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ON THE BV STRUCTURE OF THE HOCHSCHILD
COHOMOLOGY OF FINITE GROUP ALGEBRAS

DAVE BENSON, RADHA KESSAR AND MARKUS LINCKELMANN

We give a simple algebraic recipe for calculating the components of the BV
operator 1 on the Hochschild cohomology of a finite group algebra with re-
spect to the centraliser decomposition. We use this to investigate properties
of 1 and to make some computations for some particular finite groups.

1. Introduction

The Hochschild cohomology of a finite group is a Batalin–Vilkovisky (BV) algebra.
This follows, for example, by observations in [Tradler 2008] from the fact that
the group algebra over a commutative ring k is a symmetric algebra. So there is a
BV operator 1 : HH n(kG)→ HH n−1(kG), which is related to the Gerstenhaber
bracket by the formula

[x, y] = (−1)|x |1(xy)− (−1)|x |1(x)y− x1(y).

Thus, if the cup product and the BV operator are known, so is the Gerstenhaber
bracket.

The BV operator on the Hochschild cohomology HH∗(kG) of a finite group G
over k coming from the standard symmetrising form on kG preserves the centraliser
decomposition

HH∗(kG)∼=
⊕

g

H∗(CG(g), k)

under which 1 is the sum of degree −1 operators 1g on H∗(CG(g), k) (see
Section 3). Here g runs over a set of representatives of the conjugacy classes
in G. An individual component 1g depends only on g and CG(g) but not on G
itself, and hence in order to describe 1g we may assume that g is central in G.
The following theorem gives a description of 1g in this situation, and some of its
properties:1

MSC2020: 16E40, 20C20.
Keywords: BV operator, Hochschild Cohomology, Finite group algebras.

1We have to be careful to distinguish the cup product in Hochschild cohomology from the cup
product in ordinary cohomology H∗(CG(g), k) in a component of the centraliser decomposition. We
use juxtaposition xy to denote Hochschild cup product and x · y for cup product inside H∗(CG(g), k).
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Theorem 1.1. Let k be a commutative ring of coefficients. Let g be a central
element in a finite group G, and let zg : Z×G→ G be the map which sends (m, h)
to gmh. Then

(zg)
∗
: H n(G, k)→ H n(Z×G, k)∼= H n(G, k)⊕ H n−1(G, k)

has the form (1,1g), where 1g : H n(G, k)→ H n−1(G, k) is the component of the
BV operator indexed by g. The following properties hold for the map 1g:

(i) 1g is a k-linear derivation with respect to multiplication in H∗(G, k): for
x, y ∈ H∗(G, k) we have

1g(x · y)=1g(x) · y+ (−1)|x |x ·1g(y).

In particular, 1g is determined by its values on a set of generators for
H∗(G, k).

(ii) If g ∈ Z(G) and g′ ∈ Z(G ′), then the following diagram commutes:

H i (G, k)⊗k H j (G ′, k) //

(1g⊗1,1⊗1g′ )

��

H i+ j (G×G ′, k)

1(g,g′)
��

(H i−1(G, k)⊗k H j (G ′, k))⊕(H i (G, k)⊗k H j−1(G ′, k)) // H i+ j−1(G×G ′, k),

where the horizontal maps are the Künneth maps and

(1g ⊗ 1)(x ⊗ y)=1g(x)⊗ y, (1⊗1g′)(x ⊗ y)= (−1)|x |x ⊗1g′(y).

If k is a field, then 1(g,g′) is determined by 1g and 1g′ by combining this with
the Künneth formula.

(iii) If φ : G→G ′ is a group homomorphism sending g ∈ Z(G) to g′ ∈ Z(G ′) then
the following diagram commutes:

H n(G ′, k)
φ∗

//

1g′

��

H n(G, k)

1g
��

H n−1(G ′, k)
φ∗
// H n−1(G, k).

(iv) If ρ : k → k ′ is a homomorphism of commutative rings, then the following
diagram commutes:

H n(G, k)
ρ∗

//

1g
��

H n(G, k ′)

1g
��

H n−1(G, k)
ρ∗
// H n−1(G, k ′).

(v) If g and g′ are elements of Z(G), then we have 1gg′ =1g +1g′ .
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(vi) If H is a subgroup of G containing g ∈ Z(G), then 1g commutes with the
transfer map: if x ∈ H n(H, k), then

TrH,G(1g(x))=1g(TrH,G(x)) ∈ H n(G, k).

(vii) If g ∈ Z(G) and k is a field of prime characteristic p, then the map 1g is
determined by its action on the cohomology of a Sylow p-group of G, as
follows. Let g = gpgp′ = gp′gp with gp a p-element and gp′ a p′-element, and
let P be a Sylow p-subgroup of G. Then gp ∈ Z(P) and the following diagram
commutes:

H n(G, k) //
ResG,P

//

1g
��

H n(P, k)

1gp
��

H n−1(G, k) //
ResG,P

// H n−1(P, k).

(viii) In the case k=Fp, the map1g commutes with the action of Steenrod operations
on H∗(G, Fp) and with the Bockstein homomorphism.

(ix) If x ∈ H 1(G, k), we can regard x as an element of Hom(G, k). With this
identification, we have 1g(x)= x(g).

(x) If x ∈ H 2(G, k) is in the image of H 2(G,Z)→ H 2(G, k), then 1g(x)= 0.

(xi) If x ∈ H 2(G, k) corresponds to a central extension

1→ k+→ K → G→ 1,

then for h ∈ G we choose any inverse image ĥ ∈ K . Then we have

1g(x)(h)= [ĝ, ĥ] ∈ k+.

The proof of Theorem 1.1 appears below in the following places.The first assertion
is proved in Theorem 4.2. Statements (i), (iii), (iv), (vi), and (viii) are proved in
Corollary 4.3, statement (ii) is in Proposition 6.6, statements (v) and (vii) are in
Proposition 6.7, statement (ix) is Proposition 4.4, statement (x) is Proposition 4.6,
and statement (xi) is Theorem 8.1.

Part (vii) of Theorem 1.1 says that if k is a field of prime characteristic p, we
may as well suppose that G is a p-group for the purpose of computation, and hence
we give in Section 9 a number of examples where we compute 1g in the case
where g ∈ Z(G) and G is a finite p-group. Our first examples are cyclic groups
and, more generally, abelian groups. Then we deal with dihedral, quaternion, and
semidihedral 2-groups.

Following [Tradler 2008], the operator 1g is defined as the dual of the Connes
operator B ◦ I in Hochschild homology. By work of Burghelea [1985], the Connes
exact sequence preserves the centraliser decomposition, and the corresponding
components of the Connes exact sequence can be used to describe 1g; see 2.4
and 3.4 below for details. For our analysis of 1g, we first provide a description of
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the Connes operator in the context of a general discrete group G. Again, it only
depends on g and CG(g), and we give the following description for g central in G.
Consider the map zg : Z×G→ G, as in the theorem above. Then

(zg)∗ : Hn(Z×G, k)∼= Hn(G, k)⊕ Hn−1(G, k)→ Hn(G, k)

is equal to (1, B ◦ I ). Dualising this statement to give a statement about Hochschild
cohomology requires the use of a symmetrising form on kG, and we make use of
the standard one, whose value on (g, h) is one if gh = 1 and zero otherwise.

We use Theorem 1.1 to give an explicit description of the BV operator 1 in the
Hochschild cohomology of finite groups over an arbitrary commutative ring k in
terms of ordinary cohomology, based on a simple general principle using homotopies
in order to construct degree −1 operators in cohomology. This general principle,
and its relation to 1g, is expressed in the following theorem, which summarises the
main parts of 5.1 and 6.1 below. By a homotopy on a chain complex (respectively,
cochain complex), we mean a graded map of degree 1 (respectively, −1).

Theorem 1.2. Let A be an algebra over a commutative ring k, and let U and V
be A-modules. Let z ∈ Z(A) such that z annihilates U and V . Let (P, δ) be a
projective resolution of U.

There is a homotopy s on P such that the chain endomorphism s ◦ δ+ δ ◦ s of P
is equal to multiplication by z on the components of P. For any such homotopy, the
induced homotopy s∨ on the cochain complex HomA(P, V ) obtained from applying
the functor HomA(−, V ) to s is a cochain map HomA(P, V )→ HomA(P[1], V ).
In particular, upon taking cohomology, s∨ induces a degree −1 operator, denoted
Dz , on Ext∗A(U, V ), and then Dz is independent of the choice of s.

If G is a finite group, A = kG, U = V = k, and g ∈ Z(G), then 1g = Dg−1.

See Remark 5.2 below for sign conventions for the differentials of the complexes
arising in this theorem. While the first part of Theorem 1.2 is a routine verification
(see the proof of Theorem 5.1), the identification 1g = Dg−1 in the case A= kG in
Theorem 6.1 requires Theorem 4.2, the proof of which is based on the Connes exact
sequence relating Hochschild and cyclic cohomology. We give explicit homotopies
for the bar resolution in Theorem 7.1. We use this description in Section 8 to give
a short proof of the formula in Theorem 1.1 (xi), restated as Theorem 8.1 below,
for the components of the BV operator in degree 2, in terms of central extensions
corresponding to degree 2 elements in group cohomology.

The theme of deciding when HH 1(kG) is a soluble Lie algebra has been recently
investigated by a number of authors [Rubio y Degrassi et al. 2019; Eisele and
Raedschelders 2020; Linckelmann and Rubio y Degrassi 2020]. As an application
of Theorem 1.1, we add to these the following results, which are proved as 10.10
and 11.6. We denote by 8(G) the Frattini subgroup of a finite group G.
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Theorem 1.3. If G is a finite p-group such that |Z(G) : Z(G)∩8(G)|> 3, then
the Lie algebra HH 1(kG) is not soluble.

Theorem 1.4. If G is an extraspecial p-group, then the Lie algebra HH 1(kG)
is soluble.

2. Hochschild and cyclic homology of kG

The BV operator in string topology on the homology of a free loop space L X is
obtained by applying homology to the rotation map S1

×L X→ L X and decompos-
ing H∗(S1

× L X) using the Künneth formula together with the fundamental class
in H1(S1). We give a similar description for group (co)homology. Background
material for this section may be found in [Benson 1991b, §2.11–2.15]. Other
references include [Loday 1992, Chapter 7], [Burghelea 1985], and [Karoubi and
Villamayor 1990].

Let G be a discrete group, and let k be a commutative ring of coefficients. The
Hochschild homology of kG has a centraliser decomposition

HH∗(kG)∼=
⊕

g

H∗(CG(g), k),

where g runs over a set of representatives of the conjugacy classes of G. This
decomposition is unique up to unique isomorphism. A similar description of cyclic
homology appears in [Burghelea 1985; Karoubi and Villamayor 1990] and was
reinterpreted in [Benson 1991b] in terms of extended centralisers, as follows. If
g ∈ G, we define the extended centraliser ĈG(g) to be the quotient (R×CG(g))/Z,
where Z is embedded in R×CG(g) via the group homomorphism sending 1 to
(1, g). Recall that for a discrete group G we have H∗(G, k)∼= H∗(BG; k), where
BG is the classifying space of G. On the other hand, we regard ĈG(g) as a one
-dimensional Lie group, so we need to use classifying space homology, and we have

HC∗(kG)∼=
⊕

g

H∗(BĈG(g); k).

The Connes exact sequence (see [Loday and Quillen 1984] and [Connes 1985,
§II.4]) connecting Hochschild and cyclic homology

(2.1) · · · → HHn+2(kG)
I
−→HCn+2(kG)

S
−→HCn(kG)

B
−→HHn+1(kG)→ · · ·

respects the centraliser decomposition [Burghelea 1985] and may be described as
follows. Applying the classifying space construction to the short exact sequence of
Lie groups

1→ Z→ R×CG(g)→ ĈG(g)→ 1,

we obtain a fibration sequence

(2.2) S1
→ BCG(g)→ BĈG(g),
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where R/Z= S1
= BZ. The (co)homology of S1 is Z in degree 0 and 1 and vanishes

in all other degrees. In particular, H1(S1
;Z)= H1(BZ;Z)∼= Z, and we write ν for

the element of H1(S1
;Z) corresponding to 1∈Z. Dually, we write µ for the element

of H 1(S1
;Z) = H 1(BZ;Z) ∼= Hom(Z,Z) ∼= Z representing the identity element.

We use the same letters µ and ν for their images in H 1(Z, k) and H1(Z, k).
The Künneth formula yields a canonical identification

Hn(Z×G, k)= H0(Z, k)⊗k Hn(G, k) ⊕ H1(Z, k)⊗k Hn−1(G, k)

(see [Weibel 1994, Theorem 3.6.1]), where the summand H0(Z, k)⊗k Hn(G, k) is
equal to the image of Hn(G, k) under the map induced by the canonical inclusion
G→ Z×G. Using ν yields an identification

Hn(Z×G, k)= Hn(G, k)⊕ Hn−1(G, k).

Similarly, using µ yields an identification

H n(Z×G, k)= H n(G, k)⊕ H n−1(G, k),

where H n(G, k) is identified to its image via the map induced by the canonical
projection Z×G→ G. See Proposition 6.4 for more details on this identification.

The Serre spectral sequence of the fibration (2.2) has two nonvanishing rows,
and therefore induces a long exact sequence

(2.3) · · · → Hn+2(BCG(g); k)
I
−→Hn+2(BĈG(g); k)

S
−→ Hn(BĈG(g); k)

B
−→ Hn+1(BCG(g); k)→ · · · ,

where we have used ν to identify E2
∗,1 with H∗(BĈG(g); k). Note that the map I

is induced by the inclusion BCG(g)→ BĈG(g).
It was observed by Burghelea [1985] that the Connes sequence is the direct sum

of these sequences. Note that the maps in these sequences depend only on g and
CG(g), but not on G itself. So in the following theorem, we assume that g is central
in G, and we identify Hn(Z × G, k) with Hn(G, k)⊕ Hn−1(G, k) as described
above, using the element ν ∈ H1(Z, k):

Theorem 2.4. Let G be a discrete group with a central element g∈ Z(G). Consider
the group homomorphism zg : Z×G→G sending (m, h) to gmh. The induced map

(zg)∗ : Hn(Z×G, k)= Hn(G, k)⊕ Hn−1(G, k)→ Hn(G, k)

has the form
( 1
ψ

)
, where ψ is equal to the composite

Hn−1(G, k)
I
−→Hn−1(Ĝ, k)

B
−→Hn(G, k).

Proof. The map G→ Z×G sending h to (0, h) is a section both of zg and of the
canonical projection Z×G→ G, so (zg)∗ has the form

( 1
ψ

)
.
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Consider the diagram of groups

1 // Z // Z×G //

��

G //

��

1

1 // Z // R×G // Ĝ // 1.
Here, the upper sequence is just the direct product sequence, and the lower se-
quence is the defining sequence for Ĝ. The middle vertical map sends (n, h) to
(n, zg(n, h)) = (n, gnh), while the right-hand vertical map is the inclusion. It is
easy to check that the two squares commute. Taking classifying spaces, we have a
map of fibrations

S1 // S1
× BG //

(zg)∗

��

BG

��

S1 // BG // BĜ,

and hence a map of long exact sequences

· · ·
0
// Hn−1(BG;k)

(
0
1

)
//

I
��

Hn(BG;k)⊕Hn−1(BG;k)
(1,0)
//

(1,ψ)
��

Hn(BG;k)

I
��

0
// · · ·

· · · // Hn−1(BĜ;k) B
// Hn(BG;k) I

// Hn(BĜ;k) // · · ·

The commutativity of the left-hand square proves the theorem. �

3. The BV operator 1 on HH∗(kG)

For any algebra 3 which is projective as a module over the coefficient ring k, to
set up a duality between Hochschild homology and cohomology, we need to use
coefficients 3 in homology and 3∨ = Homk(3, k) in cohomology. This is because
if P∗ is a projective resolution of 3 as a 3-3-bimodule, then

Hom3e(P∗,3∨)∼= Homk(3⊗3e P∗, k).

Thus, if k is a field, then HH n(3,3∨) ∼= (HHn(3,3))
∨; but, for example, for

k = Z, we have a universal coefficient sequence

0→ Ext1Z(HHn−1(3,3),Z)→ HH n(3,3∨)→ HomZ(HHn(3,3),Z)→ 0.

Similarly, cyclic cochains on 3 are described in terms of the Hochschild cochain
complex for 3 with coefficients in 3∨ and are dual to cyclic chains described in
terms of the Hochschild chain complex for 3 with coefficients in 3. The Connes
sequence for cyclic cohomology takes the form

(3.1) · · · → HH n+1(3,3∨)
B
−→HCn(3)

S
−→HCn+2(3)

I
−→HH n(3,3∨)→ · · · .
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For g, an element in a discrete group G, the Serre spectral sequence in cohomol-
ogy of the fibration (2.2) induces a long exact sequence

· · · → H n+1(BCG(g); k)
B
−→ H n(BĈG(g); k)

S
−→ H n+2(BĈG(g); k)

I
−→ H n+2(BCG(g); k)→ · · · ,

where we used the class µ ∈ H 1(Z, k) introduced in the previous section to identify
E∗,12 with H∗(BĈG(g); k). Note that the map I is induced by BCG(g)→ BĈG(g).

Theorem 3.2. Let G be a discrete group, and let k be a commutative ring of
coefficients. Then we have a centraliser decomposition

HH∗(kG, kG∨)∼=
∏

g

H∗(CG(g), k),

where g runs over a set of representatives of the conjugacy classes in G. The Connes
sequence is a direct product of the sequences

· · · → H n+1(BCG(g); k)
B
−→ H n(BĈG(g); k)

S
−→ H n+2(BĈG(g); k)

I
−→ H n+2(BCG(g); k)→ · · ·

Proof. For the centraliser decomposition, see [Benson 1991b, Theorem 2.11.2].
The statement on the Connes sequence is dual to [Burghelea 1985], with essentially
the same proof. See also [Benson 1991b, §2.11–2.15]. �

If 3 is a symmetric algebra over k, finitely generated and projective as a k-
module, then 3∨ is isomorphic to 3 as a 3-3-bimodule, but the isomorphism
depends on the choice of symmetrising form.

From now on, we assume that G is a finite group. Then for kG, there is a
canonical symmetrising form. This is the bilinear pairing kG ⊗k kG→ k which
sends g⊗ g′ to 1 ∈ k if gg′ = 1 and zero otherwise. Using this bilinear pairing, we
obtain an isomorphism between kG∨ and kG, and hence between HH∗(kG, kG∨)
and HH∗(kG, kG). From now on, we write HH∗(kG) for HH∗(kG, kG). This is
a graded commutative ring, whose product structure was elucidated by Siegel and
Witherspoon [1999].

Definition 3.3 (cf. [Burghelea 1985; Tradler 2008]). For G finite, we define the
operator 1 : HH n(kG)→ HH n−1(kG) to be the map induced by I ◦ B under the
isomorphism between HH∗(kG) and HH∗(kG, kG∨) given by the symmetrising
form on kG described above.

Theorem 3.4. For G a finite group, we have a centraliser decomposition

HH∗(kG)∼=
⊕

g

H∗(CG(g), k).

The map 1 preserves the centraliser decomposition of HH∗(kG) and is the sum of
the maps 1g = I ◦ B : H∗(CG(g), k)→ H∗−1(CG(g), k).
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Proof. The centraliser decomposition in the finite case comes from Theorem 3.2, see
also [Siegel and Witherspoon 1999]. Also by Theorem 3.2, the Connes sequence is a
direct sum of the Connes sequences for each centraliser, and hence the components
1g of 1 are as stated. �

Definition 3.5. A Gerstenhaber algebra is a graded k-algebra R which is associative
and graded commutative:

yx = (−1)|x ||y|xy

and has a Lie bracket [x, y] of degree −1 such that:

(i) Anticommutativity holds:

[y, x] = −(−1)(|x |−1)(|y|−1)
[x, y].

(ii) The graded Jacobi identity holds:

[[x, y], z] = [x, [y, z]] − (−1)(|x |−1)(|y|−1)
[y, [x, z]].

(iii) The bracket is a derivation with respect to the product (Leibniz identity):

[x, yz] = [x, y]z+ (−1)(|x |−1)|y|y[x, z].

Definition 3.6. A Batalin–Vilkovisky algebra (or BV algebra) is a Gerstenhaber
algebra together with an operator 1 of degree −1 satisfying 1 ◦1= 0 and

[x, y] = (−1)|x |1(xy)− (−1)|x |(1x)y− x(1y).

Thus, the multiplication and the BV operator 1 determine the Lie bracket.

For background on BV algebra structures in Hochschild cohomology and their
relationship with loop space topology, see [Abbaspour 2015]. It is pointed out
in [Rubio y Degrassi 2017, Remark 5.1] that the restricted Lie algebra structure
cannot, in general, be read off from the BV algebra structure.

Proposition 3.7 [Menichi 2004; Tradler 2008]. The operator 1 of Definition 3.3
defines a BV operator on HH∗(kG) making it a BV algebra in which the Lie bracket
[−,−] is the Gerstenhaber bracket in Hochschild cohomology.

Remark 3.8. Tradler gives the following formula for 1 at the level of Hochschild
cochains, on an algebra 3 with a symmetric, invariant, nondegenerate bilinear form
〈−,−〉: 3×3→ k. For f ∈ Cn(3,3), define 1 f ∈ Cn−1(3,3) by

〈1 f (a1, . . . , an−1), an〉 =

n∑
i=1

(−1)i(n−1)
〈 f (ai , . . . , an−1, an, a1, . . . , ai−1), 1〉.

Note that this formula depends on the choice of the above symmetrising form.
Explicit calculations of the BV structure on Hochschild cohomology of finite

groups have been made in a number of different cases, see the references in Section 9.
Also relevant are the papers of Le and Zhou [2014] and Volkov [2016]. For k a
field, Liu and Zhou [2016] have given an explicit description of the BV operator on
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HH∗(kG) in terms of Hochschild cochains, combining the centraliser decomposi-
tion and Tradler’s description of the BV operator in [Tradler 2008].

4. The map 1g

In this section, we dualise the construction in Theorem 2.4 and use it to describe
the components

1g : H n(G, k)→ H n−1(G, k)

of the BV operator 1, where G is a finite group. As mentioned previously, for
g ∈ Z(G), the long exact sequence in cohomology for the fibration

S1
→ BG→ BĜ

has the form

(4.1) · · ·→H n+1(BG;k)
B
−→H n(BĜ;k)

S
−→H n+2(BĜ;k)

I
−→H n+2(BG;k)→· · · ,

where we have used the class µ ∈ H 1(Z, k) introduced in Section 2 to identify E∗,12
with H∗(BĜ; k). Again, the map I is induced by BG→ BĜ. Next, we describe
the map 1g : H n(G, k)→ H n−1(G, k) coming from the element g ∈ Z(G).

Theorem 4.2. Let G be a finite group, and let g ∈ Z(G). Consider the group
homomorphism zg : Z×G→ G which sends (m, h) to gmh. The induced map

(zg)
∗
: H n(G, k)→ H n(Z×G, k)= H n(G, k)⊕ H n−1(G, k)

has the form (1,1g), where 1g = I ◦ B is equal to the composite

H n(G, k)
B
−→H n−1(Ĝ, k)

I
−→H n−1(G, k).

Proof. The proof is dual to the proof of Theorem 2.4. �

The next corollary proves properties (i), (iii), (iv), (vi), and (viii) in Theorem 1.1:

Corollary 4.3. Let G be a finite group, and let g ∈ Z(G). Then:

(i) The map
1g : H∗(G, k)→ H∗−1(G, k)

is a derivation with respect to the ordinary cohomology cup product. In
particular, 1g is determined by its values on a generating set of H∗(G, k).

(ii) The map 1g is natural with respect to group homomorphisms and with respect
to homomorphisms of coefficient rings.

(iii) If H is a subgroup of G containing g, then1g commutes with the transfer map
and the restriction map.

(iv) In the case k = Fp, the map 1g commutes with the Steenrod operations and
with the Bockstein homomorphism.
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Proof. The map

(zg)
∗
: H∗(BG, k)→ H∗(S1

× BG, k)= H∗(S1, k)⊗k H∗(BG, k)

is a k-algebra homomorphism. Let µ be the generator for H 1(S1, k) chosen so that
for x ∈ H∗(BG, k) we have

(zg)
∗(x)= 1⊗ x +µ⊗1g(x).

Then,

(zg)
∗(x · y)= (1⊗ x +µ⊗1g(x)) · (1⊗ y+µ⊗1g(y))

= 1⊗ x · y+µ⊗ (1g(x) · y+ (−1)|x |x ·1g(y)).

Examining the coefficient of µ, we see that

1g(x · y)=1g(x) · y+ (−1)|x |x ·1g(y).

This proves (i). The naturality statements (ii)–(iv) follow directly from the fact that
(zg)

∗
= (1,1g). �

For degree one elements, it is easy to describe 1g; this is statement (ix) in
Theorem 1.1.

Proposition 4.4. Let G be a finite group, and let g ∈ Z(G). Then identifying
H 1(G, k) with Hom(G, k), we have

1g(x)= x(g)

for any x ∈ H 1(G, k).

Proof. The composite Z×G
zg
−→G

x
−→k is equal to 1⊗ x +µ⊗ x(g). �

Remark 4.5. It follows from Proposition 4.4 that if g is in the subgroup generated
by commutators and p-th powers of elements in G, then 1g is identically zero
on H 1(G, k).

The next result is statement (x) in Theorem 1.1.

Proposition 4.6. Let G be a finite group, and let g ∈ Z(G). Then the map 1g

vanishes on the image of H 2(G,Z)→ H 2(G, k).

Proof. Consider the commutative diagram

H 2(G,Z)
1g
//

��

H 1(G,Z)

��

H 2(G, k)
1g
// H 1(G, k).

The proposition now follows from the fact that since G is finite, we have H 1(G,Z)=

Hom(G,Z)= 0. �
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5. Degree −1 operators on Ext∗A(U, V )

We describe an elementary construction principle for degree −1 operators on
Ext∗A(U, V ) determined by a central element in an algebra A which annihilates both
modules U and V . We use this in the next section to interpret the BV operator in
terms of this construction principle. Let k be a commutative ring.

Theorem 5.1. Let A be a k-algebra, let z ∈ Z(A), and let U and V be A-modules.
Suppose that z annihilates both U and V . Let P= (Pn)n>0 together with a surjective
A-homomorphism π : P0→U be a projective resolution of U , with differential δ =
(δn : Pn→ Pn−1)n>1. For notational convenience, set Pi = 0 for i < 0 and δi = 0
for i 6 0. Then the following hold:

(i) There is a graded A-homomorphism s : P→ P of degree 1 such that the chain
endomorphism δ ◦ s+ s ◦ δ of P is equal to multiplication by z on P.

(ii) The graded k-linear map

s∨ = HomA(s, V ) : HomA(P, V )→ HomA(P[1], V )

sending f ∈ HomA(Pn, V ) to f ◦ s ∈ HomA(Pn−1, V ) for all n > 0 is a
homomorphism of cochain complexes. In particular, s∨ induces a graded
k-linear map of degree −1

D A
z = H∗(s∨) : Ext∗A(U, V )→ Ext∗−1

A (U, V ).

(iii) The graded map D A
z is independent of the choice of the projective resolution P

and the choice of the homotopy s satisfying (i). In particular, we have D A
0 = 0.

Remark 5.2. If A is obvious from the context, we write Dz instead of D A
z . Note that

Dz is a graded map which depends on U and V . With the notation of the theorem,
we use the following sign conventions. For an integer i , the shifted complex P[i]
is equal, in degree n, to Pn−i , with differential (−1)iδ. The cochain complex
HomA(P, V ) has differential in degree n given by precomposing with (−1)n+1δn+1.
(This is consistent with the standard sign conventions, as described in [Benson
1991a, §2.7], for total complexes of double complexes of the form HomA(P, Q),
where Q is another chain complex, modulo regarding HomA(P, V ) as a chain
complex.) Combining the above sign conventions for shifts and total complexes,
we get that the chain complex P[1] has differential −δ, and the cochain complex
HomA(P[1], V ) has, in degree n, the differential sending f ∈ HomA(Pn−1, V )
to −(−1)n+1 f ◦ δn = (−1)n f ◦ δn ∈ HomA(Pn, V ). The sign convention for
cochain complexes of the form HomA(P, V ) has no impact on the definition of the
operators Dz , but it does matter for the signs of Bockstein homomorphisms. Had we
chosen the differential of HomA(P, V ) simply being given by precomposing with δ,
then the Bockstein homomorphisms in Proposition 5.10 below would anticommute
with the operators Dz .
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Proof of Theorem 5.1. Multiplication by z annihilates U . Thus the chain endomor-
phism of P induced by multiplication with z is homotopic to zero. This proves the
existence of a homotopy s satisfying (i). Let n be a nonnegative integer. In order
to show that s∨ is a cochain map, we need to show that the following diagram of
k-linear maps:

· · · // HomA(Pn, V )

s∨n−1
��

(−1)n+1δ∨n+1
// HomA(Pn+1, V )

s∨n
��

// · · ·

· · · // HomA(Pn−1, V )
(−1)nδ∨n

// HomA(Pn, V ) // · · ·

is commutative. The commutativity of this diagram is equivalent to

(−1)n+1 f ◦ δn+1 ◦ sn = (−1)n f ◦ sn−1 ◦ δn,

hence to
f ◦ (δn+1 ◦ sn + sn−1 ◦ δn)= 0,

for all f ∈ HomA(Pn, V ). By the choice of the homotopy s, the left side is equal to
f ◦ζ , where ζ : Pn→ Pn is equal to multiplication by z. Since f (z Pn)= z f (Pn)⊆

zV = {0}, it follows that f ◦ ζ = 0. This shows that s∨ is a cochain map. Taking
cohomology, s∨ induces a degree −1 map Dz as stated, whence (ii).

Let P ′ be a projective resolution of U , with differential δ′ and quasi-isomorphism
P ′→U given by a map π ′ : P ′0→U . Let s ′ be a homotopy on P ′ with the property
that the chain endomorphism δ′ ◦ s ′+ s ′ ◦ δ′ of P ′ is equal to multiplication by z
on P ′. Let a : P→ P ′ be a chain homotopy equivalence lifting the identity on U ,
via the maps π and π ′. We need to show that the homotopies a ◦ s and s ′ ◦ a from
P[1] to P ′ induce the same map upon applying HomA(−, V ). Set t = a ◦ s− s ′ ◦a.
We will use the same letter ζ for the chain endomorphisms of P and P ′ given by
multiplication with z. Using that a commutes with the differentials of P and P ′,

δ′ ◦ t + t ◦ δ = a ◦ δ ◦ s− δ′ ◦ s ′ ◦ a+ a ◦ s ◦ δ− s ′ ◦ δ′ ◦ a = a ◦ ζ − ζ ◦ a = 0.

Taking into account that the differential of P[1] is −δ, this implies that t is in fact
a chain map from P[1] to P ′, or equivalently, from P to P ′[−1]. The homotopy
class of such a chain map represents an element in Ext−1

A (U,U )= {0}, and hence
the chain map t is homotopic to zero. That is, there is a graded map u : P[1] → P ′

of degree 1 such that t = δ′ ◦ u − u ◦ δ, where, as before, the sign comes from
the fact that the differential of P[1] is −δ. Since t is a chain map, it follows
that t∨ = HomA(t, V ) : HomA(P ′, V )→ HomA(P[1], V ) is a cochain map. The
functor HomA(−, V ) sends the homotopy u to a homotopy u∨ satisfying t∨ =
u∨ ◦ δ∨− δ∨ ◦ u∨. We need to adjust u∨ with the signs needed to compensate for
the signs in the differentials of HomA(P ′, V ) and HomA(P[1], V ) according to the
sign convention in Remark 5.2. More precisely, one checks that ((−1)n+1u∨n ) is
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the homotopy which is needed to show that the cochain map t∨ is homotopic to
zero. Thus t∨ induces the zero map on cohomology. This shows that the maps s∨

and (s ′)∨ induce the same map Dz upon taking cohomology, hence, in particular,
D0 = 0. This proves (iii). �

Let A be an algebra over a commutative ring k. Any element z ∈ Z(A) induces
a chain endomorphism on a projective resolution P of an A-module U , and hence a
graded linear endomorphism on Ext∗A(U, V ), for any two A-modules U and V . In
this way, the space of graded k-linear endomorphisms of Ext∗A(U, V ) of any fixed
degree becomes a module over Z(A). Since multiplication by z induces an element
in the centre of the module category of A, it follows easily that this module structure
does not depend on the choice of the projective resolution P , and moreover, for
the same reason, it makes no difference whether we compose the endomorphism
on U given by z with an element in Ext∗A(U, V ) or compose this element with the
endomorphism on V given by z.

Theorem 5.3. Let A be a k-algebra, let U and V be A-modules, and let y, z∈ Z(A).

(i) Suppose that y and z annihilate U and V . Then y+ z annihilates U and V ,
and we have Dy+z = Dy + Dz .

(ii) Suppose that z annihilates U and V . Then yz annihilates U and V , and we
have Dyz = y Dz .

(iii) Suppose that y annihilates V and that z annihilates U and V . Then Dyz = 0.

(iv) Let e be an idempotent in Z(A) such that e annihilates U and V . Then De = 0.

Proof. For (i), suppose that y and z annihilate U and V . Then clearly y + z
annihilates U and V . Let P be a projective resolution of U , with differential δ. Let
s and t be homotopies on P such that δ ◦ s+ s ◦ δ is the chain endomorphism of P
given by multiplication with y and such that δ ◦ t+ t ◦ δ is the chain endomorphism
of P given by multiplication with z. Then δ◦(s+t)+(s+t)◦δ is the endomorphism
of P given by multiplication with y+ z. Statement (i) follows. For (ii), suppose
that z annihilates U and V . Then clearly yz annihilates U and V . As before, let t
be a homotopy on P such that δ ◦ t + t ◦ δ is the chain endomorphism of P given
by multiplication with z. Denote by y · t the homotopy obtained from composing t
with the endomorphism given by multiplication with y. Then δ ◦ (y · t)+ (y · t) ◦ δ
is equal to multiplication on P by yz, which shows that Dyz = y Dz . Statement
(iii) follows from (ii) and the fact that multiplication by y annihilates V , hence it
annihilates the space Ext∗A(U, V ). Since e = e2, statement (iv) is a special case
of (iii). �

The operators D A
z are compatible with the restriction to subalgebras B contain-

ing z such that A is projective as a B-module.
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Proposition 5.4. Let A be a k-algebra, and let B be a subalgebra of A such that A
is projective as a left B-module. Let z ∈ Z(A)∩ B, and let U and V be A-modules.
Suppose that z annihilates U and V . Then we have a commutative diagram of
graded maps

Ext∗A(U, V )
D A

z
//

��

Ext∗−1
A (U, V )

��

Ext∗B(ResA
B(U ),ResA

B(V ))
DB

z
// Ext∗−1

B (ResA
B(U ),ResA

B(V )),

where the vertical maps are induced by the restriction to B.

Proof. Let P be a projective resolution of U . By the assumptions on B, the restriction
to B of P is a projective resolution of ResA

B(U ). Thus if s is a homotopy on P which
defines D A

z as in Theorem 5.1, then the restriction to B of s is the corresponding
homotopy for DB

z . The commutativity of the diagram follows immediately from
the construction of the maps D A

z and DB
z . �

Remark 5.5. As pointed out by the referee, Proposition 5.4 holds even if A is not
projective as a B-module. In that case, ResA

B(P) is still a resolution of ResA
B(U ),

albeit not necessarily a projective one. But since the homotopy s on P restricts
to a homotopy on ResA

B(P), the proof of Theorem 5.1 (ii) still yields an operator
of degree −1 upon taking cohomology in HomB(ResA

B(P),ResA
B(V )). To show

that this yields a commutative diagram as stated, one observes in the proof of
Theorem 5.1 (iii) that it suffices to assume that P ′ is a resolution which need not
be projective but admits a homotopy s ′ as in (i).

Proposition 5.6. Let G a finite group, H a subgroup of G, and z ∈ Z(kG)∩ k H.
Let U and V be kG-modules, and suppose that z annihilates U and V . We have a
commutative diagram of graded maps

Ext∗k H (ResG
H (U ),ResG

H (V ))
Dk H

z
//

TrG
H
��

Ext∗−1
k H (ResG

H (U ),ResG
H (V ))

TrG
H

��

Ext∗kG(U, V )
DkG

z
// Ext∗−1

B (U, V ).

Proof. Let P be a projective resolution of the kG-module U , with differential
denoted δ. By the assumptions on z and by Theorem 5.1, there is a homotopy s on P
such that δ◦s+s◦δ is equal to the chain endomorphism of P given by multiplication
with z. The operator DkG

z is induced by the map sending f ∈ HomkG(Pn, V )
to f ◦ sn−1. Since ResG

H (P) is a projective resolution of ResG
H (U ), it follows that

Dk H
z is induced by the map sending f ′ ∈ Homk H (ResG

H (Pn),ResG
H (V )) to f ′◦sn−1.

Since sn−1 is a kG-homomorphism, we have TrG
H ( f ′) ◦ sn−1 = TrG

H ( f ′ ◦ sn−1). �
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The operators D A
z satisfy a Künneth formula. We suppress the superscripts in

what follows, since the central element subscripts determine which algebra we are
working in:

Proposition 5.7. Let A and B be k-algebras that are finitely generated projective
as k-modules, and let U and U ′ be A-modules and V and V ′ be B-modules, all
finitely generated projective as k-modules. Set W =U⊗k V and W ′ =U ′⊗k V ′. Let
z ∈ Z(A) and w ∈ Z(B) such that z annihilates U and U ′ and w annihilates V
and V ′.

Then z⊗1 and 1⊗w annihilate the A⊗k B-modules U ⊗k V and U ′⊗k V ′, and
we have a commutative diagram

Ext i
A(U,U

′)⊗kExt
j

B(V,V
′) //

(Dz⊗1, 1⊗Dw)

��

Ext
i+ j
A⊗k B(W,W

′)

Dz⊗1+1⊗w
��

(Exti−1
A (U,U ′)⊗kExt

j
B(V,V

′))⊕(Ext i
A(U,U

′)⊗kExt
j−1
B (V,V ′)) //Ext

i+ j−1
A⊗k B (W,W

′),

where i, j are nonnegative integers. Moreover, we have Dz⊗w = 0. In particular, if
k is a field, then Dz⊗1+1⊗w is determined by Dz , Dw, combined with the Künneth
formula.

Proof. Note the following sign convention (as in statement (ii) of Theorem 1.1): the
second component 1⊗ Dw of the left vertical map sends η⊗ θ to (−1)iη⊗ Dw(θ),
where η ∈ ExtiA(U,U

′) and θ ∈ Ext
j
B(V, V ′).

The assumptions on z and w imply that z⊗ 1 and 1⊗w annihilate the A⊗k B-
modules U ⊗k V and U ′ ⊗k V ′. Let (P, δ) be a projective resolution of U and
(Q, ε) a projective resolution of V . Since A and B are projective as k-modules, it
follows that P⊗k Q is a projective resolution of the A⊗k B-module U ⊗k V . Note
the signs in the differential δ⊗ ε of P ⊗k Q; more precisely, the differential δ⊗ ε
sends u⊗ v ∈ Pi ⊗k Q j to

(δi (u)⊗ v, (−1)i u⊗ ε j (v))

in (Pi−1⊗k Q j )⊕ (Pi ⊗k Q j−1).
We have a canonical isomorphism of cochain complexes

HomA(P,U ′)⊗k HomB(Q, V ′)∼= HomA⊗k B(P ⊗k Q,U ′⊗k V ′)

thanks to the assumptions that the involved algebras and modules are finitely
generated projective as k-modules. Upon taking cohomology, this induces the
horizontal maps

ExtiA(U,U
′)⊗k Ext

j
B(V, V ′)→ Ext

i+ j
A⊗k B(U ⊗k V,U ′⊗k V ′)

in the statement.
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Let s be a homotopy on P such that s ◦ δ + δ ◦ s is equal to multiplication
by z on P . Similarly, let t be a homotopy on Q such that t ◦ ε+ ε ◦ t is equal to
multiplication by w on Q. Define the homotopy σ on P ⊗k Q by sending u⊗ v ∈
Pi ⊗k Q j to

σ(u⊗ v)= (si (u)⊗ v, (−1)i u⊗ t j (v))

in (Pi+1⊗k Qi )⊕ (Pi ⊗k Q j+1). The sign (−1)i is needed because of the above
mentioned sign convention for 1⊗ Dw. We need to show that this homotopy has
the property that the chain endomorphism of P ⊗k Q given by

σ ◦ (δ⊗ ε)+ (δ⊗ ε) ◦ σ

is equal to multiplication by z⊗ 1+ 1⊗w on P ⊗k Q.
Let u⊗ v ∈ Pi ⊗k Q j . We calculate first the image of u⊗ v under σ ◦ (δ⊗ ε).

The differential δ⊗ ε sends u⊗ v to the element

(δi (u)⊗ v, (−1)i u⊗ ε j (v))

in (Pi−1⊗k Q j )⊕ (Pi ⊗k Q j−1). The homotopy σ sends this to the element

((−1)i−1δi (u)⊗ t j (v), si−1(δi (u))⊗ v+ u⊗ t j−1(ε j (v)), (−1)i si (u)⊗ ε j (v))

in (Pi−1⊗k Q j+1)⊕ (Pi ⊗k Q j )⊕ (Pi+1⊗k Q j−1).
We calculate next the image of u⊗ v under (δ⊗ ε) ◦ σ . The homotopy σ sends

u⊗ v to the element
(si (u)⊗ v, (−1)i u⊗ t j (v))

in (Pi+1⊗k Q j )⊕ (Pi ⊗k Q j+1). Applying the differential δ⊗ ε to this element
yields

((−1)iδi (u)⊗ t j (v), δi+1(si (u))⊗ v+ u⊗ ε j+1(t j (v)), (−1)i+1si (u)⊗ ε j (v))

in (Pi−1⊗k Q j+1)⊕(Pi⊗k Q j )⊕(Pi+1⊗k Q j−1). The sum of the images of u⊗v
under the two maps σ ◦ (δ ◦ ε) and (δ⊗ ε) ◦ σ is therefore equal to(

0, ((z⊗ 1)+ (1⊗w))(u⊗ v), 0
)
,

as claimed. The first statement follows. Since z⊗w = (z⊗ 1)(1⊗w), the second
statement follows from Theorem 5.3 (iii). �

Proposition 5.8. Let A be a k-algebra, let z, w ∈ Z(A), and let U and V be
A-modules. Suppose that z, w annihilate U and V . Then the following hold:

(i) Dz ◦ Dz = 0.

(ii) Dw ◦ Dz =−Dz ◦ Dw.
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Proof. Let P = (Pn)n>0 together with a surjective A-homomorphism π : P0→U
be a projective resolution of U , with differential

δ = (δn : Pn→ Pn−1)n>1.

As above, for notational convenience, we set Pi = 0 for i < 0 and δi = 0 for i 6 0.
Let s be a homotopy on P such that s ◦ δ+ δ ◦ s is equal to multiplication by z

on P . By the construction from Theorem 5.1, the map Dz is induced by the map
sending f ∈ HomA(Pn, V ) to f ◦ s. Thus Dz ◦ Dz is induced by the map sending
f ∈ HomA(Pn, V ) to f ◦s ◦s. In order to show Dz ◦Dz = 0, we need to show that if
f is a cocycle (that is, f ◦ δn+1 = 0), then f ◦ s ◦ s = 0. For this, it suffices to show
that the graded degree 2 map s ◦ s is a chain map from P[2] to P . Indeed, any such
chain map is homotopic to zero (as it represents an element in Ext−2

A (U,U )= 0),
hence, upon applying the contravariant functor HomA(−, V ), it induces a cochain
map HomA(P, V )→ HomA(P[2], V ) which is still homotopic to zero and which
therefore induces the zero map in cohomology.

Composing the chain map s ◦ δ+ δ ◦ s with s in either order yields the equations
(of graded endomorphisms of P of degree 1)

s ◦ s ◦ δ+ s ◦ δ ◦ s = s · z,
s ◦ δ ◦ s+ δ ◦ s ◦ s = z · s.

The right sides of the two equations are equal, since s is a (graded) A-homomorphism,
so commutes with the action of z. Taking the difference of these two equations
therefore yields

s ◦ s ◦ δ− δ ◦ s ◦ s = 0.

This shows that s ◦ s is indeed a chain map P[2] → P , which by the previous
paragraph completes the proof of (i). Statement (ii) follows from applying (i) to
z+w and using Theorem 5.3 (i). �

Let A be a k-algebra, z ∈ Z(A), and let U and V be A-modules which are
annihilated by z. The operator Dz on Ext∗A(U, V ) can also be described using an
injective resolution (I, ε) of V instead of a projective resolution (P, δ) of U . Let
p : P→U and i : V → I be quasi-isomorphisms, where U and V are regarded as
complexes concentrated in degree 0. Denote by K (A) the homotopy category of
chain complexes of A-modules. By standard facts (see, e.g., [Benson 1991a, §2.7]
or [Weibel 1994, §2.7]), the space Ext∗A(U, V ) can be identified with any of

HomK (A)(P, V [n])
∼=
// HomK (A)(P, I [n]) HomK (A)(U, I [n]),

∼=
oo

where the isomorphisms are induced by composing with i and precomposing with p.
We reindex complexes as chain complexes, if necessary (so in particular, an injective
resolution of V is of the form I0→ I−1→ I−2→ · · · ).
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Theorem 5.9. Let A be a k-algebra, let z ∈ Z(A), and let U and V be A-modules
which are both annihilated by z. Let (I, ε) be an injective resolution of V with
quasi-isomorphism i : V → I . Let t be a homotopy on I such that ε ◦ t + t ◦ ε
is equal to multiplication by z on the terms of I . Then the graded k-linear map
t∨ : HomA(U, I )→ HomA(U [1], I ) sending g ∈ HomA(U, I−n) to (−1)nt−n ◦ g is
a chain map, and the induced map in cohomology is equal to Dz , where we identify
the cohomology of HomA(U, I ) and Ext∗A(U, V ) using the preceding isomorphisms.

Proof. Since z annihilates V , the existence of a homotopy t on I such that ε◦t+t ◦ε
is equal to multiplication by z is obvious. The verification that the assignment
g 7→ (−1)nt ◦ g is a chain map is analogous to the first part of the proof of
Theorem 5.1. (The sign (−1)n comes from the fact that g is regarded as a chain
map U → I [n], and since the differential of I [n] is (−1)nε, one needs to use the
homotopy (−1)nt in order to obtain multiplication by z as the chain map determined
by this homotopy on I [n].)

Let n be a nonnegative integer. Let g ∈ HomA(U, I−n) be a cocycle; that is,
ε ◦ g = 0. Note that this is equivalent to stating that g :U → I [n] is a chain map,
and hence g̃ = g ◦ p : P→ I [n] is a chain map, where, as before, P is a projective
resolution of U with differential δ and quasi-isomorphism p : P→U . Similarly,
let f ∈ HomA(Pn, V ) be a cocycle; that is, f ◦ δ = 0. As before, this means that
f : P→ V [n] is a chain map, and hence f̃ = i[n] ◦ f : P→ I [n] is a chain map.

Assume now that f and g represent the same class in ExtnA(U, V ). This is
equivalent to requiring that the chain maps f̃ , g̃ from P to I [n] are homotopic.
Thus, there is a homotopy u from P to I [n] such that

f̃ − g̃ = u ◦ δ+ (−1)nε ◦ u,

where the sign (−1)n comes from the fact that the differential of I [n] is (−1)nε.
Let s be a homotopy on P such that δ ◦ s+ s ◦ δ is equal to multiplication by z

on P . By the construction of Dz , the image of the class of f under Dz is represented
by f ◦ s. Note that f ◦ s : P→ V [n] is a chain map (this was noted already in the
proof of Dz being well-defined: since z annihilates V , we have

0= f · z = f ◦ δ ◦ s+ f ◦ s ◦ δ = f ◦ s ◦ δ,

where we use the assumption f ◦ δ = 0, and hence f ◦ s ◦ δ = 0). We need to
show that f ◦ s and (−1)nt ◦ g represent the same class in Extn−1

A (U, V ). That is,
we need to show that the chain maps f̃ ◦ s and (−1)nt ◦ g̃ from P to I [n− 1] are
homotopic, or equivalently, we need to show that their difference f̃ ◦ s− (−1)nt ◦ g̃
is homotopic to zero.

Note that f : P→ V [n], and hence

f̃ = i[n] ◦ f : P→ I [n]
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is also a chain map which is zero in all degrees other than n. Since I [n] is zero in
all degrees bigger than n, it follows that t ◦ f̃ = 0. Similarly, we have g̃ ◦ s = 0. It
follows that

f̃ ◦s−(−1)n−1t ◦ g̃ = ( f̃ − g̃)◦s+(−1)n−1t ◦( f̃ − g̃)

= u ◦δ ◦s+(−1)nε ◦u ◦s+(−1)n−1t ◦u ◦δ+(−1)2n−1t ◦ε ◦u

= u ◦δ ◦s+(−1)nε ◦u ◦s+(−1)n−1t ◦u ◦δ− t ◦ε ◦u.

Since u · z = u ◦ (δ ◦ s + s ◦ δ), we have u ◦ δ ◦ s = u · z− u ◦ s ◦ δ. Similarly, we
have t ◦ ε ◦ u = z · u − ε ◦ t ◦ u. Inserting these two equations into the displayed
equality and cancelling u · z = z · u yields the expression

−(u ◦ s ◦ δ+ (−1)n−1ε ◦ u ◦ s)+ (−1)n−1(t ◦ u ◦ δ+ (−1)n−1ε ◦ t ◦ u).

The two summands in this equation are contractible chain maps from P to I [n−1],
via the homotopies u ◦ s and t ◦ u, respectively. This shows the result. �

Proposition 5.10. Let A be a k-algebra, let z ∈ Z(A), and let n be a nonnegative
integer.

(i) The map Dz : Ext
n
A(U, V )→ Extn−1

A (U, V ) is functorial in A-modules U and
in V which are annihilated by z.

(ii) For any A-module U and any short exact sequence of A-modules

0 // V // W // X // 0

such that z annihilates U, V,W, X , the map Dz commutes with the connecting
homomorphisms γ n

: ExtnA(U, X)→ Extn+1
A (U, V ); that is, we have

γ n−1
◦ Dz = Dz ◦ γ

n
: ExtnA(U, X)→ ExtnA(U, V ).

(iii) For any short exact sequence of A-modules

0 // U // V // W // 0

and any A-module X such that z annihilates U, V,W, X , the map Dz com-
mutes with the connecting homomorphisms γ n

: ExtnA(U, X)→ Extn+1
A (W, X);

that is,

γ n−1
◦ Dz = Dz ◦ γ

n
: ExtnA(U, X)→ ExtnA(W, X).

Proof. Let P be a projective resolution of U . Since the operator Dz on ExtnA(U, V )
is induced by precomposing f ∈ HomA(Pn, V ) with a homotopy s on P , the
functoriality in V is obvious. Using an injective resolution I of V and Theorem 5.9
yields the functoriality in U . This proves (i).

Let U be an A-module which is annihilated by z, and let as before P be a
projective resolution of U . Let

0 // V i
// W

p
// X // 0
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be a short exact sequence of A-modules V,W, X which are annihilated by z.
Since P consists of projective A-modules, applying HomA(P,−) yields a short
exact sequence of cochain complexes

0 // HomA(P, V ) // HomA(P,W ) // HomA(P, X) // 0.

The connecting homomorphism γ associated to this sequence is constructed as
follows. Let f ∈ HomA(Pn, X) be a cocycle; that is, f ◦ δn+1 = 0. This represents
a class f in ExtnA(U, X). Let g ∈ HomA(Pn,W ) such that p ◦ g = f . Then g ◦δn+1

satisfies p ◦ g ◦ δn+1 = f ◦ δn+1 = 0, so g ◦ δn+1 factors through i . Let h ∈
HomA(Pn+1, V ) such that

i ◦ h = (−1)n+1g ◦ δn+1.

Then h is a cocycle, and by our sign conventions from Remark 5.2 regarding the
differential of HomA(P,W ), the class of h in Extn+1

A (U, V ) is γ n( f ). As before, we
suppress subscripts and superscripts to δ, s, γ , and write abusively h = γ ( f ). Now
Dz( f ) is represented by f ◦ s, and clearly g ◦ s lifts f ◦ s through p. Therefore, by
the same construction as before, applied to f ◦s, the class of γ ( f ◦s) is represented
by the map m satisfying i ◦ m = (−1)ng ◦ s ◦ δ. Since s ◦ δ + δ ◦ s is equal to
multiplication by z on P and since z annihilates W and commutes with g, it follows
that g ◦ (s ◦ δ+ δ ◦ s)= 0, and hence

i ◦m = (−1)ng ◦ s ◦ δ =−(−1)ng ◦ δ ◦ s = i ◦ h ◦ s.

Since i is a monomorphism , m= h◦s. The map m represents the class of γ (Dz( f )),
and h ◦ s represents the class of Dz(γ ( f )). Statement (ii) follows. A similar
argument, using an injective resolution of X and Theorem 5.9, yields (iii). �

Remark 5.11. With the notation of Theorem 5.1, if A is a finite-dimensional
self-injective algebra over a field k, then the construction principle of degree −1
operators in Theorem 5.1 extends to Tate-Ext, by replacing a projective resolution
of U with a complete resolution of U . More precisely, let (P, δ) be a complete
resolution of U ; that is, P is an acyclic chain complex of projective A-modules
together with an isomorphism Im(δ0)∼= U . Then Êxt

n
A(U, V )∼= H n(HomA(P, V ))

for all integers n; for n positive, this coincides with ExtnA(U, V ). If z ∈ Z(A)
annihilates U , then multiplication by z on P is a chain endomorphism which is
homotopic to zero, and thus there is a homotopy s on P such that s ◦ δ+ δ ◦ s is
equal to multiplication by z. (In fact, for this part of the construction, it suffices to
assume that the endomorphism of U given by multiplication with z factors through a
projective module). If z also annihilates V , then just as in the proof of Theorem 5.1
the correspondence sending f ∈ HomA(Pn, V ) to f ◦ s induces for any integer n
an operator D̂z : Êxt

n
A(U, V )→ Êxt

n−1
A (U, V ), which for n > 2 coincides with the

operator Dz . For G a finite group, the Tate–Hochschild cohomology ĤH∗(kG)
of kG admits a centraliser decomposition analogous to that of HH∗(kG) in terms
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of Tate-Ext of centralisers of group elements, and hence the above construction
yields a degree −1 operator on ĤH∗(kG). It would be interesting to check that this
coincides with the extension of the BV operator to ĤH∗(kG) in [Liu et al. 2021].

Remark 5.12. A construction analogous to that in Theorem 5.1 exists for Tor.
Let A be a k-algebra, let U be an A-module with a projective resolution (P, δ), let
W be a right A-module, and let z ∈ Z(A) such that z annihilates U and W . Then
there is a homotopy s : P → P[−1] such that s ◦ δ + δ ◦ s is the graded chain
endomorphism of P given by multiplication with z. Since z also annihilates W , it
follows that IdW ⊗s :W ⊗A P→W ⊗A P[−1] is a chain map. Taking homology
yields a degree 1 operator TorA

n (W,U )→ TorA
n+1(W,U ), for all n > 0, which

satisfies the formal properties analogous to those developed for the operators Dz

in this section. A similar construction, in which z is an integer, has been used for
calculating torsion in loop space homology in [Levi 1996].

6. The BV operator in terms of homotopies on projective resolutions

Let k be a commutative ring. For a finite group G and an element g ∈ Z(G), we de-
note as before for any positive integer n by1g= I ◦B : H n(G, k)→H n−1(G, k) the
map obtained from the long exact sequences (3.1). The following result shows that
1g can be obtained as a special case of the construction described in Theorem 5.1,
implying in particular that the component11 of the BV operator1 on the summand
H∗(G, k) in the centraliser decomposition of HH∗(kG) corresponding to the unit
element 1 of G is zero.

Theorem 6.1. Let G be a finite group and g ∈ Z(G). With the notation from
Theorem 5.1, we have 1g = Dg−1. In particular, we have 11 = D0 = 0.

In order to show this, we will use Theorem 4.2. As before, we denote by

zg : Z×G→ G

the group homomorphism sending (n, h) to gnh, where n∈Z and h∈G. Note that z1

is the canonical projection onto the second component of Z×G. In order to describe
the map induced by zg on cohomology, we choose a projective resolution PG of k as
a kG-module and a projective resolution of PZ of k as a kZ-module. Here, kZ is the
group algebra over k of the infinite cyclic group (Z,+). We will need to describe
quasi-isomorphisms PZ⊗k PG→ z∗g(PG) as complexes of k(Z×G)-modules.

Identify kZ = k[u, u−1
] for some indeterminate u via the unique algebra iso-

morphism sending 1Z to u. We choose for PZ the two-term complex (in degrees 1
and 0) of the form

k[u, u−1
]

u−1
−−→ k[u, u−1

],

where the superscript u− 1 is the map given multiplication with u− 1. This is a
projective resolution of k as a k[u, u−1

]-module, together with the augmentation
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map k[u, u−1
] → k sending u to 1. Note that pairs consisting of an infinite cyclic

group and a generator are unique up to unique isomorphism. Choosing a generator
is equivalent to choosing a projective resolution of the form above.

We will make use of the following special case of the Tensor-Hom-adjunction.
We adopt the following shorthand: for any kG-module M , we write

M[u, u−1
] = k[u, u−1

]⊗k M.

Lemma 6.2. With the notation above, let M and N be kG-modules. We have a
natural isomorphism of k-modules

Homk(Z×G)(M[u, u−1
], z∗g(N ))∼= HomkG(M, N ),

sending a k(Z×G)-homomorphism f :M[u,u−1
]→z∗g(N ) to the kG-homomorphism

M→ N given by m 7→ f (1⊗m) for all m ∈ M.

Let PG = (Pn)n>0 be a projective resolution of the trivial kG-module, with
differential (δn)n>1. We adopt the convention P−1 = {0} and δ0 = 0. Note that the
k(Z×G)-module structure of z∗g(Pn) is given via ui

⊗h acting as left multiplication
by gi h on Pn , where n > 0. The degree n term of PZ⊗k PG is equal to

Pn[u, u−1
]⊕ Pn−1[u, u−1

]

for any n > 0. Denote by η = (ηn)n>1 the differential of PZ⊗k PG . Use the same
letter δn for the obvious extension Id⊗δn of δn to Pn[u, u−1

]. The differential η is
given in degree n > 1 by

(6.3) ηn : Pn[u, u−1
]⊕ Pn−1[u, u−1

]

(
δn u−1
0 −δn−1

)
// Pn−1[u, u−1

]⊕ Pn−2[u, u−1
].

We describe the identification H n(Z × G, k) = H n(G, k) ⊕ H n−1(G, k) from
Theorem 4.2 as follows:

Proposition 6.4. With the notation above, the canonical split exact sequences

0 // Pn[u, u−1
] // Pn[u, u−1

]⊕ Pn−1[u, u−1
] // Pn−1[u, u−1

] // 0

define a degreewise split short exact sequence of chain complexes of k(Z× G)-
modules

0 // k[u, u−1
]⊗k PG // PZ⊗k PG // k[u, u−1

]⊗k PG[1] // 0 .

Applying Homk(Z×G)(−, k), with the appropriate signs for the differentials, yields a
short exact sequence of cochain complexes of k-modules

0 // HomkG(PG[1], k) // Homk(Z×G)(PZ⊗k PG, k) // HomkG(PG, k) // 0,

which splits canonically, and hence yields a canonical identification

H n(Z×G, k)= H n(G, k)⊕ H n−1(G, k).

This is the identification in Theorem 4.2.
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Proof. The exact sequence of chain complexes of k(Z×G)-modules is a special
case of a tensor product of the chain complex PG with a two-term chain complex
and easily verified. The exact sequence of cochain complexes of k-modules is
obtained by applying the contravariant functor Homk(Z×G)(−, k) to the previous
sequence and then using the canonical adjunctions

Homk(Z×G)(Pn[u, u−1
], k)∼= HomkG(Pn, k)

from Lemma 6.2. The fact that this sequence splits canonically follows from the
observation that multiplication by u− 1 has image in the kernel of any k(Z×G)-
homomorphism Pn[u, u−1

] → k, and so the nondiagonal entry u− 1 in the differ-
ential (6.3) of PZ⊗k PG becomes zero upon applying the functor Homk(Z×G)(−, k).
To see that this is the identification in Theorem 4.2, consider the class µ in H 1(Z, k)
corresponding to the group homomorphism Z→ k sending 1Z to 1k . This is the class
of the 1-cocycle (abusively still denoted by the same letter)µ :k[u, u−1

]→k sending
u to 1. The explicit description of the maps in the statement implies that upon taking
cohomology in degree n, the map HomkG(PG[1], k)→ Homk(Z×G)(PZ⊗k PG, k)
induces a map which sends x ∈ H n−1(G, k) to the image of µ⊗ x in H n(Z×G, k),
as required. �

For n > 0, denote by
en : Pn[u, u−1

] → z∗g(Pn)

the k(Z × G)-homomorphism defined by en(ui
⊗ v) = giv for all i ∈ Z and

v ∈ Pn . Equivalently, en corresponds to the identity on Pn under the adjunction from
Lemma 6.2. The following theorem parametrises homotopies in Theorem 5.1 in
terms of certain quasi-isomorphisms PZ⊗k PG→ z∗g(PG) lifting the identity on k:

Theorem 6.5. With the notation above, for any n > −1 let fn : Pn[u, u−1
] →

z∗g(Pn+1) be a k(Z×G)-homomorphism and let sn : Pn→ Pn+1 be the correspond-
ing kG-homomorphism sending a ∈ Pn to fn(1⊗ a). The following are equivalent:

(i) The graded k(Z×G)-homomorphism

(en, fn−1)n>0 : PZ⊗k PG→ z∗g(PG)

is a quasi-isomorphism of chain complexes which lifts the identity on k.

(ii) The graded kG-homomorphism

(sn−1)n>0 : PG[1] → PG

is a homotopy with the property that the chain map δ ◦ s+ s ◦ δ is equal to the
endomorphism of PG given by left multiplication with g− 1.

Proof. In degree 0, the map e0 clearly lifts the identity on k, so we need to show
that (en, fn−1)n>0 is a chain map if and only if s ◦δ+δ ◦s is equal to multiplication
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by g−1. By the definition of the differential of PZ⊗k PQ , we have that (en, fn−1)n>0

is a chain map if and only if for any n > 1 we have

(en−1, fn−2) ◦

(
δn u− 1
0 −δn−1

)
= δn ◦ (en, fn−1),

where we use as before the same letter δn for the extension Id⊗δn of δn to Pn[u, u−1
].

This is equivalent to

(en−1 ◦ δn, en−1 ◦ (u− 1)− fn−2 ◦ δn−1)= (δn ◦ en, δn ◦ fn−1),

where we have used the notation (u− 1) for the map given by multiplication with
u− 1. In the first component, this holds automatically since (en)n>0 is a chain map.
Thus the previous condition is equivalent to

en−1 ◦ (u− 1)= δn ◦ fn−1+ fn−2 ◦ δn−1.

Note that the left side is equal to (g− 1) ◦ en−1, where (g− 1) denotes the map
given by multiplication with g− 1. Through the obvious versions of the adjunction
from Lemma 6.2, this is equivalent to the statement that δ ◦ s+ s ◦ δ is equal to left
multiplication by g− 1 on PG as stated. �

Proof of Theorem 6.1. The fact that s∨ is a cochain map is the special case of
Theorem 5.1, applied to A= kG, U = V = k, and z= g−1. Thus, H n(s∨)= Dg−1

for n > 0. By Theorem 6.5 (and with the notation of that theorem) the graded map
(sn−1)n>0 : PG[1] → PG induces a quasi-isomorphism

(en, fn−1)n>0 : PZ⊗k PG→ z∗g(PG),

which lifts the identity on k. Applying the functor Homk(Z×G)(−, k), with the
appropriate signs for the differentials, and making use of the adjunction Lemma 6.2,
yields a cochain map

HomkG(PG, k)→ Homk(Z×G)(PZ⊗k PG, k).

Taking cohomology, and using the identification in Proposition 6.4, yields for any
n > 0 a map

H n(G, k)→ H n(Z×G, k)= H n(G, k)⊕ H n−1(G, k).

By construction, the second component of this map is induced by s∨, hence equal
to Dg−1. By Theorem 3.4, the second component is also equal to 1g as stated. �

The following result is Theorem 1.1 (ii):

Proposition 6.6. Let G and H be finite groups, and let g ∈ Z(G) and h ∈ Z(H).
Let i and j be nonnegative integers, and let x ∈ H i (G, k) and y ∈ H j (H, k).
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Identify k(G × H) ∼= kG ⊗k k H and identify x ⊗ y with its canonical image in
H i+ j (G× H, k). Then 1(g,h)(x ⊗ y) is equal to the canonical image of

1g(x)⊗ y+ (−1)i x ⊗1h(y)

in H i+ j−1(G× H, k).

Proof. We apply Proposition 5.7 to the case A = kG, U = U ′ = k, B = k H ,
V = V ′ = k, z = g− 1, and w = h− 1. We have

1g(x)⊗ y+ (−1)i x ⊗1h(y)= Dg−1(x)⊗ y+ (−1)i x ⊗ Dh−1(y).

By Proposition 5.7, the image in H i+ j (G× H, k) of this element is equal to

D(g−1)⊗1+1⊗(h−1)(x ⊗ y).

It follows from the last statement in Proposition 5.7 that D(g−1)⊗(h−1) = 0. Since

(g− 1)⊗ (h− 1)= (g⊗ h)− (1⊗ 1)− ((g− 1)⊗ 1)− (1⊗ (h− 1)),

this implies that

0= D(g−1)⊗(h−1) = D(g⊗h)−(1⊗1)− D(g−1)⊗1− D1⊗(h−1),

or equivalently,

D(g⊗h)−(1⊗1) = D(g−1)⊗1+ D1⊗(h−1) = D(g−1)⊗1+1⊗(h−1).

The left side in the last equation is 1(g,h), whence the result. �

The following proposition implies the statements (v) and (iv) in Theorem 1.1:

Proposition 6.7. Let G be a finite group and g, h ∈ Z(G).

(i) We have 1gh =1g +1h .

(ii) We have 1gm = m1g for any positive integer m.

(iii) If the order of g is invertible in k, then 1g = 0. In particular, if k is a field of
prime characteristic p and g is a p′-element in Z(G), then 1g = 0.

(iv) If k is a field of prime characteristic p, then 1g = 1gp , where gp is the p-part
of g.

(v) If k is a field of prime characteristic p, denoting by P a Sylow p-subgroup of
G, we have gp ∈ Z(P), and for any positive integer n the diagram

H n(G, k) //
ResG,P

//

1g
��

H n(P, k)

1gp
��

H n−1(G, k) //
ResG,P

// H n−1(P, k)

is commutative with injective horizontal maps.
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Proof. The identity (g − 1)(h − 1) = (gh − 1)− (g − 1)− (h − 1) implies that
D(g−1)(h−1)= Dgh−1−Dg−1−Dh−1. By Theorem 5.3 (iii), we have D(g−1)(h−1)=0,
and hence Dgh−1 = Dg−1+ Dh−1. By Theorem 6.1, this yields the equality stated
in (i), and (ii) is an immediate consequence of (i). By Theorem 6.1 we have 11 = 0.
Thus (iii) follows from (ii). Assume that k is a field of prime characteristic p. Note
that since g is central, so are the p-part gp and the p′-part gp′ of g. By (i) we have
1g = 1gp+ 1gp′

, and by (iii) this is equal to 1gp , whence (iv). Since g, and hence
also gp, is central, it follows that gp is contained in any Sylow p-subgroup of G.
Statement (v) follows from (iv), the compatibility of 1gp with restriction from G
to P by Corollary 4.3 (iii), together with the standard fact that the restriction map
H∗(G, k)→ H∗(P, k) is injective. �

7. The BV operator on the bar resolution

Let k be a commutative ring, G a finite group, and g ∈ Z(G). The purpose of this
section is to calculate explicitly a homotopy s on the bar resolution of the trivial
kG-module as in Theorem 6.1. This will be used in the proof of Theorem 8.1. As
before, we denote by zg : Z×G→ G the group homomorphism sending (m, h)
to gmh.

We choose for PG the projective resolution of the trivial kG-module which in
degree n term is equal to kGn+1, where n > 0 and where Gn+1 is the direct product
of n+ 1 copies of G, with differential δn given for n > 1 by

δn(a0, a1, . . . , an)=

n−1∑
i=1

(−1)i (a0, . . . , ai ai+1, . . . , an)+(−1)n(a0, a1, . . . , an−1),

where the ai are elements in G. The left kG-module structure on the terms kGn+1

is given by left multiplication with G on the first copy of G. (This is the resolution
obtained from tensoring the Hochschild resolution of kG by −⊗kG k.) In particular,
in degree 1, we have

δ1(a0, a1)= a0a1− a0.

As earlier, we identify kZ = k[u, u−1
] and k(Z × G) = k[u, u−1

] ⊗k kG. The
k(Z×G)-module structure of z∗g(kGn+1) is given by the action of ui

⊗ h acting as
left multiplication by gi h on the first copy of G in Gn+1.

Theorem 7.1. With the notation above, for any n > 1 denote by sn−1 : kGn
→

kGn+1 the kG-homomorphism defined by

sn−1(a0, a1, . . . , an−1)=

n−1∑
i=0

(−1)i (a0, . . . , ai , g, ai+1, . . . , an−1),

where ai ∈ G for 06 i6n−1. Applying the functor HomkG(−, k) to the graded map

s = (sn−1)n>1 : PG[1] → PG
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yields a map of cochain complexes of k-modules

s∨ : HomkG(PG, k)→ HomkG(PG[1], k)

such that, for any n > 1, we have

1g = H n(s∨) : H n(G, k)→ H n−1(G, k).

Proof. By Theorem 6.5, it suffices to show that s is a homotopy such that δ◦s+s ◦δ
is the chain map given by multiplication with g− 1. This is the content of the next
theorem, whence the result. �

As in the previous section, for n > 0, denote by

en : kGn+1
[u, u−1

] → z∗g(kGn+1)

the k(Z×G)-homomorphism defined by en(um
⊗h)= gmh for all m ∈ Z and h ∈G.

For n > 1 denote by

fn−1 : kGn
[u, u−1

] → z∗g(kGn+1)

the k(Z×G)-homomorphism given by

fn−1(um
⊗ (a0, a1, . . . , an−1))=

n−1∑
j=0

(−1) j (gma0, . . . , a j , g, a j+1, . . . , an−1),

with m ∈ Z and a j ∈ G. Through an adjunction as in Lemma 6.2, the map fn−1

corresponds to the kG-homomorphism sn−1 : kGn
→ kGn+1 defined in the previous

theorem.

Theorem 7.2. With the notation above, the following hold:

(i) The graded k(Z×G)-homomorphism (en, fn−1)n>0 : PZ⊗k PG→ z∗g(PG) is
a quasi-isomorphism which lifts the identity on k.

(ii) The graded kG-homomorphism (sn−1)n>1 : PG[1] → PG is a homotopy with
the property that δ ◦ s+ s ◦ δ is equal to the endomorphism of PG given by left
multiplication with g− 1.

Proof. By Theorem 6.5, the two statements are equivalent. We prove the second
statement. That is, for n > 1 and x = (a0, a1, . . . , an−1) ∈ Pn−1, we need to prove
the equality

δn(sn−1(x))= (g− 1)x − sn−2(δn−1(x)).

We start with the left side. We have

δn(sn−1(x))=
n−1∑
j=0

(−1) jδn(a0, . . . , a j , g, a j+1, . . . , an−1).

We need to calculate the summands

δn(a0, . . . , a j , g, a j+1, . . . , an−1).
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The definition of δn yields an alternating sum over an index i running from 0 to
n − 1, which we will need to break up according to whether 0 6 i < j , i = j ,
i = j + 1, or j + 1< i 6 n− 1. We have

δn(a0, . . . , a j , g, a j+1, . . . , an−1)

=

j−1∑
i=0

(−1)i (a0, . . . , ai ai+1, . . . , a j , g, a j+1, . . . , an−1)

+(−1) j (a0, . . . , a j g, a j+1, . . . , an−1)

+(−1) j+1(a0, . . . , a j , ga j+1, . . . , an−1)

+

n−1∑
i= j+2

(−1) j (a0, . . . , a j , g, a j+1, . . . , ai−1ai , . . . , an−2)

+(−1)n(a0, . . . , a j , g, a j+1, . . . , an−2).

For j = 0 or j = n−1 or j = n−2, this formula takes a slightly different form. If
j = 0, then the first sum is empty (hence zero by convention). The fourth term (that
is, the sum indexed

∑n−1
i= j+2) is empty if j is one of n−1, n−2, so zero. In addition,

if j =n−1, then the third term does not appear (because the component ga j+1 is not
defined in that case) and the last summand takes the form (−1)n(a0, . . . , an−1), and
if j = n− 2, then the last summand takes the form (−1)n(a0, . . . , an−2, g). Then

δn(sn−1(x))

=

n−1∑
j=1

j−1∑
i=0

(−1)i+ j (a0, . . . , ai ai+1, . . . , a j , g, a j+1, . . . , an−1)

+

n−1∑
j=0

(a0, . . . , a j g, a j+1, . . . , an−1)−

n−2∑
j=0

(a0, . . . , a j , ga j+1, . . . , an−1)

+

n−3∑
j=0

n−1∑
i= j+2

(−1)i+ j (a0, . . . , a j , g, a j+1, . . . , ai−1ai , . . . , an−1)

+

n−1∑
j=0

(−1)n+ j (a0, . . . , a j , g, a j+1, . . . , an−2).

Note that in the last term, the summand when j = n − 1 takes the form
−(a0, a1, . . . , an−1). Since g is central, the third sum cancels against the second sum
for j > 1. Also, we may reindex the second double sum and replace i by i − 1.
This yields
δn( fn(x))

=

n−1∑
j=1

j−1∑
i=0

(−1)i+ j(a0, . . . ,ai ai+1, . . . ,a j ,g,a j+1, . . . ,an−1)+(a0g,a1, . . . ,an−1)

+

n−3∑
j=0

n−2∑
i= j+1

(−1)i+ j+1(a0, . . . , a j , g, a j+1, . . . , ai ai+1, . . . , an−1)

+

n−1∑
j=0

(−1)n+ j (a0, . . . , a j , g, a j+1, . . . , an−2),
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where as before the summand for j = n− 1 in the last sum is −(a0, a1, . . . , an−1).
We need to show that this is equal to the expression

(g− 1)x − sn−2(δn−1(x))= (ga0, a1, . . . , an−1)− (a0, . . . , an−1)

−

n−2∑
i=0

(−1)i sn−2(a0, . . . , ai ai+1, . . . , an−1)

− (−1)n−1sn−2(a0, . . . , an−2).

Expanding sn−2 and adjusting indexing yields that this is equal to

(ga0, a1, . . . , an−1)− (a0, . . . , an−1)

+

n−2∑
i=0

i−1∑
j=0

(−1)i+ j+1(a0, . . . , a j , g, a j+1, . . . , ai ai+1, . . . , an−1)

+

n−2∑
i=0

n−1∑
j=i+1

(−1)i+ j (a0, . . . , ai ai+1, . . . , a j , g, a j+1, . . . , an−1)

+

n−2∑
j=0

(−1)n+ j (a0, . . . , a j , g, a j+1, . . . , an−2).

We need to match all summands to those for the expression of δn(sn−1(x)). The
first summand cancels against the second summand in δn(sn−1(x)). The second
summand cancels against the summand for j = n− 1 in the fourth (and last) sum
of δn(sn−1(x)). The last sum cancels against the remaining summands of the fourth
sum in δn(sn−1(x)). The first double sum cancels against the second double sum
in δn(sn−1(x)) because both can be written as sum indexed by pairs (i, j) with
0 6 i < j 6 n− 2. Similarly, the remaining double sum cancels against the first
double sum in δn(sn−1(x)), because both can be written as a sum indexed by pairs
(i, j) with 06 i < j 6 n− 1. �

8. The BV operator in degree 2

For convenience, we restate Theorem 1.1 (xi). For elements x and y in a group G
we write [x, y] for xyx−1 y−1, and we recall that [x, yz] = [x, y] y[x, z]y−1.

Theorem 8.1. Let G be a finite group, g ∈ Z(G), and x ∈ H 2(G, k). Suppose
that x corresponds to a central extension

1→ k+→ K → G→ 1.

For any h ∈ G, choose an inverse image ĥ ∈ K . Then identifying H 1(G, k) with
Hom(G, k), we have

[ĝ, ĥ] =1g(x)(h) ∈ k+.

We combine Theorem 7.1 and the following Lemma to prove Theorem 8.1:
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Lemma 8.2. Let 1→ Z → Ĝ → G → 1 be a central extension of an abelian
group G. For g ∈ G choose an inverse image ĝ of g in Ĝ such that 1̂G = 1Ĝ . Let
α : G×G→ Z be the 2-cocycle defined by

α(g, h)= ĝĥ ĝh −1

for g, h ∈ G. Let β, γ : G×G→ Z be the maps defined by

β(g, h)= α(h, g),

γ (g, h)= [ĝ, ĥ] = ĝĥĝ−1ĥ−1

for g, h ∈ G. Then β, γ are 2-cocycles, and we have αβ−1
= γ .

Proof. All parts are trivial verifications. �

Proof of Theorem 8.1. By Theorem 1.1 (iii), 1g commutes with restriction to
subgroups of G containing g. Hence, it suffices to consider the case where G =
〈g, h〉. Therefore, in order to prove the formula for 1g(x)(h) we may assume
that G is abelian. Note that with the notation of Theorem 7.1, we have

s1(a0, a1)= (a0, g, a1)− (a0, a1, g),

and hence its dual (s1)
∨ sends a kG-homomorphism ζ : kG3

→ k to the kG-
homomorphism ζ ◦ s1 : kG2

→ k sending (a0, a1) to ζ(a0, g, a1)− ζ(a0, a1, g).
The identification of H 2(G; k) in terms of classes of cocycles is given via the
adjunction map

HomkG(kG3, k)∼= Homk(kG2, k)

sending a kG-homomorphism ζ : kG3
→ k to the k-linear map kG2

→ k determined
by the assignment (a1, a2) 7→ ζ(1, a1, a2). Similarly, the identification H 1(G, k)=
Hom(G, k+) is given via the adjunction HomkG(kG2, k)∼= Homk(kG, k). Thus, if
α is a 2-cocyle representing the class x , then the 1-class determined by α ◦ s1 is
given by the assignment

a1 7→ α(g, a1)−α(a1, g).

By Lemma 8.2 applied with Z = k+ (written additively) this is equal to the map

a1 7→ [â1, ĝ].

Writing h instead of a1, we get that 1g(x)(h)= [ĥ, ĝ] for all h ∈ G as claimed. �

9. Examples

Throughout this section p is a prime and k is a field of characteristic p. As a
consequence of Theorem 1.1 (vii), in order to calculate the maps 1g, where g is a
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central element in a finite group G, it suffices to calculate in the case where G is a
finite p-group. See [Adem and Milgram 1994] for background material.

Example 9.1. Let G be a finite cyclic p-group, and let g ∈ G. Then H∗(G, k)
contains a polynomial subalgebra k[x] with x in degree 2 such that H∗(G, k) is
generated as a module over k[x] by 1 and a degree 1 element y. Then x is in the
image of the map H 2(G,Z)→ H∗(G, k), and hence1g(x)= 0 by Theorem 1.1 (x).
Moreover, by Theorem 1.1 (ix), we have 1g(y)= y(g). Thus, using that 1g is a
derivation by Theorem 1.1 (i), for any nonnegative integer n, we have 1g(xn)= 0
and 1g(xn y)= xn y(g).

Using the canonical identification HH∗(kG) = kG ⊗k H∗(G, k) from [Holm
1996; Cibils and Solotar 1997], this determines the BV operator 1 on HH∗(kG)
as follows: we have

1(g⊗ xn)= 0,

1(g⊗ xn y)= y(g) · g⊗ xn.

Other papers dealing with BV and Gerstenhaber structures on Hochschild cohomol-
ogy of cyclic groups include [Sánchez-Flores 2012], [Yang 2013], and [Angel and
Duarte 2017].

Example 9.2. Let G be a finite abelian p-group, and let g ∈ G. Combining
Example 9.1 with the Künneth formula Proposition 6.6 determines 1g. Using again
the canonical identification of algebras HH∗(kG)= kG⊗k H∗(G, k) from [Holm
1996; Cibils and Solotar 1997], the BV operator 1 on HH∗(kG) is determined by
1(g⊗ ζ )= g⊗1g(ζ ).

Example 9.3. Let G be the generalised quaternion group Q2n of order 2n (n > 3),
and let γ be the central element of order two in G. Then H∗(G, F2), is generated by
two elements x and y in degree one and an element z of degree four. The elements
x and y are nilpotent and generate a finite Poincaré duality algebra with top degree
three. Since z is not a zero divisor, we have

∞∑
i=0

t i dimF2 H i (Q2n , F2)=
1+ 2t + 2t2

+ t3

1− t4 .

The exact relations between x and y depend on whether n = 3 or n > 3. If n = 3,
then x2

+ xy+ y2
= 0 and x2 y+ xy2

= 0; whereas if n > 3, then the relations are
xy = 0 and x3

+ y3
= 0. Again using Theorem 1.1 (ix), and using the fact that γ

belongs to the derived subgroup of G, we have 1γ (x)=1γ (y)= 0, and it remains
to compute 1γ (z).

In both cases, H 3(G, F2) is one dimensional, and we have H 3(G,Z)= 0. More-
over, there is an element z′ ∈ H 4(G,Z) with 2nz′ = 0 and such that z is the
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image of z′ under the reduction mod two map H 4(G,Z)→ H 4(G, F2). Therefore
1γ (z′)= 0, and the commutativity of the diagram

H 4(G,Z)
1γ
//

��

H 3(G,Z)

��

H 4(G, F2)
1γ
//// H 3(G, F2)

shows that 1γ (z) = 0. Since 1γ is a derivation, it follows that it is zero on all
elements of H∗(G, F2).

Other papers considering the BV structure on Hochschild cohomology of quater-
nion groups include [Ivanov 2014] and [Ivanov et al. 2015].

Example 9.4. Let G be the dihedral group of order 2n with n > 3,

G = 〈g, h | g2
= h2
= 1, (gh)2

n−1
= 1〉,

and let γ be the central involution (gh)2
n−2

in G. Then H∗(G, F2)=F2[x, y, z]/(xy),
where |x | = |y| = 1 and |z| = 2. Using Theorem 1.1 (ix) and the fact that γ belongs
to the derived subgroup of G, we have 1γ (x) = 1γ (y) = 0, so it remains to
evaluate 1γ (z). Now z corresponds to the central extension

1→ F+2 → Q→ G→ 1,

where Q is the generalised quaternion group of order 2n+1

Q = 〈ĝ, ĥ | ĝ2
= ĥ2
= (ĝĥ)2

n−1
, (ĝĥ)2

n
= 1〉.

The inverse image of γ in Q is not central, so it follows from Theorem 1.1 (xi)
that 1γ (z) 6= 0. Now G has an automorphism of order two swapping g and h,
and swapping x and y. It lifts to an automorphism of Q swapping ĝ and ĥ, and
therefore fixes z. So it also fixes 1γ (z). The only nonzero fixed element of degree
one is x + y, and therefore we have

1γ (z)= x + y.

Since 1γ is a derivation, this determines its value on all elements of H∗(G, F2).
We have

1γ (x i z j )= j x i+1z j−1, 1γ (yi z j )= j yi+1z j−1.

Remark 9.5. As well as the proof given in Section 8, Theorem 1.1 (xi) can be
proved by a direct computation as follows. Note that [ĝ, ĥ] ∈ k+ is central, hence
equal to [ĥ−1, ĝ], and the formula for1g(x) as stated does indeed define a group ho-
momorphism from G to k+. Next, since1g commutes with restriction to subgroups
of G containing g, it suffices to consider the case where G = 〈g, h〉. This is an
abelian group, and so by Example 9.2, in principle we are done. If H 1(G, k) is one
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dimensional, both sides are zero. Otherwise, it is two dimensional, and H 2(G, k)
modulo the image of H 2(G,Z)→ H 2(G, k) is one dimensional, spanned by the
product of two degree one elements. This reduces the proof to an explicit and
slightly tedious computation.

Example 9.6. Let G be the semidihedral group of order 2n (n > 4); that is,

G = 〈g, h | g2
= 1, h2n−1

= 1, ghg = h2n−2
−1
〉.

The cohomology ring was computed by Munkholm (unpublished) and [Evens and
Priddy 1985]. We have

H∗(G, F2)= F2[x, y, z, w]/(x3, xy, xz, z2
+ y2w),

where |x | = |y| = 1, |z| = 3, and |w| = 4. Evens and Priddy also observed that the
cohomology is detected on the dihedral subgroup of order eight, D = 〈g, h2n−3

〉

and the quaternion subgroup of order eight, Q = 〈gh, h2n−3
〉. Let γ be the central

element h2n−2
of order two. Using Theorem 1.1 (ix) and the fact that γ belongs to

the derived subgroup of G, we have 1γ (x)=1γ (y)= 0.
Applying 1γ to the relation z2

= y2w and using the fact that 1γ is a derivation,
we have y21γ (w)= 0. Now multiplication by y2 from H 2(G, F2) to H 4(G, F2) is
injective, so we deduce that 1γ (w)= 0.

It remains to compute 1γ (z). This has degree two, so it is a linear combination
of x2 and y2. To determine which, we use the information at the bottom of page 71
in [Evens and Priddy 1985] on restriction to D and Q. First note that our x and y
are their x and x+ y; this is determined by which nonzero element of H 1(G, F2) is
nilpotent and what it annihilates. So y restricts to zero on Q, while x and x2 have
nonzero restriction. Since 1γ is zero on H∗(Q, F2) by Example 9.3, it follows
that 1γ (z) is a multiple of y2. The restriction of z to H∗(D, F2) is a degree three
element which is not in the subring generated by H 1(D, F2). So using Example 9.4,
it follows that 1γ is nonzero on the restriction of z, and hence 1γ (z) cannot be
zero. Hence, we have 1γ (z)= y2.

Using the fact that 1γ is a derivation, it is determined by the information that
1γ (x)= 0, 1γ (y)= 0, 1γ (z)= y2, and 1γ (w)= 0.

10. The Gerstenhaber bracket

Throughout this section, let p be a prime and let k be a field of characteristic p. In
this section, we combine the formula

(10.1) [x, y] = (−1)|x |1(xy)− (−1)|x |1(x)y− x1(y)

relating the BV operator 1 to the Gerstenhaber bracket and products in HH∗(kG),
with the Siegel–Witherspoon formula

(10.2) xy =
∑

u

TrCG(gū)
CG(g)∩CG(ū)(ResCG(g)

CG(g)∩CG(ū)(x) ·ResCG(ū)
CG(g)∩CG(ū)(u

∗(y))),
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where ū = uhu−1, for products in HH∗(kG) in terms of the centraliser decompo-
sition from [Siegel and Witherspoon 1999]. Here, G is a finite group, g, h ∈ G,
x ∈ H∗(CG(g), k) and y ∈ H∗(CG(h), k), and u runs over a set of double coset
representatives of CG(g) and CG(h) in G. The notation u∗(y) denotes the image
of y in H∗(CG(uhu−1), k) under conjugation by u. The left side is the product of
x and y regarded as elements in HH∗(kG) via the centraliser decomposition. The
summand on the right-hand side indexed by u is in the summand in the centraliser
decomposition corresponding to guhu−1, and the multiplication of the restrictions
on the right is the usual cup product in H∗(CG(g)∩CG(guhu−1), k).

Combining (10.1) and (10.2), we have

(10.3) [x, y] =
∑

u

(
(−1)|x |1guhu−1 TrCG(guhu−1)

CG(g)∩CG(uhu−1)

(
ResCG(g)

CG(g)∩CG(uhu−1)
(x)

·ResCG(uhu−1)

CG(g)∩CG(uhu−1)
(u∗(y))

)
+TrCG(guhu−1)

CG(g)∩CG(uhu−1)

(
−(−1)|x | ResCG(g)

CG(g)∩CG(uhu−1)
(1g(x))

·ResCG(uhu−1)

CG(g)∩CG(uhu−1)
(u∗(y))

−ResCG(g)
CG(g)∩CG(uhu−1)

(x)·ResCG(uhu−1)

CG(g)∩CG(uhu−1)
(u∗(1h(y)))

))
.

Note that if g ∈ Z(G) then this formula simplifies considerably. Namely,
CG(g) = G, CG(g) ∩ CG(h) = CG(gh), and the transfers do not do anything.
There is only one double coset, and we may take u = 1. The formula then becomes

[x, y] = (−1)|x |1gh(ResG
CG(gh)(x) · y)− (−1)|x | ResG

CG(gh)(1g(x)) · y

−ResG
CG(gh)(x) ·1h(y),

as an element of H∗(CG(gh), k) in the centraliser decomposition. Then, using
Theorem 1.1 (i) and (v), we expand the first term on the right side into four terms.
Using Theorem 1.1 (iii), two of these cancel with the remaining two terms to leave

(10.4) [x, y] = (−1)|x |1h(ResG
CG(gh)(x)) · y+ResG

CG(gh)(x) ·1g(y).

If x and y have degree one, then using Theorem 1.1 (ix) this formula becomes

(10.5) [x, y] = −x(h)y+ y(g)ResG
CG(gh)(x).

Now assume that G is a finite p-group. If g ∈ Z(G)∩8(G), where 8(G) is the
Frattini subgroup of G, then we have y(g)= 0, and this simplifies further to

[x, y] = −x(h)y.

Again, these formulas are as elements of the H∗(CG(gh), k) component in the
centraliser decomposition.



36 DAVE BENSON, RADHA KESSAR AND MARKUS LINCKELMANN

If both g and h are in Z(G), then notationally, it helps to keep track of g and h by
writing g⊗ x and h⊗ y, since the subring of HH∗(kG) corresponding to elements
in the centre in the centraliser decomposition is isomorphic to k Z(G)⊗ H∗(G, k).
With this notation, (10.4) becomes

[g⊗ x, h⊗ y] = gh⊗ ((−1)|x |1h(x) · y+ x ·1g(y)).

In particular, k Z(G)⊗ H∗(G, k) ⊆ HH∗(kG) is a Lie subalgebra. Finally, if x
and y have degree one, this becomes

(10.6) [g⊗ x, h⊗ y] = gh⊗ (−x(h)y+ y(g)x).

If g, h ∈ Z(G)∩8(G) then the terms x(h) and y(g) vanish, and the Lie bracket is
equal to zero.

We record these observations in the following proposition:

Proposition 10.7. Let G be a finite p-group. Suppose that g ∈ Z(G)∩8(G) and
h ∈G. If x ∈ H 1(CG(g), k) and y ∈ H 1(CG(h), k) in the centraliser decomposition
of HH 1(kG), then

[x, y] = −x(h)y

as an element of H 1(CG(gh), k) in the centraliser decomposition.
In particular, the Lie bracket is identically zero on

k(Z(G)∩8(G))⊗ H 1(G, k)6 HH 1(kG).

Remark 10.8. If g ∈ Z(G)∩8(G) and h is not in 8(G), then we can choose x ∈
H 1(CG(g), k) such that x(h)=−1, and then for all y ∈ H 1(CG(h), k) the element
[x, y] is y, but as an element of H 1(CG(gh), k) in the centraliser decomposition.

Taking g = 1, we see that given h 6∈8(G), there exists x ∈ H 1(CG(1), k) such
that for every y ∈ H 1(CG(h), k) we have [x, y] = y. This proves in particular the
following result:

Proposition 10.9. Let G be a nontrivial finite p-group. Then the Lie algebra
HH 1(kG) is not nilpotent.

On the other hand, we have the following theorem, whose proof is modelled on
the method in [Jacobson 1943]:

Theorem 10.10. Let G be a finite p-group such that |Z(G) : Z(G)∩8(G)| > 3.
Then the Lie subalgebra k Z(G)⊗ H 1(G, k)⊆ HH 1(kG) is not soluble, and there-
fore nor is HH 1(kG).

Proof. We compute inside k Z(G)⊗ H∗(G, k) ⊆ HH∗(kG), as described above.
Since by assumption we have |Z(G) : Z(G) ∩ 8(G)| > 3, either p is odd or
Z(G)/(Z(G)∩8(G)) is noncyclic. We treat these two cases separately.
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Case (i). Suppose that p is odd. Choose an element g ∈ Z(G) \8(G), and choose
x ∈ H 1(G, k) with x(g) = 1. Set e = g ⊗ x , f = −g−1

⊗ x , and h = −1⊗ 2x .
Since g 6= g−1, these elements are linearly independent, and using (10.6) we have

[e, f ] = −1⊗ (x(g)x − x(g−1)x)= h,

[h, e] = −g⊗ (x(1)2x − 2x(g)x)= 2e,

[h, f ] = g−1
⊗ (x(1)2x − 2x(g−1)x)=−2 f.

Thus e, f , and h span a copy of the Lie algebra sl(2) inside HH 1(kG). Therefore,
it is not soluble.

Case (ii). Suppose that Z(G)/(Z(G) ∩ 8(G)) is noncyclic. Choose elements
g and h in Z(G) so that their images in Z(G)/(Z(G)∩8(G)) generate distinct
cyclic subgroups. Choose elements x and y in H 1(G, k) with x(g)= 1, y(g)= 0,
x(h)= 0, and y(h)= 1. Then we compute

[g−1
⊗ x, g⊗ y] = 1⊗ y [h−1

⊗ y, h⊗ x] = 1⊗ x

[g⊗ x, 1⊗ x] = g⊗ x [h⊗ y, 1⊗ y] = h⊗ y

[g⊗ y, 1⊗ x] = g⊗ y [h⊗ x, 1⊗ y] = h⊗ x

[g−1
⊗ x, 1⊗ x] = −g−1

⊗ x [h−1
⊗ y, 1⊗ y] = −h−1

⊗ y

[g−1
⊗ y, 1⊗ x] = −g−1

⊗ y [h−1
⊗ x, 1⊗ y] = −h−1

⊗ x .

Letting U be the linear span in HH 1(kG) of the elements appearing in these com-
putations, we see that [U,U ] ⊇U . It follows that any Lie subalgebra containing U
is not soluble, and hence k Z(G)⊗ H 1(G, k) and HH 1(kG) are not soluble. �

Remark 10.11. If G is the cyclic group of order two and k has characteristic
two, then HH 1(kG) is a Lie algebra of dimension two, and is therefore soluble.
This shows that the condition |Z(G) : Z(G)∩8(G)|> 3 cannot be weakened to
|Z(G) : Z(G)∩8(G)|> 2.

11. Extraspecial p-groups

As an illustration of the methods developed in this paper, in this section we examine
the Lie structure of HH 1(kG) when G is an extraspecial p-group. The methods also
cover some other p-groups of class two, so we formulate them in more generality.
We begin with a lemma.

Lemma 11.1. Suppose that G is a finite p-group, and that g, h ∈ G satisfy

8(CG(g))=8(CG(h))=8(G),

and CG(g) ∩ CG(h) is a proper subgroup of CG(gh). If x ∈ H∗(CG(g), k) and
y ∈ H∗(CG(h), k) are elements of degree zero or one, then

TrCG(g) ∩CG(h)CG(gh)(ResCG(g)
CG(g)∩CG(h)(x) ·ResCG(h)

CG(g)∩CG(h)(y))= 0.
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Proof. Since8(CG(g))=8(G), we may write x =ResG
CG(g)(x̂) with x̂ ∈ H∗(G, k).

Similarly, y = ResG
CG(h)(ŷ) with ŷ ∈ H∗(G, k). Then,

TrCG(gh)
CG(g)∩CG(h)(ResCG(g)

CG(g)∩CG(h)(x) ·ResCG(h)
CG(g)∩CG(h)(y))

= TrCG(gh)
CG(g)∩CG(h) ResG

CG(g)∩CG(h)(x̂ · ŷ)

= |CG(gh) : CG(g)∩CG(h)|ResG
CG(gh)(x̂ · ŷ)= 0,

since |CG(gh) : CG(g)∩CG(h)| is zero in k. �

Hypothesis 11.2. We suppose that G is a finite p-group satisfying 8(G)= Z(G),
and g, h are elements of G such that for all u ∈ G, and for all x ∈ H∗(CG(g), k),
y ∈ H∗(CG(h), k) of degree zero or one, we have either:

(i) CG(g)∩CG(uhu−1)= CG(guhu−1), or

(ii) TrCG(guhu−1)

CG(g)∩CG(uhu−1)
(ResCG(g)

CG(g)∩CG(uhu−1)
(x) ·ResCG(uhu−1)

CG(g)∩CG(uhu−1)
(u∗(y)))= 0.

We remark that if8(CG(g))=8(CG(h))=8(G)= Z(G) then Hypothesis 11.2
holds by Lemma 11.1.

Suppose that this hypothesis holds, let x ∈ H 1(CG(g), k) and y ∈ H 1(CG(h), k),
and let u be a double coset representative of CG(g) and CG(h) in G. Suppose
first that the containment CG(g) ∩ CG(uhu−1) 6 CG(guhu−1) is proper. Then
by Hypothesis 11.2, the term corresponding to u in the Siegel–Witherspoon for-
mula (10.2) for xy is zero. The same argument holds for 1g(x)y and x1h(y), and
so the term corresponding to u in (10.3) vanishes.

So the formula (10.3) becomes

(11.3) [x, y] =
∑

u

(
−1guhu−1

(
ResCG(g)

CG(guhu−1)
(x) ·ResCG(uhu−1)

CG(guhu−1)
(u∗(y))

)
+ResCG(g)

CG(guhu−1)
(1g(x)) ·ResCG(uhu−1)

CG(guhu−1)
(u∗(y))

−ResCG(g)
CG(guhu−1)

(x) ·ResCG(uhu−1)

CG(guhu−1)
(u∗(1h(y)))

)
,

where u runs over those double coset representatives with

CG(guhu−1)= CG(g)∩CG(uhu−1).

For such a representative u, g commutes with uhu−1. Since uhu−1h−1
∈ [G,G]6

Z(G), this implies that g commutes with all conjugates of h. Now applying
Theorem 1.1 (iii), we have

(11.4) [x, y] =
∑

u

(
−1guhu−1

(
ResCG(g)

CG(guhu−1)
(x) ·ResCG(uhu−1)

CG(guhu−1)
(u∗(y))

)
+1g ResCG(g)

CG(guhu−1)
(x) ·ResCG(uhu−1)

CG(guhu−1)
(u∗(y))

−ResCG(g)
CG(guhu−1)

(x) ·1uhu−1 ResCG(uhu−1)

CG(guhu−1)
(u∗(y))

)
.
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Set
x ′ = ResCG(g)

CG(guhu−1)
(x) and y′ = ResCG(uhu−1)

CG(guhu−1)
(u∗(y)).

By Theorem 1.1 (v), we have 1guhu−1 = 1g +1uhu−1 on H∗(CG(guhu−1), k).
Hence, using Theorem 1.1 (i) and (ix), the component of [x, y] coming from u is

(11.5) −1guhu−1(x ′y′)+1g(x ′)y′− x ′1uhu−1(y′)

=−(1g(x ′)y′+1uhu−1(x ′)y′− x ′1g(y′)− x ′1uhu−1(y′))
+1g(x ′)y′− x ′1uhu−1(y′)

= x ′1g(y′)−1uhu−1(x ′)y′

= y(u−1gu)ResCG(g)
CG(guhu−1)

(x)− x(uhu−1)ResCG(uhu−1)

CG(guhu−1)
(u∗(y)),

where the multiplications are ordinary cohomology cup products performed inside
the summand H∗(CG(guhu−1), k) corresponding to guhu−1 in the centraliser
decomposition.

We partition a set of conjugacy class representatives in G into subsets Ci , where g
is in Ci if |G : CG(g)| = pi , and for i > 0 we set

X i =
⊕
g∈Ci

H∗(CG(g), k) and Yi =
⊕
j>i

X j .

Here, as usual, the direct sum is over G-conjugacy classes of g ∈ Ci . Then,

HH∗(kG)=
n⊕

i=0

X i .

It follows from (11.5) that if i 6 j then [X i , X j ] ⊆ Y j , and hence [Yi , Y j ] ⊆ Y j . So
the Yi are Lie ideals, and HH 1(kG) is soluble if and only if each of the Yi/Yi+1 is
soluble. Note that by Proposition 10.7, since Z(G)=8(G) we have [X0, X0] = 0,
and [X0, X i ] = X i for i > 0.

As an example, we apply these methods to extraspecial p-groups.

Theorem 11.6. Let G be an extraspecial p-group. Then HH 1(kG) is a soluble Lie
algebra. The derived length is two, except in the case where G has order p3 and is
isomorphic to Z/p2 oZ/p, in which case it has derived length three.

Proof. Let G be extraspecial, and let Z = Z(G) = 8(G), a group of order p.
Every centraliser in G is either equal to G or has index p in G. We divide into
two cases. The second case deals with extraspecial groups which are semidirect
products Z/p2 oZ/p, and the first case covers all other extraspecial groups. So in
the first case, if |G| = p3 then G is either an extraspecial group of exponent p (p
odd) or the quaternion group of order eight (p = 2).

Case (i). G 6∼= Z/p2 o Z/p. In this case, we claim that Hypothesis 11.2 holds
for every g and h in G. If |G| > p5 then for every g and h in G we have
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8(CG(g)) = 8(CG(h)) = 8(G) = Z(G), so by Lemma 11.1, the hypothesis
holds. On the other hand, if |G| = p3 with p odd, and part (i) of the hypothesis
does not hold, then neither g nor h is central, and we have

|CG(g)∩CG(uhu−1)| = p and |CG(guhu−1)| = p2

. So CG(guhu−1) is elementary abelian, and then the transfer map from any proper
subgroup is zero. Finally, if G is a quaternion group Q8, then the restriction
maps from subgroups of order four to Z is zero. This completes the proof that
Hypothesis 11.2 holds for every g and h in G.

So we may apply the theory derived in this section. Using the notation above,
we have HH 1(kG) = X0 ⊕ X1, and since Z(G) = 8(G) we have [X0, X0] = 0
and [X0, X1] 6 X1. It remains to examine [X1, X1]. Let g and h be noncentral
elements of G, and let x ∈ H 1(CG(g), k) and y ∈ H 1(CG(h), k).

If CG(g) 6= CG(h), then there are no double coset representatives u satisfying
CG(g)∩CG(uhu−1)=CG(guhu−1) in the formula (11.3), because the intersection
has index p2 in G, and so [x, y] = 0.

On the other hand, if CG(g) = CG(h) then writing C for their common value,
the double cosets are just cosets of C . Choosing v ∈G \C , we may take the double
coset representatives to be 1, v, . . . , v p−1. Now v does not commute with h, so
defining z = vhv−1h−1, we have Z = 〈z〉. For some 2 6 m 6 p − 1, we have
zm−1

= vgv−1g−1, zm
= vghv−1(gh)−1. So for 06 i 6 p− 1, we have

vi hv−i
= hzi , vi gv−i

= gz(m−1)i , and vi ghv−i
= ghzmi .

Choose n with mn congruent to one modulo p. Then vni ghv−ni
= ghzi .

All contributions to [x, y] are landing in the same summand in the centraliser
decomposition, but need conjugating to match the elements being centralised. The
contribution coming from vi is

y(v−i gvi ) x − x(vi hv−i ) (vi )∗(y)

in the CG(gvi hv−i ) component, namely the CG(ghzi )= CG(v
ni ghv−ni ) compo-

nent. So we must conjugate to get

y(v−i gvi ) (v−ni )∗(x)− x(vi hv−i ) (v−(n−1)i )∗(y)

in the CG(gh) component. If |G| > p3, we have Z 6 8(C), and so x and y
vanish on Z . So conjugating by vi has no effect. It follows that the above term is
independent of i , and when we sum from i = 0 to p− 1 we get zero.

On the other hand, if |G| = p3, then x and y need not vanish on the central
element z. In this case, we obtain

y(v−i gvi )= y(gz−(m−1)i )= y(g)− (m− 1)iy(z),

x(vi hv−i )= x(hzi )= x(h)+ i x(z).
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So for γ ∈ C we have

[x, y](γ )=
p−1∑
i=0

(
(y(g)−(m−1)iy(z))(x(γ )+nir x(z))−(x(h)+i x(z))(y(γ )

+(n−1)ir y(z))
)
.

Since p > 3, the expressions
∑p−1

i=0 1 and
∑p−1

i=0 i are zero in k, and so all but the
quadratic term vanish. If p > 5 the quadratic term vanishes too since

∑p−1
i=0 i2

= 0
in k, but when p = 3 it equals −1, and we have

[x, y](γ )= (−1)(−(m− 1)y(z)nr x(z)− x(z)(n− 1)r y(z))

= r((m− 1)n+ (n− 1))x(z)y(z)

= r(mn− 1)x(z)y(z).

This is equal to zero since m and n are inverses modulo p. This completes the
proof in the case |G| = p3, and we are done.

Case 2. G ∼= Z/p2 oZ/p. In this case, the failure of Hypothesis 11.2 comes from
the fact that transfer from Z to a subgroup Z/p2 is nonzero in degree one (but zero
in degree two). Restriction in degree one from Z/p2 to Z is zero, however, and
transfer from Z/p to (Z/p)2 is zero in all degrees, so for the analysis above to fail,
we must restrict a degree one element from (Z/p)2 to Z and then transfer to Z/p2.
So we write X1 = X ′1⊕ X ′′1 , where X ′1 is the sum of the terms in the centraliser
decomposition of HH 1(kG) with CG(g) elementary abelian of order p2 and X ′′1
the sum of the terms with CG(g) cyclic of order p2.

As usual we have [X0, X0]=0, [X0, X ′1]= X ′1, and [X0, X ′′1 ]= X ′′1 . Furthermore,
if g, h, and gh have the same centraliser, then the same argument as in Case (i) shows
that [x, y] = 0. So we may assume that CG(g)∩CG(h)= Z and |CG(gh)| = p2.

If p is odd, then there is a unique subgroup isomorphic to (Z/p)2 in G, and so
if CG(g)∼= (Z/p)2 and CG(h)∼= Z/p2 then CG(gh)∼= Z/p2. Hence [X ′1, X ′1] = 0,
[X ′1, X ′′1 ]6 X ′′1 , and [X ′′1 , X ′′1 ] = 0. So HH 1(kG) is soluble of derived length three.

On the other hand, if p = 2 then there is a unique subgroup isomorphic to Z/4
in G, and so if CG(g) ∼= (Z/2)2 and CG(h) ∼= Z/4 then CG(gh) ∼= (Z/2)2. This
time we have [X ′1, X ′1] 6 X ′′1 and [X ′1, X ′′1 ] = 0, and [X ′′1 , X ′′1 ] = 0. So HH 1(kG)
is again soluble of derived length three. �

Remark 11.7. The cases of the extraspecial 2-groups D8 and Q8 of order eight were
also considered in [Rubio y Degrassi et al. 2019; Eisele and Raedschelders 2020].
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