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Abstract
Diverse layers of defence play an important role in the design of defence-in-depth archi-
tectures. The use of Intrusion Detection Systems (IDSs) are ubiquitous in this design. But
the selection of the “right” IDSs in various configurations is an important decision that the
security architects need to make. Additionally, the ability of these IDSs to adapt to the evolv-
ing threat-landscape also needs to be investigated. To help with these decisions, we need
rigorous quantitative analysis. In this paper, we present a diversity analysis of open-source
IDSs, Snort and Suricata, to help security architects tune/deploy these IDSs. We analyse
two types of diversities in these IDSs; configurational diversity and functional diversity. In
the configurational diversity analysis, we investigate the diversity in the sets of rules and
the Blacklisted IP Addresses (BIPAs) these IDSs use in their configurations. The functional
diversity analysis investigates the differences in alerting behaviours of these IDSs when they
analyse real network traffic, and how these differences evolve. The configurational diversity
experiment utilises snapshots of the rules and BIPAs collected over a period of 5 months,
from May to October 2017. The snapshots have been collected for three different off-the-
shelf default configurations of the Snort IDS and the Emerging Threats (ET) configuration
of the Suricata IDS. The functional diversity investigates the alerting behaviour of these two
IDSs for a sample of the real network traffic collected in the same time window. Analysing
the differences in these systems allows us to get insights into where the diversity in the
behaviour of these systems comes from, how does it evolve and whether this has any effect
on the alerting behaviour of these IDSs. This analysis gives insight to security architects on
how they can combine and layer these systems in a defence-in-depth deployment.
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1 Introduction

An important paradigm in security design is defence-in-depth: “layering” defences to reduce
the probability of successful attacks. Guidance documents now advocate defence-in-depth
as an obvious need, but their qualitative guidance ignores the decision problems (van Niek-
erk and Jacobs 2015). Crucially, these problems concern the effectiveness of diversity:
defences should be diverse in their weaknesses. Any attack that happens to defeat one
defence should with a high probability be stopped or detected by another one. Ultimately,
diversity and defence in depth are two facets of the same defensive design approach. The
important questions are not about defence in depth being “a good idea”, but about whether
a set of specific defences would improve security more than another set; and about—if
possible—quantifying the security gains.

Network Intrusion Detection Systems (NIDSs) are some of the most widely used secu-
rity defence tools. Some of these NIDSs are available open-source, and the most widely
used open-source NIDSs are Snort (2021), Suricata (2021) and Zeek (2021) (Previously
known as Bro). While Snort and Suricata are signature-based and rely on rules to identify
malicious activity, Zeek uses customised scripts to detect anomalies/violations-of-policies
in the traffic. An open-source Host-based IDS (HIDS), Wazhu (2021), is both signature and
anomaly based. In this paper, we focus on the rule-based NIDSs, namely Snort and Suri-
cata, since they are the most widely used NIDSs and follow similar architecture, making
the diversity analysis more suitable. The rules identify malicious activity based on content,
protocols, ports etc., as well as on the origin of the activity/traffic—in this latter case, the
suspicious IP addresses are “blacklisted” and traffic originating from these IPs are alerted.
Depending on the configuration of the IDS, the traffic can be alerted but allowed or alerted
and dropped—the latter happens when the IDS is running in Intrusion Prevention System
(IPS) mode.

While from the software engineering point of view there are many differences between
Snort and Suricata that could potentially affect their alerting behaviours, it is the dif-
ferences and variation in the signature rules and Blacklisted IP Addresses (BIPAs) that
would be expected to be mainly responsible for the diversity in their detection capabili-
ties. While other performance metrics may also be used to compare these IDSs, such as
packet-processing speed, drop-rates etc, their contribution towards diversity would be rela-
tively small compared to the contribution from rules and BIPAs. Rules and BIPAs are added,
modified or deleted regularly. In a previous work (Asad and Gashi 2018), we analysed the
evolution of the rulesets and BIPAs of Snort and Suricata IDSs over 5-months from May
to October 2017. Analysing the differences, and how these evolve, allows us to get insights
into where the diversity in the behaviour of these systems comes from. The new work pre-
sented here is an extension of that paper with new results about the evolution of diversity
in the alerting behaviour. While we reuse the results of our previous work for the config-
urational diversity analysis, the functional diversity is something completely novel in this
paper. Besides, additional sections and text have been added to explain the experiment in
more detail.

In this paper, we present an empirical study to investigate the configurational and func-
tional diversities in the Snort and Suricata IDSs. The configurational diversity deals with
identifying the differences, if there are any, between the Snort and Suricata rules and BIPAs.
Note that we perform this comparison by considering three Snort rulesets, namely “com-
munity”, “registered” and “subscribed”; we also use “ET ruleset” for Suricata. There are
no seperate rulesets for BIPAs per NIDS: the diversity analysis is performed on two sets of
BIPAs associated respectively with Snort and Suricata. The functional diversity deals with
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the alerting behaviour of these IDSs against real-world traffic. Specifically, we investigate
whether these two IDSs are different in their alerting behaviour when subjected to the same
network traffic. Essentially, these two types of analysis are complementary. If rulesets and
BIPAs are different (e.g. having different regular expressions as signatures, analyse different
types of payloads in the traffic etc.), then that should be reflected in the alerting behaviour
of these IDSs as well. The functional diversity analysis is thus a testing of the configura-
tional diversity using real-world network data. This analysis is not only static but dynamic
in time: we do not only compare sets of data of a particular time-window, e.g., 24 hours,
but of a moving time window over several months. The dynamic analysis allows us to see
the way rules are modified, added or discarded, as well as the changes in the set of BIPAs.
Similarly, analysing the network traffic, of a particular time window, by the rules/BIPAs of
the corresponding time window as well as by those collected in the past and future time
windows, we gain insights on the evolution of the alerting behaviour of these IDSs. The
configurational diversity analysis makes use of the rules and BIPAs data over a 5-month
period, and collected between May and October 2017. The functional diversity analysis
presents alerts data of these two IDSs by sniffing out a representative sample network traffic
from City, University of London DMZ network. These analyses allow us to get answers to
questions such as, for the same traffic, does a later configuration of Snort/Suricata generate
more alerts compared to an earlier Snort/Suricata configuration? Do we see deterministic
behaviour in the alerting behaviour (i.e., does the same rule on the same traffic always raise
an alert?) How long does it take for traffic that was not alerted by an earlier configuration
of Snort/Suricata to be alerted by a later configuration? Do we observe any alerts that have
been alerted by both Snort/Suricata? etc. In this paper, we provide answers to some of these
questions, which will help security architects and other researchers to gain more insight on
how these products evolve, what diversity exists between them, and what effect does this
evolution of IDSs have on alerting behaviour when analysing real network traffic. To the
best of our knowledge, a similar study has not been reported elsewhere.

The rest of the paper is organised as follows: Section 2 gives a background of the
NIDSs; this is followed by a description of our data collection Infrastructure in Section 3.
In Section 4 we discuss the configurational diversity analysis between Snort and Suricata
IDSs. Section 5 discusses the functional diversity analysis. Section 6 presents a discussion
and limitations of the results. Section 7 presents our proposed IDSs deployment strategies,
followed by the related work in Section 8. Section 9 concludes the paper.

2 Signature based IDS Background

An IDS is a system that can potentially differentiate between malicious and benign network
traffic. It can be deployed on an individual host as HIDS or at a choke point in a network
monitoring the network traffic as NIDS. A signature-based IDS uses a database of traffic
signatures, such as IP address, port numbers, protocol and payload patterns, and generates
alerts if it encounters the same signatures. On the other hand, an anomaly-based IDS works
by looking for anomalies in the network traffic using predictive models that are trained
using normal and malicious traffic (Pathan 2014). An IDS can be deployed as a passive sen-
sor—where it can analyse the traffic in a promiscuous mode, and as an active sensor in the
In-Line mode—where it stops/allows traffic and is called an Intrusion Prevention System
(IPS). An IDS software system consists of several sub-systems as shown in Fig. 1 for Snort
IDS (other signature-based IDSs may have other sub-systems/plugins, but essentially fol-
low the same structure). The sensor part of the IDS consists of several libraries and software
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Fig. 1 Snort IDS architecture

systems. The network traffic is captured using Packet-Capture (Pcap) libraries, such as
LibPcap for Linux and WinPcap for Windows. The packet decoder converts the traffic
into the relevant data structures and strips out the TCP, UDP and ICMP protocols. The
headers of different packets are checked for any inconsistencies. The correct packets are
further processed by the pre-processor block so that they are in the format to be used by
the detection engine. Pre-processors are also used to detect any malicious ports. The detec-
tion engine is the main software sub-systems detecting malicious traffic using rules. The
rules for both Snort and Suricata follow the same structure and have various fields—actions,
protocols, source/destination IP, source/destination ports, message to be stored/displayed,
regular expressions for payload etc. Rules are written targeting traffic at different Open Sys-
tem Interconnection (OSI) layers—network (IP), Transport (ports), and the application layer
payloads. The Snort IDS comes with three different default rule configurations available
from the Snort web pages (Community rules, Registered rules, and Subscribed rules). The
difference between these rules is explained on the Snort website (Snort R. 2021). In sum-
mary, the website states the following for these different rules: the Subscribed (paid) rules
are the ones that are available to users in real-time as they are released; the Registered rules
are available to registered users 30 days after the Subscribed users; the Community rules are
a small subset of the subscribed/registered rulesets and are freely available to all users. The
Suricata IDS uses the Emerging Threats(ET) ruleset (Emerging T. R. 2021). There are rules
intended for the BIPAs and while the Suricata IDS have these BIPAs embedded in the rule
file, Snort has rules pointing to a directory having files with BIPAs (Snort B. 2021). These
rules and BIPAs can be automatically updated using tools such as Pulledpork (Cummings
and Shirk 2021), and Suricata update (Suricata UT 2021). Alerts generated by the sensor
are sent for storage or to an analyzer. The analyzer can also access the storage for further
analysis of the alerts so that actions are taken accordingly. Both Snort and Suricata offer
various ways of customized logs that can be saved or sent to various logs-plugins (Snort
logs 2021; Suricata logs 2021). The information in the logs/outputs can be from TCP pack-
ets or only the malicious alerts, depending on the mode of an IDS. These logs have dozens
of fields showing information about the IP address, ports, protocols, time stamps, session
details, rules information, payload signatures, CVE information etc.

3 Description of the Data Collection Infrastructure

3.1 The Architecture

A representative block diagram of our data collection and the experimental setup is depicted
in Fig. 2. Except for the DMZ network and the firewalls, the rest of the network is virtual.
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Fig. 2 Data collection infrastructure

We have used multiple virtual machines (VMs) to collect and process the data. The Packet
Capture (pcap) data of the City, University of London have been collected in the server at the
DMZ network, whereas the Snort and Suricata rules and BIPAs have been collected in our
localised virtual environment. The virtual environment is based on VMware VSphere data
center using the HPE ProLiant BL460c Gen9 blade servers. This data collection setup has 10
data hosts each having 150 TB storage capacity, 200 GB RAM of 2400MHZ effective speed,
32×2.3GHz Intel Xeon E5-2650V4 CPUs, and network speed of 10Gb. There are 2 hosts
for Suricata, 7 for Snort, and 1 host serves as our centralized data processing machine based
on Windows operating system. Suricata, being capable of multi-threading, could analyse
multiple files in parallel with the help of only two hosts. On the other hand, we ran 7 Snort
instances on 7 separate hosts to catch up with the speed of processing the same number
of files, as Snort did not support multithreading at the time. The live traffic was saved in
pcap format in the DMZ network. Snort and Suricata then analysed the saved pcap data.
At the start of the experiment, we installed the latest versions of these IDSs on the Ubuntu
operating system: Snort 2.9.9.0 and Suricata 3.2.1. Note that these were the versions of
these IDSs during the time of the experiment, and since then, there have been updates to
both Snort and Suricata with Snort 3.0 now being able to support multi-threading. However,
at the time of this experiment, Snort 3.0 was still in its beta state, and we wanted to use a
more stable version of 2.9.9.0.

3.2 The Experimental Data

There are two types of data that we use for this experiment—the configurational diversity
utilises the rules and BIPAs—the functional diversity uses the pcap data along with rules
and BIPAs. Using automated bash scripts, we saved snapshots of both rules and BIPAs for 5
months: from 20th May 2017 to 31st October 2017. We used the pulledpork tool to retrieve
the rules from the corresponding web pages of Snort and Suricata (Cummings and Shirk
2021). The strategy was to save the two data sets of rules and BIPAs, for both Snort and
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Suricata, at a sufficiently high frequency to enable us to analyse the evolution of these tools.
The snapshots were only taken when there was an update since the last saved snapshot.
Therefore, for Snort, we have a total of 15,812 blacklisted files (28 less that if there had been
an update every 15 minutes of the 165 days of the experiment). Contrary to Snort, where
rules using the BIPAs have to use a path to a file having these IP addresses, Suricata uses
BIPAs within its rule file. Similar to Snort, we used pulledpork and took snapshots of these
rules files every 15 minutes. However, the rate of updates of these Suricata rule/blacklisted
files is on the daily basis. To do the BIPAs comparisons, we extracted these from the rule
files for Suricata IDS. For the completeness of the experiment, we saved snapshots of all
three rule types for Snort for the entire duration of the experiment. We used only the freely
available ET ruleset for Suricata.

With the help of the University’s IT team, we saved copies of the network traffic in the
pcap format for retrospective analysis of attacks and incidents. We saved the pcap data for
the entire duration of the experiment. However, mainly due to logistical reasons of handling
a large number of alerts data, we restricted the functional diversity analysis based on a
sample of that data. To put things in perspective, for a week pcap data, we needed to use 7
sets of rules and BIPAs. This resulted in 49 data sets of alerts logs in the order of tens of GBs.
Similarly, there needed to be 49 instances of Snort/Suricata to perform these experiments
(7 pcap sets X 7 rules/BIPAs). The post-processing of the alerts and the management of a
large number of sets of data was another reason that we restricted the functional diversity
analysis to two weeks of pcap data. Essentially, we analysed the pcap traffic collected for 14
days (1st, 3rd, 8th, 9th, 10th, 15th, 17th, 23rd, 24th, 29th, 31st of August; 6th, 9th and 12th
of September 2017) using the rules and BIPAs of the corresponding dates. The selection
of these dates was not random. It was based on our observation that, for these dates, there
had been updates in both the Snort subscribed and Suricata ET rules (hence enabling a fair
comparison of these two IDSs). We believe that this is a reasonably large representative
sample of the pcap data that covers around 1/3 of the time duration of our experiment.
Besides, the selection of dates for which there had been updates esnures that we use the most
up-to-date rules and BIPAs for the pcap data of those dates. The 14 days of pcap data were
analysed in two separate experiments; each experiment analysed 7 days of pcap data with 7
days of rules/blacklisted IPs. For each experiment, we sent the pcap data, of each day, to a
Snort and Suricata configuration as they were on each of these dates. So, we have 7 (days
of pcap data) x 7 (configurations of IDSs) x 2 (Snort and Suricata) = 98 result sets for each
experiment. In total, we have 98x2 = 196 results for both experiments. A point worth noting
is that the pcap data of the 10th and 15th of August were not saved for the entire 24 hours
duration. Hence, in the results presented in section III, we observe a smaller number of
alerts for these dates. Also, for the functional diversity experiment, we used the subscribed
rules for Snort. This is after we observed in the configurational diversity experiment that
the subscribed ruleset is a superset of the other two Snort rulesets (and get most frequently
updated). We used, however, the Suricata ET ruleset in the functional diversity experiment
as well.

4 Configurational Diversity Analysis

In this section, we present the empirical study of analysing the configurational diversity of
the Snort and Suricata IDSs. The study has two parts: first we show results of our finding
about the differences and similarities in the BIPAs sets; we later present diversity analysis
of the rulesets.
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4.1 Diversity in the Bipas of Snort and Suricata

4.1.1 Analysis of Individual IDSs

This section presents the analysis of the BIPAs for individual IDSs. The data we use for
this analysis was collected, from May 20 to October 31, 2017, at a sampling rate of every
15 minutes. We observed, however, that the rate of change of the blacklisted IP files was,
in some cases, less frequent than every 15 minutes for Snort, and was even further less for
Suricata IDS (which tended to be every 24 hours). Figure 3 depicts the time-series data of the
BIPAs for Snort and Suricata, in the left and right plots respectively. The y-axis shows the
total count of the blacklisted IPs and the x-axis shows the data collection points. Comparing
the two plots in Fig. 3, we can clearly see the difference in the dynamics of the counts of
the two sets. The left plot of Snort shows more fluctuations than those in the right plot of
Suricata. It is worth noting, that around 21 June 2017, a large number of IP addresses were
removed from the BIPAs set, for both Snort and Suricata. However, afterwards, the trends
for the two sets remained very different, throughout the rest of the experiment. While the
Snort BIPAs count still showed considerable fluctuations, the count of the Suricata BIPAs
remained relatively smooth. Besides, we observe that there were two types of BIPAs in
both the sets—those that remained blacklisted for the entire duration of the experiment
(or change their states only once, e.g., they are removed from the black-lists) which we
called “continuous”; and those that changed state twice or more (e.g., blacklisted, removed,
blacklisted etc.) which we called “discrete”. The general statistics of these BIPAs are given
in Table 1. The second column shows counts of the total number of files containing BIPAs

Fig. 3 Count of Blacklisted IPs in Snort and Suricata in our collection period
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Table 1 General Statistics of BIPAs, BIP:=Blacklist IP, IPA:=IP Addresses

Source BIP #Files #IPA #IP(“continuous”) #IP(“discrete”)

Snort 15,812 46,701 5,383 41,318

Suricata 129 135,791 28,883 106,908

for the whole experiment; the third column shows the total number of distinct IP addresses;
the fourth and fifth columns show the counts of the “continuous” and “discrete” IP addresses
respectively. We have also considered the amount of time IP addresses remained black-
listed during the experiment, since this may be an important feature in the quantification
of diversity between the Snort and Suricata IDSs. Figure 4 depicts this analysis as the total
time an IP remained blacklisted (x-axis) against the proportion of IP addresses (y-axis). We
observe that on average, IP addresses stayed blacklisted longer in Snort than in Suricata.

4.1.2 Diversity Analysis of the BIPAs

This section presents a comparative analysis of the sets of BIPAs used by Snort and Suricata
during the experiment. To this end, we use the sets of BIPAs that were collected at the
same date/time points (to the nearest second). In total, out of 15,812 Snort files, and 129
Suricata files, 128 files had a common date/time overlap. We use these overlapping files
for this analysis. Figure 5 depicts this analysis as the overlapping date/time slots (in the x-
axis) vs the counts of different categories of BIPAs (y-axis). We have three main categories
of interest: BIPAs which were blacklisted in Snort only, BIPAs which were blacklisted in
Suricata only, and BIPAs which were blacklisted in both Snort and Suricata. We have also
shown the total BIPAs in both sets. Likewise, we observe that the overlap between the two
BIPAs sets is relatively small and the total number of IPs that appear in blacklists of both
Snort and Suricata is relatively constant for the duration of our experiments.

Table 2 shows the breakdown of the overlapping BIPAs. We have a total of 177,504
distinct BIPAs observed in either Snort or Suricata in the 128 overlapping files. Of these,
3,991 have been observed in both Snort and Suricata. We can think of each data-point in

Fig. 4 Total time (Hours) an IP remained blacklisted
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Fig. 5 Diversity in BIPAs as collected from Snort and Suricata sources

our data set consisting of an IP/date pair, and for each of these data points the value is
either “observed in Snort-only” (labelled as 01), “observed in Suricata only” (labelled 10),
or “observed in both Snort and Suricata at the same time” (labelled 11). The statistics for
these data points are given in the last three rows of Table 2. It is worth noting, that the
BIPAs which appeared either in Snort or Suricata can be of several types—those having
state 01,10,11 or a combination of these states. The breakdown of these single and hybrid
states is given in Table 3, giving a more detailed split of the 177,504 BIPAs observed in
Snort and Suricata. The first two columns show the counts of those BIPAs appeared in the
“single states” of either (01), (10), or (11). The third and fourth columns show the counts
of BIPAs appeared in multiple states. For instance, the third row shows that there are 79
BIPAs, though appeared in both Snort and Suricata files, but at a different time. Similarly,

Table 2 Statistics of the data points observed in Snort and Suricata overlapping periods,01:= Observed in
Snort Only, 10:= Observed in Suricata only, 11:= Observed in both

No. of BIPAs in 128 files of Snort 46,187

No. of BIPAs in 128 files of Suricata 135,308

No. of BIPAs in either Snort or Suricata 177,504

No. of BIPAs in both Snort and Suricata 3,991

No. of (IP/date pairs) observed in Snort and Suricata overlapping periods (01) 1,129,180

(10) 2,219,330

(11) 113,152
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Table 3 Break-down of different BIPAs States,01:= Observed in Snort Only, 10:= Observed in Suricata only,
11:= Observed in both

Single states # IPs Multiple states # IPs Observed first in: # IPs

(01) 42,196 (01,10) 79 (01) 35

(10) 44

(10) 131,317 (01,11) 2,834 (01) 1,257

(11) 1,577

(11) 588 (10,11) 250 (01) 84

(11) 166

(01,10,11) 240 (01) 102

(10) 82

(11) 56

some BIPAs appeared either in Snort or Suricata and later in both sets at the same time.
These are labelled as (01,11), (10,11) and (01,10,11). We show a further breakdown of the
BIPAs that appeared in multiple states—for example, for the 79 BIPAs appeared in multiple
states of (01,10), 35 appeared first in the Snort and 44 in the Suricata sets respectively.
To visualise the dynamic behaviour of those BIPAs appeared in multiple states (i.e., those
of columns three and four from Table 3), Fig. 6 shows color maps of their time-varying
observations in various sets. The x-axis shows the number of date/time points and the y-
axis the enumeration of these BIPAs. These color maps shed light on the diversity of the
Snort and Suricata BIPAs. Subplot 6a shows that several BIPAs appeared earlier in Suricata
(Green points) than in the Snort BIPAs set (Black Points) and vice versa. The rest of the
three subplots, 6b, c, and d, depict an interesting behaviour of many BIPAs—From time to
time, it appears many IP addresses were removed from either Snort or Suricata before being
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reinstated again (we can see blocks of red (Snort and Suricata) becoming green (Suricata
only), and then red again).

4.2 Diversity in Rules used by Snort and Suricata

4.2.1 Overall Analysis

The signature-based rulesets is another source of configurational diversity in Snort and Suri-
cata. We present a quantitative analysis of these rules in this section. This analysis uses rules
data collected from 20 May to 31 October 2017. The types of rules we consider are Com-
munity, Registered, and Subscribed for the Snort IDS, and ET for the Suricata IDS. Similar
to BIPAs, these rules were collected at a sampling rate of 15 minutes. However, the rate
at which the rules were updated was much lower compared with BIPAs—mainly every 24
hours, but sometimes with lags of 5 days with no updates. Snort Community rules are an
exception, where we noticed an update of 4 rules multiple times a day. We present the anal-
ysis by comparing the rulesets across all versions once every 24 hours. Table 4 shows the
counts of different rulesets we use in the analysis. The two important features worth noting
in this table are the differences in the number of rules and the rules with change in their
VNs. We observe that the number of rules for Suricata is almost double that for Snort Regis-
tered and Snort Subscribed (which are very similar), and that the count of Snort Community
is much smaller. There are rules with change in their VNs while their SID (Signature ID)
remains the same—columns four and five of Table 4 give these counts. More than 80% of
the Snort Registered and Subscribed rulesets, and 97% of Suricata ET ruleset reported ver-
sion changes during the experiment. Figure 7 shows the dynamics of different rulesets. We
notice that the total number of rules in each set remains relatively constant for the duration
of the experiment.

4.2.2 Snort Rules Diversity Analysis

Next, we compare different Snort rulesets. To make this comparison tractable, we use the
SID that, along with the Version Number (VN), can be considered as a unique identifier for
each rule. We use these identifiers (SID+Version No.) consistently across different rulesets
(i.e., the same SID and same VN in Registered and Subscribed means that the rule is also
the same). Figure 8 depicts dynamics of the rule counts for various Snort rule types. The
y-axis shows, in a log scale, the counts of rules in different categories for each day of the
experiment (x-axis). Here, “ reg” is the count of rules which are only in the Snort Registered
set, “ reg com” shows only those rules that are in the Registered and Community rulesets,
etc. We notice that the majority of the rules are those that exist in both Registered and Sub-
scribed rulesets (brown dots), followed by those that are common among all three rulesets
(pink dots), and those that exist in the Subscribed ruleset only (orange dots).

Table 4 General Statistics of
Different rulesets, R:=Rules,
#F:=No. of Files, #R:=No. of
Rules, #RNVC:=No. of rules
with no version change,
#RVC:=No. of rules with version
change

Rules #F #R #RNVC #RVC

SnortReg 52 10,675 2,259 8,416

SnortSub 51 10,736 2,399 8,337

SnortCom 166 903 472 431

SuricataET 106 19,584 523 19,061
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Fig. 7 Snort and Suricata rule counts over the duration of the experiment

We use binary states representation to label different Snort rulesets—01:Snort Regis-
tered, 10:Snort Subscribed, 11:Snort Community, 100:Snort Registered and Subscribed,
101: Snort Registered and Community, 110: Snort Subscribed and Community, and 111:
All three Snort rulesets. The counts of SIDs and data points in different permutations of
these sets are given in Table 5. A particular rule can be part of a single or multiple states,
similar to what we discussed for BIPAs. Table 6 shows the counts of various SIDs (rules)
being part of either single state, 2-states, 3-states, or 4-states. It is worth noting, however,
that we have a maximum number of 27 permutations of different sets, but we only show
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Fig. 8 Time progression of diversity in snort rules
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Table 5 Statistics of the data
points observed in the Snort
rulesets overlapping periods,01:=
Snort Reg. Only, 10:= Snort Sub.
only, 11:= Snort Com. only,
100:= Snort Reg. and Sub. only,
101:= Snort Reg. and Com. only,
110:= Snort Sub. and Com. only,
111: All three only

#SIDs Snort Reg 12,161

#SIDs Snort Sub 12,257

#SIDs Snort Com 959

#distinct SIDs in any 12,267

#Data points (SID/date pairs) 01 4

10 4,255

11 100

100 469,390

101 0

110 210

111 41,913

those cases that have the non-zero count of SIDs (most of the other combinations have zero
counts). Once a rule is established to be part of multiple states, then it is important to deter-
mine which state that rule was first observed in. That is why, Table 6 also shows, in columns
5, 6, 9, and 10, the breakdown of rule counts in states they were first observed in. For rules
that were observed in a single state, the majority are in the ’100’ (The union of Registered
and Subscribed rules). The other stand-out feature in Table 6 is that of the rules observed
in multiple states. These rules had always been first observed in a state where there is the
Subscribed ruleset. This is quite consistent with what we stated earlier about different Snort
rulesets. To capture the time evolution of Snort registered and community rules, with respect

Table 6 Statistics of SIDs in different Snort rulesets, S:=States, OFI:=Observed-First-In, 01:= Snort Reg.
Only, 10:= Snort Sub. only, 11:= Snort Com. only, 100:= Snort Reg. and Sub. only, 101:= Snort Reg. and
Com. only, 110:= Snort Sub. and Com. only, 111: All three only

1-S #SIDs 2-S #SIDs OFI #SIDs 3-S #SIDs OFI #SIDs

(01) 0 (01,100) 4 01 0 (10,110,111) 17 10 17

100 4 110 0

111 0

(10) 91 (10,100) 480 10 480 (11,100,111) 1 11 0

100 0 100 1

111 0

(11) 10 (10,110) 3 10 3 (11,110,111) 2 11 0

110 0 110 2

111 0

(100) 10,733 (11,111) 76 11 0 (100,110,111) 2 100 0

111 76 110 2

111 0

(101) 0 (100,111) 24 100 17 4-S OFI: 111 7

(110) 2 (110,111) 7 110 7 (10,11,110,111) 1 10 1

111 0 11 0

110 0

(111) 814 111
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to the Subscribed rules, we depict, in Fig. 9, the time it takes for the Snort Subscribed rules
to appear in other rulesets(i.e., the SIDs in the sets: (10,100), (10,110), (10,110,111) and
(10,11,110,11) from Table 6). The figure confirms what is stated in the Snort website for
these Subscribed rules: most of these become available to Registered users on average 30
days after they are available in the Subscribed ruleset.

4.2.3 Configurational Diversity Analysis of Snort and Suricata Rules

This section quantifies the similarities and differences between Suricata ET and various
types of Snort rules. To this end, we need to have fields in the rulesets which are compara-
ble. However, contrary to the Snort rules analysis, where we use SIDs, Suricata ET rules do
not share common SIDs with that of Snort rules. We, instead, use the “content” field in the
rules, which are defined as regular expressions and contain the important “signature” information
of the malicious payload of a packet. It is the “content” field that IDSs utilise to detect malicious
payloads. However, the “content” field is limited to those rules that are responsible for known
signatures in the payload of a TCP/IP traffic. Rules that check either BIPAs or ports, do
not have the content fields. The analysis in this section considers rules that have the “con-
tent” field (73.4% of the rules of Snort Registered and Subscribed have this field, 77.8% of
Suricata ET and 97.7% of Snort Community rules have the “content” field).

Figure 10 shows the configurational diversity of Snort and Suricata rulesets based on
the content field. Here, the x-axis shows the days and the y-axis the number of SIDs with
content fields, in log scale. This figure depicts the evolution of the counts of the “content”
fields not only for the individual rulesets but that of the intersection of various rulesets as
well. The shorthand notation is the same as previous (e.g., “ ET” represents the SIDs with
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Fig. 10 Evolution of Configurational Diversity of the Snort and Suricata rulesets

content fields observed only in the Suricata ET ruleset etc.) The largest overlap, among the
intersection of rulesets, is that in the intersection set of Suricata ET, Snort Registered and
Snort Subscribed rulesets (the magenta dotted line that hovers around the 100 marks in the
y-axis).

Table 7 gives the counts of SIDs with a content field in different rulesets. It also gives the
number of data points observed in different sets. Note that, Table 7 gives additional rulesets
and has used binary state representations, 1000...1111, to label them. Table 8 gives a further
analysis of SIDs (with content field) that appeared in either single or multiple states. These
two tables confirm that there is relatively little overlap between Suricata ET and Snort rules,
as evident from the counts of SIDs in the intersection sets, 1001...1111.

5 Functional Diversity Analysis of Snort and Suricata

In this section, we analyse how the configurational diversity manifests itself in the alerting
behaviour of Snort and Suricata IDSs. We analyse the alerting behaviour of each IDS by
analysing the City, University of London network traffic, saved as pcap files. The analysis
is not only static, but dynamic in time as well. We use only the Subscribed ruleset for Snort
in this analysis as it is the superset of the other Snort rules.

5.1 Description of the Data used in Functional Diversity Analysis

Essentially, we analyse whether a ruleset, saved at a later date, generates more/fewer alerts
for the traffic captured at an earlier date and vice versa. We evaluate this evolution in the
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Table 7 Data points in Snort and Suricata rules with the contents field, S:= State, D-P:= Data Points, 01:=
Snort Reg. Only, 10:= Snort Sub. only, 11:= Snort Com. only, 100:= Snort Reg. and Sub. only, 101:= Snort
Reg. and Com. only, 110:= Snort Sub. and Com. only, 111:= All three only, 1000:= ET only, 1001:= ET and
Reg only, 1010:= ET and Sub. only, 1011:= ET and Com. only, 1100:= ET and Reg. and Sub. only, 1101:=
ET and Reg. and Com. only, 1110:= ET and Sub. and Com. only, 1111:= All four only

#SIDs Snort Reg with content field 7,840

#SIDs Snort Sub with content field 7,901

#SIDs Snort Com. with content field 883

#SIDs in Sur.ET with the contents field 15,239

#Distinct SIDs with content field in any of above 23,014

#(SID-content,date) pairs in Snort and Suricata. S #D-P S #D-P

1000 644,159

01 1 1001 0

10 2,443 1010 8

11 74 1011 0

100 278,911 1100 4,236

101 0 1101 0

110 177 1110 0

111 34,409 1111 748

behaviour of IDSs individually, as well as for the cross-platform comparison between Snort
and Suricata. To this end, we analyse 14 days of pcap data collected in August and Septem-
ber 2017. There is no specific reason for selecting these 14 days, except that both the Snort

Table 8 Statistics of SIDs with content field in Snort and Suricata rulesets, S:=States, OFI:= Observed-First-
In, For other labels, see caption of Table 7

1-S #SIDs 2-S #SIDs OFI #SIDs 3-S #SIDs OFI #SIDs

10 57 (01,100) 1 01 0 (10,110,111) 18 10 18

100 1 110 0

111 0

100 6,548 (10,100) 315 10 314 (11,110,111) 2 11 0

100 1 110 2

111 0

110 2 (10,110) 2 10 2 (1000,1010,1100) 1 1000 1

110 0 1010 0

1100 0

111 760 (11,111) 72 11 0

111 72

1000 15,113 (100,111) 3 100 3

111 0

1100 96 (110,111) 7 110 7

111 0

1111 17
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and Suricata rulesets showed updates on these days. We divide the functional diversity anal-
ysis experiment into two sub-experiments; each analyzing 7 days of pcap data using the
corresponding 7 days of rules. We do this for each IDS separately, which means we have
7×7 of alerts data per IDS, and hence a total of 7×7×2 data sets.

Figure 11 depicts the proportions of various types of connections that we have in the pcap
data. This shows that the majority of the traffic, on all days, is of UDP and TCP types (ICMP
traffic to the DMZ network is blocked by the University’s firewall). We use the subscribed
ruleset, being the superset of other Snort rules, and the ET ruleset for Snort and Suricata
IDs respectively. This also makes the analysis more scalable. As described previously, we
selected 14 days of rulesets and BIPAs for Snort and Suricata on the same dates as those
shown in Fig. 11.

To analyse the effects of configurational changes (rules and BIPAs) on the alerting
behaviour of IDSs, we need to know the day-to-day changes that took place in the Snort and
Suricata rules/BIPAs during the 14 days of our experiment. The description of the evolution
of the rules/BIPAs between adjacent days is shown in Tables 9 and Table 10, for Snort and
Suricata respectively. These tables show the comparison between two sets of rules/BIPAs
next to each other in the order of days on which they were collected. For example, we com-
pare the ruleset (and BIPAs) of 1 August with that of 3 August, and that of 3 August with
8 of August, and so on. The comparison of rules is given in columns 2-5 and that of BIPAs
is in columns 6-8 of Tables 9 and 10. The columns named ’i-1 & not i’ and ’i & not i-1’
show the number of rules that were found in the set, saved at an earlier day, and not in the
current day, and vice versa respectively. Similarly, the columns named ’BIPAs in i-1 & not
i’ and ’BIPAs in i & not i-1’ show the number of BIPAs found at an earlier day and not in
the current day and vice versa respectively. We have also shown how many rules have been
changed between the adjacent days due only to VN change in the rules. This is shown by the
column named ’changes of VN b/w i & i+1’. The third and fourth columns of both Tables 9
and 10 show that there have been changes, however small, from day to day in both Snort
and Suricata rulesets. Similarly, column 5 of both these tables shows that there have been
changes in VNs of many rules from one day to the next. This change, however, is relatively

Fig. 11 Pcap Traffic Connections type breakdown
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Table 9 Summary of the Snort Subscribed Rules Evolution, i:=Current-Date,i-1=Previous-Date, VN:=
Version Number

Dates #Rules Rules in i &
not in i-1

Rules in i-1
& not in i

changes of
VN b/w i &
i+1

#BIPAs BIPAs in i &
not in i-1

BIPAs in i-1
& not in i

01/8 10,228 0 32 2,603 1,088

03/8 10,258 30 0 8 1,614 99 177

08/8 10,266 8 0 0 6,296 4,859 34

09/8 10,268 2 0 3 6,905 643 44

10/8 10,277 9 2 8 7,837 976 148

15/8 10,314 39 0 4 10,592 2,903 81

17/8 10,330 16 11,459 948

23/8 10,340 0 14 9,783 1,099

24/8 10,345 5 3 17 10,053 829 968

29/8 10,354 12 6 17 7,425 3,596 70

31/8 10,360 12 2 16 6,577 918 1,940

06/9 10,368 10 436 448 5,644 2,873 1,386

08/9 10,374 442 4 18 5,958 1,072 126

12/9 10,394 24 5,049 1,035

large for Suricata rules (more than a thousand) as compared to that of Snort rules (less than
20 for most days). There have also been changes of BIPAs sets from day to day for both
Snort and Suricata, as given in columns 6-8.

Table 10 Summary of the Suricata ET Rules Evolution, i:=Current-Date,i-1=Previous-Date, VN:= Version
Number

Dates #Rules Rules in i &
not in i-1

Rules in i-1
& not in i

changes of
VN b/w i &
i+1

#BIPAs BIPAs in i &
not-in i-1

BIPAs in i-1
& not in i

01/8 18,842 2 1,200 16,137 1,184

03/8 18,860 20 17 1,240 16,339 1,377 1,884

08/8 18,860 17 2 1,198 16,194 1,758 701

09/8 18,872 14 8 1,203 16,281 786 840

10/8 18,867 3 0 1,237 16,203 761 2,234

15/8 18,900 33 7 1,216 16,334 2,355 1,303

17/8 18,945 52 16,254 1,213

23/8 18,940 13 1,195 16,185 1,364

24/8 18,939 12 7 1,228 16,122 1,309 3,462

29/8 18,945 13 3 1,095 16,068 3,426 712

31/8 18,973 31 4 1,229 16,051 695 2,919

06/9 19,025 56 25 1,219 16,348 3,202 1,761

08/9 19,031 31 137 1,125 16,198 1,598 2,303

12/9 18,912 18 15,744 1,822
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5.2 Evolution in the Alerting behaviour of Snort and Suricata

Once 14 days of pcap data are analysed by both the Snort and Suricata IDSs, we investigate
the evolution in the alerting behaviour of the individual IDS. We perform compare the alerts
generated, for the pcap data on a particular date, by all the rulesets on 7 days of an experi-
ment(s). We do this by finding the difference of alerts by the rules on all days from that on
the current day—where the pcap and rules have the same date. Besides, we divide the alerts
into two categories—those generated by BIPAs and other types of rules. Figures 12 and 13
depict the evolution of alerting behaviours for Snort and Suricata respectively. Here, the x
and y axes enumerate the dates of the rulesets and the pcap data, respectively. The cells
show the normalized change of the alerts with respect to the current date—cells on the diag-
onal show the current dates. Cells to the left and right of the diagonals show results of the
analysis of a pcap data by the past and future rules, respectively. The results have been nor-
malized by the maximum of the absolute values in the grid. For example, the top left Fig. 12
has been normalized with the value of 145. This gives us uniform ranges of values between
-1 and 1 (negative values mean that the number of alerts is smaller in a given resultset range
than the reference for that row, which is given by the diagonal cell). Results of experiment-
2 for the “other” rules have been left un-normalised due to outliers in the number of alerts
in the 23rd and 24th of August (we observe this in the bottom right plot of both Figure 13
and 14). We give the absolute values for these graphs to make them easier to follow.

The top left/right heat maps of Figs. 12 and 13 demonstrate that there are changes in the
number of alerts, for the same pcap data, and by the BIPAs rulesets collected on different
days. For example, in the top left of Fig. 12, we see an increase (from yellow/white to
red on the opposite sides of the diagonal) in the number of alerts by most of the blacklist
rulesets and for every pcap data set. These changes in the alerting behaviour due to BIPAs
are consistent with the changes in the Subscribed and ET BIPAs, as shown in Tables 9 and
10. Similarly, the evolution of the alerting behaviour due to all other rules can be seen from
the bottom left/right plots of Figs. 12 and 13, for Snort and Suricata respectively. These
maps underline the fact that there is an evolution of alerting behaviour, in both Snort and
Suricata. However, the behavioural changes are more random and cannot be generalized.
For instance, the bottom-right plot of Fig. 12 shows a big increase in the difference of
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Fig. 12 Evolution of the snort alerting behaviour
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Fig. 13 Evolution of the Suricata alerting behaviour

alerts from August 24 to 29, for the pcap data collected on August 24. However, there is
a substantial reduction in the difference of alerts, between the same dates, but for the pcap
data of August 23. This is supported by the differences in the rules between August 24 and
29, as shown in the third and fourth column of Table 9. However, the changes with respect to
the current date are rather small on other days, as shown in the bottom left/right heat maps
of Fig. 12. For Suricata, we observe a similar decrease in the alerts by rules of 24 August
and for the pcap data of 23 August shown in the bottom right heat map of Fig. 13. This may
be explained by a large number of version changes of rules between August 23 and 24 (fifth
column of Table 10).

5.3 Diversity in Time between Snort and Suricata

To further investigate the evolution of alerting behaviour of the IDSs, we look more closely
at the count of connections alerted, for each day of pcap data, and by each version of an IDS
ruleset. We use the convention of 0 (no alert) or 1 (alert) for each connection. Since in each
experiment, every connection was inspected by 7 different versions of Snort and Suricata
rules, we use a concatenation of the labels for the 7 days to make the comparison easier. For
instance, in the first experiment, the label 0000001 means that a connection was alerted only
by a ruleset of 17 August (i.e., the 7th and last one in our data set of the first experiment).
Similarly, 1000000 means a connection alerted only by the 1 August ruleset (i.e., the 1st
ruleset version in our data set), etc. The same principle applies to the second experiment
as well. Most of the connections in our experiment have never been alerted (i.e., they are
0000000), followed by connections that were alerted by all the rulesets (i.e., 1111111).

Of particular interest to us are the connections where we observe an order (non-alerts
followed by alerts, e.g., 0000111; or alerts followed by non alerts 1100000). Those con-
nections, where we have a non-alert (by an earlier ruleset) followed by an alert (by a latter
ruleset), may be considered suspicious that were missed by an earlier ruleset. Those con-
nections, where we have an alert (by an earlier ruleset) followed by a non-alert (by a latter
ruleset), may be considered to be false positives and have been eradicated by the more recent
rulesets. We have an exhaustive list of all the patterns we observed for Snort and Suricata,
but due to space constraints, we cannot show those tables here. Instead, we show, in Fig. 14,
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Fig. 14 Diversity in Time, Snort: Top row, Suricata: Lower row

the frequency of more frequent alert combinations as Pareto plots. Note that, these alerts
combinations are the ones caused only by the BIPAs rules, other rules, and in some cases a
combination of these two. Figure 14 shows that the standout alert combination for Snort has
been ’0011111’, in both experiments. Upon investigating, we notice that these alerts were
predominantly due to BIPAs. This fact is also substantiated by the column ’BIPAs in i & not
i-1’ in Table 9; we see a big increase in the number of BIPAs and rules added after 3 and 24
of August. Similarly, for Suricata, the prominent rule combinations which appeared more
frequent are ’0000001’, in the first experiment, and ’1000000’ in both the first and second
experiments. Contrary to Snort, these were the ’other type’ of rules that contributed to these
combinations being dominant. This is also supported by the columns, ’i & not i-1’ and ’i-1
& not i’ in Table 10.

For connections, where we observe non-continuous patterns (e.g., 1010101), we inves-
tigate them further for clues about the non-existence of a particular rule on the days of
no-alerts. We observe that there are several cases of Suricata alerts where the rule exists but
was not triggered by a connection. There is no such observation for Snort, however. This is
why, we contacted the developers of Suricata and Snort, and we got the advice to run Suri-
cata in a mode using the flag ’–runmode=single’. This mode works fine for a small pcap file
and resulted in no non-determinism in the alerting behaviour. However, even with this mode,
in our full-scale experiments, we observe several instances of alerts that were alerted in a
non-continuous (non-deterministic) manner by the rulesets. However small these instances
are, practitioners should be aware of it and should use the flag ’–runmode=single’ while
running Suricata.

5.4 Functional Diversity Analysis between Snort and Suricata

In this section, we investigate the cross-platform functional diversity between Snort and
Suricata. This analysis is the testing of the configurational diversity we discussed in section
4 of this paper. To this end, we compare the pcap connections that have been alerted by
Snort and Suricata. Table 11 shows different statistics of this comparison for the 14 days
of two experiments. This table substantiates the earlier observation of large configurational
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Table 11 Summary of alerted Connections Diversity in Snort and Suricata; Su: Suricata, Sn: Snort

Date Sn&¬Su Su&¬Sn Sn&Su Same-in Different-in Start-in Su Start-in Sn Start-in both

Sn&Su Sn&Su

Aug-01 1,012,895 777,204 53 42 11 3 0 8

Aug-03 900,073 829,656 53 43 10 2 0 8

Aug-08 956,331 859,790 53 26 7 2 0 5

Aug-09 971,229 837,406 38 25 13 6 1 6

Aug-10 451,611 461,047 18 12 6 2 0 4

Aug-15 667,868 544,822 41 38 3 1 0 2

Aug-17 1,043,366 958,518 77 65 12 4 0 8

23-Aug 869,585 761,936 27 21 6 0 0 6

24-Aug 869,737 878,191 8 5 3 3 0 0

29-Aug 878,227 666,433 35 35 0 0 0 0

31-Aug 1,081,173 892,611 248 246 2 0 0 2

06-Sep 952,582 1,315,178 45 37 8 2 0 6

08-Sep 811,995 1,247,364 44 35 9 0 2 7

12-Sep 931,712 887,899 44 34 10 0 1 9

diversity between the two IDSs resulting in large functional diversity. We notice, from
columns 2 and 3 of Table 11, that the two IDSs are functionally very diverse and that there
is minimal overlap of connections that have been alerted by both. Note that, the column
“Sn&¬Su” denotes the number of connections alerted by Snort but not Suricata, and the
“Su&¬Sn” column shows the number of connections alerted by Suricata but not Snort.
There are only a handful of connections that have been alerted by both Snort and Suricata,
as given in the “Sn&Su” column. There are two possible alerting behaviours for the connec-
tions jointly alerted by the two IDSs; they may have been alerted by the same rule patterns
in both (e.g., 1100111; this is given by the column “Same-in Sn&Su”), or differently (e.g.,
1111001 Snort, and 0011101 in Suricata; this is given by the column “Different-in Sn&Su”).
For the latter case, the last three columns show which IDS alerted these connections ahead
of the other or at the same time.

Figure 15 shows the visualisation of the connections alerted in varying patterns of the
Snort and Suricata rules in experiment 1 (it is similar for experiment 2). Here, we show two
cases: connections that were alerted by Snort (green) ahead of Suricata (Pink); and those that
were alerted by Snort and Suricata at the same time. Suricata has only one connection alerted
ahead of Snort. In Fig. 15, a connection is represented by two lines, green and pink, one for
Snort and one for Suricata respectively. This figure also confirms that even for the jointly
alerted connections, the patterns of alerts are quite diverse for the Snort and Suricata IDSs.
Besides, we analyse the types of rules responsible for alerting the common connections.
Figure 16 depicts the breakdown of these connections into BIPAs and other types of rules.
It shows two plots, one each for the connections alerted by the same and different patterns
of rules. We observe from Fig. 16 that there are similarities, however small, in the alerting
behaviours of Snort and Suricata. This is evident from identical break-down of connections
per rule type, in both the Snort (dotted blue circle in both plots) and Suricata (dotted red
circle in both plots) IDSs.
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6 Discussion and Limitations

The results are intriguing, and they show that there is a large amount of diversity in the rules
and BIPAs of Snort and Suricata. This configurational diversity does manifest itself in the
alerting behaviours of these IDSs. Whether this diversity is helpful or harmful for a given
deployment depends on the context. The rules and blacklists alert for potentially harmful
behaviour that has been observed somewhere in the world by users of these products. In a
different deployment, the alerts from some of these rules may not cause harm. For example,
a service or port for which a rule alerts may not exist in that environment. Hence, even
if the alerts are for malicious traffic, it is likely that this attack will not cause any harm

Fig. 16 Analysis of connections alerted by both snort and Suricata
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in the systems of that deployment. The data set we used in Section 5, real pcap traffic
that the University’s IT team gave us access to, is unfortunately not labelled, so we cannot
do a conventional analysis of sensitivity and specificity of these IDSs and their diverse
combinations. Secondly, though we were given pcap data of almost 5 months duration, we
used only 14 days of this due to the large amount of alert data that we could not handle
in our infrastructure. While we did observe the evolution of rules in terms of alerts for
a pcap data, we cannot generalize the results for the complete set of data that we used
in the experiment. We observe that though there are overlaps in the Snort and Suricata
rulesets, there is huge diversity in their alerting behaviour. It shows that in their default
configurations, these two IDSs are tuned for a different set of malicious attacks. Also, we
observed a non-deterministic behaviour in the Suricata IDS when it was used to analyse
large traffic. For small traffic, though, the non-determinism can be avoided using a particular
mode.

We shared the findings with the University’s IT team, who found the results interesting.
Currently, they use a smaller subset of Suricata ruleset for analysis. Interestingly, they men-
tioned that even if the alerts are for services that they do not run (hence would be harmless
in their environment) they would like to know about them as it provides insight on secu-
rity exposure for services that users may request in the future, and because they can use the
alerts to check if they are precursors for attacks on other services that they value.

How can individual user organizations decide whether diversity is a suitable option for
them, with their specific requirements and usage profiles? The cost is reasonably easy to
assess: costs of the software products, the required middle-ware (if any), added complexity
of management, hardware costs, run-time costs and possibly more complex diagnosis and
more laborious alert sifting. The gains in improved security (from protection to attacks and
exploits) are difficult to predict except empirically. This uncertainty will be compounded,
for many user organizations, by the lack of trustworthy estimates of their baseline security.
We note that, for some users, the evidence we have presented would already indicate that
diversity to be a reasonable and relatively cheap precautionary choice, even without pre-
dictions of its effects. These are users who have serious concerns about security (e.g., high
costs for interruptions of service or undetected exploits), and sufficient extra personnel to
deal with a larger number of alerts.

7 IDSs deployment Strategies based on our Analysis

Based on the analysis of this paper, including the configurational and functional diversity
analysis, we propose various IDS deployment strategies for the security architects. These are
shown in Fig. 17. It is worth noting, however, the security architects may want to consider
other performance metrics, such as packet-processing speed, drop-rates etc, in their design
strategies as well. The following are our recommendations:

– If there is a constraint of using a single IDS, either Snort and Suricata, it is recom-
mended to combine the rulesets and the BIPAs of both and use them in a single IDS.
The rulesets and BIPAs can be used interchangeably by either of these IDSs. However,
to avoid a high false alarm rate, both the rulesets should be properly tuned by an IT
administrator based on the organization’s security policy.

– The two IDSs can be deployed in parallel with the help of an adjudicating scheme.
While this strategy may be more efficient in reducing the false alarm rate, this may,
however, increase the overhead delays in the network.
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Fig. 17 IDS Deployment strategies

– The two IDSs can be deployed in series, with an adjudicating system at the end of the
series link. We cannot prescribe which IDS to be deployed first in this strategy. This is
because our analysis is limited in terms of the ’actual’ attack analysis and that which
IDS perform better in terms of various detection metrics.

Further work would be needed to then analyse the IDS pipeline workloads to minimize
overhead delays of traffic. We would expect that parallel architectures can be optimised to
reduce overheads, depending on the adjudication scheme chosen. (i.e. whether we always
need to wait for all IDSs to respond). In principle, any of these schemes can also be deployed
either fully “on-premise” or via a “hybrid” approach (with some on-premise and some on
cloud). The overheads and benefits would be difficult to predict except empirically.

8 RelatedWork

The security community is well aware of diversity as potentially valuable (Littlewood and
Strigini 2004; Garcia 2014). Discussion papers argue the general desirability of diversity
among network elements, like communication media, network protocols, operating sys-
tems etc. Research projects studied distributed systems using diverse off-the-shelf products
for intrusion tolerance (e.g., the U.S. projects Cactus (Hiltunen and et al 2000), HAC-
QIT (Reynolds 2002) and the EU MAFTIA project (MAFTIA R. P. 2003), but only sparse
research exists on how to choose diverse defenses (some examples in Sanders and et al
(2002), Gupta and et al (2003), and Garcia (2014)). The benefits of design diversity for
fault-tolerant systems are discussed in Avizienis and Kelly (1984).

A very extensive survey on the evaluation of intrusion detection systems is presented
in Milenkoski and et al (2015). This survey discusses many research works in the field.
The main features analyzed in the survey are the workloads used to test the IDSs, the
metrics utilised for the evaluation of the collected experimental data, and the used measure-
ment methodology. The survey demonstrates that IDS evaluation is a key research topic
and can help with guidelines on how to improve IDS technologies. A similar, yet more
comprehensive, survey about IDSs is given in Tidjon et al. (2019). The paper details the
current state-of-the-art in the design of IDSs for a diverse set of domains. The authors
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also discuss the metrics, evaluation criteria and the data sets that have been used in recent
research works on IDSs. In Algaith and et al (2017), the authors show the benefits of
using a diverse set of IDSs in an empirical study. The authors have shown the efficacy of
diversity by deploying the IDSs in different configurations such that to minimize false neg-
atives/positives. To reduce the false-positive rate, in Majorczyk et al. (2007), the authors
propose an off-the-shelf diversity architecture such that it masks false-positives.

Performance evaluation of Snort and Suricata has been studied in Hu et al. (2020). The
authors have used different performance benchmarks, such as speed, drop-rates and detec-
tion accuracy to compare Snort and Suricata. Our work is different from this paper in several
aspects. While we consider rulesets and BIPAs worth five months to quantify the config-
urational diversity, they just considered one set of the default rules for their experiments.
Besides, while they used an open-source tool to generate synthetic data for the evaluation
of detection accuracies, we use real-world traffic to check the differences in the alerting
behaviours. More importantly, our analysis focuses on the diversity analysis as compared
to the work in Hu et al. (2020), which empahized the performance comparison of the two
IDSs. In Salah and Kahtani (2010), Salah et al. analysed the effects of various operating
systems on the performance of Snort IDS. In Thongkanchorn et al. (2013), Thongkanchorn
et al. evaluated the detection accuracy of Snort, Suricata and Zeek IDSs while considering
other performance metrics in parallel. The Snort and Suricata IDSs have been compared for
their speeds, memory requirements and accuracy in Albin and Rowe (2012). The authors
have demonstrated that Suricata can handle large volumes of traffic with similar accuracy.
In Shah and Issac (2018), the authors showed that the speed and packet-loss performance
of Suricata exceeded that of Snort with a reduced accuracy, however. In Alqahtani and John
(2016), the authors have used detection accuracy as the metric to compare Snort and Suri-
cata in a cloud network. They have proposed the use of fuzzy logic in conjunction with
these two IDS for improved performance. Pihelgas, in Pihelgas (2012), compared the Snort,
Suricata and Bro IDSs using various performance metrics of CPU usage, drop out pack-
ets and memory utilisation. It has been shown that Suricata performed better than the other
two IDS for CPU usage and drop out packet, while it was Bro that outperformed others
for memory usage. Ho et al. in Ho and et al (2012) provided statistical analysis of the real-
world traffic analysed by an IDS/IPS. They have shown that it is the IDS/IPS causing most
of the false-positive and false-negatives in a real-world scenario. In Albin and Rowe (2012),
the authors have compared Snort and Suricata using real-world traffic. They have shown
Suricata to be more CPU and Memory intensive, while it performed better when it came
to the packet drop rate. A similar experimental evaluation of signature and anomaly based
IDSs have been performed in Wang and et al (2013). The authors in Wang and et al (2013)
have compared Snort, Ourmon and Samhain for their characteristics of network degrada-
tion, CPU/Memory Usage and the number of alerts each of these IDSs generate. Snort has
shown to be better from the CPU load and amount of alerts generation, while the other two
IDSs used less memory and degraded the memory bandwidth slightly less than Snort. There
has been research on how to automatically feed-in a NIDS with signatures and thus to avoid
manual work in this regard. To this end authors in Garcia-Teodoro and et al (2015) have
shown a hybrid anomaly and signature based IDSs using the former to feed the new signa-
tures to the latter. A comprehensive list of tools currently being used for attack detection
and signature generation is given in Kaur and Singh (2013). Machine learning-based
techniques have recently become quite popular for anomaly based NIDS. A review of dif-
ferent supervised and un-supervised learning-based intrusion detection algorithms is given
in Ahmad (2021). Similarly, to increase the detection capabilities of NIDSs, reinforcement



Empir Software Eng            (2022) 27:4 Page 27 of 30    4 

learning has been gaining popularity in the research community, e.g., Alauthman M. and et
al (2020) and Lopez-Martin et al. (2020).

9 Conclusion

In this paper, we have presented an analysis of the configurational and functional diversities
between the Snort and Suricata IDSs. Some data used in this paper is given in a git repos-
itory1. In the configurational diversity analysis, we have investigated the evolution of the
BIPAs and rulesets that the Snort and Suricata IDSs use against the possible known attacks.
Besides, we have presented the cross-platform diversity analysis between the correspond-
ing BIPAs and rules configurations of these two IDSs. Data worth more than 5-months of
duration has been used for this purpose. We have considered three different off-the-shelf
default configurations of the Snort IDS and the ET configuration of the Suricata IDS. In the
functional diversity analysis, we have investigated the manifestation of the configurational
diversity in the alerting behaviours of the Snort and Suricata IDSs. We have used real net-
work traffic collected at City, University of London in this analysis. We have undertaken this
study intending to provide insight to security architects on how they can combine and layer
these systems in a defence-in-depth deployment. The main conclusions from our analysis
are:

– There is a significant amount of diversity in the BIPAs of Snort and Suricata, and this
is maintained throughout our observation period. The amount of overlap between these
BIPAs is relatively small. Depending on the adjudication mechanism that a system
architect wishes to deploy, having access to a larger pool of BIPAs may be beneficial
to increase protection against a larger pool of malicious sources. However, if a user
observes a large number of false positives from these blacklists at a given time, then
diversity can be a help to keep the false positive rate low (for example by only raising
alarms if an IP appears in multiple blacklists) until the vendors “clean up” the blacklists;

– We observe the evolution of rule diversity for both Snort and Suricata butto generalize
these results, we need to analyse pcap data of a longer duration.

– We observe a significant amount of diversity in the rules of Snort and Suricata. When
analyzing the rules based on the “content” field, only 1% of the rules of Snort and
Suricata return a match. This indicates that these systems would alert on potentially
very diverse traffic. This is indeed confirmed from our experiment that we ran with real
traffic from City, University of London. There was very little overlap in the alerting
behaviour of these products.

We have underscored that these results are only prima facie evidence for the usefulness
of diversity. What is important is to assess these products in real deployment on their capa-
bility to improve the security of a given system. The results presented here will, we hope,
provide the security architects with evidence on the diversity that exists in the design of
these products and whether this diversity remains as these products evolve.

As further work, we plan to investigate the diversity with IDSs and other defence-in-
depth tools in real deployments, with labelled datasets, to assess the benefits as well as
potential harm that diversity may bring due to the interplay between the risks from false
negatives and false positives. Currently, we are investigating the adjudication mechanisms

1https://github.com/Hasad/D3S Data

https://github.com/Hasad/D3S_Data
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that can help balance the risks associated with these failures. Also, we plan to increase the
size of the pcap data while analysing the evolution of rule diversity. Finally, since anomaly
based IDSs and hybrid IDSs (i.e. anomaly+signature IDSs) are regular and current topics in
cybersecurity, we also plan to investigate the diversity of these existing and emerging IDSs.
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