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We introduce a model of negotiation dynamics whose aim is that of mimicking the mechanisms
leading to opinion and convention formation in a population of individuals. The negotiation process,
as opposed to “herding-like” or “bounded confidence” driven processes, is based on a microscopic
dynamics where memory and feedback play a central role. Our model displays a non-equilibrium
phase transition from an absorbing state in which all agents reach a consensus to an active stationary
state characterized either by polarization or fragmentation in clusters of agents with different opin-
ions. We show the exystence of at least two different universality classes, one for the case with two
possible opinions and one for the case with an unlimited number of opinions. The phase transition
is studied analytically and numerically for various topologies of the agents’ interaction network. In
both cases the universality classes do not seem to depend on the specific interaction topology, the
only relevant feature being the total number of different opinions ever present in the system.

Statistical physics has recently proved to be a powerful
framework to address issues related to the characteriza-
tion of the collective social behavior of individuals, such
as culture dissemination, the spreading of linguistic con-
ventions, and the dynamics of opinion formation [1].

According to the “herding behavior” described in soci-
ology [2], processes of opinion formation are usually mod-
eled as simple collective dynamics in which the agents
update their opinions following local majority [3] or imi-
tation rules [4]. Starting from random initial conditions,
the system self-organizes through an ordering process
eventually leading to the emergence of a global consen-
sus, in which all agents share the same opinion. In anal-
ogy with kinetic Ising models and contact processes [5],
the presence of noise can induce non-equilibrium phase
transitions from the consensus state to disordered con-
figurations, in which more than one opinion is present.
The principle of “bounded confidence” [6, 7], on the
other hand, consists in enabling interactions only be-
tween agents that share already some cultural features
(defined as discrete objects) [8] or with not too different
opinions (in a continuous space) [6, 9]. By tuning some
threshold parameter, transitions are observed concern-
ing the number of opinions surviving in the (frozen) final
state. This can be a situation of consensus, in which all
agents share the same opinion, polarization, in which a
finite number of groups with different opinions survive,
or fragmentation, with a final number of opinions scaling
with the system size.

In this Letter, we propose a model of opinion dynam-
ics in which a consensus-polarization-fragmentation non-
equilibrium phase transition is driven by external noise,
intended as an ‘irresolute attitude’ of the agents in mak-
ing decisions. The primary attribute of the model is that
it is based on a negotiation process, in which memory

and feedback play a central role. Moreover, apart from
the consensus state, no configuration is frozen: the sta-
tionary states with several coexisting opinions are still
dynamical, in the sense that the agents are still able to
evolve, in contrast to the Axelrod model [8].

Let us consider a population of N agents, each one
endowed with a memory, in which an a priori undefined
number of opinions can be stored. In the initial state,
agents memories are empty. At each time step, an or-
dered pair of neighboring agents is randomly selected.
This choice is consistent with the idea of directed at-

tachment in the socio-psychological literature (see for in-
stance [11]). The negotiation process is described by a
local pairwise interaction rule: a) the first agent selects
randomly one of its opinions (or creates a new opinion
if its memory is empty) and conveys it to the second
agent; b) if the memory of the latter contains such an
opinion, with probability β the two agents update their
memories erasing all opinions except the one involved in
the interaction (agreement), while with probability 1− β
nothing happens; c) if the memory of the second agent
does not contain the uttered opinion, it adds such an
opinion to those already stored in its memory (learning).
Note that, in the special case β = 1, the negotiation rule
reduces to the Naming Game rule [12], a model used to
describe the emergence of a communication system or a
set of linguistic conventions in a population of individu-
als. In our modeling the parameter β plays roughly the
same role as the probability of acknowledged influence in
the socio-psychological literature [11]. Furthermore, as
already stated for other models [13], when the system
is embedded in heterogeneous topologies, different pair
selection criteria influence the dynamics. In the direct

strategy, the first agent is picked up randomly in the
population, and the second agent is randomly selected

http://arXiv.org/abs/cond-mat/0611717v2
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FIG. 1: (Color online) Convergence time tconv of the model
as a function of β − βc (with βc = 1/3) in the case of a fully-
connected population of N agents. We show data for the
original model (circles) with unlimited number of opinions
per agent, and for models with a finite number m of different
opinions. Increasing m, the power-law fits give exponents that
differ considerably from the value −1.

among its neighbors. The opposite choice is called re-

verse strategy; while the neutral strategy consists in ran-
domly choosing a link, assigning it an order with equal
probability.
At the beginning of the dynamics, a large number of opin-
ions is created, the total number of different opinions
growing rapidly up to O(N). Then, if β is sufficiently
large, the number of opinions decreases until only one is
left and the consensus state is reached (as for the Nam-
ing Game in the case β = 1). In the opposite limit, when
β = 0, opinions are never eliminated, therefore the only
possible stationary state is the trivial state in which ev-
ery agent possesses all opinions. Thus, a non-equilibrium
phase transition is expected for some critical value βc of
the parameter β governing the update efficiency. In order
to find βc, we exploit the following general stability ar-
gument. Let us consider the consensus state, in which all
agents possess the same unique opinion, say A. Its sta-
bility may be tested by considering a situation in which
A and another opinion, say B, are present in the sys-
tem: each agent can have either only opinion A or B,
or both (AB state). The critical value βc is provided by
the threshold value at which the perturbed configuration
with these three possible states does not converge back
to consensus.

The simplest assumption in modeling a population of
agents is the homogeneous mixing (i.e. mean-field – MF
– approximation), where the behavior of the system is
completely described by the following evolution equations
for the densities ni of agents with the opinion i:

dnA/dt = −nAnB + βn2
AB + 3β−1

2
nAnAB

dnB/dt = −nAnB + βn2
AB + 3β−1

2
nBnAB, (1)

and nAB = 1− nA − nB. Imposing the steady state con-
dition ṅA = ṅB = 0, we get three possible solutions: 1)
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FIG. 2: (Color online) Time tx required to a population on a
fully-connected graph to reach a (fragmented) active station-
ary state with x different opinions. For every m > 2, the time
tm diverges at some critical value βc(m) < βc.

nA = 1, nB = 0, nAB = 0; 2) nA = 0, nB = 1, nAB = 0;
and 3) nA = nB = b(β), nAB = 1 − 2b(β) with b(β)=
1+5β−

√
1+10β+17β2

4β
(and b(0) = 0). The study of the so-

lutions’ stability predicts a phase transition at βc = 1/3.
The maximum non-zero eigenvalue of the linearized sys-
tem around the consensus solution becomes indeed pos-
itive for β < 1/3, i.e. the consensus becomes unstable,
and the population polarizes in the nA = nB state, with a
finite density of undecided agents nAB. The model there-
fore displays a first order non-equilibrium transition be-
tween the frozen absorbing consensus state and an active

polarized state, in which global observables are station-
ary on average, but not frozen, i.e. the population is split
in three dynamically evolving parts (with opinions A, B,
and AB), whose densities fluctuate around the average
values b(β) and 1 − 2b(β).

We have checked the predictions of Eqs. (1) by numer-
ical simulations of N agents interacting on a complete
graph. Figure 1 shows that the convergence time tconv

required by the system to reach the consensus state in-
deed diverges at βc = 1/3, with a power-law behavior
(β − βc)

−a, a ≃ 0.3 [18]. Very interestingly however,
the analytical and numerical analysis of Eqs. (1) predicts
that the relaxation time diverges instead as (β − βc)

−1.
This apparent discrepancy arises in fact because Eqs. (1)
consider that the agents have at most two different opin-
ions at the same time, while this number is unlimited in
the original model (and in fact diverges with N). Numer-
ical simulations reproducing the two opinions case allow
to recover the behavior of tconv predicted from Eq. (1)
(see Fig. 1). We have also investigated the case of a finite
number m of opinions available to the agents. The ana-
lytical result a = 1 holds also for m = 3 (but analytical
analysis for larger m becomes out of reach), whereas pre-
liminary numerical simulations performed for m = 3, 10
with the largest reachable population size (N = 106) lead
to an exponent a ≃ 0.74 ÷ 0.8 (see Fig. 1). More exten-
sive and systematic simulations are in order to determine
the possible existence of a series of universality classes
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FIG. 3: (Color online) Convergence time tconv of the model
as a function of β − βc on networks with different topologi-
cal properties: the UCM networks with degree distributions
P (k) ∼ k−γ , γ = 2.5 and γ = 3, and the ER homoge-
neous random graphs. Simulations are shown for networks
of N = 105 nodes and average degree 〈k〉 = 10, both for
m = 2 (”2w”, open symbols) and the original model with un-
limited memory (filled symbols). The numerical integration
of Eqs. 2 is in good agreement with the simulations.

varying the memory size for the agents. In any case, the
models with finite (m opinions) or unlimited memory de-
fine at least two clearly different universality classes for
this non-equilibrium phase transition between consensus
and polarized states (see [14] for similar findings in the
framework of non-equilibrium q-state systems).

Figure 2 moreover shows that the transition at βc is
only the first of a series of transitions: when decreasing
β < βc, a system starting from empty initial conditions
self-organizes into a fragmented state with an increasing
number of opinions. In principle, this can be shown an-
alytically considering the mean-field evolution equations
for the partial densities when m > 2 opinions are present,
and studying, as a function of β, the sign of the eigen-
values of a (2m − 1) × (2m − 1) stability matrix for the
stationary state with m opinions. For increasing values
of m, such a calculation becomes rapidly very demand-
ing, thus we limit our analysis to the numerical insights of
Fig. 2, from which we also get that the number of residual
opinions in the fragmented state follows the exponential
law m(β) ∝ exp [(βc − β)/C], where C is a constant de-
pending on the initial conditions (not shown).

We now extend our analysis to more general interac-
tions topologies, in which agents are placed on the ver-
tices of a network, and the edges define the possible in-
teraction patterns. When the network is a homogeneous
random one (Erdös-Rényi – ER– graph [15]), the degree
distribution is peaked around a typical value 〈k〉, and
the evolution equations for the densities when only two
opinions are present provide the same transition value
βc = 1/3 and the same exponent −1 for the divergence
of tconv as in MF. Figure 3 also shows that the exponent
is also the MF one when the number of opinions is not
limited.

Since any real negotiation process takes place on so-
cial groups, whose topology is generally far from being
homogeneous, we have simulated the model on various
uncorrelated heterogeneous networks (using the Uncor-
related Configuration model –UCM– model [16]), with
power-law degree distributions P (k) ∼ k−γ with expo-
nents γ = 2.5 and γ = 3.

Very interestingly, the model still presents a consensus-
polarization transition, in contrast with other opinion-
dynamics models, like for instance the Axelrod
model [17], for which the transition disappears for hetero-
geneous networks in the thermodynamic limit. Moreover,
Fig. 3 reports the convergence time tconv vs. (β − βc)

−a,
showing that at least two different universality classes
are again present, one for the case with a finite (m = 2)
number of opinions (a = 1) and one for the case with un-
limited memory (a ≃ 0.3). The exponents measured are
in each case compatible (up to the numerical precision)
with the corresponding MF exponents (see. Fig. 3).

To understand these numerical results, we analyze, as
for the fully connected case, the evolution equations for
the case of two possible opinions. Such equations can be
written for general correlated complex networks whose
topology is completely defined by the degree distribu-
tion P (k), i.e. the probability that a node has degree k,
and by the degree-degree conditional probability P (k′|k)
that a node of degree k′ is connected to a node of de-
gree k (Markovian networks). Using partial densities
nk

A = Nk
A/Nk, nk

B = Nk
B/Nk and nk

AB = Nk
AB/Nk, i.e.

the densities on classes of degree k, one derives mean-
field type equations in analogy with epidemic models.
Let us consider for definiteness the neutral pair selection
strategy, the equation for nk

A is in this case

dnk
A

dt
= −knk

A

〈k〉
∑

k′

P (k′|k)nk′

B − knk
A

2〈k〉
∑

k′

P (k′|k)nk′

AB +

+
3βknk

AB

2〈k〉
∑

k′

P (k′|k)nk′

A +
βknk

AB

〈k〉
∑

k′

P (k′|k)nk′

AB , (2)

and similar equations hold for nk
B and nk

AB. The first
term corresponds to the situation in which an agent of
degree k′ and opinion B chooses as second actor an agent
of degree k with opinion A. The second term corresponds
to the case in which an agent of degree k′ with opinions A
and B chooses the opinion B, interacting with an agent
of degree k and opinion A. The third term is the sum of
two contributions coming from the complementary inter-
action; while the last term accounts for the increase of
agents of degree k and opinion A due to the interaction of
pairs of agents with AB opinion in which the first agent
chooses the opinion A.
Let us define Θi =

∑
k′ P (k′|k)nk′

i , for i = A, B, AB.
Under the uncorrelation hypothesis for the degrees of
neighboring nodes, i.e. P (k′|k) = k′P (k′)/〈k〉, we get the
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FIG. 4: (Color online) Behavior of the critical value βc

as a function of the exponent γ of the degree distribution
P (k) ∼ k−γ , as obtained from the numerical solution of the
evolution equations for nk

i , for both direct (black circles) and
reverse (red squares) strategies. Bottom: comparison between
the values of βc(γ) obtained from the equations and from nu-
merical simulations on UCM networks of N = 103 agents, for
direct (open symbols) and reverse (full symbols) strategies.

following relation for the total densities ni =
∑

k P (k)nk
i ,

d(nA − nB)

dt
=

3β − 1

2
ΘAB(ΘA − ΘB). (3)

If we consider a small perturbation around the consensus
state nA = 1, with nk

A ≫ nk
B for all k, we can argue that

ΘA −ΘB =
∑

k kP (k)(nk
A − nk

B)/〈k〉 is still positive, i.e.
the consensus state is stable only for β > 1/3. In other
words, the transition point does not change in heteroge-
neous topologies when the neutral strategy is assumed.
This is in agreement with our numerical simulations, and
in contrast with the other selection strategies. Figure 4
displays indeed the values of the critical parameter βc(γ)
as a function of the exponent γ as computed from the evo-
lution equations of the densities nk

i (that can be derived
similarly to Eqs. (2)), and as obtained from numerical
simulations. In such topologies, the phase transition is
shifted towards lower values of β, both for direct and re-
verse strategies, revealing that a preferential bias in the
choice of the role played by hubs has a strong effect on
the negotiation process. Reducing the skewness of P (k)
(increasing γ), the critical value of β converges to 1/3.

In conclusion, we have proposed a new model of opin-
ion dynamics based on agents negotiation in which in-
stead memory and feedback are the essential ingredients.
We have shown that a non-trivial consensus-polarization-
fragmentation phase transition is observed in terms of a
control parameter representing the efficiency of the ne-
gotiation process. We have elucidated the mean-field dy-
namics, on the fully connected graph as well as on ho-
mogeneous and heterogeneous complex networks, using
a simple continuous approach. We have shown that the
model presents a discontinuous phase transition between
consensus and polarized states featuring at least two dif-

ferent universality classes, one for the case with m = 2
opinions and one for the case with an unlimited number
of opinions. In both cases we have measured the critical
exponent describing the divergence of the convergence
time and shown that they do not seem to depend on the
specific interaction topology. We argue that systems with
any finite number m of opinions should fall in the m = 2
class. Although this point clearly deserves a deeper nu-
merical investigation, we expect that the behavior of the
model with initial invention (unlimited memory) may be
due to the different spatial and temporal organization of
opinions in the inventories. It would also be interesting
to study the more realistic scenario in which the ‘irres-
olute attitude’ of the agents is modeled as a quenched
disorder rather than a global external parameter. Ac-
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