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A 9-dimensional algebra which is not a block of a finite group

Markus Linckelmann and William Murphy

October 20, 2021

Abstract

We rule out a certain 9-dimensional algebra over an algebraically closed field to be the basic
algebra of a block of a finite group, thereby completing the classification of basic algebras of
dimension at most 12 of blocks of finite group algebras.

1 Introduction

Basic algebras of block algebras of finite groups over an algebraically closed field of dimension
at most 12 have been classified in [13], except for one 9-dimensional symmetric algebra over an
algebraically closed field k of characteristic 3 with two isomorphism classes of simple modules for
which it is not known whether it actually arises as a basic algebra of a block of a finite group
algebra. The purpose of this paper is to show that this algebra does not arise in this way. It is
shown in [13, Section 2.9] that if A is a 9-dimensional basic algebra over an algebraically closed
field k of prime characteristic p with two isomorphism classes of simple modules such that A is
isomorphic to a basic algebra of a block B of kG for some finite group G, then the algebra A has
the Cartan matrix

C =

(
5 1
1 2

)
,

Since the elementary divisors of C are 9 and 1, it follows that p = 3 and that a defect group P of
B is either cyclic (in which case A is a Brauer tree algebra) or P is elementary abelian of order 9.
We will show that the second case does not arise.

Theorem 1.1. Let k be an algebraically closed field of prime characteristic p. Let G be a finite
group and B a block of kG with Cartan matrix C as above. Then p = 3, the defect groups of B are
cyclic of order 9, and B is Morita equivalent to the Brauer tree algebra of the tree with two edges,
exceptional multiplicity 4 and exceptional vertex at the end of the tree.

The proof of Theorem 1.1 proceeds in the following stages. We first identify in Theorem 2.1
any hypothetical basic algebra A of a block with Cartan matrix C as above and a noncyclic defect
group. It turns out that there is only one candidate algebra, up to isomorphism. In Section 3 we
give a description of the structure of this candidate A, and we show in Theorem 5.1 that A is not
isomorphic to a basic algebra of a block. The proof of Theorem 2.1 amounts essentially to filling
in the details in [13, section 2.9]. For the proof of Theorem 5.1 we combine a stable equivalence
of Puig [17], a result of Broué in [5] on the invariance of stable centres under stable equivalences
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of Morita type, results of Kiyota [9] on blocks with an elementary abelian defect group of order 9,
and properties of blocks with symmetric stable centres from [8]. A slightly different approach to
proving Theorem 5.1 is outlined in the last section, first showing in Proposition 6.1 a more precise
result on the stable equivalence class of A, and then using Rouquier’s stable equivalences for blocks
with elementary abelian defect groups of rank 2 from [18].

Sambale [19] recently extended the classification of blocks with a low-dimensional basic algebra
to the dimensions 13 and 14, and in dimension 15 the only open question is whether a certain
Brauer tree algebra does arise as a block algebra.

For background material on describing finite-dimensional algebras in terms of their quivers and
relations, see [2, Chapter III, Setion 1], and for Brauer tree algebras, as part of the theory of blocks
with cyclic defect groups, see [1, Chapter 5, Section 17] and [15, Sections 11.7 and 11.8].

Acknowledgements. The authors would like to thank the referee for their helpful comments.

2 The basic algebra A of a noncyclic block with Cartan ma-
trix C

The following result is stated in [6] without proof; for the convenience of the reader we give a
detailed proof, following in part the arguments in [13, Section 2.9].

Theorem 2.1. Let k be an algebraically closed field of prime characteristic p. Let A be a basic
algebra with Cartan matrix

C =

(
5 1
1 2

)
,

such that A is Morita equivalent to a block B of kG, for some finite group G, with a noncyclic
defect group P . Then p = 3, we have P ∼= C3 × C3, and A is isomorphic to the algebra given by
the quiver

i jγ δ
α

β

with relations δ2 = γ3 = αβ, δγ = γδ = 0, δα = γα = 0, and βδ = βγ = 0. In particular, we have

|Irr(B)| = dimk(Z(A)) = 6 ,

and the decomposition matrix of B is equal to

D =


1 0
1 0
1 0
1 0
1 1
0 1

 .
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Proof. As mentioned above, since the elementary divisors of the Cartan matrix C are 1 and 9, it
follows that p = 3 and that B has a defect group P of order 9. Since P is assumed to be noncyclic,
it follows that P ∼= C3 × C3.

Let {i, j} be a primitive decomposition of 1 in A. Set S = Ai/J(A)i and T = Aj/J(A)j.
It follows from the entries of the Cartan matrix that we may choose notation such that Ai has
composition length 6 and Aj has composition length 3. Since the top and bottom composition
factor of Aj are both isomorphic to T , it follows that Aj is uniserial, with composition factors T ,
S, T (from top to bottom). In what follows, we tend to use the same notation for generators in A
corresponding to homomorphisms between projective indecomposables; this reverses the order in
relations since EndA(A) is isomorphic to the opposite algebra Aop.

We label the two vertices of the quiver of A by i and j. The quiver of A contains a unique
arrow from i to j and no loop at j because J(A)j/J(A)2j ∼= S. Thus there is an A-homomorphism

α : Ai→ Aj

with image Im(α) = V uniserial of length 2, with composition factors S, T . Since Aj is uniserial
of length 3, it follows that V = J(A)j is the unique submodule of length 2 in Aj.

The symmetry of A implies that the quiver of A contains a path from j to i. This forces that
the quiver of A has an arrow from j to i. Since the Cartan matrix of A implies that Ai has exactly
one composition factor T , it follows that the quiver of A contains exactly one arrow from j to i.
This arrow corresponds to an A-homomorphism

β : Aj → Ai

which is not injective as Aj is an injective module. Thus U = Im(β) is a submodule of Ai of length
at most 2. The length of U cannot be 1, because the top composition factor of U is T , but the
unique simple submodule of Ai is isomorphic to S. Thus U is a uniserial submodule of length 2
of Ai, with composition factors T , S. It follows that β ◦ α is an endomorphism of Ai with image
soc(Ai).

Since U = Im(β) and β corresponds to an arrow in the quiver of A, it follows that U is not
contained in J(A)2i. Thus the simple submodule U/soc(Ai) of J(A)i/soc(Ai) is not contained in
the radical of J(A)i/soc(Ai), and therefore must be a direct summand. Let M be a submodule of
Ai such that M/soc(Ai) is a complement of U/soc(Ai) in J(A)i/soc(Ai). Then

J(A)i = U +M

soc(Ai) = U ∩M

and, by the Cartan matrix, M has composition length 4, and all composition factors of M are iso-
morphic to S, and soc(M) = soc(Ai). Equivalently, M/soc(Ai) has length 3, with all composition
factors isomorphic to S. We rule out some cases.

(1) M/soc(Ai) cannot be semisimple. Indeed, if it were semisimple, then J(A)i/soc(Ai) =
U/soc(Ai) ⊕M/soc(Ai) would be semisimple. This would imply that J(A)3i = {0}. Since also
J(A)3j = {0}, it would follow that ``(A) = 3. But a result of Okuyama in [16] rules this out.
Thus M/soc(Ai) is not semisimple.

(2) M/soc(Ai) cannot be uniserial. Indeed, if it were, then the quiver of A would have a unique
loop at i, corresponding to an endomorphism γ of Ai mapping Ai onto M (with kernel necessarily
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equal to U because M has no composition factor isomorphic to T ). Then γ5 = 0 and γ4 has image
soc(Ai) ∼= S.

By construction, α maps U to soc(Aj) and β maps V to soc(Ai). Thus β ◦ α sends Ai onto
soc(Ai). Thus γ4 and β◦α differ at most by nonzero scalar. We may choose α such that γ4 = β◦α.

The homomorphism α sends M to zero, because Aj contains no simple submodule isomorphic
to S. Thus α ◦ γ = 0. Also, since U is the kernel of γ, we have γ ◦β = 0. Using the same letters α,
β, γ for the elements in iAj, jAi, iAi, respectively, it follows that A is generated by {i, j, α, β, γ}
with the (now opposite) relations γ4 = αβ, γα = 0 = βγ, and all the obvious relations using that
i, j are orthogonal idempotents whose sum is 1.

We will show next that these relations that A is a Brauer tree algebra, of a tree with two edges,
exceptional multiplicity 4, and exceptional vertex at an end of the Brauer tree. By [15, Theorem
11.8.1] and its proof, such a Brauer tree algebra is generated by two orthogonal idempotents i, j
whose sum is 1, and two elements r, s satisfying ir = ri, jr = rj, is = sj, js = si, ir4+is2 = 0 and
jr+js2 = 0. Since p = 3 and k is algebraically closed, we may multiply s by a fourth root of unity,
so that the latter two relations become ir4 = is2 and jr = js2. One verifies that the assignment
r 7→ γ + βα and s 7→ α+ β, together with the obvious assignments on the primitive idempotents,
induces a surjective algebra homomorphism from this Brauer tree algebra to A. To see this, one
first needs to verify that the above images of r and s satisfy the relations in A corresponding to
those involving r and s in the Brauer tree algebra. This follows easily from the given relations for
the generating set of A. For the surjectivity one needs to observe that α, β, γ are in the image of
this map. This follows from multiplying r, s and their images by the primitive idempotents in the
two algebras. Since both the Brauer tree algebra and A have dimension 9, it follows that they are
isomorphic.

This, however, would force P to be cyclic, contradicting the current assumption that P ∼=
C3 × C3.

(3) M/soc(Ai) cannot be indecomposable. Indeed, if it were, then it would have Loewy length 2
because it has composition length 3, but is neither of length 1 (because it is not semisimple) nor
of length 3 (because it is not uniserial). But then either its socle or its top is simple, and therefore
it would have to be either a quotient of Ai, or a submodule of Ai. We rule out both cases.

Suppose first that M/soc(Ai) is a quotient of Ai. Note that then M itself has a simple top,
isomorphic to S, hence is a quotient of Ai because Ai is projective. Comparing composition lengths
yields M ∼= Ai/U . But also U + M = J(A)i, so the image of M in Ai/U is the unique maximal
submodule J(A)i/U of Ai/U ∼= M . Thus J(A)M is the unique maximal submodule of M , and
that maximal submodule is isomorphic to a quotient of M , hence has itself a unique maximal
submodule. This however would imply that M/soc(Ai) is uniserial of length 3, which was ruled
out earlier.

Suppose finally that M/soc(Ai) is a submodule of Ai. Then it must be a submodule of M ,
because it does not have a composition factor T . Moreover, M and the image of M/soc(Ai) in M
both have the same simple socle soc(Ai). Thus M/soc(Ai) divided by its socle (which is simple)
is a submodule of M/soc(Ai), which has a simple socle. Thus the first and second socle series
quotients are both simple, again forcing M/soc(Ai) to be uniserial, which is not possible.

(4) Combining the above, it follows that M/soc(Ai) is a direct sum of S and a uniserial module
of length 2 with both composition factors S. That is, we have

M = M1 +M2
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for some submodules Mi of M with

M1 ∩M2 = soc(Ai) = soc(M)

M1/soc(Ai) ∼= S

and M2/soc(Ai) uniserial of length 2. It follows that M1 and M2 are uniserial, of lengths 2 and 3,
respectively.

We choose now M2 as follows. By construction, we have a direct sum

J(A)i/soc(Ai) = U/soc(Ai)⊕M1/soc(Ai)⊕M2/soc(Ai)

Thus we have

J(A)i/(U +M1) ∼= (J(A)i/soc(Ai))/(U/soc(Ai)⊕M1/soc(Ai)) ∼= M2/soc(Ai) .

This is a uniserial module with two composition factors isomorphic to S. Thus Ai/(U + M1)
is uniserial with three composition factors isomorphic to S, because Ai/J(A)i ∼= S. Since in
particular its socle is simple, isomorphic to S, this module is isomorphic to a submodule of Ai.
Choose an embedding A/(U + M1) → Ai and replace M2 by the image of this embedding. Then
the composition of canonical maps

γ : Ai→ Ai/(U +M1)→ Ai

is an A-endomorphism of Ai with kernel U + M1 and uniserial image M2 of length three. Note
that M1 is uniserial of length two, so both a quotient and a submodule of Ai. Thus there is an
endomorphism

δ : Ai→ Ai

with image M1. Since M1 ⊆ ker(γ), we have

γ ◦ δ = 0 .

We show next that we also have
δ ◦ γ = 0 .

One way to see this is to observe that this is a calculation in the split local 5-dimensional symmetric
algebra EndA(Ai) ∼= (iAi)op, which as a consequence of [10, B. Theorem], is commutative.

There is a (slightly more general) argument that works in this case. Since the A-module Ai,
and hence also the image of γ, is generated by i, it suffices to show that δ(γ(i)) = 0. Now since
γ ◦ δ = 0, we have

0 = γ(δ(i)) = γ(δ(i)i) = δ(i)γ(i)

Note that δ(i) = δ(i2) = iδ(i) ∈ iAi, and similarly, γ(i) ∈ iAi. Since Im(δ) = M2 has length 2,
we have Im(δ) ⊆ soc2(A). Thus δ(i) ∈ soc2(A) ∩ iAi ⊆ soc2(iAi), and since iAi is symmetric, we
have soc2(iAi) ⊆ Z(iAi). It follows that

δ(i)γ(i) = γ(i)δ(i) = δ(γ(i)i) = δ(γ(i))
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whence δ(γ(i)) = 0, and so δ◦γ = 0 by the previous remarks. Thus M2 ⊆ ker(δ). Since Im(δ) = M1

has no composition factor T , it follows that U ⊆ ker(δ). Together we get that U + M2 ⊆ ker(δ).
Comparing composition lengths yields

ker(δ) = U +M2 .

This implies that
ker(δ) ∩ Im(δ) = soc(Ai)

ker(γ) ∩ Im(γ) = soc(Ai)

and hence the endomorphisms δ2 and γ3 both map Ai onto soc(Ai). Thus they differ by a nonzero
scalar. Up to adjusting δ, β, we may therefore assume that

δ2 = γ3 = β ◦ α

Since ker(α) contains M1 +M2, it follows that

α ◦ δ = α ◦ γ = 0 .

By taking these relations into account, it follows that EndA(A) is spanned k-linearly by the set

{i, j, α, β, γ, γ2, δ, δ2, α ◦ β}

so this is a basis of EndA(A). We have identified here i, j with the canonical projections of A onto
Ai and Aj. Note that EndA(A) is the algebra opposite to A. This accounts for the reverse order in
the relations of the generators in A (denoted abusively by the same letters). This shows that the
quiver with relations of A is as stated. The equation C = (Dt)D implies that the second column
of D has exactly two nonzero entries and that these are equal to 1. The first row has either five
entries equal to 1, which yields |Irr(B)| = 6 and the decomposition matrix D as stated. Or the
first row has one entry 2 and one entry 1. This would lead to a decomposition matrix of the form

D =

 2 0
1 1
0 1

 .

In particular, this would yield |Irr(B)| = 3. But this is not possible, since dimk(Z(A)) is clearly
greater than 3; indeed, Z(A) contains the linearly independent elements 1, δ, γ, γ2. This concludes
the proof.

3 The structure of the algebra A

Let k be an algebraically closed field. Throughout this section we denote by A the k-algebra given
in Theorem 2.1. We keep the notation of this theorem and identify the generators i, j, α, β, γ, δ
with their images in A.

Lemma 3.1.

(i) The set {i, j, α, β, βα, γ, γ2, δ, δ2} is a k-basis of A.
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(ii) The set {α, β, αβ − βα} is a k-basis of [A,A].

(iii) The set {1, γ, γ2, δ, δ2, βα} is a k-basis of Z(A).

(iv) The set {αβ, βα} is a k-basis of soc(A).

Proof. This follows immediately from the relations of the quiver of A.

Lemma 3.2. There is a unique symmetrising form s : A→ k such that

s(αβ) = s(βα) = 1

and such that
s(i) = s(j) = s(α) = s(β) = s(γ) = s(γ2) = s(δ) = 0

The dual basis with respect to the form s of the basis

{i, j, α, β, βα, γ, γ2, δ, δ2}

is, in this order, the basis
{αβ, βα, β, α, j, γ2, γ, δ, i}

Proof. Straightforward verification.

See [5, §5.B] or [14, Definition 2.16.10] for details regarding the definitions and some properties
of the projective ideal Zpr(A) in Z(A) and the stable centre Z(A) = Z(A)/Zpr(A).

Lemma 3.3. Let char(k) = 3. The projective ideal Zpr(A) is one-dimensional, with basis {αβ −
βα}, we have an isomorphism of k-algebras

Z(A) ∼= k[x, y]/(x3 − y2, xy, y3)

induced by the map sending x to γ and y to δ, and after identifying x and y with their images in
the quotient, the following statements hold:

(i) The set {1, x, x2, y, y2} is a k-basis of Z(A), and in particular dimk(Z(A)) = 5.

(ii) The set {x, x2, y, y2} is a k-basis of J(Z(A)).

(iii) The set {x2, y2} is a k-basis of J(Z(A))2.

(iv) The set {y2} is a k-basis of soc(Z(A)), and J(Z(A))3 = soc(Z(A)).

(v) The k-algebra Z(A) is a symmetric algebra.

Proof. It follows from lemma 3.2 that the relative trace map TrA1 from A to Z(A) is given by

TrA1 (u) = iuαβ + juβα+ αuβ + βuα+ βαuj + γuγ2 + γ2uγ + δuδ + δ2ui

for all u ∈ A. One checks, using char(k) = 3, that

TrA1 (i) = −TrA1 (j) = βα− αβ
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and that TrA1 vanishes on all basis elements different from i, j. Statement (i) then follows from the
relations in the quiver of A and Lemma 3.1. The algebra Z(A) is split local, proving statement
(ii), whilst a straightforward computation shows both statement (iii) and (iv). Finally, a simple
verification proves that the map s : Z(A)→ k such that

s(y2) = 1

and such that
s(1) = s(x) = s(x2) = s(y) = 0

is a symmetrising form on Z(A). One verifies also that the dual basis with respect to the form s
of the basis

{1, x, y, x2, y2}

is, in this order, the basis
{y2, x2, y, x, 1}.

This completes the proof.

Remark 3.4. Note that by a result of Erdmann [7, I.10.8(i)], A is of wild representation type.

4 The stable centre of the group algebra k(P o C2).

Let k be a field of characteristic 3. Set P = C3×C3 and E the subgroup of Aut(P ) of order 2 such
that the nontrivial element t of E acts as inversion on P . Denote by H = P oE the corresponding
semidirect product; this is a Frobenius group. Denote by r and s generators of the two factors C3

of P . The following Lemma holds in greater generality (see Remark 4.1 in [8]); we state only what
we need in this paper.

Lemma 4.1. The projective ideal Zpr(kH) is one-dimensional, with k-basis {
∑
x∈P xt}, and we

have an isomorphism of k-algebras
Z(kH) ∼= (kP )E

induced by the map sending x + x−1 in (kP )E to its image in Z(kH). In particular, we have
dimk(Z(kH)) = 5, and the image of the set {1, r + r2, s + s2, r2s + rs2, rs + r2s2} is a k-basis of
Z(kH).

Proof. The relative trace map TrH1 from kH to Z(kH) satisfies TrH1 = TrHP ◦ TrP1 . We calculate
for all a ∈ P

TrP1 (a) =
∑
g∈P

gag−1 =
∑
|P |

a = 9 · a = 0

Thus for every c ∈ kP we have TrH1 (c) = TrHP (TrP1 (c)) = 0. On the other hand, for every element
of the form at in H, where a ∈ P , we have
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TrH1 (at) =
∑
g∈P

g(at)g−1 +
∑
g∈P

(gt)(at)(gt)−1

= (a+ a−1)
∑
x∈P

xt

= 2 ·
( ∑
x∈P

xt
)

The conjugacy classes of G are given by {1}, {r, r2}, {s, s2}, {r2s, rs2}, {rs, r2s2} and {xt | x ∈ P}.
The last statement follows.

Lemma 4.2. There is an isomorphism of k-algebras

Z(kH) ∼=
(
k[x, y]/(x3, y3)

)E
with inverse induced by the map sending x to r − 1 and y to s − 1, where the nontrivial element
t of E acts by xt = x2 + 2x and yt = y2 + 2y. After identifying x and y with their images in
k[x, y]/(x3, y3), the following statements hold:

(i) The image of the set {1, x2, y2, xy + x2y + xy2, x2y2} is a k-basis of Z(kH).

(ii) The set {x2, y2, xy + x2y + xy2, x2y2} is a k-basis of J(Z(kH)).

(iii) The set {x2y2} is a k-basis of soc(Z(kH)), and J(Z(kH))2 = soc(Z(kH)). In particular,
dimk(J(Z(kH))2) = 1.

(iv) The k-algebra Z(kH) is symmetric.

Proof. By Lemma 4.1 we have Z(kH) ∼= (kP )E . Since k has characteristic 3, we have an isomor-
phism kP ∼= k[x, y]/(x3, y3) induced by the map given in the statement of the lemma. Under this
isomorphism, the action of t on x and y is given by xt = x2 + 2x and yt = y2 + 2y as stated. It is
straightforward to then verify that this isomorphism gives

r + rt 7→ x2 + 2,

s+ st 7→ y2 + 2,

rs+ (rs)t 7→ 2 + x2 + y2 + 2xy + 2x2y + 2xy2 + x2y2,

r2s+ (r2s)t 7→ 2 + x2 + y2 + xy + x2y + xy2.

This proves the statement (i) and (ii). A straightforward computation proves statement (iii).
The final statement is given in general in [8, Corollary 1.3], with an explicit symmetrising form
s : Z(kH)→ k given by s(x2y2) = 1 and sending all other basis elements to 0.
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5 Proof of Theorem 1.1

Theorem 1.1 will be an immediate consequence of Theorem 2.1 and the following result.

Theorem 5.1. Let k be an algebraically closed field of prime characteristic p, and let A be the
algebra given in Theorem 2.1. Then A is not isomorphic to a basic algebra of a block of a finite
group algebra over k.

Proof. Arguing by contradiction, suppose that A is isomorphic to a basic algebra of a block B of
kG, for some finite group G. Denote by P a defect group of B. By Theorem 2.1 we have p = 3 and
P ∼= C3 ×C3. By Lemma 3.3, the stable centre Z(A) is symmetric, hence so is Z(B), as A and B
are Morita equivalent. It follows from [8, Proposition 3.8] that we have an algebra isomorphism

Z(A) ∼= (kP )E

where E is the inertial quotient of the block B. Again by Lemma 3.3, we have dimk((kP )E) = 5,
or equivalently, E has five orbits in P . The list of possible inertial quotients in Kiyota’s paper [9]
shows that E is isomorphic to one of 1, C2, C2 × C2, C4, C8, D8, Q8, SD16. In all cases except
for E ∼= C2 is the action of E on P determined, up to equivalence, by the isomorphism class of
E. Thus if E contains a cyclic subgroup of order 4, then E has at most 3 orbits, and if E is the
Klein four group, then E has 4 orbits. Therefore we have E ∼= C2. If the nontrivial element t of
E has a nontrivial fixed point in P (or equivalently, if t centralises one of the factors C3 of P and
acts as inversion on the other), then E has 6 orbits. Thus t has no nontrivial fixed point in P ,
and the group H = P o E is the Frobenius group considered in the previous section. By a result
of Puig [17, 6.8] (also described in [15, Theorem 10.5.1]), there is a stable equivalence of Morita
type between B and kH, hence between A and kH. By a result of Broué [5, 5.4] (see also [14,
Corollary 2.17.14]), there is an algebra isomorphism Z(A) ∼= Z(kH). This, however, contradicts
the calculations in the Lemmas 3.3 and 4.2, which show that the dimension of J(Z(A))2 and of
J(Z(kH))2 are different. This contradiction completes the proof.

Proof of Theorem 1.1. Arguing by contradiction, if a defect P of B is not cyclic, then P ∼= C3×C3

because the Cartan matrix of B has elementary divisors 9 and 1. But then B has a basic algebra
isomorphic to the algebra A in Theorem 2.1. This, however, is ruled out by Theorem 5.1.

6 Further remarks

Using the arguments of the proof of Theorem 5.1 it is possible to prove some slightly stronger
statements about the stable equivalence class of the algebra A from Theorem 2.1.

Proposition 6.1. Let k be an algebraically closed field of prime characteristic p and let A be the
algebra in Theorem 2.1. Let P be a finite p-group, E a p′-subgroup of Aut(P ), and τ ∈ H2(E; k×).
There does not exist a stable equivalence of Morita type between A and the twisted group algebra
kτ (P o E).

Proof. Arguing by contradiction, suppose that there is a stable equivalence of Morita type between
A and kτ (P o E). Note that kτ (P o E) is a block of a central p′-extension of P o E with defect
group P , so its Cartan matrix has a determinant divisible by |P |. By [14, Proposition 4.14.13], the
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Cartan matrices of the algebras A and kτ (PoE) have the same determinant, which is 9. Since A is
clearly not of finite representation type (cf. Remark 3.4), it follows that P is not cyclic, hence P ∼=
C3 × C3. Using as before Broué’s result [5, 5.4], we have an isomorphism Z(A) ∼= Z(kτ (P o E)).
Since Z(A) is symmetric, so is Z(kτ (P oE)). Since kτ (P oE) is a block of a central p′-extension
of P o E with defect group P and inertial quotient E, it follows again from [8, Proposition 3.8]
that Z(A) ∼= (kP )E . From this point onward, the rest of the proof follows the proof of Theorem
5.1, whence the result.

Remark 6.2. By results of Rouquier [18, 6.3] (see also [12, Theorem A2 ]), for any block B with
an elementary abelian defect group of rank 2 there is a stable equivalence of Morita type between
B and its Brauer correspondent, which by a result of Külshammer [11], is Morita equivalent to a
twisted semidirect product group algebra as in Proposition 6.1. Thus Theorem 5.1 can be obtained
as a consequence of Proposition 6.1 and Rouquier’s stable equivalence.

Remark 6.3. A slightly different proof of Theorem 5.1 makes use of Broué’s surjective algebra
homomorphism Z(B) → (kZ(P ))E from [4, Proposition III (1.1)], induced by the Brauer homo-
morphism BrP , where here P is a (not necessarily abelian) defect group of a block B of a finite
group algebra kG, with k an algebraically closed field of prime characteristic p. If P is normal in
G, then it is easy to see that Broué’s homomorphism is split surjective, but this is not known in
general. If B is a block with P nontrivial such that there exists a stable equivalence of Morita
type between B and its Brauer correspondent, then this implies the existence of at least some split
surjective algebra homomorphism Z(B)→ kZ(P )E .

Kiyota’s list in [9] shows that if A were isomorphic to a basic algebra of a block with defect
group P ∼= C3×C3, then E would be isomorphic to one of C2 or D8 (subcase (b) in Kiyota’s list).
The case C2 can be ruled out as above, and the case D8 can be ruled out by using Rouquier’s
stable equivalence, and by showing that if E ∼= D8, then (kP )E is uniserial of dimension 3, but
Z(A) admits no split surjective algebra homomorphism onto a uniserial algebra of dimension 3.
Note that Z(A) does though admit a surjective algebra homomorphism onto a uniserial algebra
of dimension 3, so the splitting is an essential point in this argument, and may warrant further
investigation.
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