Section 4 and illustrated in section 5.  

2.3. Conservative assumptions in Littlewood – Rusby model 
Littlewood and Rushby establish conservative bounds on the probability of system failure of a 2-channel system in [7] 
under the following plausible assumptions: 

Assumption 1: If the probability of failure on demand of channel A, P(A fails) and the probability of perfection of the 
second channel, P(B is perfect), are known with certainty, then the two events occur independently, i.e. the probability of 
the joint event “channel A fails on a randomly chosen demand and channel B is not perfect” can be computed as a product 
of the two probabilities: 

 
3 A prior distribution. We introduce the Bayesian inference formally in section 3. 



P(A fails, channel B is not perfect) = P(A fails) × (1 – P(B is perfect))      (1) 

Assumption 2: If channel B is not perfect, then it fails with certainty whenever channel A fails. This is a very strong 
assumption and is said to guarantee that the assessment obtained with it is conservative. The assumption essentially states 
two things: 

• Given channel B is not perfect, i.e., PB > 0, then channel B is no better than channel A. Indeed, it fails at least on 
all those demands where channel A fails and possibly on some other demands, too. In other words: 
 
P(System fails | channel A has failed, PB > 0) = 1. 
  

• The probability of system failure, P(AB|PA = pa, PB = pb > 0) would be equal to the probability of failure of 
channel A. In other words, P(AB|PA = pa, PB > 0) = pa.  

We adopt these two assumptions throughout this paper.   

3. The System Model  
3.1. Modelling notations 

We start with a number of notations, necessary for the rest of the paper. These are consistent with the abbreviations 
summarised in Table 1.  

We will treat the probability of failure of the channels of a 2-channel system and of the system as random variables: we 
are typically unable to tell the exact value of these probabilities, these are subject to epistemic uncertainty. We use capital 
letters to denote these random variables, PA, PB and PAB, the probabilities of failure of channel A, channel B and of the 
system, respectively.  

Let 𝑓𝑓𝑃𝑃𝐴𝐴(∙), 𝑓𝑓𝑃𝑃𝐵𝐵(∙), 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(∙) be the probability density functions, which capture the epistemic uncertainty, associated with 
the values of PA, PB and PAB, respectively.  

The probability of perfection of a channel, e.g. of channel B, P(B is perfect), is related to 𝑓𝑓𝑃𝑃𝐵𝐵(∙). Non-zero probability of 
perfection, would imply that 𝑓𝑓𝑃𝑃𝐵𝐵(𝑃𝑃𝐵𝐵 = 0) = δ(𝑥𝑥)𝑃𝑃(𝐵𝐵 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑟𝑟𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝)3F

4, where δ(𝑥𝑥) is the Dirac Delta function5: 

𝐹𝐹𝑃𝑃𝐵𝐵(𝑃𝑃𝐵𝐵 = 0) = ∫ 𝑓𝑓𝑃𝑃𝐵𝐵(𝑥𝑥 = 0) ×0+
0 𝑃𝑃(𝐵𝐵 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑟𝑟𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝)𝑑𝑑𝑥𝑥 =  𝑃𝑃(𝐵𝐵 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑟𝑟𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝)∫ δ(𝑥𝑥)0+

0 𝑑𝑑𝑥𝑥 =  𝑃𝑃(𝐵𝐵 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑟𝑟𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝).  

3.2. Bayesian Inference 
Bayesian inference is based on the Bayes formula, which allows a posterior distribution to be derived from a given prior 
distribution and the likelihood of an observation.  

For on-demand software systems, the demands submitted for processing by the system are typically assumed to be drawn 
independently (with replacement) from the space of demands according to a given demand profile, a probability distribution 
which defines the likelihood of a demand being selected at random from the population of all demands.  

The observations – success/failure of channels and of the system – occur with different probabilities, called likelihood of 
the observations. For independently selected demands, if we observe a single channel (or the system, modelled as a black-
box), the observations will be in the form (n, r), where n is the total number of demands submitted to the system and r is 
the number of observed failures. Clearly, n ≥ r6. If we observe 2 channels, the observations will be in the form (n, ra, rb, 
rab), where n is again the number of demands submitted to the system for processing, ra is the number of failures of channel 
A only, rb is the number of failures of channel B only and rab is the number of simultaneous failures of both channels.  

 
4 The epistemic uncertainty about the value of P(B is perfect) can be captured by another distribution, e.g. with probability density 
function 𝑓𝑓𝑃𝑃𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(∙). 
5 The integral ∫ 𝛿𝛿(𝑝𝑝)𝑑𝑑𝑝𝑝𝑡𝑡2

𝑡𝑡1
 evaluates to 1, if the integration interval [t1, t2] includes the point t. Otherwise, the integral evaluates to 0.  

6 This inequality states the mere fact that we cannot observe more failures, r, than the total number of demands, n. 



3.2.1. Black-box inference 
If a black-box model is used for the 2-channel system, the random variable of interest is PAB. The posterior, 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵

𝑏𝑏 (∙ |𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑), 
can be computed as follows: 

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵
𝑏𝑏 (𝑥𝑥|𝑛𝑛, 𝑟𝑟) =

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥)𝐿𝐿(𝑛𝑛,𝑟𝑟|𝑃𝑃𝐴𝐴𝐵𝐵)

∫ 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥)1
𝑥𝑥=0 𝐿𝐿(𝑛𝑛,𝑟𝑟|𝑃𝑃𝐴𝐴𝐵𝐵)𝑑𝑑𝑥𝑥

      (2)  

where, the likelihood of observing r failures in n demands (n ≥ r), 𝐿𝐿(𝑛𝑛, 𝑟𝑟|𝑃𝑃𝐴𝐴𝐵𝐵), is given by the binomial formula: 

𝐿𝐿(𝑛𝑛, 𝑟𝑟|𝑃𝑃𝐴𝐴𝐵𝐵) = �𝑟𝑟𝑛𝑛� (𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟(1 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟     (3)  

In the special case of no failures (i.e., r = 0), the likelihood becomes: 

𝐿𝐿(𝑛𝑛, 0|𝑃𝑃𝐴𝐴𝐵𝐵) = (1 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛     (4)  

3.2.2. White-box inference   
An inference based on a white-box model requires a tri-variate prior distribution, e.g., 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(∙,∙,∙), in which the 
probabilities of failure of the individual channels and of the system are used as variates. The observations, e.g. from testing 
the 2-channel system, are used in the inference, in a similar manner to the black-box inference [6]: 

𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑) =
𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥,𝑦𝑦,𝑧𝑧)𝐿𝐿(𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎|𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵)

∫ ∫ ∫ 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥,𝑦𝑦,𝑧𝑧)1
𝑧𝑧=0

1
𝑦𝑦=0

1
𝑥𝑥=0 𝐿𝐿(𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎|𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵)𝑑𝑑𝑧𝑧𝑑𝑑𝑦𝑦𝑑𝑑𝑥𝑥

      (5)  

where 𝐿𝐿(𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑|𝑃𝑃𝐴𝐴 ,𝑃𝑃𝐵𝐵 ,𝑃𝑃𝐴𝐴𝐵𝐵) is the likelihood of an observation (n, ra, rb, rab), i.e., that in n demands one observes ra failures 
of channel A only, rb failures of channel B only and rab simultaneous failures of both channels. This (multinomial) 
likelihood is computed as follows: 

𝐿𝐿(𝑛𝑛, 𝑟𝑟𝑎𝑎 , 𝑟𝑟𝑏𝑏 , 𝑟𝑟𝑎𝑎𝑏𝑏|𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵 ,𝑃𝑃𝐴𝐴𝐵𝐵)

=
𝑛𝑛!

𝑟𝑟𝑎𝑎! 𝑟𝑟𝑏𝑏! 𝑟𝑟𝑎𝑎𝑏𝑏! (𝑛𝑛 − 𝑟𝑟𝑎𝑎 − 𝑟𝑟𝑏𝑏 − 𝑟𝑟𝑎𝑎𝑏𝑏)!
(𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑎𝑎(𝑃𝑃𝐵𝐵 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑏𝑏(𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑎𝑎𝑏𝑏(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎−𝑟𝑟𝑏𝑏−𝑟𝑟𝑎𝑎𝑏𝑏 

The special case of interest “no system failure” merely means that rab = 0, while ra , rb can both be greater than 0.  

If the marginal probability of system failure is of interest, this can be derived from the 3-variate posterior by integrating 
out the “nuisance” parameters, PA and PB (i.e., the probabilities of failure of the individual channels): 

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵
𝑤𝑤 (∙ |𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑) = ∫ ∫ 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(∙,∙,∙ |𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑)𝑑𝑑(𝑃𝑃𝐴𝐴)𝑑𝑑(𝑃𝑃𝐵𝐵)1

𝑃𝑃𝐵𝐵=0
1
𝑃𝑃𝐴𝐴=0

   (6) 

3.2.3. Black-box vs. White-box Model  
The relationship between the posteriors, 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵

𝑤𝑤 (∙ |𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑) and 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵
𝑏𝑏 (∙ |𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑), obtained with the two models for the same data 

is complex and no general law seems to exist, e.g., of stochastic ordering between the two posteriors. In our previous work 
[8] we recorded examples of ordering between the two predictions: in some cases the white-box inference can be more 
optimistic than the ones obtained with the black-box. In other cases, the ordering would be reversed. We also recorded 
cases with no ordering at all – the cdfs of the posteriors about the system pfd obtained with the black-box and the white-
box may have a crossover point.  

In general, the posteriors obtained with the two models will be different except for some special cases, some of which are 
summarised below:  

- In [6] we reported on using a Dirichlet distribution as a 3-variate prior, related to 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(∙,∙,∙). With a Dirichlet 
as a prior and testing on independently selected demands the marginal posteriors of the probability of system 
failure, 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵

𝑏𝑏 (∙ |𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑) and 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵
𝑤𝑤 (∙ |𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑) are guaranteed to be identical irrespective of the observations (e.g., 

testing results), and the particular parameterisation of the prior Dirichlet distribution. The Dirichlet as a prior is 
the only known case which eliminates the predictions dependence on the model used in the inference. However, 
in some prior work [9, 10] a black-box model was used with a prior of the system pfd, which typically has the 
entire probability mass concentrated in a few data points. Such a marginal prior would be impossible if a white-
box model were used with Dirichlet as a prior distribution. Thus, the conservative predictions established in the 
prior work based on a black-box model are bound to be different from the predictions obtained with a white-box 
model. In this paper we exploring these differences in detail.  



- Another special case of a system prior was studied in [6], in which conservative upper bounds on the probability 
of failure of the channels were assumed known with certainty. For this case we demonstrated that using a white-
box model leads to counterintuitive predictions: if neither of the channels fails in testing, the predictions 
𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵
𝑤𝑤 (∙ |𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑) are guaranteed to be worse than the prior, 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(∙), while the black-box model will produce 

predictions, 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵
𝑏𝑏 (∙ |𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑), which are stochastically better than the prior. We mention this case as it points to an 

intriguing and important side effect that may result from constraining the epistemic uncertainty in pursuit of 
“conservatism”. Our conjecture is that similar link between constrained epistemic uncertainty and Bayesian 
predictions might exist with other forms of conservative priors and study this possibility in this paper.  

4. Results 
In this section we apply Bayesian inference to predict the reliability of a 1-out-of-2 on-demand software using a white-box 
model and a prior distribution 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) consistent with the conservative assumptions defined by Littlewood & 
Rushby [7], as summarised in section 2.3. We assume that the marginal prior distribution, 𝑓𝑓𝑃𝑃𝐴𝐴(∙), characterising the 
epistemic uncertainty in channel A pfd, is fully defined7. We also assume that the probability of channel A being perfect is 
0, i.e. ∫ 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)0+

0 𝑑𝑑(𝑥𝑥)=0. 

4.1. A 3-variate conservative prior  
We start by constructing a joint probability distribution, 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(∙,∙,∙), consistent with the assumptions made in section 
2.3.  

4.1.1. Epistemic uncertainty in pfd of channel B 
Assumption 1 above states that there is a non-zero probability that channel B is perfect, thus P(B is not perfect) = 1 -  P(PB 
= 0), the latter in turn is merely the value of the integral ∫ 𝑓𝑓𝑃𝑃𝐵𝐵(∙)0+

0 𝑑𝑑𝑃𝑃𝐵𝐵. For this integral to be nonzero, we need 
𝑓𝑓𝑃𝑃𝐵𝐵(𝑃𝑃𝐵𝐵 = 0) ≡ 𝐾𝐾𝛿𝛿(𝑃𝑃𝐵𝐵 = 0), where K is the probability of perfection of channel B. In other words, if pnp is the true value 
of P(B is not perfect) then: 

 𝑓𝑓𝑃𝑃𝐵𝐵(𝑥𝑥) = �
(1 − 𝑝𝑝𝑛𝑛𝑝𝑝) × 𝛿𝛿(𝑥𝑥), 𝑖𝑖𝑓𝑓 𝑥𝑥 = 0

𝑔𝑔𝑃𝑃𝐵𝐵(𝑥𝑥), 𝑖𝑖𝑓𝑓 𝑥𝑥 > 0 .       (7) 

for some non-negative function 𝑔𝑔𝑃𝑃𝐵𝐵(∙) such that, ∫ 𝑔𝑔𝑃𝑃𝐵𝐵(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑝𝑝𝑛𝑛𝑝𝑝1
0+

. 

Let us now consider the conditional distribution, 𝑓𝑓𝑃𝑃𝐵𝐵(∙ |𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎). Based on the assumptions from 2.3 this conditional 
distribution will have a shape similar to the shape shown in Figure 1: 

  

Figure 3. An illustration of the epistemic uncertainty associated with PB, 𝒇𝒇𝑷𝑷𝑩𝑩(∙ |𝑷𝑷𝑨𝑨 = 𝒑𝒑𝒂𝒂).  

A special case of the distribution will be when its entire mass on the range (pa, 1] is concentrated at a single point, Pb = pa 
as is shown in Figure 2. The conditional probability distribution 𝑓𝑓𝑃𝑃𝐵𝐵(∙ |𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎) characterises the uncertainty associated 
with the probability of failure of channel B, conditional on 𝑃𝑃𝑨𝑨 = 𝑝𝑝𝑎𝑎.  

 
7 This assumption is plausible as a black-box inference can be applied to channel A before it becomes a part of a 1-out-of-2 or other 
wider system, using i) the results of testing channel A on its own, or ii) the observations from real operation of channel A elsewhere. 
Bayesian inference with channel A would produce the prior distribution 𝑓𝑓𝑃𝑃𝐴𝐴(∙). 



 

Figure 4. A special case of conservative 𝒇𝒇𝑷𝑷𝑩𝑩(∙ |𝑷𝑷𝑨𝑨 = 𝒑𝒑𝒂𝒂), when the entire mass is concentrated in two points. 

Apart from the point PB = 0, the assumptions of conservatism imply that 𝑓𝑓𝑃𝑃𝐵𝐵(∙ |𝑃𝑃(𝐴𝐴) = 𝑝𝑝𝑎𝑎) might be non-zero only in the 
interval [pA, 1], but ought to be 0 on the interval (0, pA) as is evident from Figure 1 and Figure 2. Clearly, this conditional 
distribution is quite unusual and it will be difficult to argue that it is plausible. The point, however, is that this distribution 
is guaranteed to define conservatively the epistemic uncertainty associated with PB. And yet, Figure 1 and Figure 2 make 
it quite clear that one may be doubtful whether to rely on such a conservative prior distribution.  

4.1.2. Joint distribution 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵(∙,∙ ) 
Now we turn our attention to the joint distribution 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵(∙,∙ ). For this we will need to specify the relationship between the 
probability of perfection, P(B is perfect) and the distribution of PA. In the general case if these two probabilities are treated 
as random variables, there is no guarantee that they will be independently distributed [7]. Even, if P(B is perfect) is assumed 
known with certainty, we cannot just assume that P(B is perfect|PA = pa) is a constant and does not vary with PA. From the 
point of view of the joint distribution, 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵(∙,∙ ) we can have P(B is perfect|PA = pa) vary with PA. In this case the assumed 
known P(B is perfect) would be merely the expected value of the random variable 𝑃𝑃(𝐵𝐵 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑟𝑟𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝|𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎):  

𝑃𝑃(𝐵𝐵 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑟𝑟𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝) = ∫ 𝑃𝑃(𝐵𝐵 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑟𝑟𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝|𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎)𝑓𝑓𝑃𝑃𝐴𝐴(𝑃𝑃𝐴𝐴)𝑑𝑑(𝑃𝑃𝐴𝐴)1
0      (8) 

Let us simplify the analysis and assume that 𝑃𝑃(𝐵𝐵 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝|𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎) = 𝑃𝑃(𝐵𝐵 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑟𝑟𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝) and proceed with the construction 
of the joint distribution, 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵(∙,∙ ). We note that Assumption 1 (see section 2.3 above) states just that – the probability of 
perfection of channel B does not depend on the value of the probability of failure of channel A.  

4.1.3. Conditional distribution 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(∙ |𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎,𝑃𝑃𝐵𝐵 = 𝑝𝑝𝑏𝑏 ≥ 𝑝𝑝𝑎𝑎)  
Let us now look at 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(∙ |𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎 ,𝑃𝑃𝐵𝐵 = 𝑝𝑝𝑏𝑏 ≥ 𝑝𝑝𝑎𝑎), the conditional distribution of system pfd, conditional on known 
probabilities of failure of channel A, pA, and of channel B, pB. 

Clearly, 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(∙ |𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎 ,𝑃𝑃𝐵𝐵 = 0) = 𝛿𝛿(0) – perfection of channel B implies that the system is also perfect.  

For any other pair of values, 𝑝𝑝𝑏𝑏 , 𝑝𝑝𝑎𝑎, we should consider two cases: 

- 𝑝𝑝𝑎𝑎 < 𝑝𝑝𝑏𝑏 . This case should be “impossible” under the conservative assumptions: channel B is either perfect or no 
better than channel A. Any definition of the conditional probability of failure, e.g., 𝛿𝛿(𝑝𝑝 − 𝑝𝑝𝑎𝑎), will be acceptable.  

- 𝑝𝑝𝑎𝑎 ≥ 𝑝𝑝𝑏𝑏 .  In this case we will have: 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑝𝑝|𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎 ,𝑃𝑃𝐵𝐵 = 𝑝𝑝𝑏𝑏 > 0) = 𝛿𝛿(𝑝𝑝 − 𝑝𝑝𝑎𝑎). Indeed, given Assumption 2 
made earlier, whatever the specific value 𝑝𝑝𝑏𝑏 > 0 the system is failing whenever channel A fails. 𝑃𝑃𝐴𝐴𝐵𝐵  is 
deterministically equal to 𝑃𝑃𝐴𝐴. In other words, the entire mass of the probability of system failure will be 
concentrated at point 𝑝𝑝𝑎𝑎. Not surprisingly, the particular value of the probability of failure of channel B, 𝑝𝑝𝑏𝑏 > 0, 
does not affect 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(∙ |𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎,𝑃𝑃𝐵𝐵 = 𝑝𝑝𝑏𝑏) in any way.  



 

Figure 5. An illustration of the conditional distribution 𝒇𝒇𝑷𝑷𝑨𝑨𝑩𝑩(∙ |𝑷𝑷𝑨𝑨 = 𝒑𝒑𝒂𝒂,𝑷𝑷𝑩𝑩 = 𝒑𝒑𝒃𝒃,𝒑𝒑𝒃𝒃 >  𝒑𝒑𝒂𝒂).  

4.1.4. Epistemic uncertainty in system pfd  
Having established the two conditional distributions, 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) and 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(∙ |𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎,𝑃𝑃𝐵𝐵 = 𝑝𝑝𝑏𝑏), we are now ready to 
express the full tri-variate distribution, 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥,𝑦𝑦, 𝑧𝑧), needed for the white-box inference.  

Trivially,  

𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)    (9) 

The marginal prior distribution of the probability of system failure 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(∙) can be derived from 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) by 
integrating out the nuisance parameters.  

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧) = ∫ ∫ 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)1
𝑦𝑦=0

1
𝑥𝑥=0 𝑑𝑑(𝑃𝑃𝐵𝐵)𝑑𝑑(𝑃𝑃𝐴𝐴)= 

=∫ ∫ 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)1
𝑦𝑦=0

1
𝑥𝑥=0 𝑑𝑑(𝑦𝑦)𝑑𝑑(𝑥𝑥).   (10) 

 
We will simplify this expression separately for z = 0 and for z > 0.  

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧 = 0)=∫ ∫ 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧 = 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦 = 0)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)0+
𝑦𝑦=0

1
𝑥𝑥=0 𝑑𝑑(𝑦𝑦)𝑑𝑑(𝑥𝑥)  (11) 

and  
𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧 > 0) = ∫ ∫ 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧 > 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)1

𝑦𝑦=𝑥𝑥
1
𝑥𝑥=0 𝑑𝑑(𝑦𝑦)𝑑𝑑(𝑥𝑥)    (12) 

Since, 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧 = 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦 = 0) = 𝛿𝛿(𝑧𝑧) and 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 > 𝑥𝑥) = 𝛿𝛿(𝑦𝑦)(1 - pnp), (11) can be rewritten as: 

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧 = 0)= 𝛿𝛿(𝑧𝑧) �∫ 𝛿𝛿(𝑦𝑦)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)𝑑𝑑𝑦𝑦0+
𝑦𝑦=0 � ∫ 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)𝑑𝑑(𝑥𝑥)1

𝑥𝑥=0 = 𝛿𝛿(𝑧𝑧)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)   (13) 
Since, 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧 > 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦) =  𝛿𝛿(𝑝𝑝 − 𝑥𝑥), (12) can be rewritten as follows: 

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧 > 0) = � � 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧 > 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)
1

𝑦𝑦=𝑥𝑥

1

𝑥𝑥=0

𝑑𝑑(𝑦𝑦)𝑑𝑑(𝑥𝑥) = 

 ∫ 𝛿𝛿(𝑝𝑝 − 𝑥𝑥)1
𝑥𝑥=0 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)𝑑𝑑(𝑥𝑥)∫ 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑑𝑑(𝑦𝑦)1

𝑦𝑦=𝑥𝑥      (14) 

Now we note that ∫ 𝛿𝛿(𝑝𝑝 − 𝑥𝑥)1
𝑥𝑥=0 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)𝑑𝑑(𝑥𝑥) = 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥), which follows from the “sifting property” of the Dirac Delta 

function and that ∫ 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑑𝑑(𝑦𝑦)1
𝑦𝑦=𝑥𝑥 = 𝑝𝑝𝑛𝑛𝑝𝑝. Thus, we arrive at the following:  

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧 > 0) = ∫ 𝛿𝛿(𝑝𝑝 − 𝑥𝑥)1
𝑥𝑥=0 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)𝑑𝑑(𝑥𝑥)∫ 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑑𝑑(𝑦𝑦)1

𝑦𝑦=𝑥𝑥 = 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)𝑝𝑝𝑛𝑛𝑝𝑝  (14) 

In summary, the marginal pdf of the probability of system failure becomes: 

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥) = �
𝛿𝛿(𝑥𝑥)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝), 𝑖𝑖𝑓𝑓 𝑥𝑥 = 0
𝑝𝑝𝑛𝑛𝑝𝑝 × 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥), 𝑖𝑖𝑓𝑓 𝑥𝑥 > 0       (15)  

In other words, the marginal prior distribution of the probability of system failure (pfd), defined consistently with the 
conservative assumptions, would be entirely defined by the marginal pdf of channel A and the probability of perfection, 
pnp, of channel B. This is not exactly surprising. Given the set of assumptions, some of which are indeed extreme, one 
would have expected that the distribution of system pfd would be constrained. Yet, the expression of the marginal 
distribution of system pfd provides an insight about the nature of this marginal pdf of the system pfd.  



It is worth noting that in the above derivation we did not make any assumptions about the conditional distribution 
𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥). Its form, as shown in Figure 1, includes the special case of the entire mass of this conditional probability 
distribution being concentrated in a single point, 𝑝𝑝𝑏𝑏 = 𝑝𝑝𝑎𝑎, and being 0 elsewhere (see Figure 2). Thus, the marginal 
distribution of system pfd, captured by (15), will be the same irrespective of the particular form that 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) takes. 

Now, if one is interested in applying a black-box Bayesian inference, the prior probability density function 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(∙) is readily 
available and one can use it. There is no need to ask in addition for percentiles of this distribution, as is required in [9, 10]. 
If one does need some percentiles, these can be easily obtained from this conservative marginal pdf defined by (15). 

4.2. Conservative Predictions using a white-box model 
Now we look at the posteriors derived with the constructed conservative priors – using a black-box or a white box system 
models. Are these posteriors guaranteed to be conservative in some sense? If so, in which sense? The previous works 
formulated the conservatism in terms of the expected value of the posterior system pfd. Can we do better and demonstrate 
stronger guarantees of conservatism, e.g., stochastic ordering of some sort between the predictions obtained with the 
different models?  

The previous works concentrated on demonstrating conservatism with respect to a specific observation – testing/operation, 
which revealed no system failures. Are the predictions guaranteed to be conservative for other observations, possibly for 
any observations, e.g., for observations in which one of the channels has failed or both channels have failed, but no system 
failure has been observed or indeed when even a limited number of system failures (i.e., simultaneous failures of both 
channels) have been observed? 

4.2.1. Properties of the conservative priors 
First, we look at whether the assumptions stated earlier about the conservatism of the prior are retained in the posterior 
distribution. In other words, whether the posterior distribution derived with a white-box Bayesian inference remains 
conservative, in the sense of Assumption 1 and Assumption 2, stated in section 2.3.  

4.2.2. Case 1: No failure observed  
Consider first the case of no channel failures in n demands. Using (5) we can express the posterior probability density 
function as follows: 

 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 0, 0, 0) =
𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥,𝑦𝑦,𝑧𝑧)𝐿𝐿(𝑛𝑛,0,0,0|𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵)

∫ ∫ ∫ 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥,𝑦𝑦,𝑧𝑧)1
𝑧𝑧=0

1
𝑦𝑦=0

1
𝑥𝑥=0 𝐿𝐿(𝑛𝑛,0,0,|𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵)𝑑𝑑𝑧𝑧𝑑𝑑𝑦𝑦𝑑𝑑𝑥𝑥

    (19) 

Theorem 1:  

The posterior distribution 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 0, 0, 0) derived with a conservative prior, consistent with Assumption 1 and 
2 stated in section 2.3, and with “no failure” observed in n demands, retains the conservative properties captured by 
Assumptions 1 and 2.  

Proof: Provided in Appendix A.   

The next result is related to how Bayesian inference affects the assumption that the probability of perfection of channel B 
and the probability of failure of channel A are independently distributed random variables, which we assumed in section 
4.1.2. 

Theorem 2:  

The assumption that the probability of perfection of channel B does not vary with the probability of failure of channel A is 
not guaranteed in a posterior distribution 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 0, 0, 0) derived from a conservative prior consistent with 
Assumption 1 and 2 for an observation of “no failures” in n demands.  

Formally, assuming that 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵�𝑧𝑧 = 0|𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎1� = 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵�𝑧𝑧 = 0|𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎2� for any two different values of the probability 
of failure of channel A, 𝑝𝑝𝑎𝑎1 ≠ 𝑝𝑝𝑎𝑎2 , may lead to 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵�𝑧𝑧 = 0|𝑛𝑛, 0,0,0,𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎1� ≠ 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵�𝑧𝑧 = 0|𝑛𝑛, 0,0,0,𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎2�.  

Proof: Provided in Appendix B.  



The implication of this theorem is that the appealing assumption of independence adopted by Littlewood and Rushby model 
between the probability of perfection and the probability of failure of channel A may not be retained in the posterior 
distribution 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 0, 0, 0).  

Theorem 3: 

The posterior probability of system perfection derived with a conservative prior, consistent with Assumptions 1 and 2 
stated in section 2.3, is greater than the prior probability of system perfection, i.e.,  

𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧 = 0|𝑛𝑛, 0,0,0) > 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧 = 0).  

Proof: Provided in Appendix C. 
 

In other words, observing no failures increases the belief that the system might be perfect. This is not surprising as the 
evidence of “no failure” is supportive of the system being good, possibly perfect.  

 

Finally, let us look at how the form of the prior distribution 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) impacts the predictions of the probability of 
system failure for the case of observing “no failures”. We will compare the posterior probability of system perfection for 
the following forms of 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥):  

• Case 1: The probability mass is somehow spread over the interval [x, 1], as illustrated in Figure 1, and  
• Case 2 (“opt”): The entire probability mass of 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 > 0) is concentrated at a single point y = x. In this 

case, 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) = 𝛿𝛿(𝑦𝑦 − 𝑥𝑥) × 𝑝𝑝𝑛𝑛𝑝𝑝, as illustrated in Figure 2. 

Theorem 4: 

The probability of perfection, 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵
𝑜𝑜𝑜𝑜𝑡𝑡(0|𝑛𝑛, 0,0,0) is smaller than 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑛𝑛, 0,0,0), i.e.: 

𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵
𝑜𝑜𝑜𝑜𝑡𝑡(0|𝑛𝑛, 0,0,0) < 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑛𝑛, 0,0,0) 

Proof:  Provided in Appendix D.  

The implication of this theorem is quite clear: the “opt” case of prior distribution is the most conservative prior in the sense 
of minimising the posterior probability of system perfection. Although intriguing, this result falls short of establishing 
stochastic ordering between the posterior distributions derived using the “opt” prior and the other form of prior distribution 
of 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 > 0).  

We note that the result from Theorem 2 applies to both 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵
𝑜𝑜𝑜𝑜𝑡𝑡(0|𝑛𝑛, 0,0,0) and 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵(0|𝑛𝑛, 0,0,0). Thus, combining Theorem 

2 and 4, leads to the following relationship between the marginal probabilities of system perfection: 

𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵(0) < 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵
𝑜𝑜𝑜𝑜𝑡𝑡(0|𝑛𝑛, 0,0,0) < 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵(0|𝑛𝑛, 0,0,0)     (20) 

4.2.3. Case 2: Failures observed 
We now briefly look at the cases, in which failures are observed in operation/testing. Such observations were not studied 
in the prior work [7, 9, 10].  

We are particularly interested to find observations, for which the posterior violates Assumptions 1 and 2 used in 
constructing a conservative prior distribution. We are also interested to find out the price of using the conservative prior, 
e.g., to establish observations, which lead to counterintuitive predictions about the reliability of the system and its channels.   

The general form of the joint posterior distribution was already provided earlier by equation (5). Below we list the 
likelihood for several observations including channel or system failures: 

• Failures of channel A only. Consider n tests/operational demands in which 𝑟𝑟𝑎𝑎 > 0 failures of channel A are 
observed and no failures of channel B (𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0). The likelihood of this observation is: 



𝐿𝐿(𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0|𝑃𝑃𝐴𝐴 ,𝑃𝑃𝐵𝐵 ,𝑃𝑃𝐴𝐴𝐵𝐵) =
𝑛𝑛!

𝑟𝑟𝑎𝑎! (𝑛𝑛 − 𝑟𝑟𝑎𝑎)!
(𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑎𝑎(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎  

• Failures of channel B only. Consider n tests/operational demands in which 𝑟𝑟𝑏𝑏 > 0 failures of channel B are 
observed, and no failures of channel A (𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0). The likelihood of this observation is: 

𝐿𝐿(𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0|𝑃𝑃𝐴𝐴 ,𝑃𝑃𝐵𝐵 ,𝑃𝑃𝐴𝐴𝐵𝐵) =
𝑛𝑛!

𝑟𝑟𝑏𝑏! (𝑛𝑛 − 𝑟𝑟𝑏𝑏)!
(𝑃𝑃𝐵𝐵 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑏𝑏(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑏𝑏 

• System failures only. Consider n tests/operational demands in which 𝑟𝑟𝑎𝑎𝑏𝑏 > 0 simultaneous failures of channel A 
and channel B are observed, but none of the channels fails on its own (𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 = 0). The likelihood of this 
observation is: 
𝐿𝐿(𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0|𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵 ,𝑃𝑃𝐴𝐴𝐵𝐵) =  

=  
𝑛𝑛!

𝑟𝑟𝑎𝑎𝑏𝑏! (𝑛𝑛 − 𝑟𝑟𝑎𝑎𝑏𝑏)!
(𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑎𝑎𝑏𝑏(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎𝑏𝑏 

• Finally, we could have a combination of channel only failures, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 > 0, respectively. In this case the 
likelihood of the observation is: 

𝐿𝐿(𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0|𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵 ,𝑃𝑃𝐴𝐴𝐵𝐵)

=
𝑛𝑛!

𝑟𝑟𝑎𝑎! 𝑟𝑟𝑏𝑏! (𝑛𝑛 − 𝑟𝑟𝑎𝑎 − 𝑟𝑟𝑏𝑏)!
(𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑎𝑎(𝑃𝑃𝐵𝐵 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑏𝑏(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎−𝑟𝑟𝑏𝑏  

We analyse each of the first three cases listed above next. The fourth case is a combination of observing channel failures. 
Its implications, therefore, can be easily derived from the cases describing the implications of failure of each of the channels 
on their own.  

4.2.3.1. Case 2a: Channel B failure only are observed in operation/testing 
This case illustrates an observation 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0 in n demands/tests (𝑛𝑛 ≥ 𝑟𝑟𝑏𝑏). Intuitively, a failure of channel B, 
considered perfect with non-zero probability is straightforward. Such an observation destroys the hypothesis that channel 
B might be perfect. Hence, we expect the posterior distribution to evolve to a form, in which the probability of perfection 
is set to 0. The following theorem confirms that observing failures of channel B indeed leads to a posterior with probability 
of failure of channel B set to 0. 

Theorem 5:  

Posterior distribution 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) derived from a conservative prior consistent with 
Assumptions 1 and 2, stated in section 2.3 and with observations 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0 in n demands (𝑛𝑛 ≥ 𝑟𝑟𝑏𝑏), will be 
such that the probability of perfection of channel B is set to 0: 

 𝐹𝐹𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) = 0. 

Proof: Provided in Appendix E.  

Note that the result does not depend on the number of failures of channel B. Even if a single failure of channel B is 
observed, the belief is destroyed that channel B might be perfect. At this point, the reliability benefits from channel B are 
lost – the system becomes as reliable as channel A (Assumption 2), i.e., channel B is assumed failing deterministically, 
whenever channel A fails. 

Note also that using a black-box inference will overlook this very significant change of the probability of channel B 
perfection. With a black-box model, a demand which leads to a failure of channel B only, will be considered a successfully 
processed demand and thus the black-box inference will lead to a posterior predicting improvement of the probability of 
system perfection.  

4.2.3.2. Case 2b: Channel A failure only observed in operation/testing 
Now consider the case of observing failures of only channel A in testing/operation, i.e., observing 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0 
in n demands/tests (𝑛𝑛 ≥ 𝑟𝑟𝑎𝑎). An observation with failures of channel A only in operation should not be surprising and 
should be anticipated. The prior works, however, have not analysed the response of a conservative prior to such 
observations. The next theorem establishes a very surprising result: 

Theorem 6: 



Posterior distribution 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) derived from a conservative prior consistent with 
Assumptions 1 and 2, stated in section 2.3, and after observations 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0 in 𝑛𝑛 demands (𝑛𝑛 ≥ 𝑟𝑟𝑎𝑎), will be 
such that the probability of perfection of channel B is set to 1.  

𝐹𝐹𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) = 1. 

Proof: Provided in Appendix F.  

The implications of seeing failures of channel A are indeed very dramatic and surprising: even a single failure of channel 
A, which itself should not be surprising, leads to a posterior, in which the channel B and the system are now believed to be 
perfect with certainty. Such a prediction is counterintuitive, a clear sign that the particular conservative model is 
problematic as it implies a very strong dependence between the uncertainties in the probabilities of failure of the channels. 
Details of why this “side effect” occurs are provided in Appendix F, but intuitively the cause are the constraints we have 
imposed on the prior, 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑦𝑦 ≥ 𝑥𝑥), (as illustrated in Figure 1 and Figure 2). Given that channel A fails, the 
constrained distribution 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 ≥ 𝑥𝑥) changes dramatically. The probability mass attached to 𝐹𝐹𝑃𝑃𝐵𝐵(𝑦𝑦 > 𝑥𝑥|𝑃𝑃𝐴𝐴 =
𝑥𝑥) in the prior, in the posterior will be multiplied by (𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑎𝑎 . However, for values of 𝑃𝑃𝐵𝐵 > 0 Assumption 2 implies 
𝑃𝑃𝐴𝐴 = 𝑃𝑃𝐴𝐴𝐵𝐵 , thus leading to 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) = 0.  𝑃𝑃𝐴𝐴 and 𝑃𝑃𝐴𝐴𝐵𝐵, however, do not have to be equal! 
They are so merely due to Assumption 2, made in adopting a conservative prior of a particular form. As a result, the entire 
probability mass of the conditional distribution 𝐹𝐹𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) will be moved to point 𝑃𝑃𝐵𝐵 = 0. As a result, channel B in 
the posterior will be believed to be perfect with certainty, which in turn, implies that the system itself will be believed to 
be perfect with certainty. 

We note that this dramatic and counterintuitive change of the epistemic uncertainty will remain invisible with a black-box 
inference. A demand which leads to a failure of channel A will be considered processed correctly by the system and will 
lead to an increase of the confidence in system’s perfection, but not as dramatic as the inference with the white-box model 
implies. 

4.2.3.3. Case 2c: System failure only observed 
Now we look at another possible observation – observing simultaneous failures of the two channels, i.e., 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 =
0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0 in n demands/tests (𝑛𝑛 ≥ 𝑟𝑟𝑎𝑎𝑏𝑏). Such observation would be evidence of a strong correlation between the failures 
of the two channels.  

Intuitively, this case is a special case of Case2a – channel B fails – and we expect to see again (as in Case 2a) that the belief 
about a possible perfection of channel B in the posterior is destroyed. This is indeed confirmed by the following: 

Theorem 7: 

Posterior distribution 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0) derived from a conservative prior consistent with 
Assumptions 1 and 2, stated in section 2.3, and after observations 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0, will be such that the probability 
of perfection of channel B is set to 0: 

𝐹𝐹𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0) = 0.  

Proof: Provided in Appendix G.  

In summary, when we observe failures – either of the individual channels or of the system – the conservative prior aligned 
with Assumption 1 and 2 stated in section 2.3 leads to predictions with “side effects”: 

- A failure of channel A makes us believe that channel B is perfect, which is an extreme form of negative 
dependence between the epistemic uncertainties in the pfds of channel A and B.  

- When either channel B or the system fail, we lose confidence in channel B perfection, which in turn, makes the 
conservative model useless: the conservative model assumes that if channel B is not perfect the system is merely 
as reliable as channel A. In this case, there is no reliability gain from using channel B.  

It seems that the conservative model built with Assumption 1 and 2 and captured by the prior distribution is quite brittle 
with implausible “side effects”. Although no such “side effects” have been detected with “no failures” observations, the 
brittleness of the predictions, which is entirely due to the assumptions on which the prior is built, poses doubts about the 
suitability of the conservative prior for practical assessment.  



We stress that the two cases, Case 2a and Case 2b, will be indistinguishable for the black-box model under any 
parametrisation – conservative or not. This is due to the intrinsic nature of the black-box model. With the white-box model, 
however, the two cases lead to two extreme changes of the epistemic uncertainty related to channel B’s perfection: with 
Case 2a any hope of perfection of channel B is lost; with Case 2b – all doubts in perfection of channel B (hence in the 
system) are removed and the system is believed to be perfect with certainty. The difference could not have been greater. 

The attentive reader may have noticed that we did not consider a combination of the above 3 cases – combination of channel 
A and channel B failures and of system failures (i.e., two or more of the failure counts are greater than 0: 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 >
0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0). Such cases can be handled using the 3 cases described above. For instance, an observation (𝑛𝑛, 𝑟𝑟𝑎𝑎 , 𝑟𝑟𝑏𝑏 , 𝑟𝑟𝑎𝑎𝑏𝑏), which 
contains a combination of non-zero failure counts, can be split suitably into batches such that at most one of the (𝑟𝑟𝑎𝑎 , 𝑟𝑟𝑏𝑏 , 𝑟𝑟𝑎𝑎𝑏𝑏) 
is non-zero. A batch can include any number of “no failures” observations. As an example, consider that batch1 consists of 
n1 > 0 “no failure” observations followed by a failure of channel A, batch2 consists of n2 > 0 “no failure” observations, 
followed by a simultaneous failure of both channels, batch3 consists of n3 > 0 “no failure” observations followed by a 
failure of channel B, etc. Processing the first batch will use the conservative prior and will produce posterior1, which in 
turn will become a prior for the inference with batch2. The posterior derived with the observations in batch2 will then 
become the prior for the inference with batch3, etc. Having processed all batches one will arrive at a posterior prediction 
which takes into account the full set of observations grouped in batches. Although technically, such an iterative procedure 
is sound, the value that one will get using it seems questionable. Clearly, after the first batch with a channel failure the 
predictions become “questionable”:  

i) after the first failure of channel A we will conclude that the system is perfect with certainty. Note that such a 
conclusion does not guaranteed that failures of channel B are impossible in the future. The certainty in channel B 
(hence the system) perfection is a mere consequence of using a constrained prior based on assumptions 1 and 2.  

ii) after the first failure of channel B on its own or simultaneously with channel A, we will conclude that the system is 
as good as channel A on its own. At this point one will question the value of a conservative prior based on 
Assumptions 1 and 2 and will probably abandon processing the further batches of observations.  

5. A contrived example 
In this section we illustrate the work of the white-box conservative model on a contrived example of a 2-channel system, 
which is close to the example used in [7]. The system model is defined using Assumption 1 and 2 for constructing the 
prior8. Channel A’s pfd is represented by a truncated Beta distribution in the range [0, 0.01] with parameters α=1, β = 10, 
i.e., the expected value of 𝑃𝑃𝐴𝐴 ≈ 10−3 with an upper bound on 𝑃𝑃𝐴𝐴 of 0.01 (𝑃𝑃𝐴𝐴 ≤ 0.01).  

For channel B’s we construct the conditional pdf of its pfd using a truncated Beta distribution with the same parameters 
(α=1, β = 10) but the probability mass is assigned according to: 

• Figure 1: 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥) =  𝛿𝛿(𝑦𝑦)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝) and the rest of the probability mass is assigned within the interval 
[𝑥𝑥, 𝑥𝑥 + 0.01], or  

• Figure 2: the probability mass for the conditional probability distribution 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) is concentrated in two 
points: 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥) = 𝛿𝛿(𝑦𝑦)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝) and 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 = 𝑥𝑥|𝑃𝑃𝐴𝐴 = 𝑥𝑥) = 𝛿𝛿(𝑦𝑦 − 𝑥𝑥)𝑝𝑝𝑛𝑛𝑝𝑝, respectively.  

The non-zero probability of perfection of channel B is set to pnp = 0.5 and is independent of the probability of failure of 
channel A (i.e., does not vary with 𝑃𝑃𝐴𝐴).  

Now we illustrate the inference for a selected number of observations: 

Case 1: n = 5000 tests with no failures observed (ra=0, rb = 0, rab = 0).  

Case 2: n = 5000 tests with a single failure of channel A (ra = 1, rb = 0, rab = 0).  

Case 3: n = 5000 tests with a single failure of channel B (ra = 0, rb = 1, rab = 0).  

Case 4: n = 5000 tests with a single system failure (i.e., a simultaneous failure of channel A and channel B) (ra = 0, rb = 0, 
rab = 1). 

 
8 The calculations were conducted using a bespoke MATLAB script, available from the author on demand.  



We constructed the joint prior using the parameterisation above and then derived from it the marginal distribution of the 
probability of system failure, 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥). This marginal distribution was then used to derive the “black-box” posterior 
distribution 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵

𝑏𝑏 (𝑥𝑥|𝑛𝑛, 𝑟𝑟𝑎𝑎𝑏𝑏) for all cases listed above using (2). Clearly, for the black-box inference, Case 1, Case 2 and 
Case 3 are indistinguishable as in all three cases the system does not fail.  

 

Figure 6. Conservative inference in action: an illustration of the difference between white-box and black-inference results for different 
observation.  

We apply also a “white-box” inference using the results described in section 4. For the white-box model inference we 
define two priors whose 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) differ - according to Figure 1 or Figure 2, respectively. From the joint posteriors 
we derive 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵

𝑤𝑤 (∙ |𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑), and plot them in Figure 4.  

The curves representing the white box posterior distribution of the probability of system failure are labelled as follows: 

• “White-box posterior” for the posterior derived from a joint prior in which 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) is defined as shown in 
Figure 1 (referred to as the non-“opt ” case in the commentary below), and 

• “White-box posterior Opt” for the posterior derived from a joint prior in which 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) is defined as shown in 
Figure 2 (referred to as the “opt” case in the commentary below).  

The difference between the white-box posteriors (“opt” and non-“opt”) and the black-box posteriors are shown in Figure 
4 above.  

The case of “no-failures” in operation, studied in [7], is illustrated in the left-top plot of Figure 4. One can see clearly that 
the three posterior distributions for the probability of system failure are different: there is a stochastic ordering between 
them. The most optimistic prediction is obtained with the black-box model. The white box “opt” prediction is the most 
conservative and the white-box (non-“opt”) is in between. The illustration not merely confirms the ordering between the 
“opt” and non-“opt” white box predictions of the probability of system perfection, which we established with inequality 
(20), but a stochastic ordering is in place between the distributions, too. All three predictions are more optimistic than the 
prior.  

The other 3 plots illustrate the findings that we established in section 4 for the observations with some failures: 

- A single failure of channel A (the top right plot in Figure 4) leads to a white-box posterior whereby the system 
appears perfect with certainty – the entire mass is concentrates at point PAB = 0. The prediction is not affected by 
the choice of the prior (“opt” or non-“opt”). Both white-box predictions are identical and imply that the system is 
now predicted as perfect with certainty. This is a dramatic shift from the prior where we assumed 50% doubts that 
channel B is perfect, which in turn let to 50% doubt that the system itself is perfect.  



- When channel B fails (the bottom left plot in Figure 4) the black-box predictions and the two white-box predictions 
differ dramatically: the black-box prediction is stochastically more optimistic than the prior. This is not surprising 
as the evidence (i.e., the observations) presented to the black-box model is all “supportive”: no system failures 
are observed in 5000 demands/tests. We have a clear demonstration of the limitations of the black-box model 
here: since the failure of channel B is masked in the black-box model, the black-box model does not respond to 
such failures and “interprets” the evidence as supportive. The situation is, of course, quite different for the white-
box models. As the plot shows, the white box predictions for low values of the probability of system failure are 
worse than the prior. The two cdf curves cross between 10-4 and 2×10-4. The white-box predictions indicate that 
there is no chance for system perfection as we have assumed with the chosen prior. The posteriors cdf curves from 
the “opt” and non-“opt” white-box models are indistinguishable (and cannot be seen as separate curves on the 
plot). The white-box predictions are stochastically worse (i.e., more conservative) than the black-box predictions. 
Such white-box predictions are plausible: a failure of channel B implies that channel B has now been demonstrated 
to be imperfect with certainty. According to the conservative assumptions built-in the prior, if channel B is not 
perfect, then the system is merely as reliable as channel A, i.e., there is no reliability gain from using channel B.  

- When a single system failure is observed (i.e., channel A and channel B fail simultaneously on the same demand), 
we observe difference between the black-box and the white-box posterior distributions. The two white-box 
predictions are again indistinguishable – the values of the two cdfs are very close and therefore the corresponding 
curves cannot be seen in the plot. The black-box predictions respond to the observation of a single system failure 
plausibly: the probability mass that the prior placed at PB = 0 is now gone: indeed, the system has failed (albeit 
once in 5000 demands), which rules out the possibility of perfection of the system. Again, the white-box 
predictions turn out to be more conservative than the black-box predictions: there is a stochastic ordering between 
the cdfs representing the black-box and the white-box posterior distributions. Not surprisingly, both the black-box 
and the white-box cdfs have crossover points with the prior cdf, which indicates that there is no ordering between 
the prior distribution (constructed under the assumption that channel B might be perfect with probability of 0.5) 
and the posterior distributions, for which the system was demonstrated not to be perfect. Despite the system 
failure, however, after 5000 demands the confidence that the system reliability is better than 0.0005 is higher than 
it was in the prior for all predictions.  

6. Discussion and Threats to Validity 
We established analytically the critical importance of two decisions: i) what model is selected for conservative reliability 
assessment of fault tolerant software, and ii) once a model is chosen what assumptions it relies upon. Our findings suggest 
that scrutinising the implications of these decisions is an essential part of making the assessment credible, i.e., of gaining 
confidence in the assessment results.  

More specifically we demonstrated that achieving conservatism by restrictions of the epistemic uncertainty in the 
probability of failure on demand (pfd) of the channels of a 1-out-of-2 fault-tolerant software and of their dependencies, 
may have surprising counterintuitive consequences. Making restrictive assumptions about channels’ pfds is convenient for 
an assessor as it simplifies the problem of quantifying the dependence between the failures of the channels used in a 1-out-
of-2 system. Our results suggest that convenience comes at a significant price of raising doubts about predictions’ 
adequacy!  

We confirm that white-box predictions are conservative in the sense that they retain the essential properties used to 
construct a conservative prior for the case of “no-failure” in test/operation. 

For observations with failures of channel A, the channel assumed not to be perfect, the predictions obtained with a white-
box model are not conservative at all! Even a single failure of channel A will lead to predictions that channel B – hence 
the system as a whole – are perfect with certainty, which is clearly implausible.   

The white-box inference based on the particular conservative prior deals naturally with observations, whereby channel B 
assumed likely to be perfect fails – either on its own or simultaneously with the second channel. For these cases, however, 
which are not included in the prior work [7, 9, 10], the predictions obtained with the white-box model are extremely 
conservative as in such cases the system becomes merely as reliable as the second channel (channel A). Such extreme 
conservatism does not seem of any practical interest whatsoever.   

Although the black-box inference was not the focus of this work, a couple of observations from the numerical examples 
presented in section 5 seem important.  



• The numerical results in section 5 suggest that for plausible cases the black-box predictions, expected to be 
conservative, may be more optimistic than those obtained using a white-box model. If one is really interested in 
obtaining conservative predictions one should consider using an inference based on a white-box model. Establishing 
rigorously ordering between the black-box and white box predictions is outside the scope of the paper. 

• A black-box inference does not deal adequately with channel failures. This is true for the black-box inference in 
general, irrespective of the prior. With the particular conservative prior, however, constructed under the assumption 
of possible perfection of one of the channels, ignoring the failures of channel B assumed possibly perfect has dramatic 
consequences. The essential point here is that once the conservative prior is constructed one should not use a black-
box model which ignores evidence (e.g., channel failures), which may potentially destroy the assumptions built in the 
prior. From this point of view, the white box inference has a clear edge – it will respond adequately to observations, 
which include channel and system failures. 

The paper looked at the simplest architecture of a fault tolerant protection system, a 1-out-of-2 system. We are aware that 
other, more complex architectures, are used in practice, too, e.g., 2-out-of-3, 2-out-of-4, etc. We chose to work with a 1-
out-of-2 for several reasons: 

• The prior work [7], which we scrutinised in this paper, refers to a 1-out-of-2 system. We thought natural to base 
the analysis on a system with the same architecture. This architecture is used in protection systems, e.g. [11, 12], 
but also in some other contexts.  

• An essential part of this work and of [7] is the assumption that one of the channels is “probably” perfect. This idea 
has been proposed and studied for 1-out-of-2 systems. To the best of our knowledge no prior work applies similar 
ideas to more complex architectures. Perfection is typically justified with references to “simplicity”, possibly 
using “formal” methods, such as theorem provers, in software development, etc. While it is clear that these 
techniques can be applied to the channels of a 1-out-out-of-2 or the channels of more complex architectures, it is 
unclear whether the channels of more complex architectures are likely to be considered “possibly perfect”.  

• Finally, there is a methodological aspect in the choice of a 1-out-of-2 over the more complex architectures. The 
main contribution of this work is about the importance of: i) choosing the “right” model, and ii) parameterising 
the model well. Using a simple architecture in the analysis seems important so that excessive complexity in various 
mathematical transformations can be minimised. Dealing with more complex architectures is an area for future 
research. 

Among threats to validity of the results from this work we acknowledge: 

- We illustrate the approach on several contrived examples in section 5 (see Figure 4) for which we had to make 
additional assumptions about the shape of the prior distribution. For the conditional probabilities of failure of 
channel B, conditional on a particular value of reliability of channel A we used a truncated Beta distribution. 
Although using Beta distribution is common in Bayesian assessment, we acknowledge that the results presented 
in Figure 4 may be affected by the choice of parameters used to define the tri-variate prior distribution. For 
instance, the stochastic ordering between the black-box and the white-box posterior distributions, goes well 
beyond the theoretical results presented in section 4 and may not extend beyond the parameterisation used in the 
contrived examples. It is worth pointing out, however, that the observations made in section 5 are merely 
illustrations of the general theory presented in the paper and its feasibility for practical assessment. Validity of the 
theory is not affected. 

- In developing the theory, we relied on some general theorems (e.g., the properties of Dirac Delta function). One 
may argue that priors, which include Dirac Delta function are extreme and should be avoided. We agree with such 
a viewpoint but would like to point out that “possible perfection” of channel B is an is essential concept in 
conservative assessment, which naturally leads to the use of Dirac Delta function. We merely explored the 
implications of the assumptions to demonstrate the “side effects” of predictions based on the particular 
conservative priors.  

7. Related Research  
The most relevant sources have already been referenced earlier in the paper. In this section we briefly outline a few 
additional sources.   



The first formulation of the approach to assessment based on possible correctness (i.e., perfection) is due to Littlewood 
[13, 14]. The importance of the idea was discussed in [15] in the context of reliability assessment of high integrity systems. 
Further insight is provided in [16] introducing the concepts of “quasi” perfection.   

[9] is an important paper which formulated the problem of conservative reliability assessment using a black-box system 
model. The conservative Bayesian assessment relies on a small number of quantiles, rather than the entire prior distribution, 
for a conservative prediction. While the approach is interesting for the rigor in dealing with the problem, the paper does 
not address the issue of how the required quantiles can be elicited in practice. The guarantees of conservatism are only 
valid for the case of “no failures” observed in operations/testing.  

A number of recent papers provide incremental extensions on the idea formulated in [9], among them [10, 17-19]. They all 
refine the concept of conservative assessment by relying on more quantiles from the distribution of the probability of 
system failure, treating the system as a black-box. As in [9], the focus of these works is the “no failure” observation and 
the rigor in the mathematical treatment of the problem. How a practitioner is expected to derive the parameters of interest 
(i.e., the required quantiles), however, is outside the scope of these papers.  

An interesting example of applying a conservative assessment is also [20] in which a black-box Bayesian assessment is 
applied to establish conservatively the number of miles needed for an assessor to be able to claim with sufficient confidence 
that an autonomous vehicle is sufficiently safe (i.e., “driving to safety”). The paper addresses an important application 
problem and is a straightforward application of the conservative Bayesian assessment based on a black-box model 
developed by some of the same authors earlier.  

A somewhat related work is [19], which solves a slightly different problem: Bayesian assessment when legacy software is 
replaced by a new product believed to be better. The focus of the paper is on spelling out the problem including the sources 
of uncertainty and analysing the implications of these for the predictions.  

Another relevant work is [2], in which the author takes into account the structure of software code (as a “flow network 
structure”) with a claim that this method is a significant improvement over the alternatives, which disregard the control 
flow. A similar work was conducted by May et al., e.g. [21]. The focus of these works, however, is a single-channel safety-
critical software. We acknowledge that the approach is interesting and possibly applicable to a 2-channel software but is 
not concerned with a conservative assessment.  

In a recently published paper [22] Bishop and Povyakalo offer a method for estimating the probability of failure on demand 
of a software system built with components from testing the system and offer a conservative method of assessing the 
confidence in this probability. The method uses the “structure function” defined for the system under study and assumes 
that none of the software components fails in testing. The conservatism is based on the observation that if an input leads to 
a failure of a replicated component, all replicas of this component used in the system will fail simultaneously. The method 
uses classical confidence bounds and does not rely on Bayesian inference at all.  

Another paper dealing with conservative reliability assessment is [23]. This is an example of conservative reliability 
assessment in manufacturing. Despite the significant difference between the application domains – manufacturing vs. 
software – the work also looks to establish a conservative prior for the probability of failure. The authors use an iterative 
approach and Monte Carlo simulation to construct a conservative prior of the probability of failure. The simulations are 
used to compensate the lack of sufficient empirical observations. The findings in the paper are further elaborated in a 
Doctoral Thesis [24], supervised by one of the authors of [23]. 

In own work, an approximate method of Bayesian inference for systems with complex “structure function” was developed, 
[25]. The main idea of the method is that the system is modelled by a set of views, whereby each view captures a part of 
the system structure. The views are linked via random variables (typically the probabilities of failure of software 
components) which appear in more than one view ( a “common random variable”): The marginal distribution of the 
common random variables is propagated from a more detailed view to a view operating at a higher level of abstraction 
(“propagation chain”), thus allowing for the marginal system pfd to be expressed using the propagation chain without 
having to define joint probability distribution with an excessive number of variates. The method also computes the 
prediction error in comparison with alternative less detailed inference models (including the black-box system model) and 
always selects the model which for the given observations provides the most accurate prediction. The philosophy of this 
method is quite different from the work presented in this paper: it is not seeking to obtain conservative predictions. Instead, 
the method is trying to maximise the accuracy of the predictions by comparison of the predictions of the available 
approximate models. This work, however, seems quite relevant if the method of conservative assessment proposed in [7] 
and extended in this paper is to be applied to more complex architectures, such as 2-out-of-3 and 2-out-of-4.  



8. Conclusions and future research  
This paper provides an insight into the effects of a particular form of conservative Bayesian prediction of the probability 
of system failure of a 1-out-of-2 software system, in which one of the channels may be perfect with non-negligible 
probability.  

The work presents a few important innovations in comparison with the prior work: 

- The inference is based on a “white-box model”. This model is more sensitive to the full range of possible 
observations, including the observations with channel and system failures.  

- Although the work is extensively based on the conservative assumptions defined by others in [7], we spell out the 
implications for the shape of the 3-variate prior, consistent with these informal conservative assumptions. The 
approach that we take to construct a tri-variate prior suitable for a white-box inference seems applicable to a large 
class of conservative priors, constrained in different ways. We then: 

o Scrutinise the implications of the specific conservative assumptions for the Bayesian predictions and 
report on a counterintuitive result: any number of failures of the channel, assumed with certainty not to 
be perfect, leads to predictions that the system itself is perfect. This implausible prediction is entirely due 
to the particular form of conservatism, which imposes constraints on the epistemic uncertainty in 
channels’ and system’s pfds.  

o We also study how the shape of the prior distribution 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) affects the predictions about the 
system probability of perfection, 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵(0|𝑛𝑛, 0,0,0), and establish the shape of the prior, which minimises 
it. Although this result is important as it established an important lower bound on the probability of 
system perfection, it falls short of demonstrating that this shape of prior will lead to the most conservative 
predictions of system pfd, which is the primary concern when a 2-channel system is deployed. The 
existence of stochastic ordering between the most conservative predictions and the predictions obtained 
with other plausible priors has been established numerically.  

- We demonstrate that the assumptions made in [7] are sufficient for the marginal pdf of the system pfd, 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(∙), to 
be derived in full from the assumed known pdf of the channels’ pfds, thus making a black-box inference easily 
applicable without having to ask, as some prior works [9, 10] suggest, for quantiles on the system pfd. Such 
quantiles can be easily obtained from 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(∙).  

The work presented in this paper is essentially a detailed scrutiny of the conservative assumptions presented in [7] which, 
as our analysis shows, lead to quite unusual prior distribution. Justifying such a distribution may be very difficult, indeed. 
The conservatism of the assessment under the particular conservative assumptions is, thus, achieved at the price of raising 
doubts about the credibility of the assessment based on such assumptions.  

Reasoning about reliability of fault tolerant software based on “possible” perfection of some of the channels is quite 
appealing. The concept of perfection is well supported by the use of well-established techniques of formal verification. 
Being conservative in the assessment of software used in safety-critical applications is widely-adopted. Our work points to 
a number of deficiencies with the particular form of combining “perfection” with conservative assessment. These 
difficulties, however, do not seem intrinsic and unavoidable. Finding alternative forms of combining perfection and 
conservatism in software assessment, which are free from the problems we have identified, seems and important direction 
for future research.  

Finally, another important aspect worth addressing in the future is how arguments based on software tools perfection can 
be extended and applied to critical systems, in which complex logic/computations are implemented in silicon (e.g., FPGA 
and Systems on Chip). I am grateful to one of the reviewers for pointing out the proliferation of 1-out-of-2 architectures at 
chip and board level. Many semiconductor manufacturers provide SIL 3 level microcontrollers, e.g., TI's TMS570 and RM 
serial functional safety controller. In FPGA applications, these architectures are also widely used, e.g., NewTec's SafeFlex 
- Functional Safety Development Kit (FSDK). Verification of such solutions is likely to face issues similar to those 
discussed here. Hence, effort to establish the benefits (or otherwise) of a conservative assessment for systems implemented 
in silicon seems highly desirable.  
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 Appendix A 
The general expression of the posterior 3-variate distribution for observing no failures in n demands can be written as: 

𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 0, 0, 0) =
𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛

𝐾𝐾3
 

where 𝐾𝐾3 = ∫ ∫ ∫ 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)1
𝑧𝑧=0

1
𝑦𝑦=0

1
𝑥𝑥=0 𝐿𝐿(𝑛𝑛, 0,0, |𝑃𝑃𝐴𝐴 ,𝑃𝑃𝐵𝐵 ,𝑃𝑃𝐴𝐴𝐵𝐵)𝑑𝑑𝑧𝑧𝑑𝑑𝑦𝑦𝑑𝑑𝑥𝑥. 

As we have seen in section 3, there are 3 areas in the hypercube defined by the 3-variate distribution: 

- Area 1, where 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 0.  
- Area 2, where 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝐾𝐾𝛿𝛿(𝑖𝑖) or 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) =  𝛿𝛿(𝑖𝑖 − 𝑥𝑥).  
- Area 3, where  𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) > 0.  

One can easily establish from (19) that the inference does not change these areas – the boundaries of the areas in the 
posterior distributions match exactly the boundaries in the prior. Indeed, the posterior density, 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 0, 0, 0), 
is a product of the prior density 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) at a given point of the hypercube multiplied by (1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛, a 
constant dependent on the specific values of the probabilities of failure of the channels and of the system at the particular 
point of the hypercube of the three-variate distribution, divided by a normalising constant, K3. The values of x, y and z of 
practical interest are very small numbers, typically in the order of less than 10-2, for which (1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛 would be a 
positive number.  

The implications of this observation are that the posterior will preserve the properties that we established in section 4.1 for 
the prior distribution.  

QED.  

Appendix B  
We now establish whether the Bayesian inference for an observation “no failures” in n demands will affect the assumed 
constant probability of perfection 𝑃𝑃(𝑃𝑃𝐵𝐵 = 0|𝑃𝑃𝐴𝐴) = 𝑝𝑝𝑐𝑐𝑛𝑛𝑖𝑖𝑝𝑝 for all values of 𝑃𝑃𝐴𝐴.  

We will compare 𝑃𝑃(𝑃𝑃𝐵𝐵 = 0|𝑛𝑛, 0,0,0,𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎1) and 𝑃𝑃(𝑃𝑃𝐵𝐵 = 0|𝑛𝑛, 0,0,0,𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎2) for two different values of the 
probability of failure of channel A, 𝑝𝑝𝑎𝑎1 ≠ 𝑝𝑝𝑎𝑎2, respectively.  

Clearly, the conditional probability of interest can be derived from the conditional distribution, 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑛𝑛, 0,0,0,𝑃𝑃𝐴𝐴 = 𝑥𝑥), 
which can be expressed as: 

𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑛𝑛, 0,0,0,𝑃𝑃𝐴𝐴 = 𝑥𝑥) =
𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵(𝑥𝑥,𝑦𝑦|𝑛𝑛,0,0,0)

𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥|𝑛𝑛,0,0,0)
.      (B1) 

We derive 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵(𝑥𝑥, 0|𝑛𝑛, 0, 0, 0) and 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥|𝑛𝑛, 0,0,0) from the joint posterior distribution 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 0, 𝑧𝑧|𝑛𝑛, 0, 0, 0) next.  



B1.1. Posterior joint distribution 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵(𝑥𝑥, 0|𝑛𝑛, 0,0,0) 

𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵(𝑥𝑥, 0|𝑛𝑛, 0, 0, 0) =
∫ 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 0, 𝑧𝑧|𝑛𝑛, 0, 0, 0)𝑑𝑑𝑧𝑧1
𝑧𝑧=0

𝐾𝐾3
 

=
∫ 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 0)1
𝑧𝑧=0 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑𝑧𝑧

𝐾𝐾3
 

=
𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥)

𝐾𝐾3
𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)� 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 0)

1

𝑧𝑧=0
(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑𝑧𝑧 

= 𝛿𝛿(0)(1−𝑜𝑜𝑛𝑛𝑜𝑜)
𝐾𝐾3

𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)∫ 𝛿𝛿(0)1
𝑧𝑧=0 (1 − 𝑥𝑥 − 0 + 𝑧𝑧)𝑛𝑛𝑑𝑑𝑧𝑧 = 𝛿𝛿(0)(1−𝑜𝑜𝑛𝑛𝑜𝑜)

𝐾𝐾3
𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑥𝑥)𝑛𝑛      (B2) 

Thus: 

𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵(𝑥𝑥 = 𝑝𝑝𝑎𝑎1, 0|𝑛𝑛, 0, 0, 0) = 𝛿𝛿(0)(1−𝑜𝑜𝑛𝑛𝑜𝑜)
𝐾𝐾3

𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑝𝑝𝑎𝑎1)𝑛𝑛    (B3) 

 

𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵(𝑥𝑥 = 𝑝𝑝𝑎𝑎2, 0|𝑛𝑛, 0, 0, 0) = 𝛿𝛿(0)(1−𝑜𝑜𝑛𝑛𝑜𝑜)
𝐾𝐾3

𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑝𝑝𝑎𝑎2)𝑛𝑛    (B4) 

B1.2. Posterior joint distribution 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥|𝑛𝑛, 0,0,0) 
The marginal pdf, 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥|𝑛𝑛, 0,0,0) can be derived from the joint pdf 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 0,0,0) by integrating out the 
nuisance parameter, 𝑃𝑃𝐵𝐵 and 𝑃𝑃𝐴𝐴𝐵𝐵: 

𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥|𝑛𝑛, 0,0,0) = � � 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵

1

𝑧𝑧=0
(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 0, 0, 0)𝑑𝑑(𝑧𝑧)𝑑𝑑(𝑦𝑦)

1

𝑦𝑦=0

=
∫ ∫ 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑧𝑧)𝑑𝑑(𝑦𝑦)1

𝑧𝑧=0
1
𝑦𝑦=0

𝐾𝐾3

=
1
𝐾𝐾3

� � 𝑓𝑓𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑦𝑦, 𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑧𝑧)𝑑𝑑(𝑦𝑦)
1

𝑧𝑧=0

1

𝑦𝑦=0

=
𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)
𝐾𝐾3

� � 𝑓𝑓𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑦𝑦, 𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑧𝑧)𝑑𝑑(𝑦𝑦)
1

𝑧𝑧=0

1

𝑦𝑦=0

=
𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)
𝐾𝐾3

� �� 𝑓𝑓𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(0, 𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 0 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
0+

𝑦𝑦=0

1

𝑧𝑧=0

+ � 𝑓𝑓𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑦𝑦, 𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=0+
� 𝑑𝑑(𝑧𝑧) =

=
𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)
𝐾𝐾3

� �� 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 0)𝑓𝑓𝑃𝑃𝐵𝐵(0|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
0+

𝑦𝑦=0

1

𝑧𝑧=0

+ � 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=0+
� 𝑑𝑑(𝑧𝑧) 

Taking into account that 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 0) = 𝛿𝛿(0) and that 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦 > 𝑥𝑥) =  𝛿𝛿(𝑧𝑧 − 𝑥𝑥), the 
expression above becomes: 



𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥|𝑛𝑛, 0,0,0) =
𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)
𝐾𝐾3

� �� 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 0)𝑓𝑓𝑃𝑃𝐵𝐵(0|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
0+

𝑦𝑦=0

1

𝑧𝑧=0

+ � 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=0+
� 𝑑𝑑(𝑧𝑧)

=
𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)
𝐾𝐾3

� �� 𝛿𝛿(𝑧𝑧 = 0)𝛿𝛿(𝑦𝑦 = 0)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
0+

𝑦𝑦=0

1

𝑧𝑧=0

+ � 𝛿𝛿(𝑧𝑧 − 𝑥𝑥)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=𝑥𝑥
� 𝑑𝑑(𝑧𝑧) =

=
𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)
𝐾𝐾3

� �𝛿𝛿(𝑧𝑧 = 0)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑥𝑥 + 𝑧𝑧)𝑛𝑛
1

𝑧𝑧=0

+ 𝛿𝛿(𝑧𝑧 − 𝑥𝑥)� 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=𝑥𝑥
� 𝑑𝑑(𝑧𝑧)

=
𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)
𝐾𝐾3

�� 𝛿𝛿(𝑧𝑧 = 0)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑥𝑥 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑧𝑧)
1

𝑧𝑧=0

+ � 𝛿𝛿(𝑧𝑧 − 𝑥𝑥)� 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=𝑥𝑥

1

𝑧𝑧=0
𝑑𝑑(𝑧𝑧)�

=
𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)
𝐾𝐾3

�(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑥𝑥)𝑛𝑛 + � 𝛿𝛿(𝑧𝑧 − 𝑥𝑥)� 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=𝑥𝑥

1

𝑧𝑧=0
𝑑𝑑(𝑧𝑧)� 

Now we change the order of integration for the second summand in the expression above, which leads to the following: 

 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥|𝑛𝑛, 0,0,0) = 

𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)
𝐾𝐾3

�(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑥𝑥)𝑛𝑛 + � 𝛿𝛿(𝑧𝑧 − 𝑥𝑥)� 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=𝑥𝑥

1

𝑧𝑧=0
𝑑𝑑(𝑧𝑧)�

=
𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)
𝐾𝐾3

�(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑥𝑥)𝑛𝑛 + � 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)� 𝛿𝛿(𝑧𝑧 − 𝑥𝑥)
1

𝑧𝑧=0
(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑧𝑧)𝑑𝑑(𝑦𝑦)

1

𝑦𝑦=𝑥𝑥
�

=
𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)
𝐾𝐾3

�(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑥𝑥)𝑛𝑛 + � 𝑓𝑓𝑃𝑃𝐵𝐵(𝑥𝑥|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑦𝑦)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=𝑥𝑥
� 

We can now express the value of the posterior  𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥|𝑛𝑛, 0,0,0) for different values of x:  

𝑓𝑓𝑃𝑃𝐴𝐴(𝑝𝑝𝑎𝑎1|𝑛𝑛, 0,0,0) =
𝑓𝑓𝑃𝑃𝐴𝐴(𝑜𝑜𝑎𝑎1)

𝐾𝐾3
�(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑝𝑝𝑎𝑎1)𝑛𝑛 + ∫ 𝑓𝑓𝑃𝑃𝐵𝐵(𝑝𝑝𝑎𝑎1|𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎1)(1 − 𝑦𝑦)𝑛𝑛𝑑𝑑(𝑦𝑦)1

𝑦𝑦=𝑜𝑜𝑎𝑎1
�  (B5) 

𝑓𝑓𝑃𝑃𝐴𝐴(𝑝𝑝𝑎𝑎2|𝑛𝑛, 0,0,0) =
𝑓𝑓𝑃𝑃𝐴𝐴(𝑜𝑜𝑎𝑎2)

𝐾𝐾3
�(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑝𝑝𝑎𝑎2)𝑛𝑛 + ∫ 𝑓𝑓𝑃𝑃𝐵𝐵(𝑝𝑝𝑎𝑎2|𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎2)(1 − 𝑦𝑦)𝑛𝑛𝑑𝑑(𝑦𝑦)1

𝑦𝑦=𝑜𝑜𝑎𝑎2
�  (B6) 

Now using (B1) we derive: 

𝑓𝑓𝑃𝑃𝐵𝐵(0|𝑛𝑛, 0,0,0,𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎1) =
𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵(𝑥𝑥 = 𝑝𝑝𝑎𝑎1, 0|𝑛𝑛, 0, 0, 0)

𝑓𝑓𝑃𝑃𝐴𝐴(𝑝𝑝𝑎𝑎1|𝑛𝑛, 0,0,0)  

=
𝛿𝛿(0)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)

𝐾𝐾3 𝑓𝑓𝑃𝑃𝐴𝐴(𝑝𝑝𝑎𝑎1)(1 − 𝑝𝑝𝑎𝑎1)𝑛𝑛

𝑓𝑓𝑃𝑃𝐴𝐴(𝑝𝑝𝑎𝑎1)
𝐾𝐾3 �(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑝𝑝𝑎𝑎1)𝑛𝑛 + ∫ 𝑓𝑓𝑃𝑃𝐵𝐵(𝑝𝑝𝑎𝑎1|𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎1)(1 − 𝑦𝑦)𝑛𝑛𝑑𝑑(𝑦𝑦)1

𝑦𝑦=𝑜𝑜𝑎𝑎1
�
 

= 𝛿𝛿(0)(1−𝑜𝑜𝑛𝑛𝑜𝑜)(1−𝑜𝑜𝑎𝑎1)𝑛𝑛

�(1−𝑜𝑜𝑛𝑛𝑜𝑜)(1−𝑜𝑜𝑎𝑎1)𝑛𝑛+∫ 𝑓𝑓𝑃𝑃𝐵𝐵(𝑜𝑜𝑎𝑎1|𝑃𝑃𝐴𝐴=𝑜𝑜𝑎𝑎1)(1−𝑦𝑦)𝑛𝑛𝑑𝑑(𝑦𝑦)1
𝑦𝑦=𝑝𝑝𝑎𝑎1

�
   (B7) 

and 

𝑓𝑓𝑃𝑃𝐵𝐵(0|𝑛𝑛, 0,0,0,𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎2) =
𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵(𝑥𝑥=𝑜𝑜𝑎𝑎2,0|𝑛𝑛,0,0,0)

𝑓𝑓𝑃𝑃𝐴𝐴(𝑜𝑜𝑎𝑎2|𝑛𝑛,0,0,0)
= 𝛿𝛿(0)(1−𝑜𝑜𝑛𝑛𝑜𝑜)(1−𝑜𝑜𝑎𝑎2)𝑛𝑛

�(1−𝑜𝑜𝑛𝑛𝑜𝑜)(1−𝑜𝑜𝑎𝑎2)𝑛𝑛+∫ 𝑓𝑓𝑃𝑃𝐵𝐵(𝑜𝑜𝑎𝑎2|𝑃𝑃𝐴𝐴=𝑜𝑜𝑎𝑎2)(1−𝑦𝑦)𝑛𝑛𝑑𝑑(𝑦𝑦)1
𝑦𝑦=𝑝𝑝𝑎𝑎2

�
  (B8) 

The ratio of the two probability densities of the probability of failure of channel B becomes: 



𝑓𝑓𝑃𝑃𝐵𝐵(0|𝑛𝑛, 0,0,0,𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎1)
𝑓𝑓𝑃𝑃𝐵𝐵(0|𝑛𝑛, 0,0,0,𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎2) =

𝛿𝛿(0)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑝𝑝𝑎𝑎1)𝑛𝑛

�(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑝𝑝𝑎𝑎1)𝑛𝑛 + ∫ 𝑓𝑓𝑃𝑃𝐵𝐵(𝑝𝑝𝑎𝑎1|𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎1)(1 − 𝑦𝑦)𝑛𝑛𝑑𝑑(𝑦𝑦)1
𝑦𝑦=𝑜𝑜𝑎𝑎1

�
𝛿𝛿(0)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑝𝑝𝑎𝑎2)𝑛𝑛

�(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑝𝑝𝑎𝑎2)𝑛𝑛 + ∫ 𝑓𝑓𝑃𝑃𝐵𝐵(𝑝𝑝𝑎𝑎2|𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎2)(1 − 𝑦𝑦)𝑛𝑛𝑑𝑑(𝑦𝑦)1
𝑦𝑦=𝑜𝑜𝑎𝑎2

�

= 

(1−𝑜𝑜𝑎𝑎1)𝑛𝑛

(1−𝑜𝑜𝑎𝑎2)𝑛𝑛
(1−𝑜𝑜𝑛𝑛𝑜𝑜)(1−𝑜𝑜𝑎𝑎2)𝑛𝑛+∫ 𝑓𝑓𝑃𝑃𝐵𝐵(𝑜𝑜𝑎𝑎2|𝑃𝑃𝐴𝐴=𝑜𝑜𝑎𝑎2)(1−𝑦𝑦)𝑛𝑛𝑑𝑑(𝑦𝑦)1

𝑦𝑦=𝑝𝑝𝑎𝑎2
(1−𝑜𝑜𝑛𝑛𝑜𝑜)(1−𝑜𝑜𝑎𝑎1)𝑛𝑛+∫ 𝑓𝑓𝑃𝑃𝐵𝐵(𝑜𝑜𝑎𝑎1|𝑃𝑃𝐴𝐴=𝑜𝑜𝑎𝑎1)(1−𝑦𝑦)𝑛𝑛𝑑𝑑(𝑦𝑦)1

𝑦𝑦=𝑝𝑝𝑎𝑎1

    (B9) 

In the general case we cannot tell whether the ratio (B9) is greater or smaller than 1 – the value will depend on the integrals 
involved, which in turn will depend on the form of 𝑓𝑓𝑃𝑃𝐵𝐵(∙ |𝑃𝑃𝐴𝐴).  

We can look for more clarity by comparing 𝑓𝑓𝑃𝑃𝐵𝐵(0|𝑛𝑛, 0,0,0,𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎1) and 𝑓𝑓𝑃𝑃𝐵𝐵(0|𝑛𝑛, 0,0,0,𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑎𝑎2) for the special case 
when the entire mass of 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 > 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥) is concentrated at x, i.e. 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 > 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥) = 𝛿𝛿(𝑦𝑦 − 𝑥𝑥)𝑝𝑝𝑛𝑛𝑝𝑝. In this case 
further simplification can be achieved:  

𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥|𝑛𝑛, 0,0,0) =
𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)
𝐾𝐾3

�(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑥𝑥)𝑛𝑛 + � 𝑓𝑓𝑃𝑃𝐵𝐵(𝑥𝑥|𝑃𝑃𝐴𝐴 = 𝑝𝑝𝑥𝑥)(1 − 𝑦𝑦)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=𝑜𝑜𝑥𝑥
�

=
𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)
𝐾𝐾3

�(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑥𝑥)𝑛𝑛 + 𝑝𝑝𝑛𝑛𝑝𝑝� 𝛿𝛿(𝑦𝑦 − 𝑥𝑥)(1 − 𝑦𝑦)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=𝑜𝑜𝑥𝑥
�

=
𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)
𝐾𝐾3

[(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑥𝑥)𝑛𝑛 + 𝑝𝑝𝑛𝑛𝑝𝑝(1 − 𝑥𝑥)𝑛𝑛] =
𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)
𝐾𝐾3

(1 − 𝑥𝑥)𝑛𝑛 

The ratio of the two probability density functions (B9) then becomes: 

𝑓𝑓𝑃𝑃𝐵𝐵(0|𝑛𝑛,0,0,0,𝑃𝑃𝐴𝐴=𝑜𝑜𝑎𝑎1)

𝑓𝑓𝑃𝑃𝐵𝐵(0|𝑛𝑛,0,0,0,𝑃𝑃𝐴𝐴=𝑜𝑜𝑎𝑎2)
=

𝑓𝑓𝑃𝑃𝐴𝐴(𝑜𝑜𝑎𝑎1)𝛿𝛿(0)(1−𝑝𝑝𝑛𝑛𝑝𝑝)(1−𝑝𝑝𝑎𝑎1)𝑛𝑛
(1−𝑝𝑝𝑎𝑎1)𝑛𝑛

𝑓𝑓𝑃𝑃𝐴𝐴(𝑜𝑜𝑎𝑎2)𝛿𝛿(0)(1−𝑝𝑝𝑛𝑛𝑝𝑝)(1−𝑝𝑝𝑎𝑎2)𝑛𝑛
(1−𝑝𝑝𝑎𝑎2)𝑛𝑛

=
𝑓𝑓𝑃𝑃𝐴𝐴(𝑜𝑜𝑎𝑎1)

𝑓𝑓𝑃𝑃𝐴𝐴(𝑜𝑜𝑎𝑎2)
       (B10) 

It turns out that even if we constrain the conditional distribution of the probability of failure of channel B to a form where 
the entire probability mass is concentrated in two points (0 and y = x) the posterior probability of perfection may still vary 
with the probability of failure of channel A unless we assume that 𝑓𝑓𝑃𝑃𝐴𝐴(∙) is constant (i.e. in our prior belief about the value 
of the probability of failure 𝑃𝑃𝐴𝐴 we are indifferent between the values 𝑃𝑃𝐴𝐴 can take) for all values of 𝑃𝑃𝐴𝐴 of interest. Such 
indifference seems implausible, e.g., if channel A has seen a significant operational exposure. If  𝑓𝑓𝑃𝑃𝐴𝐴(∙) being constant for 
different values of channel A’s pfd is ruled out, then (B10) suggests that the constancy of 𝑓𝑓𝑃𝑃𝐵𝐵(0|𝑃𝑃𝐴𝐴 = 𝑥𝑥), which we assumed 
in the prior will be lost, too, after a finite amount of failure-free operation. Interestingly, the ratio (B10) does not seem to 
change with the number of observations, n, as all terms in (B10) dependent on the number of demands n are cancelled out.  

QED.  

Appendix C 
In this appendix we establish a relationship between the prior and the posterior probability of perfection of the system, i.e., 
between 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧 = 0) and 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧 = 0|𝑛𝑛, 0,0,0), respectively.  

We will first express the posterior marginal distribution of system pfd, 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑛𝑛, 0,0,0), in the case of observing no failures 
in operation/testing and then from it we will look at the probability mass 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵(0|𝑛𝑛, 0,0,0).  

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑛𝑛, 0,0,0) can be derived from the 3-variate pdf, 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 0,0,0), by integrating out the nuisance 
parameters, 𝑃𝑃𝐴𝐴 and 𝑃𝑃𝐵𝐵, i.e.:  



𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑛𝑛, 0,0,0) = � � 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 0,0,0)𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=0
𝑑𝑑(𝑥𝑥)

1

𝑥𝑥=0

=  
∫ ∫ 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)1

𝑦𝑦=0 𝑑𝑑(𝑥𝑥)1
𝑥𝑥=0

𝐾𝐾𝑜𝑜

=
∫ ∫ 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)1

𝑦𝑦=0 𝑑𝑑(𝑥𝑥)1
𝑥𝑥=0

𝐾𝐾𝑜𝑜
 

=
∫ 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)�∫ 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴=𝑥𝑥,𝑃𝑃𝐵𝐵=𝑦𝑦)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴=𝑥𝑥)(1−𝑥𝑥−𝑦𝑦+𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)1

𝑦𝑦=0 �𝑑𝑑(𝑥𝑥)1
𝑥𝑥=0

𝐾𝐾𝑝𝑝
   (C1) 

where 𝐾𝐾𝑜𝑜 = ∫ �∫ �∫ 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥,𝑦𝑦, 𝑧𝑧)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛1
𝑧𝑧=0 𝑑𝑑(𝑧𝑧)�1

𝑦𝑦=0 𝑑𝑑(𝑦𝑦)�1
𝑥𝑥=0 𝑑𝑑(𝑥𝑥). 

We split the integration over y (the part of expression C1 shown in square brackets above) into two parts – around y = 0 
and for y > 0. The internal integral, shown in square brackets above, becomes: 

� 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=0
= 

� 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 0)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 0 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
0+

𝑦𝑦=0
 

+∫ 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦,𝑦𝑦 > 0)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 > 0)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)1
𝑦𝑦=0+                 (C2) 

 

Taking into account that 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 0) = 𝛿𝛿(𝑧𝑧)9 and 𝑓𝑓𝑃𝑃𝐵𝐵(0|𝑃𝑃𝐴𝐴 = 𝑥𝑥) = 𝛿𝛿(𝑦𝑦)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝), the first summand above 
can be simplified as follows: 

� 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 0)𝑓𝑓𝑃𝑃𝐵𝐵(0|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 0 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
0+

𝑦𝑦=0
= 

� 𝛿𝛿(𝑧𝑧 = 0)𝛿𝛿(𝑦𝑦)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
0+

𝑦𝑦=0
= 

𝛿𝛿(𝑧𝑧 = 0)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑥𝑥 + 𝑧𝑧)𝑛𝑛 = 

𝛿𝛿(0)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑥𝑥 + 𝑧𝑧)𝑛𝑛          (C3) 

For the second summand of (C2), we note that 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 > 0) = 0 for any y < x and that Assumption 2 (see section 
2.3) implies that 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦) = 𝛿𝛿(𝑧𝑧 − 𝑥𝑥). Thus, without loss of generality, we can change the bounds of 
integrations and simplify the integral, as follows: 

� 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦,𝑦𝑦 > 0)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=0+
= 

∫ 𝛿𝛿(𝑧𝑧 − 𝑥𝑥)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)1
𝑦𝑦=𝑥𝑥     (C4) 

Thus, expression (C1) becomes: 

 
9 The Dirac Delta function, 𝛿𝛿(𝑧𝑧), takes value 0 everywhere except at point 0, where its value is infinity. 𝛿𝛿(𝑧𝑧 − 𝑑𝑑) implies that the spike 
is at z=a. The fundamental property of the Dirac Delta function is that ∫ 𝛿𝛿(𝑥𝑥 − 𝑑𝑑)𝑓𝑓(𝑥𝑥)𝑑𝑑(𝑥𝑥)𝑎𝑎+

𝑥𝑥=𝑎𝑎− = 𝑓𝑓(𝑑𝑑). Also 𝛿𝛿(𝑑𝑑𝑥𝑥) = 𝛿𝛿(𝑥𝑥)
|𝑎𝑎| . 



𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑛𝑛, 0,0,0) =
1
𝐾𝐾𝑜𝑜

� 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥) �𝛿𝛿(0)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(1 − 𝑥𝑥 + 𝑧𝑧)𝑛𝑛
1

𝑥𝑥=0

+ � 𝛿𝛿(𝑧𝑧 − 𝑥𝑥)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=𝑥𝑥
� 𝑑𝑑(𝑥𝑥)

=
1
𝐾𝐾𝑜𝑜

�𝛿𝛿(0)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)� 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑥𝑥 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑥𝑥)
1

𝑥𝑥=0

+ � 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)𝛿𝛿(𝑧𝑧 − 𝑥𝑥) �� 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=𝑥𝑥
�

1

𝑥𝑥=0
𝑑𝑑(𝑥𝑥)� 

Now after well-known transformations (see http://mathworld.wolfram.com/DeltaFunction.html) and changing the order of 
integration, the second summand of the expression above becomes: 

� 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)𝛿𝛿(𝑥𝑥 − 𝑧𝑧) �� 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=𝑥𝑥
�

1

𝑥𝑥=0
𝑑𝑑(𝑥𝑥)

= � �� 𝛿𝛿(𝑥𝑥 − 𝑧𝑧)
1

𝑥𝑥=0
𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛𝑑𝑑𝑥𝑥� 𝑑𝑑𝑦𝑦

1

𝑦𝑦=𝑥𝑥

= � 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑧𝑧)𝑓𝑓𝑃𝑃𝐴𝐴(𝑧𝑧)(1 − 𝑦𝑦)𝑛𝑛𝑑𝑑(𝑦𝑦)
1

𝑦𝑦=𝑥𝑥
= 𝑓𝑓𝑃𝑃𝐴𝐴(𝑧𝑧)� 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑧𝑧)(1 − 𝑦𝑦)𝑛𝑛𝑑𝑑(𝑦𝑦)

1

𝑦𝑦=𝑥𝑥
 

Thus: 

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑛𝑛, 0,0,0) =
1
𝐾𝐾𝑜𝑜

�𝛿𝛿(𝑧𝑧)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)� 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑥𝑥 + 𝑧𝑧)𝑛𝑛𝑑𝑑(𝑥𝑥)
1

𝑥𝑥=0
+ 𝑓𝑓𝑃𝑃𝐴𝐴(𝑧𝑧)� 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑧𝑧)(1 − 𝑦𝑦)𝑛𝑛𝑑𝑑(𝑦𝑦)

1

𝑦𝑦=𝑥𝑥
� 

Clearly, the first summand will be equal to 0 for any z ≠ 0 and will be infinity for z = 0 due to the Dirac Delta function, 
𝛿𝛿(𝑧𝑧). The contribution of the second term for z = 0, thus, becomes negligible. We can rewrite the posterior pdf as follows: 

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑛𝑛, 0,0,0) =

⎩
⎨

⎧𝛿𝛿(0)(1−𝑜𝑜𝑛𝑛𝑜𝑜)∫ 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1−𝑥𝑥)𝑛𝑛𝑑𝑑(𝑥𝑥)1
𝑥𝑥=0

𝐾𝐾𝑝𝑝
, 𝑧𝑧 = 0

𝑓𝑓𝑃𝑃𝐴𝐴(𝑧𝑧)∫ 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴=𝑧𝑧)1
𝑦𝑦=𝑥𝑥 (1−𝑦𝑦)𝑛𝑛𝑑𝑑(𝑦𝑦)

𝐾𝐾𝑝𝑝
, 𝑧𝑧 > 0

     (C5) 

One can see that if we set n = 0 (which will also set 𝐾𝐾𝑜𝑜 = 1), (C5) will be reduced to an expression consistent with (15), 
as we would expect.  

Now, let us compare the posterior and the prior probability of system perfection, i.e., 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧 = 0|𝑛𝑛, 0,0,0) and 
𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧 = 0). The former is expressed by (C5) and the latter – by (15). Consider the ratio: 

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧=0|𝑛𝑛,0,0,0)

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧=0)
=

𝛿𝛿(0)(1−𝑝𝑝𝑛𝑛𝑝𝑝)∫ 𝑝𝑝𝑃𝑃𝐴𝐴(𝑥𝑥)(1−𝑥𝑥)𝑛𝑛𝑑𝑑(𝑥𝑥)1
𝑥𝑥=0

𝐾𝐾𝑝𝑝

𝛿𝛿(0)(1−𝑜𝑜𝑛𝑛𝑜𝑜)
= ∫ 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1−𝑥𝑥)𝑛𝑛𝑑𝑑(𝑥𝑥)1

𝑥𝑥=0
𝐾𝐾𝑝𝑝

> 1   (C6) 

The inequality follows from the observation that the normalising constants used with posteriors represent the expected 
values of the likelihood of the events: “no failure” for the black-box and the white-box models, 𝐸𝐸𝑛𝑛𝑜𝑜 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟

𝑏𝑏𝑓𝑓𝑎𝑎𝑏𝑏𝑏𝑏−𝑏𝑏𝑜𝑜𝑥𝑥 and 𝐸𝐸𝑛𝑛𝑜𝑜 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟
𝑤𝑤ℎ𝑓𝑓𝑡𝑡𝑟𝑟−𝑏𝑏𝑜𝑜𝑥𝑥, 

respectively. The event “no failure” for the black-box model, 𝐸𝐸𝑛𝑛𝑜𝑜 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟
𝑏𝑏𝑓𝑓𝑎𝑎𝑏𝑏𝑏𝑏−𝑏𝑏𝑜𝑜𝑥𝑥, is a superset of the event 𝐸𝐸𝑛𝑛𝑜𝑜 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟

𝑤𝑤ℎ𝑓𝑓𝑡𝑡𝑟𝑟−𝑏𝑏𝑜𝑜𝑥𝑥, i.e. 
𝐸𝐸𝑛𝑛𝑜𝑜 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟
𝑏𝑏𝑓𝑓𝑎𝑎𝑏𝑏𝑏𝑏−𝑏𝑏𝑜𝑜𝑥𝑥 ⊆ 𝐸𝐸𝑛𝑛𝑜𝑜 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟

𝑤𝑤ℎ𝑓𝑓𝑡𝑡𝑟𝑟−𝑏𝑏𝑜𝑜𝑥𝑥, from which using the axioms of probabilities we conclude that 𝑃𝑃�𝐸𝐸𝑛𝑛𝑜𝑜 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟
𝑏𝑏𝑓𝑓𝑎𝑎𝑏𝑏𝑏𝑏−𝑏𝑏𝑜𝑜𝑥𝑥� ≥ 𝑃𝑃�𝐸𝐸𝑛𝑛𝑜𝑜 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟

𝑤𝑤ℎ𝑓𝑓𝑡𝑡𝑟𝑟−𝑏𝑏𝑜𝑜𝑥𝑥� 
irrespective of the probabilistic measure used. 

QED.  

Appendix D 
In this appendix we look at how the form of the prior distribution 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) impacts the predictions of the probability 
of system failure. We compare the posterior probability of perfection of the system for the cases of 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) 
illustrated in Figure 1 and Figure 2:  

http://mathworld.wolfram.com/DeltaFunction.html


• Case 1: The probability mass is somehow spread in the interval [x, 1] (see Figure 1) , and  
• Case 2 (“opt”): The entire mass of 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 > 0) is concentrated at a single point y = x. In this case, 

𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) = 𝛿𝛿(𝑦𝑦 − 𝑥𝑥) × 𝑝𝑝𝑛𝑛𝑝𝑝 (see Figure 2). 
Recall the normalising term, 𝐾𝐾𝑜𝑜, which we introduced in (C1).  

𝐾𝐾𝑜𝑜 = � �� �� 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥,𝑦𝑦, 𝑧𝑧)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛
1

𝑧𝑧=0
𝑑𝑑(𝑧𝑧)�

1

𝑦𝑦=0
𝑑𝑑(𝑦𝑦)� 𝑑𝑑(𝑥𝑥)

1

𝑥𝑥=0

= � �� �� 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦, )𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛
1

𝑧𝑧=0
𝑑𝑑(𝑧𝑧)�

1

𝑦𝑦=0
𝑑𝑑(𝑦𝑦)� 𝑑𝑑(𝑥𝑥)

1

𝑥𝑥=0

= � 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥) �� �� 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛
1

𝑧𝑧=0
𝑑𝑑(𝑧𝑧)�

1

𝑦𝑦=0
𝑑𝑑(𝑦𝑦)� 𝑑𝑑(𝑥𝑥)

1

𝑥𝑥=0
 

Let 𝐾𝐾𝑜𝑜1 and 𝐾𝐾𝑜𝑜2 denote the value of 𝐾𝐾𝑜𝑜 for the two cases listed above, respectively.  

For both cases 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦,𝑦𝑦 > 0) = 𝛿𝛿(𝑧𝑧 − 𝑥𝑥). The difference between 𝐾𝐾𝑜𝑜1 and 𝐾𝐾𝑜𝑜2 is due to the different 
forms 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 > 𝑥𝑥) can take, which for the “opt” case becomes 𝑓𝑓𝑃𝑃𝐵𝐵

𝑜𝑜𝑜𝑜𝑡𝑡(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑦𝑦 > 𝑥𝑥) = 𝛿𝛿(𝑦𝑦 − 𝑥𝑥). Let us 
express the part of the integrals for the two cases shown in curly the brackets in the last expression above: 

𝐼𝐼𝑛𝑛𝑛𝑛𝑝𝑝𝑟𝑟𝑏𝑏𝑎𝑎𝑐𝑐𝑟𝑟 1 = �� �� 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦, )𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛
1

𝑧𝑧=0
𝑑𝑑(𝑧𝑧)�

1

𝑦𝑦=𝑥𝑥
𝑑𝑑(𝑦𝑦)�

= �� �� 𝛿𝛿(𝑧𝑧 − 𝑥𝑥)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛
1

𝑧𝑧=0
𝑑𝑑(𝑧𝑧)�

1

𝑦𝑦=𝑥𝑥
𝑑𝑑(𝑦𝑦)�

= �� 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) �� 𝛿𝛿(𝑧𝑧 − 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛
1

𝑧𝑧=0
𝑑𝑑(𝑧𝑧)�

1

𝑦𝑦=𝑥𝑥
𝑑𝑑(𝑦𝑦)�

= �� 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑥𝑥)𝑛𝑛
1

𝑦𝑦=𝑥𝑥
𝑑𝑑(𝑦𝑦)� = �� 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑦𝑦)𝑛𝑛

1

𝑦𝑦=𝑥𝑥
𝑑𝑑(𝑦𝑦)�

< �� 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥)𝑛𝑛
1

𝑦𝑦=𝑥𝑥
𝑑𝑑(𝑦𝑦)� = (1 − 𝑥𝑥)𝑛𝑛 � 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)

1

𝑦𝑦=𝑥𝑥
𝑑𝑑(𝑦𝑦) 

= (1 − 𝑥𝑥)𝑛𝑛 × 𝑝𝑝𝑛𝑛𝑝𝑝       (D1) 

A similar expression for case 2 (“opt”) would lead to: 

  

𝐼𝐼𝑛𝑛𝑛𝑛𝑝𝑝𝑟𝑟𝑏𝑏𝑎𝑎𝑐𝑐𝑟𝑟 2 = �� �� 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦, )𝑓𝑓𝑃𝑃𝐵𝐵
𝑜𝑜𝑜𝑜𝑡𝑡(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛

1

𝑧𝑧=0
𝑑𝑑(𝑧𝑧)�

1

𝑦𝑦=𝑥𝑥
𝑑𝑑(𝑦𝑦)�

= �� �� 𝛿𝛿(𝑧𝑧 − 𝑥𝑥)𝑓𝑓𝑃𝑃𝐵𝐵
𝑜𝑜𝑜𝑜𝑡𝑡(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛

1

𝑧𝑧=0
𝑑𝑑(𝑧𝑧)�

1

𝑦𝑦=𝑥𝑥
𝑑𝑑(𝑦𝑦)�

= �� 𝑓𝑓𝑃𝑃𝐵𝐵
𝑜𝑜𝑜𝑜𝑡𝑡(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) �� 𝛿𝛿(𝑧𝑧 − 𝑥𝑥)(1 − 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧)𝑛𝑛

1

𝑧𝑧=0
𝑑𝑑(𝑧𝑧)�

1

𝑦𝑦=𝑥𝑥
𝑑𝑑(𝑦𝑦)�

= � 𝑓𝑓𝑃𝑃𝐵𝐵
𝑜𝑜𝑜𝑜𝑡𝑡(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)(1 − 𝑦𝑦)𝑛𝑛

1

𝑦𝑦=𝑥𝑥
𝑑𝑑(𝑦𝑦) = � 𝛿𝛿(𝑦𝑦 − 𝑥𝑥)𝑝𝑝𝑛𝑛𝑝𝑝(1 − 𝑦𝑦)𝑛𝑛

1

𝑦𝑦=𝑥𝑥
𝑑𝑑(𝑦𝑦)

= 𝑝𝑝𝑛𝑛𝑝𝑝� 𝛿𝛿(𝑦𝑦 − 𝑥𝑥)(1 − 𝑦𝑦)𝑛𝑛
1

𝑦𝑦=𝑥𝑥
𝑑𝑑(𝑦𝑦) 

= 𝑝𝑝𝑛𝑛𝑝𝑝 × (1 − 𝑥𝑥)𝑛𝑛       (D2) 

From (D1) and (D2) it is clear that: 𝐼𝐼𝑛𝑛𝑛𝑛𝑝𝑝𝑟𝑟𝑏𝑏𝑎𝑎𝑐𝑐𝑟𝑟 1 <  𝐼𝐼𝑛𝑛𝑛𝑛𝑝𝑝𝑟𝑟𝑏𝑏𝑎𝑎𝑐𝑐𝑟𝑟 2, which in turns implies that: 

𝐾𝐾𝑜𝑜1 < 𝐾𝐾𝑜𝑜2       (D3) 

Now using (C5) and (D3) we can evaluate the ratio of 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(0|𝑛𝑛, 0,0,0) and 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵
𝑜𝑜𝑜𝑜𝑡𝑡(0|𝑛𝑛, 0,0,0): 



𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(0|𝑛𝑛, 0,0,0)
𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵
𝑜𝑜𝑜𝑜𝑡𝑡(0|𝑛𝑛, 0,0,0)

=

𝛿𝛿(0)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)∫ 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑥𝑥)𝑛𝑛𝑑𝑑(𝑥𝑥)1
𝑥𝑥=0
𝐾𝐾𝑜𝑜1

𝛿𝛿(0)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)∫ 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑥𝑥)𝑛𝑛𝑑𝑑(𝑥𝑥)1
𝑥𝑥=0
𝐾𝐾𝑜𝑜2

=
𝐾𝐾𝑜𝑜2
𝐾𝐾𝑜𝑜1

> 1 

which can be rewritten as: 

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(0|𝑛𝑛, 0,0,0) = 𝐾𝐾𝑝𝑝2
𝐾𝐾𝑝𝑝1

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵
𝑜𝑜𝑜𝑜𝑡𝑡(0|𝑛𝑛, 0,0,0)     (D4) 

Clearly, using (D4) we can express the posterior probability of perfection of channel B, 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵(0|𝑛𝑛, 0,0,0), as follows: 

  𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵(0|𝑛𝑛, 0,0,0) = ∫ 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑛𝑛, 0,0,0)𝑑𝑑𝑧𝑧0+
0 = 

�
𝐾𝐾𝑜𝑜2
𝐾𝐾𝑜𝑜1

𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵
𝑜𝑜𝑜𝑜𝑡𝑡(𝑧𝑧|𝑛𝑛, 0,0,0)𝑑𝑑𝑧𝑧

0+

0
=
𝐾𝐾𝑜𝑜2
𝐾𝐾𝑜𝑜1

� 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵
𝑜𝑜𝑜𝑜𝑡𝑡(𝑧𝑧|𝑛𝑛, 0,0,0)𝑑𝑑𝑧𝑧

0+

0
=
𝐾𝐾𝑜𝑜2
𝐾𝐾𝑜𝑜1

𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵
𝑜𝑜𝑜𝑜𝑡𝑡(0|𝑛𝑛, 0,0,0) > 𝐹𝐹𝑃𝑃𝐴𝐴𝐵𝐵

𝑜𝑜𝑜𝑜𝑡𝑡(0|𝑛𝑛, 0,0,0) 

QED.  

Appendix E 
Recall that the posterior distribution for any observations is expressed by (5), which for the observation in question (𝑟𝑟𝑎𝑎 =
0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) in n demands becomes: 

𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) =
𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝐿𝐿(𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0|𝑥𝑥,𝑦𝑦, 𝑧𝑧)

∫ ∫ ∫ 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝐿𝐿(𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0|𝑥𝑥,𝑦𝑦, 𝑧𝑧)1
0

1
0

1
0

∝ 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) × (𝑃𝑃𝐵𝐵 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑏𝑏 × (1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑏𝑏
= 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦) × 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) × 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥) × (𝑃𝑃𝐵𝐵 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑏𝑏(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑏𝑏 

The normalising coefficient  𝐾𝐾 = ∫ ∫ ∫ 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0)𝑑𝑑𝑥𝑥1
𝑥𝑥=0 𝑑𝑑𝑦𝑦1

𝑦𝑦=0 𝑑𝑑𝑧𝑧1
𝑧𝑧=0  is a positive 

number. This can be demonstrated using transformations similar to those used in Appendix D above (to derive D1 and D2). 

Clearly, 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) can be analysed by looking at the following two cases: 

- 𝑃𝑃𝐵𝐵 = 𝑦𝑦 = 0. In this case 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦 = 0) = 𝛿𝛿(𝑧𝑧), 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) = 𝛿𝛿(𝑦𝑦) × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝),  and  
- 𝑃𝑃𝐵𝐵 = 𝑦𝑦 > 0. In this case 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦 > 0) = 𝛿𝛿(𝑝𝑝 − 𝑥𝑥), 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥) is somehow spread between [x, 

1], as shown in Figure 1 or as shown in Figure 2. This case, 𝑃𝑃𝐵𝐵 = 𝑦𝑦 > 0, does not affect the probability of 
perfection of channel B.  

Let us look at the case, 𝑃𝑃𝐵𝐵 = 0:  

𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦 = 0, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) 

∝ 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦 = 0) × 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥) × 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥) × (𝑃𝑃𝐵𝐵 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑏𝑏(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑏𝑏
= 𝛿𝛿(𝑧𝑧) × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝) ×  𝛿𝛿(𝑦𝑦) × 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥) × (𝑃𝑃𝐵𝐵 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑏𝑏(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑏𝑏  

We note that in this case 𝑃𝑃𝐵𝐵 = 𝑃𝑃𝐴𝐴𝐵𝐵 = 0. The expression above, thus, becomes: 

𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦 = 0, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0)
∝ 𝛿𝛿(𝑧𝑧) × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝) ×  𝛿𝛿(𝑦𝑦) × 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥) × (𝑃𝑃𝐵𝐵 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑏𝑏(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑏𝑏
= 𝛿𝛿(𝑧𝑧) × 𝛿𝛿(𝑦𝑦) × (0)𝑟𝑟𝑏𝑏(1 − 𝑝𝑝𝑛𝑛𝑝𝑝) × 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑃𝑃𝐴𝐴 − 0 + 0)𝑛𝑛−𝑟𝑟𝑏𝑏
= 𝛿𝛿(𝑧𝑧) × 𝛿𝛿(𝑦𝑦) × (0)𝑟𝑟𝑏𝑏(1 − 𝑝𝑝𝑛𝑛𝑝𝑝) × 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑃𝑃𝐴𝐴)𝑛𝑛−𝑟𝑟𝑏𝑏 . 

Integrating out the nuisance parameters, 𝑃𝑃𝐴𝐴 and 𝑃𝑃𝐴𝐴𝐵𝐵, we derive 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) as follows: 



𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) = � � 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥,𝑦𝑦 = 0, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0)𝑑𝑑𝑥𝑥
1

𝑥𝑥=0
𝑑𝑑𝑧𝑧

1

𝑧𝑧=0

=
∫ ∫ 𝛿𝛿(𝑧𝑧) × 𝛿𝛿(𝑦𝑦) × (0)𝑟𝑟𝑏𝑏(1 − 𝑝𝑝𝑛𝑛𝑝𝑝) × 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑥𝑥)𝑛𝑛−𝑟𝑟𝑏𝑏𝑑𝑑𝑥𝑥1

𝑥𝑥=0 𝑑𝑑𝑧𝑧1
𝑧𝑧=0

𝐾𝐾
 

=
(0)𝑟𝑟𝑏𝑏 × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝)𝛿𝛿(𝑦𝑦)

𝐾𝐾
� � 𝛿𝛿(𝑧𝑧) × 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑥𝑥)𝑛𝑛−𝑟𝑟𝑏𝑏𝑑𝑑𝑥𝑥

1

𝑥𝑥=0
𝑑𝑑𝑧𝑧

1

𝑧𝑧=0
 

=
(0)𝑟𝑟𝑏𝑏 × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝)𝛿𝛿(𝑦𝑦)

𝐾𝐾
� 𝛿𝛿(𝑧𝑧)𝑑𝑑𝑧𝑧� 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑥𝑥)𝑛𝑛−𝑟𝑟𝑏𝑏𝑑𝑑𝑥𝑥

1

𝑥𝑥=0

1

𝑧𝑧=0
 

=
(0)𝑟𝑟𝑏𝑏 × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝)𝛿𝛿(𝑦𝑦)

𝐾𝐾
� 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑥𝑥)𝑛𝑛−𝑟𝑟𝑏𝑏𝑑𝑑𝑥𝑥
1

𝑥𝑥=0
 

Clearly, the integral ∫ 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(1 − 𝑥𝑥)𝑛𝑛−𝑟𝑟𝑏𝑏𝑑𝑑𝑥𝑥1
𝑥𝑥=0  evaluates to a positive number, lets denote is as Ka. Thus, we can derive 

the probability of perfection of channel B, 𝐹𝐹𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0)  as follows: 

𝐹𝐹𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) =
∫ 𝐾𝐾𝑎𝑎 × (0)𝑟𝑟𝑏𝑏 × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝)𝛿𝛿(𝑦𝑦)𝑑𝑑𝑦𝑦0+
𝑦𝑦=0

𝐾𝐾
= 

𝐾𝐾𝑎𝑎 × (0)𝑟𝑟𝑏𝑏 × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝)
𝐾𝐾

� 𝛿𝛿(𝑦𝑦)𝑑𝑑𝑦𝑦
0+

𝑦𝑦=0
=
𝐾𝐾𝑎𝑎
𝐾𝐾

× (0)𝑟𝑟𝑏𝑏 × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝) = 0 

Clearly, the term (0)𝑟𝑟𝑏𝑏 is the reason for the mass to be set to 0.  

QED.  

The implication of this theorem is intuitively straightforward: a failure of channel B destroys the hope that the channel is 
perfect. 

Appendix F 
Here we look at the posterior of the probability of perfection of channel B derived from a conservative prior, consistent 
with Assumptions 1 and 2 (section 2.3) and for observations: 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0 observed in n demands (𝑛𝑛 ≥ 𝑟𝑟𝑎𝑎).  

For the given conservative prior and the specific observations (5) leads to the following posterior: 

𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) =
𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝐿𝐿(𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0|𝑥𝑥,𝑦𝑦, 𝑧𝑧)

∫ ∫ ∫ 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝐿𝐿(𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 > 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0|𝑥𝑥,𝑦𝑦, 𝑧𝑧)1
0

1
0

1
0

∝ 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)(𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑎𝑎(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎
= 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑎𝑎(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎 

We start by noting that in this case the normalising coefficient K is positive (see Appendix D for further details):  

𝐾𝐾 = � � � 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝐿𝐿(𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 ≥ 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0|𝑥𝑥,𝑦𝑦, 𝑧𝑧)
1

0

1

0

1

0
 

As before, we can split the analysis of 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) into two cases: 

- 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦 = 0). In this case, 𝑃𝑃𝐵𝐵 = 0, 𝑃𝑃𝐴𝐴𝐵𝐵 = 0, as well. Hence, 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦 = 0) = 𝛿𝛿(𝑧𝑧), 
𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥) = 𝛿𝛿(𝑧𝑧)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝). We have: 
𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0)

∝ 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦 = 0)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑎𝑎(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎
=  𝛿𝛿(𝑧𝑧) × 𝛿𝛿(𝑧𝑧) × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑎𝑎(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎  

There are two distinct sub-cases: 



o 𝑃𝑃𝐴𝐴 = 0. As the values of all probabilities 𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵  and 𝑃𝑃𝐴𝐴𝐵𝐵  in this sub-case become all equal to 0, it follows 
that 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐴𝐴𝐵𝐵 = 0 and 1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵 = 1. Thus: 

𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥 = 0, 𝑦𝑦 = 0, 𝑧𝑧 = 0|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0)
∝ 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥 > 0,𝑃𝑃𝐵𝐵 = 𝑦𝑦 = 0)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(0 − 0)𝑟𝑟𝑎𝑎(1 − 0 − 0 + 0)𝑛𝑛−𝑟𝑟𝑎𝑎
=  𝛿𝛿(𝑧𝑧)𝛿𝛿(𝑧𝑧)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(0)𝑟𝑟𝑎𝑎(1)𝑛𝑛−𝑟𝑟𝑎𝑎 = [𝛿𝛿(𝑧𝑧) × 𝑧𝑧]𝛿𝛿(𝑧𝑧)(0)𝑟𝑟𝑎𝑎(1)𝑛𝑛−𝑟𝑟𝑎𝑎(1 − 𝑝𝑝𝑛𝑛𝑝𝑝) = 0 

It turns out that this posterior probability density, 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥 = 0, 𝑦𝑦 = 0, 𝑧𝑧 = 0|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 =
0) will be set to 0.  

o 𝑃𝑃𝐴𝐴 > 0. It is easy to see that for this sub-case:  𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐴𝐴𝐵𝐵 = 𝑃𝑃𝐴𝐴 > 0 and 1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵 = 1 − 𝑃𝑃𝐴𝐴. 
Thus, the posterior probability density becomes: 

𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥 = 𝑝𝑝,𝑦𝑦 = 0, 𝑧𝑧 = 0|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0)
∝ 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥 = 0,𝑃𝑃𝐵𝐵 = 𝑦𝑦 = 0)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(𝑃𝑃𝐴𝐴)𝑟𝑟𝑎𝑎(1 − 𝑃𝑃𝐴𝐴)𝑛𝑛−𝑟𝑟𝑎𝑎
=  𝛿𝛿(𝑧𝑧)𝛿𝛿(𝑦𝑦)(1 − 𝑝𝑝𝑛𝑛𝑝𝑝)(𝑃𝑃𝐴𝐴)𝑟𝑟𝑎𝑎(1 − 𝑃𝑃𝐴𝐴)𝑛𝑛−𝑟𝑟𝑎𝑎 > 0 

It turns out that a non-zero density will be retained10. The values assigned to this density will, of course, 
be dependent on the normalising coefficient. 

- 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦 > 0). In this case, 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦 > 0) = 𝛿𝛿(𝑝𝑝 − 𝑥𝑥). This case does not affect 
directly the probability of perfection of channel B but affects it indirectly. The pdf of the probability of failure of 
channel B is distinctly different depending on how the values x and y are related: 

o 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 > 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 < 𝑥𝑥) = 0 
o 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 > 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 ≥ 𝑥𝑥) may be greater than 0 or equal to 0. 

If 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 > 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥) = 0, the inference cannot change that. Let us concentrate on the cases where 
𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 > 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 ≥ 𝑥𝑥). Clearly, according to assumption 2 made in section 2.3, it follows that 𝑃𝑃𝐴𝐴𝐵𝐵 = 𝑃𝑃𝐴𝐴, hence 
𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐴𝐴𝐵𝐵 = 0. Further, 1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵 = 1 − 𝑃𝑃𝐵𝐵.  Thus, we can establish that:  

𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦 > 𝑥𝑥, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0)

=
𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦 ≥ 𝑥𝑥, 𝑧𝑧)(𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑎𝑎(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎

𝐾𝐾

=
𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦 ≥ 𝑥𝑥)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 ≥ 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(0)𝑟𝑟𝑎𝑎(1 − 𝑃𝑃𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎

𝐾𝐾

=
𝛿𝛿(𝑝𝑝 − 𝑥𝑥)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 ≥ 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(0)𝑟𝑟𝑎𝑎(1 − 𝑃𝑃𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎

𝐾𝐾
 

We can now derive the posterior probability density function, 𝑓𝑓𝑃𝑃𝐵𝐵(𝑥𝑥, 𝑦𝑦 > 𝑥𝑥, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) by integrating out 
the nuisance parameters, x and z:   

𝑓𝑓𝑃𝑃𝐵𝐵(𝑥𝑥, 𝑦𝑦 > 𝑥𝑥, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) = � � 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥,𝑦𝑦 > 𝑥𝑥, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0)𝑑𝑑𝑥𝑥
1

𝑥𝑥=0
𝑑𝑑𝑧𝑧

1

𝑧𝑧=0

= � �
𝛿𝛿(𝑧𝑧 − 𝑥𝑥)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 ≥ 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)(0)𝑟𝑟𝑎𝑎(1 − 𝑃𝑃𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎

𝐾𝐾
𝑑𝑑𝑥𝑥

1

𝑥𝑥=0
𝑑𝑑𝑧𝑧

1

𝑧𝑧=0

=
(0)𝑟𝑟𝑎𝑎(1 − 𝑃𝑃𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎

𝐾𝐾
� � 𝛿𝛿(𝑧𝑧 − 𝑥𝑥)𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 ≥ 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)𝑑𝑑𝑥𝑥

1

𝑥𝑥=0
𝑑𝑑𝑧𝑧

1

𝑧𝑧=0
 

Changing the order of integration – over z and x will allow us to simplify the expression as follows: 

𝑓𝑓𝑃𝑃𝐵𝐵(𝑥𝑥, 𝑦𝑦 > 𝑥𝑥, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) =
(0)𝑟𝑟𝑎𝑎(1 − 𝑃𝑃𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎

𝐾𝐾
� 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 ≥ 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥) �� 𝛿𝛿(𝑧𝑧 − 𝑥𝑥)𝑑𝑑𝑧𝑧

1

𝑧𝑧=0
� 𝑑𝑑𝑥𝑥

1

𝑥𝑥=0

=
(0)𝑟𝑟𝑎𝑎(1 − 𝑃𝑃𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎

𝐾𝐾
� 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 ≥ 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)𝑑𝑑𝑥𝑥
1

𝑥𝑥=0
 

 
10 For brevity, we omit the steps of how from the pdf, 𝑓𝑓𝑃𝑃𝐴𝐴 ,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥 = 𝑝𝑝,𝑦𝑦 = 0, 𝑧𝑧 = 0|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) > 0 we arrive at 
𝐹𝐹𝑃𝑃𝐵𝐵(𝑦𝑦 > 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥) > 0. These steps are identical to those shown in Appendix E, but the difference is that the posterior pdf is positive, 
e.g., does not contain a term which sets it to 0.   



Given the definition of 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 ≥ 𝑥𝑥) and 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥), it is clear that ∫ 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑦𝑦 ≥ 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)𝑑𝑑𝑥𝑥1
𝑥𝑥=0 > 0, which 

leads to the conclusion that: 

𝑓𝑓𝑃𝑃𝐵𝐵(𝑥𝑥, 𝑦𝑦 > 𝑥𝑥, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) =
(0)𝑟𝑟𝑎𝑎(1 − 𝑃𝑃𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎

𝐾𝐾
� 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 ≥ 𝑥𝑥)𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥)𝑑𝑑𝑥𝑥
1

𝑥𝑥=0
= 0  

for values 𝑃𝑃𝐵𝐵 = 𝑦𝑦 > 0 and 𝑃𝑃𝐴𝐴 = 𝑥𝑥, 𝑦𝑦 ≥ 𝑥𝑥. The reason is the term (𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑎𝑎 = (0)𝑟𝑟𝑎𝑎 = 0. This, however, is exactly the 
area in the prior, for which the probability density function, 𝑓𝑓𝑃𝑃𝐵𝐵(𝑥𝑥, 𝑦𝑦 > 𝑥𝑥, 𝑧𝑧) might be non-zero except the points in the 
prior, which capture the probable perfection of channel B: 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦 = 0, 𝑧𝑧). Thus, it appears that a failure of channel 
A will make the entire probability mass in the posterior 𝑓𝑓𝑃𝑃𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 > 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 = 0) shift from values of 𝑃𝑃𝐵𝐵 > 0 
to 𝑃𝑃𝐵𝐵 = 0. This shift will occur irrespective of the values of 𝑃𝑃𝐴𝐴. In other words, a failure of channel A and no failures of 
channel B will make us believe that channel B is perfect with certainty!  

QED.  

Appendix G 
In this appendix we look at the posterior probability of perfection of channel B derived with a conservative prior consistent 
with Assumptions 1 and 2 and for observations of system failures only (i.e., simultaneous failures of channel A and B): 
𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0 observed in n demands (𝑛𝑛 ≥ 𝑟𝑟𝑎𝑎).  

As in the previous cases we start with (5), which for the particular observation becomes: 

𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0) ∝ 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦 ≥ 𝑥𝑥, 𝑧𝑧) × (𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑎𝑎𝑏𝑏(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎𝑏𝑏
= 𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦) × 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦|𝑃𝑃𝐴𝐴 = 𝑥𝑥, ) × 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥) × (𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑎𝑎𝑏𝑏(1 − 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 + 𝑃𝑃𝐴𝐴𝐵𝐵)𝑛𝑛−𝑟𝑟𝑎𝑎𝑏𝑏 

As in the previous cases, let us denote as K the normalising coefficient: 

𝐾𝐾 = � � � 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝐿𝐿(𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0|𝑥𝑥,𝑦𝑦, 𝑧𝑧)
1

0

1

0

1

0
 

Using transformation similar to those used in Appendix D to derive D1 and D2 it can be shown that K > 0. We split the 
analysis of the posterior density function 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0) into two sub-cases:  

- 𝑃𝑃𝐵𝐵 = 𝑦𝑦 = 0. Clearly, in this case 𝑃𝑃𝐴𝐴𝐵𝐵 = 0. 
𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦 = 0, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0)

=
𝑓𝑓𝑃𝑃𝐴𝐴𝐵𝐵(𝑧𝑧|𝑃𝑃𝐴𝐴 = 𝑥𝑥,𝑃𝑃𝐵𝐵 = 𝑦𝑦 = 0) × 𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑃𝑃𝐴𝐴 = 𝑥𝑥) × 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥) × (0)𝑟𝑟𝑎𝑎𝑏𝑏(1 − 𝑃𝑃𝐴𝐴)𝑛𝑛−𝑟𝑟𝑎𝑎𝑏𝑏

𝐾𝐾
=  𝛿𝛿(𝑧𝑧) × 𝛿𝛿(𝑦𝑦) × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝) × 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥) × (0)𝑟𝑟𝑎𝑎𝑏𝑏 × (1 − 𝑃𝑃𝐴𝐴)𝑛𝑛−𝑟𝑟𝑎𝑎𝑏𝑏
= [𝛿𝛿(𝑧𝑧)] × 𝛿𝛿(𝑦𝑦) × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝) × 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥) × (0)𝑟𝑟𝑎𝑎𝑏𝑏 × (1 − 𝑃𝑃𝐴𝐴)𝑛𝑛−𝑟𝑟𝑎𝑎𝑏𝑏 

By integrating out the nuisance parameters, 𝑃𝑃𝐴𝐴 and 𝑃𝑃𝐴𝐴𝐵𝐵  we can express the posterior marginal probability density 
function, 𝑓𝑓𝑃𝑃𝐵𝐵(𝑥𝑥, 𝑦𝑦 = 0, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0) as follows: 

𝑓𝑓𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0) =
∫ ∫ 𝑓𝑓𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵,𝑃𝑃𝐴𝐴𝐵𝐵(𝑥𝑥, 𝑦𝑦 = 0, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0)𝑑𝑑𝑥𝑥1

𝑥𝑥=0 𝑑𝑑𝑧𝑧1
𝑧𝑧=0

𝐾𝐾

=
(0)𝑟𝑟𝑎𝑎𝑏𝑏 × 𝛿𝛿(𝑦𝑦) × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝)

𝐾𝐾
� � [𝛿𝛿(𝑧𝑧)] × 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥) × (1 − 𝑥𝑥)𝑛𝑛−𝑟𝑟𝑎𝑎𝑏𝑏𝑑𝑑𝑥𝑥

1

𝑥𝑥=0
𝑑𝑑𝑧𝑧

1

𝑧𝑧=0

=
(0)𝑟𝑟𝑎𝑎𝑏𝑏 × 𝛿𝛿(𝑦𝑦) × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝)

𝐾𝐾
� [𝛿𝛿(𝑧𝑧)]𝑑𝑑𝑧𝑧� 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥) × (1 − 𝑥𝑥)𝑛𝑛−𝑟𝑟𝑎𝑎𝑏𝑏𝑑𝑑𝑥𝑥

1

𝑥𝑥=0

1

𝑧𝑧=0

=
(0)𝑟𝑟𝑎𝑎𝑏𝑏 × 𝛿𝛿(𝑦𝑦) × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝)

𝐾𝐾
� 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥) × (1 − 𝑥𝑥)𝑛𝑛−𝑟𝑟𝑎𝑎𝑏𝑏𝑑𝑑𝑥𝑥
1

𝑥𝑥=0
 

Given the definition of 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥), the integral 𝐾𝐾𝑎𝑎 = ∫ 𝑓𝑓𝑃𝑃𝐴𝐴(𝑥𝑥) × (1 − 𝑥𝑥)𝑛𝑛−𝑟𝑟𝑎𝑎𝑏𝑏𝑑𝑑𝑥𝑥1
𝑥𝑥=0 > 0.  

Now we can express the probability of perfection of channel B as: 



𝐹𝐹𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0) = � 𝑓𝑓𝑃𝑃𝐵𝐵(𝑥𝑥, 𝑦𝑦 = 0, 𝑧𝑧|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0)𝑑𝑑𝑧𝑧
0+

𝑧𝑧=0

= � (0)𝑟𝑟𝑎𝑎𝑏𝑏
𝐾𝐾𝑎𝑎 × 𝛿𝛿(𝑦𝑦) × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝)

𝐾𝐾
𝑑𝑑𝑧𝑧

0+

𝑧𝑧=0
= (0)𝑟𝑟𝑎𝑎𝑏𝑏

𝐾𝐾𝑎𝑎 × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝)
𝐾𝐾

� 𝛿𝛿(𝑦𝑦)𝑑𝑑𝑧𝑧
0+

𝑧𝑧=0

= (0)𝑟𝑟𝑎𝑎𝑏𝑏
𝐾𝐾𝑎𝑎 × (1 − 𝑝𝑝𝑛𝑛𝑝𝑝)

𝐾𝐾
= 0 

As in Appendix E we have a term (𝑃𝑃𝐴𝐴𝐵𝐵)𝑟𝑟𝑎𝑎𝑏𝑏, which sets the probability of channel B perfection 
𝐹𝐹𝑃𝑃𝐵𝐵(𝑦𝑦 = 0|𝑛𝑛, 𝑟𝑟𝑎𝑎 = 0, 𝑟𝑟𝑏𝑏 = 0, 𝑟𝑟𝑎𝑎𝑏𝑏 > 0) to 0. This conclusion is quite plausible: if channel B has failed (in this case 
simultaneously with channel A) it cannot be considered perfect any longer. The case is a special case of observing 
channel B failing on its own, which we analysed in Appendix E above.  

- 𝑃𝑃𝐵𝐵 = 𝑦𝑦 > 0. This case does not affect the probability of perfection of channel B and the analysis is omitted.  
QED.  
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