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a b s t r a c t

Visualizing big and complex multivariate data is challenging. To address this challenge, we propose
flexible visual analytics (FVA) with the aim to mitigate visual complexity and interaction complexity
challenges in visual analytics, while maintaining the strengths of multiple perspectives on the studied
data. At the heart of our proposed approach are transitions that fluidly transform data between user-
relevant views to offer various perspectives and insights into the data. While smooth display transitions
have been already proposed, there has not yet been an interdisciplinary discussion to systematically
conceptualize and formalize these ideas. As a call to further action, we argue that future research
is necessary to develop a conceptual framework for flexible visual analytics. We discuss preliminary
ideas for prioritizing multi-aspect visual representations and multi-aspect transitions between them,
and consider the display user for whom such depictions are produced and made available for visual
analytics. With this contribution we aim to further facilitate visual analytics on complex data sets
for varying data exploration tasks and purposes based on different user characteristics and data use
contexts.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity

Press Co. Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Analyzing multi-faceted big data is challenging (Kehrer and
auser, 2013; Hadlak et al., 2015). To support a comprehensive
nderstanding of this kind of data, different views and perspec-
ives must be made available to the user during the visual data
xploration and analysis.
A common example for multivariate data offering multiple

erspectives is spatio-temporal data. Such data consist of a set
f entities and measured attributes that have been observed
t different points in time and at different locations in space.
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From a visualization perspective, widely-used visualization ap-
proaches exist to display a single aspect of such data. Three
examples are shown in Fig. 1. A spiral may visualize cyclic tem-
poral patterns (Aigner et al., 2011), a choropleth map can show
spatial areal relationships (Dykes et al., 2005), and a node-link
diagram may expose the structural connections between data
entities (Tamassia, 2013). When multiple perspectives on the
same data set are depicted in different views, understanding
of the interplay of these different data characteristics may be
hindered. However, once multiple data aspects are channeled
into separate and distinct views, understanding the interplay of
these aspects becomes a non-trivial task. Mechanisms like view
coordination (Tominski et al., 2009), brushing & linking (Chen,
2004), or dynamically embedded visual links (Collins and Carpen-
dale, 2007) are frequently deployed to enable users to develop an
overall understanding of patterns and relationships existing in the
data shown in separate views.

One alternative to linked views (Roberts, 2007) is to integrate

multiple data characteristics into one single visualization. An
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Fig. 1. Visualizing time, space, and structural connections in separate views.
Fig. 2. Time, space, and structural connections integrated in a single visual representation.
xample is shown in Fig. 2, where data entities (white dots) and
heir structural connections (gray lines) are embedded within
elected geographic regions of a perspective 3D map display
Hadlak et al., 2010). For each time step in the data, there is
map layer stacked along the vertical axis. Additionally, blue
nd red spikes between the layers indicate where data entities
tart or cease to exist across time. While this visual representa-
ion integrates time, space, and structural connections, it is also
ather complex and requires some training to decipher and some
nteraction to explore.

Typically, integrating a large number of data characteristics
nto a single visual representation is not feasible, because the
esulting image would be visually too dense and thus too difficult
o interpret. On the other hand, with many separate single-aspect
iews, the user needs to visually integrate findings made in one
iew with patterns of different data characteristics shown in
ther views. In summary, both integration and separation of data
haracteristics may require considerable cognitive and perceptual
oad or view interaction effort by the user. In short, separate
inked data views and integrated multivariate views have their
trength and weaknesses. For this, we propose flexible visual
nalytics to combine the strengths of both data visualization
pproaches, as we discuss next.

. Flexible visual analytics

We introduce an alternative approach situated at the inter-
ace of integration and separation, which we call flexible visual
nalytics (FVA). Our working definition of the term is as follows:
29
‘‘Flexible visual analytics is an approach to support the com-
prehensive visual exploration and analysis of multi-faceted
data via several smoothly integrated elastic multivariate
views’’.

The goal of FVA is to mitigate the challenges associated with
visual complexity and interaction complexity in visual analytics,
while maintaining the strengths of multiple perspectives on the
studied data. Essentially, FVA is based on the effective blending
of different data views. The main ingredient of FVA are thus
transitions that are designed to smoothly transform one view into
other data views. Conceptually, transitions are a visual and com-
putational means to transform between different data views, such
as visual encodings, visualization techniques, view types, parame-
terizations, data query results, or the results of different analytical
computations. Transitions may reduce interaction complexity and
allow users to fluidly and seamlessly study different perspectives
of the data. The start and end points of transitions are user-
selected views that highlight a particularly relevant or interesting
perspective on the data based on a user’s task or interest. These
prioritized views are designed with maximal expressiveness for
that chosen data perspective, while other data characteristics are
compressed or omitted. The prioritized views are assumed to be
balanced in terms of their visual complexity.

FVA, according to our definition, has been used in the lit-
erature before, however, as we contend, without fundamental
conceptualization in its own right. For example, Yuan et al. blend
parallel coordinates and scatter plots (Yuan et al., 2009). Their
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pproach smoothly pushes two parallel axes apart to make space
or embedding scattered data points. Flexibly blending time se-
ies plots with parallel coordinates is possible as well (Gruendl
t al., 2016). Tominski et al. blend 2D and 3D representations
f movement trajectories (Tominski et al., 2012). Starting from a
D overview of the entire movement data the user can smoothly
ransition to a 3D view that reveals details about individual
ovement trajectories. Schulz and Hadlak study transitions in

he design space of implicit tree representations (Schulz and
adlak, 2015). This allows visualization designers to explore new
otentially useful designs for particular data analysis tasks. Brosz
t al. developed an approach for transforming visual representa-
ions via skeleton-based image deformations (Brosz et al., 2013).
eing pixel-based, the approach can be applied to any visualiza-
ion, but is oblivious to its geometric model and the underlying
ata facets. Previous work also studied morphing between vi-
ualization techniques for educational purposes (Ruchikachorn
nd Mueller, 2015). In the context of digital humanities, the
olyCube approach utilizes space–time cube transformations to
witch between different perspectives on complex cultural data
ollections (Windhager et al., 2020).
All these examples have in common that they involve smooth

ransitions between views that focus on different aspects of the
tudied data within a given application context or part of a
isualization system innovation. For several years, smooth ani-
ated transitions have been a topic of research in visualization,

or example, for data graphics (Heer and Robertson, 2007), data
avigation (Pulo, 2007), or data aggregation (Kim et al., 2019).
everal approaches have been developed to enhance animated
ransitions, for example, by bundling trajectories (Du et al., 2015),
y grouping (Zheng et al., 2018), or via a grammar for author-
ng (Kim and Heer, 2021). A design space for animated transitions
as recently been published (Thompson et al., 2020).
Our goal for this paper and future similar research is to re-

iew, build upon, and extend transition research in a way that
ransitions are not only possible for elementary visualizations or
harts, but for complex, multivariate visual depictions of big and
omplex data. Eventually, FVA’s aim is to be able to systematically
ransition between several different views, and not only between
wo simple visual representations. Such a research endeavor can
lso be informed by research on animated transitions for user
nterfaces, which arguably, are already more complex than basic
harts (Dessart et al., 2012; Vanderdonckt, 2012; Chevalier et al.,
016).
Smooth transitions are well known for animated data graphics

uch as the popular Gapminder project (Gapminder Foundation,
021). Yet, for this current definition of FVA, we do not consider
iews that change along a time line, but what cartographers have
alled re-expression or non-temporal animation that is using
ny numeric data dimension other than time (Harrower and
abrikant, 2008). Nonetheless, research on animation is certainly
elated to what we discuss here.

While past and current animation research and authoring
ystems contain smooth transitions between static scenes out
f the box, there are many open research issues: From a con-
eptual perspective, we do not have a clear understanding of
he requirements and principles of FVA, specifically for complex
ultivariate views. What does the design space look like? It is

urther unclear which data dimensions or facets can be combined
ith which visual mappings. Are there general principles that
an help us find such suitable combinations? We are also lacking
thorough understanding of how much integration, separation,
nd transitioning are appropriate in the context of a specific data
omain, application type, and visualization user. Where is the
weet spot satisfying those contextual requirements; does such

n optimal solution even exist?

30
In light of these open issues, we do see the need for developing
a systematic view of FVA in order to gain a better understanding
of the potentials and limitations of augmenting visual data analy-
sis by means of transitions between discrete visual states. Such a
systematic view would allow us to comparatively evaluate differ-
ent approaches, match them to tasks and contexts, and identify
the potential for not yet existing techniques to be developed in
the future.

We thus aim to position this contribution as a call to action
for more research on FVA. We propose some conceptual consid-
erations that identify key aspects of FVA in terms of views and
transitions between them. Moreover, we discuss implications of
FVA from the perspective of human perception and cognition.
Finally, we identify open research questions to spark further
research in the context of FVA contributing to the overall goal
of making big and complex multivariate data analysis not only
a fluid and seamless, but also a fruitful experience with less
cognitive load and fewer required interactions.

3. A technical perspective on FVA

As indicated earlier, FVA builds upon the idea of (i) relevant
views and (ii) smooth transitions between these views. Next, we
focus our discussion on the technical aspects involved in FVA.

3.1. Relevant multivariate views

We first need to clarify what we mean by relevant multivariate
views and what they are supposed to show. In the first place,
the data attributes A are of interest. The data attributes may
e embedded in a temporal T and spatial S frame of reference.

Moreover, structural relations R may exist between data entities.
he different data aspects A, T , S, and R lead to several common
ata classes (Tominski and Schumann, 2020): multivariate data
A), time-oriented data (T → A), spatio-temporal data (T × S →

), or dynamic graphs (T → R). One can imagine further data
aspects of interest such as uncertainty (Bonneau et al., 2014) or
set affiliation (Alsallakh et al., 2016).

Multivariate data offer several analysis opportunities. For ex-
ample, they may be analyzed with respect to outliers, correla-
tions, or clusters. For spatio-temporal data, the analyst may want
to study how data values develop over time or where certain
values are located in space. For a dynamic graph, one may ask
which of its parts form stable communities over time. More
generally, many data facets imply that there are many questions
one may ask about the data, which in turn lead to a more complex
data exploration and analysis process (Kehrer and Hauser, 2013).

In light of this multitude of issues, it is a truism that there is
no one optimal view that will suffice. As a starting point for FVA,
we propose relevant, that is, prioritized views that emphasize one
or two selected aspects of the data while potentially hinting at or
omitting other aspects of the data.

The visualization literature is quite clear about the fact that
particular types of data require dedicated visual representations
(Hanrahan, 2009; Tominski and Schumann, 2020). Yet, designing
visual representations for multiple aspects of high-dimensional
and multivariate data remains challenging.

One example of a prioritized multi-aspect visualization is de-
scribed by Dübel et al. (2017), who balance the visualization of
terrain, collected geo-spatial data, and their uncertainty. When
the terrain is prioritized, it is rendered using sophisticated light-
ing algorithms, whereas the geo-spatial data are represented only
in an aggregated fashion. On the other hand, when the geo-
spatial data are prioritized, they are shown in full detail, while the
terrain is visualized only by means of contours. As this example

illustrates, the prioritization can be implemented by varying the
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Fig. 3. Prioritized views (red, green, blue) communicate data aspects (A, T , S,
) at different levels of detail (++, + , −).

ata’s degree of abstraction (e.g., aggregated vs. exact values) and
he degree of visual abstraction (e.g., detailed relief shading vs.
ontours only).
In the context of visual analytics, one may also consider ap-

roximate, heuristic data analysis methods in contrast to ex-
ct and precise computational steps. Prioritization may also be
chieved by changing the amount of data items through selective
ampling or changing data components through dimensional-
ty reduction. Although selected questions of multi-aspect views
ave already been studied (Kehrer and Hauser, 2013; Hadlak
t al., 2015), no comprehensive design-space for prioritizing data
spects in visual analytics has been described in the literature.
Prioritized views as described before form the basis for FVA.

n individual view can be characterized conceptually as illus-
rated in Fig. 3. The different aspects (A, T , S, R) a view might
ontain are depicted as vertical axes. For each of the aspects, we
efine a continuum of the level of detail from full detail (++),
o reduced detail (+), to omitted (−). Full detail is provided
or aspects that are prioritized, reduced detail is sufficient to
rovide context, omitted data aspects are not included in the
isualization. In order to be able to develop a comprehensive
nderstanding of the data, an analyst would need a whole set
f views, each with a different prioritization of the relevant data
spects and dimensions. The figure shows the characteristics of
hree hypothetical views as polylines in red, green, and blue. The
ed line corresponds to a view that emphasizes the temporal
ependencies of the data, but does neither include space nor
tructural relations (e.g., a spiral display). The green line stands
or a view that focuses on the relations, but shows space and data
ttributes only to a lower degree, leaving out time completely
e.g., a node-link diagram overlaid on a 3D globe). Finally, the
lue view emphasizes the spatial aspect and includes aggregated
ata attributes, but does not convey aspects of time and relations
e.g., a choropleth map). A challenge for FVA is to systematically
esearch and find concrete views that are suitable for different
pplications and use contexts. The set of views should compre-
ensively accommodate all data aspects, but also strive to be
inimal to reduce cognitive load.

.2. Smooth multivariate transitions

Conceptually, FVA is about flexibly transitioning between rel-
vant multivariate views. In a sense, FVA is a kind of navigation
etween views, where transitions exist to make the navigation
mooth rather than abrupt. Robert Spence argues (Spence, 1999)
p. 938):

‘‘If change has to occur it is immensely helpful, as far as
minimizing the cognitive load associated with the mainte-
nance of a good internal model is concerned, if the external

representation can change smoothly’’.

31
Transitions may form bridges on different conceptual levels.
hey can link views with different analytical abstractions, for

example, between the results of different time-series forecast
methods (Wang and Hornbæk, 2020). However, transitions will
more commonly involve different visual representations, for ex-
ample, between a 2D and a corresponding 3D representation,
or between a geographic projection and a multi-dimensional
projection. Note that transitions are not only for communication-
oriented purposes (e.g., storytelling, onboarding), but are also
supposed to be a vehicle for data exploration.

No matter the specifics of what is being connected by a tran-
sition, it leads from one prioritized view to another one. From
there, another view and yet another view may be reached, form-
ing a chain of connected views. Alternatively, there may be a
central view from which several other views can be reached, but
no lateral transitions are available between these other views.
This would form a star-shaped topology.

In general, transitions between views may thus form different
topologies, some are illustrated in Fig. 4. However, we do not yet
know the potential impact that a particular topology may have on
the analysis and on the generation of insights involving complex
data. More research is necessary to investigate which specific
types of topologies may be suitable under which circumstances.

For the transition itself, we define two key requirements: A
transition should be (i) smooth and (ii) controllable. Smoothness
is required to support users in understanding how one visual
representation transforms into another. Achieving smoothness
typically involves some form of interpolation. A transition should
also be controllable to allow users to reverse or replay it, or to
watch it at a different speed. An appropriate user interface can
offer these operations.

An elementary transition is concerned with an atomic visual
change. An example would be to change the position of a sin-
gle dot. A transition from one visual representation to another
typically involves a whole series of elementary transitions. For
example, collapsing a set of dots might involve the temporary
display of their convex hull, which is then folded into a single
meta dot replacing the original set.

From a conceptual perspective, a transition can be based on
the underlying data model or on the view’s graphical model. On
the side of the data model, a transition can involve data attributes,
derived statistics, or parameters of any step along the visual
analytics pipeline. Transitions on the graphical side work on a ge-
ometrical scene definition or the plain pixel array. Consequently,
three different strategies for implementing transitions exist:

1. Interpolate data model,
2. Interpolate geometry model, or
3. Interpolate pixel model.

The decision on which strategy to use must be made de-
pending on the intended visual outcome for the transition. The
reason is that different strategies can lead to different outputs.
Consider, for example, the illustration in Fig. 5. Let us assume
an analytical computation is parameterized with two different
values p = vT and p = vS to convey either temporal or
spatial aspects of the data. The two resulting views show the
data as a black dot at different positions. When interpolating the
dot position (geometry model), the visual outcome is a linear
trajectory. On the other hand, when interpolating the parameter
values between vT and vS directly (data model), the trajectory of
the dot might be totally different, as indicated by the curve in
our example. When interpolating between images (pixel model),
for example, by means of alpha-blending, no trajectory appears
at all. Therefore, the interpolation strategy to be employed must
be chosen carefully.
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Fig. 4. Transitions between views may form different topologies.
Fig. 5. Different visual outcome of interpolation in data space and visual space.
Fig. 6. Four differently prioritized views of the food stall example data from Table 1. Left: Attributes and time are shown in full detail, space is omitted. Middle
op: Attributes in full detail, time and space are omitted. Right: A map showing the location and type of the food stalls but not their labels (attribute with reduced
etail, time omitted). Middle bottom: Time is fixed (reduced detail) and attributes shown, space omitted.
In our example, p is a numeric parameter that is suitable for
nterpolation between vT and vS . However, what if a transition
eeds to convey the change of a categorical parameter, for which
o interpolation of the parameter value is possible by definition.
n such cases, graphical interpolation is the only choice we have
or a smooth transition. Yet, the intermediate views being created
uring the transition do not have a corresponding state in the
ata/parameter space. It is important to make viewers of such
ransitions aware of this fact. How this can be done is an open
esearch question.

The previous example was concerned only with an elementary
ransition of a single dot. The situation gets more complex when
onsidering transitions between elaborate visual representations
uch as those mentioned earlier—balancing the visualization of
errain, geo-spatial data, and their uncertainty. While there are
revious works on animated transition for data graphics, we do
ot yet know how these translate to more complex multivariate
iews. Which aspects need to be transitioned via interpolation
32
in the data space, which aspects are safe to be transitioned in
the visual space? How to best group and stage individual atomic
transitions to generate an overall comprehensible and helpful
view transition? The literature does not yet provide guidelines
in this regard, which calls for more research on FVA.

3.3. Examples

In this section, we discuss examples illustrating how smooth
display transitions might connect different visual representations
better. In doing so, we also demonstrate that FVA is indeed a
concept for multi-faceted data, including attributes, time, space,
and structural relationships.

An example with a simple fictional food stall data set shall
illustrate options for different prioritized views of the same data
and how those views might be chained using transitions. Table 1
shows the example data set with four different food stalls. Each
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able 1
imple food stall data set to be visualized with different prioritized views in
ig. 6.
Name (A) Type of food (A) Open (T ) Location (S) ...

Andy’s Snacks 09 am–03 pm XA, YA ...
Beans Co. Coffee 07 am–10 am XB, YB ...
Cypress Lunch 11 am–01 pm XC , YC ...
Delight Coffee 07 am–05 pm XD, YD ...
... ... ... ... ...

stall has a name, sells a type of food, is open at certain times,
and is located somewhere. Fig. 6 shows four different prioritized
views. The parallel coordinate plots at the bottom of each frame
indicate which aspect of the data is prioritized, shown with re-
duced detail, or omitted (as illustrated earlier in Fig. 3). The thick
gray lines between the frames indicate options for transitions.
We hypothesize that to transition smoothly between prioritized
views it may be useful to stage the transition and to increase or
decrease data details along the axes of data aspects consecutively.
For example, to go from the time view (Fig. 6, left) to the map
view (Fig. 6, right), one might first collapse the timeline to a point
(decrease details of time T from full to omitted, as shown in Fig. 6,
middle top) and then move the points to their location on the
map (increase space S from omitted to full detail). The colors
for food stall type information are kept during the transition,
while the name of the food stall is removed (reduced detail for
attributes A).

Our second example comes from previous work on combining
the advantages of node-link diagrams and matrix representations
in a technique called NodeTrix (Henry et al., 2007). Node-link
representations and matrices are visually quite different, and
therefore, a smooth transition between them requires several
stages. Fig. 7 shows an example with five stages. Starting with
a node-link representation (1), the edges are bent (2), nodes are
rearranged (3), and edges are blended to become the cells (4) of
the final matrix representation (5). Stages (2) and (3) operate in
the geometry space, whereas stage (4) is in pixel space. This il-
lustrates that transitions between complex visual representations
might require combining interpolation in different spaces.

Finally, Fig. 8 shows screenshots from an exemplary transition
between a 3D and a 2D categorical representation (Windhager
et al., 2020; Salisu et al., 2019). The 3D view (left) clusters the
data points in eight time layers and uses a ‘hull’ to show their
flow over time. The 2D view (right) uses color to encode time on
a more fine-grained level. The transition consists of several steps:
First, the reference cube is broken up to individual time layers and
the new color coding is introduced. Then, in a smooth animation,
the layers are superimposed until the representation arrives at
the final 2D view.

4. A human perspective on FVA

From a human perspective, making sense of a visualization—be
it in a more data exploratory or in a more information com-
municative setting—requires the interplay of different perceptual
(e.g., visual search, object tracking, pattern detection) and cogni-
tive processes (e.g., build up a mental model, integrate insights
into an existing knowledge structure). These perceptual and cog-
nitive processes are bound to be more demanding and challeng-
ing for users, when they wish to make sense of big and complex
multivariate data. User studies show that extracting multivariate
spatiotemporal patterns is more difficult in separated views than
in integrated ones (Andrienko et al., 2010; Windhager et al.,
2020). Prior empirical research suggests different constraints of
the human information processing system that may explain this

effect: (1) split attention (especially with animated views) (Opach
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et al., 2014; Maggi et al., 2016), (2) inattentional blindness (Ship-
ley et al., 2013), (3) change blindness (Rensink, 2002; Fabrikant,
2005), (4) cognitive load (Sweller, 1988; Sweller et al., 2011),
and (5) generally the lack of support for incremental construc-
tion of mental models, missing gradual augmentation of users’
conceptual models (Fabrikant et al., 2008; Ceneda et al., 2017;
Windhager et al., 2018).

The FVA approach can mitigate some of these constraints by
using transitions, the process in which one object (the unity of
all data) is moved from one visualization reference system to an-
other visualization reference system and thereby changes its ap-
pearance. To conceive a transition, the user needs to understand
(1) how the data object in one display (in one reference system)
relates to another perspective in the second reference system and
(2) how the data object transforms across the reference systems.

We argue that transitions have an augmenting function for
data exploration, visual search, cognitive processing, memory
load, and knowledge building. Cognitive load is offloaded to the
visualization system and the visual complexity is reduced by
interaction. However, to fully exploit the transitions’ augment-
ing potential, we have to take into account some cognitive and
perceptual constraints in their design.

4.1. Perceptual constraints

One of the challenges of visual analytics is that the simul-
taneous presentation of different data aspects (e.g., spatial and
temporal dependencies) raises specific problems. Using map-like
representations to show developments in time leads to occlusion
of relevant information (Kriglstein et al., 2016). Other solutions
have to be found for the representation of spatio-temporal data.
Animations could be one of these possible solutions to show spa-
tial and temporal information in one visualization. Nevertheless,
perceptual constraints have to be taken into account.

One of these constraints is change blindness and inatten-
tional blindness (Rensink, 2002). Change blindness and inatten-
tional blindness indicate severe limits of our visual attention
that have consequences for how users will interact with visual
representations of multi-faceted data. Following transitions in vi-
sual analytics requires tracking of multiple aspects on the screen
simultaneously. Nevertheless, recent research on multiple object
tracking indicates that human perception is better than previ-
ously assumed (Wu and Wolfe, 2018). Rensink (2002) formulated
guidelines for screen design (e.g., transitions should only consist
of two reference systems and one object) that take change blind-
ness and inattentional blindness into account. These guidelines
are also highly relevant when developing FVA.

4.2. Cognitive constraints

Visualizations providing complex information require a high
degree of attention from the users. Cognitive load theory clarifies
the cognitive processes necessary for such activities (Sweller,
1988; Sweller et al., 2011). Originally, cognitive load theory has
been developed to model learning processes with educational
systems. It distinguishes between intrinsic and extrinsic cognitive
load. Intrinsic cognitive load is related to the complexity of the
material as such, whereas extrinsic cognitive load describes the
load resulting from the way the material is presented. Sweller
et al. (2011) argue that intrinsic cognitive load is given, whereas
extrinsic cognitive load can be reduced by appropriate ways
of design. They provide several possibilities how this can be
achieved.

Sweller et al. also described several effects related to cognitive
load, among others the split-attention effect. This effect can be

observed when two or more elements belonging together are
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Fig. 7. Smooth transition from a node-link representation to a matrix representation.
Source: © 2007 IEEE. Reprinted, with permission, from Henry et al. (2007).
Fig. 8. Transition from a 3D categorical representation (left) to a 2D representation (right).
ositioned in different areas of the screen. To interpret such
visualization correctly, users have to integrate the presented

nformation in a meaningful way. This is difficult because users
annot observe both objects simultaneously and therefore have
o keep at least one of the elements in short-term memory. A
ossibility to overcome this problem is to reduce the distance be-
ween elements and create a clear connection between elements
elonging together. Previous work on visualizing spatio-temporal
ata (Tominski and Schulz, 2012) and supporting visual compari-
on (Tominski, 2016) have successfully applied these suggestions.
et, the issue of split attention remains highly relevant for visual
nalytics, and also very challenging and difficult to solve.
Another effect identified in the context of cognitive load the-

ry is the transient information effect (Sweller et al., 2019).
his effect occurs when information is only presented briefly,
nd people have to retain this information in working memory.
trategies that might help to mitigate this effect are self-pacing
r segmentation. These strategies can be easily supported by
isualization systems.
Animation has been put forth as a strategy for integrating

lements of a visualization into a coherent whole. In this sense,
nimation—as a core component of FVA—can overcome the split-
ttention effect and help us to construct relations between ele-
ents at various places on the screen. Animation has been pri-
arily suggested as an appropriate method to represent temporal

nformation, but other phenomena can also be represented in that

ay. Within the visualization community, there is a controversial

34
discussion about the use of animation. Evaluation studies have
yielded mixed results (Kriglstein et al., 2014). On the one hand,
animations have advantages for tasks related to temporal devel-
opments. It has been argued that animations may convey very
small changes in the data that are easily missed when using other
techniques, like small multiples (Goldsberry and Battersby, 2009;
Fabrikant et al., 2008; Fish et al., 2011). In addition, it can be
argued that an animation conveys a more holistic picture than
other visualizations. On the other hand, animations that are not
well designed or inappropriately used can be confusing.

There are several factors that influence the success of an ani-
mation (Harrower, 2007). Speed can be either too fast or too slow.
The possibility to control the speed of an animation is important
for the users and helps them to understand the visualization in
more detail. There is some empirical evidence that interactivity
can help to support sensemaking processes (Amini et al., 2015).
In animations, users often get overwhelmed by the sheer amount
of data. Therefore, the possibility to filter the data is especially
important so that users can concentrate on the crucial aspects
of the visualization. Animations are also more advantageous for
small datasets than for large datasets.

Bach et al. (2014) present a user study about animated tran-
sitions for dynamic networks. Their research indicates that an-
imations decrease the error rate of study participants, but they
may increase task completion time for some types of tasks. They
also mention that it is difficult to track several different changes

occurring in different areas of the screen.
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Lowe (2014) describes a model to clarify learning and in-
eracting with animations, the animation processing model. This
odel distinguishes between five different stages, going from
ore localized, detailed processing of information to the more
eneral level of mental model consolidation. One basic idea is
hat decomposition of animations occurring in the first stage of
he model is time-consuming and increases cognitive load of the
sers. Therefore, designers of animations should decompose them
nto meaningful units. These units are presented to the users
ho can, at a later stage, easily integrate them into a meaningful
hole. In this way, the cognitive effort of users can be reduced
onsiderably. Lowe and Boucheix (2016) present empirical evi-
ence to support this notion. Lowe also argues that animations
re often animated static images. He points out that, for example,
ethods of cueing adapted from static images (e.g., arrows) often
o not work in animations, and that different methods of cueing
hould be adopted.

.3. Recommendations

Several tentative recommendations can be derived from this
rief overview of the literature. User studies indicate that an in-
egrated view is better than separated views for the presentation
f multivariate data (Andrienko et al., 2010; Windhager et al.,
020). So, if the number of data dimensions allows, an integrated
iew should be preferred. Transitions between different views can
elp to overcome the split-attention effect (Sweller et al., 2011;
ish et al., 2011), although these animations have to be designed
arefully (Harrower, 2007; Kriglstein et al., 2014). To take change
lindness and inattentional blindness into account, Rensink for-
ulated as a design guideline that a transition should only consist
f two reference systems and one object (Rensink, 2002). In
eneral, the number of elements that are modified should be
ept as small as possible (Bach et al., 2014; Fish et al., 2011).
herefore, interactivity, especially the possibility for filtering the
ata, is necessary (Amini et al., 2015). In addition, users should
e able to control the speed of the animation (Fabrikant, 2005;
riglstein et al., 2014; Sweller et al., 2019). Finally, segmentation
nd decomposition of the animation into distinct units should
e possible to reduce cognitive load (Shipley et al., 2013; Lowe,
014; Sweller et al., 2019).

. Related work

FVA as discussed in this paper has the goal of supporting users
n making sense of multiple visual representations of complex
ata. FVA shares this goal with existing approaches from the
iterature.

We already mentioned visual linking as a related concept
Collins and Carpendale, 2007). It is based on drawing links be-
ween different visual representations. The key advantage of vi-
ual linking is that relations between visual representations are
ade explicit. On the down side, visual linking requires additional
isual resources for drawing the links and non-trivial measures
ust be taken to prevent links from occluding the visual rep-

esentation (Steinberger et al., 2011). Moreover, visual linking
equires the visual representations to be linked be visible at the
ame time. This works for classic multi-view visualizations, but
ot for visual representations that are dynamically embedded
nto parts of another visualization, as for example for Responsive
atrix Cells (Horak et al., 2021).
FVA is also related to composite visualization as described

y Javed and Elmqvist (Javed and Elmqvist, 2012). Composite
isualization is not a specific technique, but can be understood
s a generalization or a design space of coordinated multiple
35
views (Roberts, 2007). The composition can be juxtaposition, su-
perposition, overloading, and nesting. The design space is mainly
focused on the spatial arrangement of visual representations,
which are shown simultaneously, but does not consider the tem-
poral arrangement, that is, the smooth transitioning of visual
representations over time across a topology. It is interesting that
Javed and Elmqvist state in their paper: ‘‘However, it is possible
to envision other ways to combine two or more visualizations, for
example using interaction or animation’’. This is exactly what we
aim for with FVA.

The work by Chen et al. (2021) further explores the design
space of multi-view visualization. They add to the notion of
composition (frequency, diversity, correlations of view types) the
notion of configuration (position and size of views). Based on
hundreds of examples from the literature, numerous composi-
tion and configuration patterns are analyzed, which are utilized
for a recommendation system for multi-view visualization. Yet,
they also do not consider smooth transitions between visual
representations.

Finally, we mention animated storytelling via Data-GIF (Shu
et al., 2021) as a related approach to make data understandable.
Data-GIF also utilizes animated transitions, yet these are pre-
designed and do not support interactive control at all. FVA is
about the user taking control and traversing several multivariate
views to gain insight into complex multivariate big data.

It can be concluded that (1) researchers studying the space of
possible approaches to combining multiple views did not inves-
tigate flexible transitions among these approaches; (2) there are
examples of the use of animated transitions but there has been no
systematic general consideration of the essence of this approach;
(3) the current state of research on flexible transitions does not
allow valid comparisons with other approaches and creation of
design guidelines for choosing a suitable approach for given data,
tasks, and users.

6. Future work and conclusion

We have proposed flexible visual analytics (FVA) with the aim
to mitigate visual complexity and interaction complexity chal-
lenges in visual analytics. The overall goal of our FVA approach
is to make the exploration and the analysis of big and complex
multivariate data a fluid and seamless process. With our work
we neither propose a new approach competing with existing ones
nor do we propose a specific design or software implementation.
Our contribution is that we make the first attempt of systematic
consideration of flexible display transitions as a general approach.

The evolving conceptual foundations of FVA offer multiple
further research avenues to make FVA a useful asset in the visual
analytics toolbox. Below we open several research avenues that
future work might wish to address.

Prioritized multivariate views. For FVA to work, we need not only
one or two prioritized data views as has been suggested before,
but potentially series of displays of varied lengths for different
tasks and contexts, to convey all relevant data views. Therefore,
aggregating and generalizing previous literature and knowledge
on multi-faceted visual analytics would be a first step for future
work. A design methodology should be devised describing the
necessary steps to consider for integrating across, and prioritizing
different views in data exploration and visual analytics tasks.
Inspiration for such a design methodology can be drawn from
Munzner’s nested model of visualization design (Munzner, 2009).
Ideally, guidelines can describe how certain data views can be
emphasized visually, what combinations of views work well, in
which sequence, and where the limits of display prioritization
might lie. Based on a systematic design methodology and de-
piction guidelines, concrete exemplars of prioritized multivariate
views should be designed to form a basis for the investigation of
multivariate transitions.
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ultivariate transitions. More conceptual and methodological re-
earch is necessary to investigate how complex multivariate
iews in visual analytics can be transformed into one another.
rom a top-down perspective, we need to understand which as-
ects can be transformed from one to the other in a semantically
eaningful way. Based on that, one may ask how individual

ransitions can be combined to form a topology of transitions that
ight allow for the analyst to cycle through any chosen view or
eries of views of the data usefully and timely. Are transitions
etween all possible combinations of data aspects feasible or
ecessary? Are there particularly compatible combinations of
spects that may serve as a generic backbone for a transition
opology? What are the properties of different topologies, and
ow do these affect the type of knowledge generation with FVA?
From a bottom-up perspective, it is necessary to investigate

ow multivariate transitions can be implemented. Extending ex-
sting literature on animated transitions (Vanderdonckt, 2012;
hevalier et al., 2016; Thompson et al., 2020) strategies need to be
eveloped for transitions between complex multivariate displays.
onceptually, we need to ask how and where transitions need to
e executed—in the data model, in the geometry model, or in the
ixel model? How can atomic transitions be integrated to form
asic composite transitions that are information-rich and mean-
ngful but do not overwhelm the analyst? This begs the ques-
ion of how to communicate the meaningfulness of intermediate
tates of transitions?

uman factors of FVA. The design of flexible visualizations poses
any user challenges. Human perception and cognition follow
mpirically established evidence that has to be taken into account
n early stages of the design process. Cognitive load theory or
mpirical findings related to change blindness and inattentional
lindness must inform future FVA investigations. Prior research
n animations can serve as a useful stepping stone, but there are
till open questions on how to design animations to support effec-
ive and efficient sense-making. How can we educate users to use
VA, and which level of complexity might be still graspable? How
an we aggregate data into meaningful semantic hierarchies to
uide users’ understanding of FVA views and transitions? Which
inds of interaction mechanisms might serve users to effectively
nd efficiently use FVA?
In summary, we proposed the key idea of flexible visual an-

lytics (FVA) based on user, task, and context-relevant, multi-
ariate data views and one or more smooth transitions between
hem. We further considered the human dimension for develop-
ng meaningful and useful FVA approaches. With this report, we
im to put the flexible, integrated, and seamless FVA approach
or visually exploring and analyzing multi-faceted data on the
isual analytics research agenda. It remains to be seen how the
dentified research questions will lead to the development of
espective solutions, empirically evaluated with actual users, that
mprove the visual data analysis experience when working with
ig and complex multivariate data.
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