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Local Stability and Convergence Analysis of Neural
Network Controllers with Error Integral Inputs

Xingang Fu, Member, IEEE, Shuhui Li, Senior Member, IEEE, Donald C. Wunsch, Fellow, IEEE,
and Eduardo Alonso

Abstract—This paper investigates the local stability and con-
vergence for a class of neural network controllers with error
integral as inputs for reference tracking. It is proved that if
the neural network controllers only have error terms as inputs,
the control system has a non-zero steady-state error for any
constant reference except for one special point. It is proved
that adding error integral to the inputs of the neural network
controller is one sufficient way to remove steady-state error for
any constant reference. Due to the nonlinearity of the neural
network controllers, the neural network control systems are
linearized at the equilibrium points. It is proved that if all the
eigenvalues of the linearized neural network control systems have
negative real parts, local asymptotic stability and local exponen-
tial convergence are guaranteed. Two case studies were explored
to verify the theoretical proofs: a single-layer neural network
controller in a one-dimensional system and a four-layer neural
network controller in a two-dimensional system applied in re-
newable energy integration. Simulations have demonstrated that
when neural network controllers and corresponding Generalized
Proportional-Integral controllers have the same eigenvalues, all
control systems exhibit almost the same transient responses in a
small enough neighborhood of their respective equilibrium points.

Index Terms—Neural Network Controller, Error Integral,
Steady-State Error, Local Asymptotic Stability, Local Exponen-
tial Convergence, Generalized PI controller.

I. INTRODUCTION

RRECENTLY, Dynamic Programming (DP) [1] has been
used extensively for the optimal control of nonlinear

systems [2], [3], [4]. As one type of Approximate Dynamic
Programming (ADP) method, Adaptive Critic Designs (ACD)
have been adopted to approximate the optimal cost and optimal
control of a system [5], [6], [7], [2]. In [8], [9], a neural
network (NN) was trained based on the ADP principle to
control a three-phase Inductor (L) filter-based Grid-Connected
Converter (GCC) system. The ADP-based NN controlling
of the Inductor-Capacitor-Inductor (LCL) filter-based three-
phase [10] and single-phase [11] GCC systems was also
demonstrated to be able to yield an excellent performance
compared to the conventional Proportional-Integral (PI) con-
troller based control methods. In [10], it has been demonstrated
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that Recurrent Neural Network (RNN) vector control has
a wider stability region for the system parameter change
than Active Damping (AD) or Passive Damping (PD) vec-
tor control for LCL-based grid-connected converter systems.
[12] implemented a NN vector controller with error integral
inputs in a permanent-magnet synchronous motor (PMSM) to
overcome the decoupling inaccuracy problem associated with
the conventional PI-based vector-control methods.

Even though the NN controller has many successful appli-
cations, the theoretical foundation or analysis is missing. Nor-
mally, the NN is considered as the black-box technique[13],
not the white-box models. When the NN is applied to a real
application, however, many issues have arisen, e.g. the stability
problem, the convergence problem. The stability problem is
very critical in the neural control system[14], [15] especially
when applied in the real system. When the system is unstable,
the output of the system is out of control, which could cause
serious damage to the system. This is the problem that curbs
the applications of NN controllers into real life by control
engineers and electric engineers. How to guarantee the training
of an NN will converge is a difficult problem[16]. Towards
which direction, the training will be more effective and faster
is still unsolved.

This research work specifically intends to study the local
stability and local convergence of NN controllers with error
integral terms. The specific contributions of the paper are listed
as follows: 1) a proof that adding error integral to the inputs of
the NN controller is sufficient to remove the steady-state error
of the NN controller for any constant reference, 2) obtaining
the condition requirement of NN controllers to guarantee the
local asymptotic stability and local exponential convergence,
which is that all eigenvalues of the neural network control
systems should have negative real parts, 3) revealing that the
NN controllers and the corresponding generalized PI con-
trollers having the same eigenvalues should have exactly the
same responses in a small enough domain of their respective
equilibrium points in the steady state, and 4) case studies of
a one-dimensional NN controller and a two-dimensional four-
layer NN controller applied in renewable energy integration
for verifying theoretical theorems.

The rest of the paper is structured as follows. Section
II studies the local stability and local convergence of the
single-layer NN controller of two structures: one structure
with only error terms and the other one with error terms and
error integral terms. The local stability and local convergence
analysis of general form multi-layer NN controllers of two
structures: one structure with only error terms and the other
one with error terms and error integral terms are investigated in
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Section III. A case study for a one-dimensional NN controller
is demonstrated in Section IV to verify the conclusions of Sec-
tion II. Section V investigates a four-layer NN controller in a
two-dimensional system applied in electric power applications
to verify the theoretical conclusion of Section III. Finally, the
paper concludes with summary remarks in section VII.

II. SINGLE-LAYER NEURAL NETWORK CONTROLLERS

Consider the following time-invariant state-space model

ẋ = Ax+Bu (1)

where, x is the system state vector, ẋ denotes the derivative
of the state vector x with respect to time t, u stands for input
or control vector, and A and B are system matrix and input
matrix respectively, with A 6= 0 and B 6= 0.

A. NN Controllers with Only Error Term Inputs

If a single-layer NN controller has only the error term e as
input, the control vector u can be expressed as

u = k tanh(we+ c) (2)

in which, w and c represent the weight matrix and the bias
vector of the NN controller, the constant scalar k stands for
an actuator gain, and the error e is defined as

e = xref − x (3)

with xref representing the reference for the system state x.
According to the definition of the error term e in (3), the

following two equations hold true.

x = xref − e (4)
ė = −ẋ (5)

We can now substitute (2), (4), and (5) into (1), and rewrite
(1) into the closed-loop system with tracking error e as the
system state, as follows:

ė = f(e) = A(e− xref )− kB tanh(we+ c) (6)

Theorem 1. For a neural dynamic system (6), e = 0 is
not an equilibrium point except when xref = x∗ref =

− 1
kA
−1B tanh(c). The system will have a non-zero steady-

state error, that is e(∞) 6= 0, for any constant reference except
x∗ref .

Proof: The equilibrium point of (6) is the root of the
function f(e). If we substitute e = 0 into (6), the function
f(e) equals

f(e) = −Axref − kB tanh(c) 6= 0. (7)

Only when xref = x∗ref = − 1
kA
−1B tanh(c), f(e) = 0.

Thus, e = 0 is not an equilibrium point of system (6) except
for one special reference point x∗ref .

We denote e∗ to represent the root of f(e), which satisfies
the following equation

f(e∗) = A(e∗ − xref )− kB tanh(we∗ + c) = 0 (8)

Thus e∗ is the equilibrium point of (6) and e∗ 6= 0, which also
means the system has a non-zero steady-state error e(∞) = e∗.

Lemma 1. For the linear time-invariant system

ẋ = Gx (9)

with a constant system matrix G, if all eigenvalues of G
have the negative real parts, the equilibrium point x = 0 is
globally asymptotic stable and the exponential convergence is
also guaranteed.

Proof: As (9) is a set of first-order homogeneous linear
differential equations with constant coefficients and system
matrix G is constant, G has n linearly independent eigen-
vectors, the analytical solution has the following form

en(t) =
∑

i=1,...,n

ciexp
λitνi (10)

where, the vector λi are eigenvalues of G, νi are eigenvectors
of G, ci are some constants determined by the initial condition
of the system and exp represents the base of the natural
logarithm.

The eigenvalues of G can be determined by the following
equation

det(λI −G) = 0 (11)

where λ denotes the eigenvalue and I is the identity matrix.
When all eigenvalues have the negative real parts, that

is Re(λi) < 0, lim
t→∞

en = 0, which is also exponentially
convergent ([17], [18], [19], [20]).

Theorem 2. For a neural dynamic system (6), local asymptotic
stability and local exponential convergence are guaranteed if
the weight matrix w and bias vector c of the NN controller
satisfy the following condition

Re
{
eig
(
A− kBw diag(1− tanh2(we∗ + c))

)}
< 0 (12)

in which, eig denotes the eigenvalue operator, Re stands for
the real part, diag represents diagonal matrix operator, and
e∗ is the equilibrium point of (6).

Proof: The equilibrium point of (6) can be shifted from
e∗ to 0 by defining a new variable en

en = e− e∗ (13)

and thus
ėn = ė (14)

If we substitute (13) and (14) into (6), the new system equation
will be

ėn = f(en) = A(en+e
∗−xref )−kB tanh(w(en+e

∗)+c) (15)

For (15), the equilibrium point of the system is en = 0.
The right side of (15) are nonlinear functions. Under the

definition of Lyapunov stability [18], we can use the first-
order derivative to linearize the system at en = 0 and obtain
the following set of linear equations

ėn = (
∂f

∂en
|en=0)en = Gen (16)
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where the system matrix G equals

G = A− kBw diag(1− tanh2(we∗ + c)) (17)

According to Lemma 1, as long as all the eigenvalues of
G have the negative real parts, that is Re {eig (G)} < 0, the
system asymptotic stability and exponential convergence are
guaranteed. However, as the system (16) is linearized at the
equilibrium point, only the local asymptotic stability and local
exponential convergence can be guaranteed.

Remark 1. In (12), the reference xref does not exist explicitly.
However, e∗ are the roots of (6). When all system parameters
(A, B, k) and the NN weight w and bias c are kept unchanged,
e∗ depends on xref . So, the system matrix G and eigenvalues
λi are implicit functions of xref and thus the reference xref
affects the stability of the system.

Corollary 2.1. Consider a generalized proportional controller
u = kKpe with the constant proportional gain matrix Kp,
which can be regarded as a special case of the single-layer
NN controller with a linear identity function as the activation
function. Thus the steady-state error e(∞) and the equilibrium
point e∗ are

e(∞) = e∗ = (A− kBKp)
−1Axref (18)

and the corresponding global stability condition is

Re {eig (A− kBKp)} < 0 (19)

The reference xref is not contained in (19) and thus will not
affect the system stability.

B. NN Controllers with Error Integral Inputs

Consider a single-layer NN controller having error e and
error integral s as inputs. The control vector u is expressed as

u = k tanh(we+ vs+ c) (20)

in which, the error integral s is defined as

s =

∫ t

0

e(τ)dτ (21)

If we substitute (4), (5), and (20) into (1), the system
equation will be simplified as

ė = A(e− xref )− kB tanh(we+ vs+ c) (22)

From the definition of error integral s in (21), the following
equation can be derived

ṡ = e (23)

Thus combining (22) and (23), a new augmented state-space
model can be obtained{
ė = f1(e, s)=A(e−xref )−kB tanh(we+ vs+ c)
ṡ = f2(e, s)=e

(24)

Through this conversion, the original n-dimension NN con-
trol system (22) is converted into a 2n-dimensional system
(24).

Remark 2. This conversion is not an equivalent transformation.
From (21), (23) can be derived. However, from (23), (21) is not
the only solution. In general, many solutions can be obtained
from (23) and the general solution is

s =

∫ t

0

e(τ)dτ + C (25)

in which, C is one constant vector.

Theorem 3. For a neural dynamic system (24), e = 0 is an
equilibrium point and the system does not have a steady-state
error for any constant reference xref .

Proof: The equilibrium point of (24) are the roots of the
right side function, that is{
f1(e, s) = A(e− xref )−kB tanh(we+ vs+ c)=0
f2(e, s) = e=0

(26)

From the second equation of (26), e must be 0. Thus the
equilibrium point will be (0, s∗), in which s∗ equals

s∗ = −v−1[arctanh( 1
k
B−1Axref ) + c] (27)

The equilibrium point of (24) is (0, s∗), which means
the system error e converges to 0 while the error integral s
converges to s∗ when the time goes to infinity. When there
is an error integral term s feeding into the input of the NN
controller, it is guaranteed that there is no steady-state error
in the system.

Theorem 4. For a neural dynamic system (24), local asymp-
totic stability and local exponential convergence are guaran-
teed if the weight matrix w and v of the NN controller satisfy
the following condition

Re

{
eig

([
G11 G12

I 0

])}
< 0 (28)

where G11 and G12 equal

G11 = A− kBw diag(1− (
1

k
B−1Axref )

2) (29)

G12 = −kBv diag(1− (
1

k
B−1Axref )

2) (30)

Proof: The equilibrium point of (24) can be shifted from
[0; s∗] to [0; 0] using the following conversion:{

e = e
sn = s− s∗ (31)

Substituting (31) into (24), the new augmented system equa-
tion will be{
ė=f1(e, sn)=A(e−xref )−kBtanh[we+v(sn+s

∗)+c]
ṡn=f2(e, sn)=e

(32)

Under the definition of Lyapunov stability [18] and linearizing
(32) at the equilibrium point [0, 0], the system equation will
become [

ė
ṡn

]
=

[
G11 G12

G21 G22

][
e
sn

]
(33)
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in which, G11, G12, G21, and G22 are defined as

G11 =
∂f1(e, sn)

∂e
|e=0,sn=0

= A− kBw diag(1− tanh2(vs∗ + c)) (34)

G12 =
∂f1(e, sn)

∂sn
|e=0,sn=0

= −kBv diag(1− tanh2(vs∗ + c)) (35)

G21 =
∂f2(e, sn)

∂e
|e=0,sn=0 = I (36)

G22 =
∂f2(e, sn)

∂sn
|e=0,sn=0 = 0 (37)

From (27), tanh(vs∗ + c) = − 1
kB
−1Axref , thus G11 and

G12 can be further simplified as

G11 = A− kBw diag(1− (
1

k
B−1Axref )

2) (38)

G12 = −kBv diag(1− (
1

k
B−1Axref )

2) (39)

As G11, G12, G21, and G22 are all constants, according to
Lemma 1, if the NN weights w and v satisfy the following
condition,

Re

{
eig

([
G11 G12

I 0

])}
< 0 (40)

the system asymptotic stability and exponential convergence
are guaranteed. However, as the system (33) is linearized at
the equilibrium point, only the local asymptotic stability and
local exponential convergence can be guaranteed.

Remark 3. Although the bias vector c of NNs is not contained
in (29) and (30), c affects the location of s∗ from (27) and
thus affects the convergence region of the equilibrium point.

Corollary 4.1. Consider a generalized PI controller u =
k(Kpe + Kis), where Kp and Ki are the constant matri-
ces representing the proportional gains and integral gains
respectively. This generalized PI controller can be regarded
as a special case of the single-layer NN controller with a
linear identity function as the activation function. Thus the
equilibrium point of the system is (0, s∗) and s∗ equals

s∗ = −K−1i (
1

k
B−1Axref ) (41)

To guarantee global stability and exponential convergence, the
following condition needs to be satisfied

Re

{
eig
([

A− kBKp −kBKi

I 0

])}
< 0 (42)

The reference xref will not affect the stability and convergence
of the control system.

Remark 4. For a single-layer NN controller with only error
terms (2) or with error terms and error integral terms (19), the
reference xref will appear in the condition equations (9) and
(27) explicitly or inexplicitly, and thus will affect the system
stability. So the weights and bias vector of the NN controller
together with the reference will determine the system local
stability and local convergence.

III. MULTI-LAYER NEURAL NETWORK CONTROLLERS

In this section, the multi-layer NN controller with a more
generic function format, which expands the single-layer NN
controller in Section II, is studied theoretically.

A. NN Controllers with Only Error Term Inputs

If a multi-layer NN controller has only the error term e as
input, we use R(e) to represent the NN controller and the
control vector u can be expressed as

u = R(e) (43)

If we substitute (4), (5), and (43) into (1), we can rewrite (1)
into the following equation

ė = f(e) = A(e− xref )−BR(e) (44)

Theorem 5. For a neural dynamic system (44), e = 0 is
not an equilibrium point except when xref = − 1

kA
−1BR(0).

Such system will have a non-zero steady-state error, that is
e(∞) 6= 0, for any constant reference except one special point
xref = − 1

kA
−1BR(0).

Proof: The equilibrium point of (44) is the root of the
function f(e). If we substitute e = 0 into (6), the function
f(e) equals

f(e) = −Axref −BR(0) 6= 0 (45)

The only exception is when xref = − 1
kA
−1BR(0). Thus,

e = 0 is not an equilibrium point of the system (44).
Denote e∗ to represent the root, the following equation will

be satisfied

f(e∗) = A(e∗ − xref )−BR(e∗) = 0 (46)

Thus e∗ is the equilibrium point of (44) and e∗ 6= 0, which
also means that the system has a non-zero steady-state error
e(∞) = e∗.

Theorem 6. For a neural dynamic system (44), local asymp-
totic stability and local exponential convergence are guaran-
teed if the weight matrix and bias vector of the NN satisfy the
following condition

Re

{
eig

(
A−B∂R(e)

∂e
|e=e∗

)}
< 0 (47)

in which, e∗ is the equilibrium point of (44).

Proof: Define en = e−e∗ and shift the equilibrium point
of (44) from e∗ to 0. The new system equation will be

ėn = f(en) = A(en + e∗ − xref )−BR(en + e∗) (48)

The right side of (48) is a nonlinear function. Under
the definition of Lyapunov stability [18], use the first-order
derivative to linearize the system at en = 0 and obtain the
following set of linear equations

ėn = (
∂f

∂en
|en=0)en = Gen (49)

in which, the closed-loop system matrix G is defined as

G = A−B∂R(en + e∗)

∂en
|en=0 = A−B∂R(e)

∂e
|e=e∗ (50)
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According to Lemma 1, as long as all the eigenvalues of
G have the negative real parts, that is Re {eig (G)} < 0, the
system asymptotic stability and exponential convergence are
guaranteed. However, as the system (49) is linearized at the
equilibrium point, only the local asymptotic stability and local
exponential convergence can be guaranteed.
Remark 5. In (47), xref does not exit explicitly. However, e∗

is the roots of (46) depending on xref . So, the system matrix
G and eigenvalues λi are implicit functions of xref and thus
the reference xref affects the stability of the system.

B. NN Controllers with Error Integral Inputs
For a multi-layer NN controller containing error term e and

error integral s as the inputs, we use R(e, s) to represent the
NN controller and the control vector u can be expressed as

u = R(e, s) (51)

Substituting (4), (5), and (51) into (1), the system equation
can be simplified as

ė = A(e− xref )−BR(e, s) (52)

From the definition of error integral s in (21), the following
equation can be derived

ṡ = e (53)

Thus combining (52) and (53), a new augmented state-space
model can be obtained{

ė = f1(e, s) = A(e− xref )−BR(e, s)
ṡ = f2(e, s) = e

(54)

Through this conversion, the original n-dimension neu-
ral network control system (52) is converted into a 2n-
dimensional system (54).

Theorem 7. For a neural dynamic system (54), e = 0 is an
equilibrium point and the system does not have a steady-state
error for any constant reference xref .

Proof: The equilibrium point of (54) is the roots of the
right side function, that is{

f1(e, s) = A(e− xref )−BR(e, s) = 0
f2(e, s) = e = 0

(55)

To satisfy the second equation of (55), e must be 0. Thus
the equilibrium point will be (0, s∗), in which s∗ satisfies

Axref +BR(0, s∗) = 0 (56)

The equilibrium point of (55) is (0, s∗), which means the
system error e converges to 0 while the error integral s
converges to s∗ when the time goes to infinity. When there
is an error integral term s feeding into the input of the NN
controllers, it is guaranteed that there is no steady-state error
in the system.

Theorem 8. For a neural dynamic system (54), local asymp-
totic stability and local exponential convergence are guaran-
teed if the weight matrix and bias vector of the NN satisfy the
following condition

Re

{
eig

([
G11 G12

I 0

])}
< 0 (57)

where G11 and G12 equal

G11 = A−B∂R(e, s)
∂e

|e=0,s=s∗ (58)

G12 = −B∂R(e, s)
∂s

|e=0,s=s∗ (59)

Proof: The equilibrium point of (54) can be shifted from
(0, s∗) to (0, 0) using the following conversion:{

e = e
sn = s− s∗ (60)

Substituting (60) into (54), the new system equation will be{
ė = f1(e, sn) = A(e− xref )−BR(e, sn + s∗)
ṡn = f2(e, sn) = e

(61)

Under the definition of Lyapunov stability [18] and linearizing
(61) at the equilibrium point (0, 0), the system equation will
become [

ė
ṡn

]
=

[
G11 G12

G21 G22

][
e
sn

]
(62)

in which, G11, G12, G21, and G22 are defined as

G11 =
∂f1(e, sn)

∂e
|e=0,sn=0 = A−B∂R(e, s)

∂e
|e=0,s=s∗ (63)

G12 =
∂f1(e, sn)

∂sn
|e=0,sn=0 = −B∂R(e, s)

∂s
|e=0,s=s∗ (64)

G21 =
∂f2(e, sn)

∂e
|e=0,sn=0 = I (65)

G22 =
∂f2(e, sn)

∂sn
|e=0,sn=0 = 0 (66)

As G11, G12, G21, and G22 are all constants, according to
Lemma 1, if the NN weights w and v satisfy the following
condition,

Re

{
eig

([
G11 G12

I 0

])}
< 0 (67)

the system asymptotic stability and exponential convergence
are guaranteed. However, as the system (62) is linearized at
the equilibrium point, only the local asymptotic stability and
local exponential convergence can be guaranteed.
Remark 6. In (62), xref does not exit explicitly. However,
s∗ is the equilibrium point of (54) depending on xref . So,
the system matrices G11, G12, G21, and G22 and eigenvalues
λi are implicit functions of xref and thus the reference xref
affects the stability of the system.

Remark 7. Similar to the conclusion in Remark 4, the weights
and the bias vector of the multi-layer NN controller, and the
reference together will affect the local stability of the system
and thus the local convergence at the equilibrium point. Thus,
to guarantee the stable operation of the system, the weights
and the bias vectors of the NN controller need to satisfy the
stability requirement (47) or (57) for all possible references.

IV. CASE STUDY I : ONE-DIMENSIONAL NEURAL
NETWORK CONTROLLERS

In this section, a single-layer NN controller in a one-
dimensional state-space model is studied to apply and verify
the theories in Section II numerically.

Consider a one-dimensional system of (1) with A = 2, B =
0.5, and k = 5.
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A. Single-Layer NN Controllers with Only Error Term Inputs

A single-layer NN controller contains only an error term
input and the control action can be expressed as

u = k tanh(we) = 5 tanh(we) (68)

Without loss of generality, the bias c is selected as 0.
According to Theorem 1, the system has a steady-state error

e(∞) = e∗ for a step reference xref = 1, in which e∗ is the
root of the following equation

f(e∗) =A(e∗ − xref )− kB tanh(we∗ + c)

=2(e∗ − 1)− 5× 0.5 tanh(we∗ + 0) = 0 (69)

To guarantee local asymptotic stability and local exponential
convergence, the NN weight w needs to satisfy the condition
specified in Theorem 2. Since we are working with a one-
dimensional system, the condition can be simplified further
as

λ = A− kBw diag(1− tanh2(we∗ + c))

= 2− 5× 0.5w[1− tanh2(we∗ + 0)] < 0 (70)

Combining (69) and (70), the range of weight w can be
obtained. Fig.1 shows the range of w for a step reference
xref = 1. When w = 9.8, λ = −0.507424234870289 < 0,
which satisfies the stability condition.

0 5 10 15 20
w

-15

-10

-5

0

5

w: 9.8
 : -0.507424234870289

Fig. 1. The eigenvalue λ vs the NN weight w for a step reference xref = 1.

A Simulink model as shown in Fig.2 was built to verify the
tracking performance and the steady-state error e(∞).

Neural	Network	Controller

proportional	controller

reference

K	Ts
z-1

tanh

w

error

K	Ts
z-1 Comparison

kp1

dx/dt xe

dx/dt xerror	e

Fig. 2. The Simulink model for the one-dimensional NN controller.

Fig.3 shows the tracking error when NN weight w = 9.8
for a step reference. From Fig.3, when t = 20s, e(20s) =
−0.184308205223854, which is pretty close to e(∞) = e∗ =
−0.184308971562349 from (69) corresponding to w = 9.8.

0 5 10 15 20
Time (seconds)

0

0.5

1

E
rr

or
 e

Time : 20
Error e: -0.184308205223854

Fig. 3. The tracking error e for a step reference xref = 1 when w = 9.8.

B. Adding Error Integral Inputs

To remove the steady-state error, we consider adding the
error integral input to the single-layer NN controller as follows

u = k tanh(we+ vs) = 5 tanh(9.8e+ vs) (71)

According to Theorem 3 and (27), the equilibrium point of
the system is [0; s∗]. If v is selected as 1, then s∗ equals

s∗ = −v−1[arctanh( 1
k
B−1Axref ) + c]

= −(1)−1[arctanh(1
5
× 0.5−1 × 2× 1) + 0]

= −1.098612288668110 (72)

The eigenvalues of the NN control system according to
Theorem 4 are λ1 = −6.685377840799436 and λ2 =
−0.134622159200560, which satisfy the requirements of local
asymptotic stability and local exponential convergence.

A Simulink model as shown in Fig. 4 was built to verify
the tracking performance of the NN controller after adding the
error integral term.

Neural	Network	Controller

Proportional	Integral	controller

reference

K	Ts
z-1

tanh

w

error

K	Ts
z-1

kp

Comparison

K	Ts
z-1

ki

K	Ts
z-1

v

error	integral

dx/dt xe

dx/dt

s_e

s_e

e

Fig. 4. The Simulink model for a one-dimensional single-layer NN controller
and the corresponding PI controller.

The corresponding PI controller with the same eigenvalues
was added to the Simulink model to compare steady-state
response with the NN controller. To guarantee the designed
PI controller to have the same eigenvalues as the single-layer
NN controller, we compare (42) and (28)-(30) in Theorem 4,
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thus set Kp and Ki as

Kp = w diag(1− (
1

k
B−1Axref )

2) = 9.8× 0.36 (73)

Ki = v diag(1− (
1

k
B−1Axref )

2) = 1× 0.36 (74)

Fig. 5 shows the equilibrium point of the one-dimensional
single-layer NN control system. When t = 100s, e(100s) =
−0.000000214389590, which is pretty close to theoret-
ical equilibrium point e(∞) = 0. Also, s(100s) =
−1.098610696140083, which is also very close to theoretical
equilibrium point s(∞) = s∗ = −1.098612288668110.

0 20 40 60 80 100
Time (seconds)

-1

-0.5

0

0.5

1 error e

error integral s
e

Time: 100
Error e: -0.000000214389590

Time: 100
Error Integral Se: -1.098610696140083

Fig. 5. The equilibrium point of the one-dimensional single-layer NN control
system.

To investigate the transient behavior of NN and PI con-
trollers within a neighborhood of their respective equilibrium
points, initial values were added to the system state x and the
error integral s. As e = 0 is the equilibrium point of both NN
and PI controllers, x was set as x(0s) = 0.95 for both control
systems, which means e(0s) = 1−0.95 = 0.05. According to
(41), the equilibrium point s∗ for the PI controller is

s∗ = −K−1i (
1

k
B−1Axref )

= −(0.36)−1(1
5
× 0.5−1 × 2× 1)

= −2.222222222222222 (75)

So the starting points of the error integral s for the NN and PI
controllers were set as s(0s) = −1.098612288668110 + 0.05
and s(0s) = −2.222222222222222 + 0.05, respectively.

Fig. 6 demonstrates the step response for xref = 1 under
both NN and PI controllers with starting points from a neigh-
borhood of their respective equilibrium points. Their transient
responses are almost the same, which is expected and can be
explained by the fact that both NN and PI control systems
have exactly the same two eigenvalues.

V. CASE STUDY II: TWO-DIMENSIONAL FOUR-LAYER
NEURAL NETWORK CONTROLLERS IN ELECTRIC POWER

APPLICATIONS

In this section, a four-layer NN controller in a two-
dimensional state-space model for renewable energy integra-
tion with the electric power grid is studied to apply and verify
the theories in Section III numerically.

0 5 10 15 20 25 30
Time (seconds)

0.95

0.96

0.97

0.98

0.99

1

1.01

S
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te
m

 S
ta

te
 x NN controller

PI controller

Fig. 6. Step response comparison starting points from a neighborhood of
their respective equilibrium points [0; s∗].

A. Grid-Connected Converter

A Grid-Connected Converter (GCC) is a key component
that physically connects renewable energy resources such as
wind turbines and solar panels to the grid [21], [22], [23],
[24], [25]. Fig. 7 shows the schematic of an L filter based
GCC, in which a dc-link capacitor is on the left, and a three-
phase voltage source, representing the voltage at the Point of
Common Coupling (PCC) of the ac system, is on the right.

C

+

-

Vdc

 

R Lva1

vb1

vc1

ia

ib

ic

Grid

va

vb

vc

Fig. 7. A grid-connected converter for renewable energy integration.

In the d-q reference frame, the state-space model of the
integrated GCC and grid system ([26]) can be expressed as

d

dt

[
id
iq

]
=

[
−RL ωs
−ωs −RL

]
︸ ︷︷ ︸

A

[
id
iq

]
︸︷︷︸
idq

+

[
− 1
L 0
0 − 1

L

]
︸ ︷︷ ︸

B

[
Vd1 − Vd
Vq1 − V q

]
︸ ︷︷ ︸

udq

(76)

where ωs is the angular frequency of the grid voltage, and L
and R represent the inductance and resistance of the grid filter
respectively, the system states are idq = [id; iq], the grid PCC
voltages Vdq = [Vd;Vq] are normally constants, and Vdq1 =
[Vd1;Vq1] are the converter output voltages that are specified
by the current controller outputs, and the control vector udq =
Vdq1 − Vdq .

Table I specifies all system parameters in a lab ex-
periment setup [27]. Using the parameters from Table I,
Vdq = [Vdc; 0] = [20; 0] and kpwm =

√
3/2Vdc

2 =
30.618621784789724.

B. Four-Layer NN Controller

The NN current controller N(esdq, ssdq, w) is a function of
the error edq , the error integral sdq and the weights w. As the
ratio of the converter output voltage Vdq1 to the outputs of the
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TABLE I
THE L FILTER BASED GCC SYSTEM PARAMETERS

Symbol Quantity Value Unit
Vg test grid voltage (rms) 20 V
f nominal grid frequency 60 Hz
Vdc DC-link voltage 50 V
L grid side inductor 25 mH
R grid side resistor 0.25 Ω

current controller is the gain of the Pulse-Width-Modulation
(PWM) kpwm[28], the control action udq is then expressed by

udq=R(edq,sdq)=Vdq1−Vdq=kpwmN(edq,sdq,w)−Vdq (77)

The structure of the four-layer NN controller ([10], [11]) is
shown in Fig. 8.

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

l

sd

sq

ed

eq

1/Gain

1/Gain

1/Gain2

1/Gain2

Preprocess/Input  

 

Fig. 8. The structure of the four-layer NN controller used in the GCC for
grid integration.

The function format of the four-layer NN controller
R(edq, sdq, w) can be represented as

N (edq, sdq, w) =

tanh

w3


tanh

w2

tanh
w1

tanh
[ edq
Gain
sdq

Gain2

]
−1




−1




−1




(78)

where w1,w2, and w3 represent the weights from the input
layer to the first hidden layer, the first to the second hidden
layer and the second hidden layer to the output layer respec-
tively. The biases of each layer have been incorporated into
w1, w2, and w3 to simplify the weight updating process.

The four-layer NN controller was trained by the LMBP [29],
[30], [31] and the FATT algorithm [32]. For the four-layer NN
controller, its weight parameters Gain1, Gain2. w1, w2, and
w3 are listed in Table II.

The equilibrium point of the system is (0, s∗dq). According
to Theorem 7 and (56), s∗dq satisfies the following function[
−RL ωs
−ωs −RL

]
︸ ︷︷ ︸

A

idq ref+

[
− 1
L 0
0 − 1

L

]
︸ ︷︷ ︸

B

[kpwmN
(
0,s∗dq,w

)
−Vdq]=0 (79)

According to (58) and (59) in Theorem 8, G11 and G12 can

be calculated as

G11 = A−B∂R(edq, sdq)
∂edq

|edq=0,sdq=s∗dq

= A− kPWMB
∂N (edq, sdq, w)

∂edq
|edq=0,sdq=s∗dq

(80)

G12 = −B∂R(edq, sdq)
∂sdq

|edq=0,sdq=s∗dq

= −kPWMB
∂N (edq, sdq, w)

∂sdq
|edq=0,sdq=s∗dq

(81)

The details of calculating G11 and G12 are listed in Appendix
A.

Given the current reference idq ref = [1; 0], the correspond-
ing four eigenvalues can be calculated and are listed in Table
III.

C. Corresponding PI controller

A PI controller was designed to have exactly the same
four eigenvalues as those of the four-layer NN controller for
comparison. Table III lists the target four eigenvalues for the
single-layer NN controller and the PI controller.

To guarantee the designed PI controller to have the same
eigenvalues as the four-layer NN controller, we compare (42)
and (80) and (81), thus set Kp and Ki as

Kp =
∂N (edq, sdq, w)

∂edq
|edq=0,sdq=s∗dq

(82)

Ki =
∂N (edq, sdq, w)

∂sdq
|edq=0,sdq=s∗dq

(83)

Table IV lists the values of Kp and Ki. Unlike the conven-
tional one-dimensional PI controller with a scalar proportional
gain and a scalar integral gain, the generalized PI controller
shown in Table IV has cross-coupling terms and are in a
more generalized gain matrix format, which has better and
stronger performance than the conventional one-dimensional
PI controller.

TABLE IV
THE PARAMETERS OF THE CORRESPONDING PI CONTROLLER

Kp

[
−0.344022164281883 0.727142679990575

−0.754209007295918 −1.18991558063817

]

Ki

[
−2.3221654488264 196.559123343741

−153.905082611539 −54.8126346765554

]

D. Corresponding Single-layer NN controller

For the single-layer NN controller design, the bias vector
c was selected as zeros to simplify the design process. We
compare (42) and (29) and (30), and thus set weights w and
v as

w = [diag(1− (
1

kpwm
B−1Axref )

2)]−1Kp (84)

v = [diag(1− (
1

kpwm
B−1Axref )

2)]−1Ki (85)

Table V lists the values of w and v for the single-layer NN
controller.
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TABLE II
THE WEIGHT PARAMETERS OF THE FOUR-LAYER NN CONTROLLER

Gain1 0.5

Gain2 0.5

W1



0.105118602490750 −0.869195807768507 3.910726574451215 3.829650558215191 0.043137396666237

0.805253127771219 0.116082719739100 5.081202415079452 −1.666910901747036 1.246185328567662

0.142117134906564 0.272375503071100 4.040974596086221 2.048223953909149 0.145066179115310

−0.395272323007882−1.422986921530577 4.255131423501219 5.561432608781822 0.000251202007245

−0.277224746255928 0.699935881635053 1.636989905274748 2.678881970530615 −0.109536124233592

0.376127545234790 1.285716734931245 −2.973060687194107 8.095548964772654 0.028991336931277



W2



1.440539114493213 −0.272530718390058 0.527886890221929 1.371222680616433 2.255139286184510 1.394844625523901 0.344937425499452

3.378981724654836 0.198608148623109 3.459270721071458 −1.9110270294298070.224751908404989−1.002210347176314−0.475383054734012

−0.359022430219653 1.217655164464906 3.145578151429633 1.863120732645271 3.708974043074285−0.096082441939513 1.566135015097376

4.031099888420788 −2.685187585928909−2.749868864734965 2.748659888667571 2.439552173754654 5.660170953027147 0.925728746264457

−0.622152942608992 0.732064874764135 4.212370496471141 −4.0812165587839561.547382976445135−6.456534076312040−0.817547511050558

1.522500050952956 −1.036035004009775 1.703072013081991 0.534432723278869 0.630762934216796 1.093038633050528 0.074249030990423


W3

[
−1.711155394435648 −0.447196877031189 −2.614508912856286 −5.956955188009836 0.958589844957509 1.641209174573893 −2.440547421725287

1.317977684822903 1.038607717509133 2.191677954355899 −0.515283801531746 0.973061014722440 3.038069686362197 −1.386654203297988

]

TABLE III
EIGENVALUES

Control method λ

Four-layer NN -802.233078413318 +1100.64099842807i -802.233078413318 - 1100.64099842807i -147.10811464909 + 54.0774179743671i -147.10811464909 - 54.0774179743671i

Single-layer NN -802.233078413318 +1100.64099842807i -802.233078413318 - 1100.64099842807i -147.10811464909 + 54.0774179743671i -147.10811464909 - 54.0774179743671i

PI -802.233078413318 +1100.64099842807i -802.233078413318 - 1100.64099842807i -147.10811464909 + 54.0774179743671i -147.10811464909 - 54.0774179743671i

Output	LayerPreprocess/Input
Layer

First	Hidden	Layer Second	Hidden	Layer

Single-Layer	Neural	Network	Controller

Proportional	Integral	controller

Four-Layer	Neural	Network	Vector	Controller

reference2
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Comparison
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K	Ts
z-1
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error

K	Ts
z-1

			Bias1	Input 					Bias2	Input

tanh

					Bias3	Input

tanh

tanh

tanh

error	integral

s_e

s_e

xe dx/dt

xe dx/dt

dx/dt
e

s_e

Fig. 9. The Simulink model for three controllers with the same four eigenvalues: four-layer NN controller, single-layer NN controller, and PI controller.

TABLE V
THE PARAMETERS OF THE CORRESPONDING SINGLE-LAYER NN

CONTROLLER

w

[
−0.589146302572011 0.803249086937196

−1.291601222678247 −1.314458124906575

]

v

[
−3.97676466861468 217.131988947592

−263.566187826589 −60.5496004678695

]

E. Step Response Comparison
A Simulink model as shown in Fig. 9 was built to compare

all three controllers.

TABLE VI
THE EQUILIBRIUM POINTS

Control method edq(∞) sdq(∞)

Four-layer NN 0 0 0.000570367398365 0.000995539550846
Single-layer NN 0 0 0.000827793898875 0.003291399362787

PI 0 0 0.000394111939873 0.003538453922689

Fig.10 shows the tracking error edq for a step response idq =
[1; 0]. At time t = 0.1s, edq = [−1.886e − 7; 6.882e − 08],
which is already very close to the equilibrium point [0;0].



10

0 0.02 0.04 0.06 0.08 0.1
Time (seconds)

0

0.5

1
E

rr
or

 e
dq

ed
eq

Time: 0.1
ed: -1.886e-07

Time: 0.1
eq: 6.882e-08

Fig. 10. The tracking error edq for step response idq = [1; 0].

Fig.11 shows the corresponding steady-state of sdq for
a step response of idq = [1; 0]. At time t = 0.1s,
sdq = [0.000570368236706; 0.000995538938232], which
has 8 significant bits the same as the equilibrium point
[0.000570367398365;0.000995539550846] in Table VI.

0 0.02 0.04 0.06 0.08 0.1
Time (seconds)

-2

0

2

4

6

8

10

E
rr

or
 In

te
gr

al
 s

dq

10-4

sd
sq

Time: 0.1
sq: 0.000995538938232

Time: 0.1
sd: 0.000570368236706

Fig. 11. The error integral sdq for step response idq = [1; 0].

Table VI lists the equilibrium points for all three control
methods. As all three control methods have the error integral
inputs sdq , the equilibrium points for the edq are all zeros,
which is the steady-state error of edq(∞) = 0. For the error
integral sdq , they all converge to their respective equilibrium
points as each control method has different weights or param-
eters.

To evaluate and compare the steady-state behaviors of all
three control methods close to their equilibrium points, starting
points were given to sdq while idq = [0; 0] and edq = [1; 0]
were kept unchanged in the simulation. The staring points for
sdq were set as sdq(0s) = sdq(∞) − [0.001; 0], which was
to study the behavior within a small neighborhood of their
equilibrium points sdq(∞). starting points of sdq are listed in
Table VII.

TABLE VII
NEW STARTING POINTS OF sdq

Control method sdq(0s) = sdq(∞)− [0.001; 0]

Four-layer NN 0.000570367398365 - 0.001 0.000995539550846
Single-layer NN 0.000827793898875 - 0.001 0.003291399362787

PI 0.000394111939873 - 0.001 0.003538453922689

Fig. 12 shows the step response under this condition, which

have pretty similar responses within a small neighborhood of
their equilibrium points and verify the fact that they all have
the same four eigenvalues.
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PI contorller: id
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Fig. 12. Step response comparison with starting points from a neighborhood
of their respective equilibrium points s∗dq .

Thus, it is expected that when the size of the neighborhood
around the equilibrium points is small enough, all three control
methods will demonstrate identical transient behaviors due to
the fact they all have the same four eigenvalues.

VI. CONCLUSION

This paper proves that if the neural network controllers only
have error terms as inputs, the control system has a non-zero
steady-state error for any constant reference in general except
for one special reference point. Adding an error integral term
to the inputs of the NN controller is sufficient to eliminate the
steady-state error for any constant reference.

This paper also provides a simple way of using eigenvalues
of the NN control system to evaluate local stability and
local convergence for reference tracking, which has almost
the same transient behavior as the corresponding generalized
PI controllers with the same eigenvalues and helps practical
engineers understand the essence of NN controllers.

Unlike the generalized PI controller, the reference affects the
stability and convergence of the NN control system. Therefore,
for a NN controller, the training of the NN is needed to assure
that for all the representative references in the targeted and
acceptable region, the well-trained NN weights would satisfy
the stable network eigenvalue requirement, which is a common
requirement for the development of an NN controller.

APPENDIX A
DERIVATION OF G11 AND G12 FOR THE FOUR-LAYER NN

CONTROLLER

To simplify the derivation process, define oe, os, o1, o2, and
o3 as follows:

oe = tanh(edq/Gain1)|edq=[0;0]=tanh([0; 0]/Gain1) (86)

os = tanh(sdq/Gain2)|sdq=s∗dq =tanh(s∗dq/Gain2) (87)

o1 = tanh(w1[oe; os;−1]) (88)
o2 = tanh(w2[o1;−1]) (89)
o3 = N (edq, sdq, w) = tanh(w3[o2;−1]) (90)
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Then
∂N(edq,sdq,w)

∂edq
|edq=0,sdq=s∗dq

=
∂o3
∂o2

∂o2
∂o1

∂o1
∂oe

∂oe
∂edq
|edq=0,sdq=s∗dq

= [diag(1− o23)w3(:, 1 : 6)][diag(1− o22)w2(:, 1 : 6)]

∗ [diag(1− o21)w1(:, 1 : 2)][diag((1− o2e)/Gain1)] (91)
∂N(edq,sdq,w)

∂sdq
|edq=0,sdq=s∗dq

=
∂o3
∂o2

∂o2
∂o1

∂o1
∂os

∂os
∂sdq
|edq=0,sdq=s∗dq

= [diag(1− o23)w3(:, 1 : 6)][diag(1− o22)w2(:, 1 : 6)]

∗ [diag(1− o21)w1(:, 3 : 4)][diag((1− o2s)/Gain2)] (92)

Substitute (91) and (92) into (80) and (81). Thus G11 and G12

can be obtained.
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