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Abstract

This paper estimates the income and price elasticities of the residential elec-
tricity demand for twelve major European countries using annual time series
from 1975 to 2018. In the modelling exercise we adopt a novel economet-
ric approach that features automatic model selection, saturation methods for
detecting outliers and structural breaks, and the automatic model selection al-
gorithm Autometrics. The selected specification for each country is an error
correction model, from which it emerges a cointegrating relationship between
electricity consumption, income, electricity price and climate variables, once
that outliers and breaks are accounted for. The empirical results show that
the estimated long-run income elasticities are less than one for all countries,
and that the long-run price elasticities are in all cases less than one in absolute
value. These results suggest that for European countries electricity is a normal
good and that demand is price inelastic.
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1 Introduction

The goal of the European Union (EU) is to provide secure, sustainable, competitive
and affordable energy to households and businesses (European Commission, 2015).
To this aim the EU has enacted several legislative acts to improve energy efficiency
at all stages of the energy supply chain, increase the share of renewable energy
sources in the energy mix, and support low-carbon technologies. Energy legislation
has also introduced a new design for the electricity market that allows electricity to
move across the EU countries and attracts investment in energy storage.

Accurate estimation of income and price elasticities of electricity demand is of
great importance to design effective energy and environmental policies and to assess
the related welfare changes (Schulte and Heindl, 2017). There is a huge body of
literature that has been produced on the topic over the last decades, see among
others Silk and Joutz (1997), Beenstock et al.(1999), Filippini and Pachauri (2004),
Hondroyiannis (2004), Narayan et al.(2007), Amarawickrama and Hunt (2008), Der-
giades and Tsoulfidis (2008), Nakajima and Hamori (2010), Alberini et al.(2011),
Bernard et al.(2011), Dilaver and Hunt (2011a,b), Blázquez et al.(2013), Krishna-
murthy and Kriström (2015), Csereklyei (2020).

The majority of previous empirical studies have used aggregate macro data at
country or subnational/state level, whereas a comparatively smaller number of pa-
pers has used household survey data. The quantitative methods most adopted
include various types of time series cointegration models, structural time series
models (STSM), and panel data methods. The control variables also differ across
the studies, but typically include a measure of income, electricity price, price of
substitute products, climate indexes, population, degree of urbanization and, for
studies using household survey data, households characteristics (e.g. size, age of
the components, level of education) and several dwelling features. A few papers
(inter alia Amarawickrama and Hunt, 2008; Dilaver and Hunt, 2011a,b; Atalla and
Hunt, 2016) control for energy efficiency improvements and other exogenous factors
such as changes in tastes, behaviour and regulation. Their approach is to estimate
a STSM for the electricity demand, where the above factors are unobserved and
are modelled with a stochastic trend, named the Underlying Energy Demand Trend
(UEDT), that features outliers and structural breaks. This methodology addresses
the issue of modelling outliers and breaks only partially, as it does not permit to
test for all possible outliers and breaks that may have occurred over the estima-
tion period. Overall, with the exception of scholars using the STSM approach, the
modelling of outliers and structural breaks has received only little attention in the
literature on estimating income and price elasticities of electricity demand, as op-
posite to what has happened in the literature on time-series forecasting (see among
others Arora and Taylor, 2013). Hence the need to investigate this matter further.

This paper offers a contribution to fill this gap in the literature on estimating
income and price elasticities of electricity demand in that it adopts a novel econo-
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metric approach to detect for outliers and structural breaks. The approach is to
use automatic model selection, saturation methods to model outliers and structural
breaks (see inter alia Hendry, 1999; Santos et al., 2008; Johansen and Nielsen, 2009;
Castle et al., 2011; Castle et al., 2012 Castle et al., 2015, Hendry and Doornik,
2014, Bergamelli and Urga, 2016 and Ericsson, 2017) and the search algorithm Au-
tometrics (Doornik, 2009 and Doornik and Hendry, 2018). In particular, we specify
a general unrestricted error correction model for residential electricity demand us-
ing annual time-series aggregate data on electricity consumption, income, price and
climate variables, which we saturate with T (=number of observations) Impulse
and T Step Indicator dummies that capture outliers and structural breaks. Estima-
tion is performed with the search algorithm Autometrics, which allows to conduct
automatic model selection when there are more variables than observations, as is
our case. With this approach we obtain consistent estimates of income and price
elasticities, since the automatic model selection gives a congruent, that is robust to
mis-specification, and parsimonious model.

The empirical exercise is conducted for twelve major European countries, namely
Austria, Belgium, Denmark, France, Germany, Ireland, Italy, Spain, Portugal, Swe-
den, the Netherlands and the UK, using annual time series for the period 1975-2018.
In 2018, the residential sector of these countries accounted for about the 82% of the
total EU-28 residential consumption. To the best of our knowledge this is the first
study that uses this econometric approach to estimate income and price elasticities
of electricity demand.

The empirical results show that the estimated long-run income elasticities are
less than one for all countries, and that the long-run price elasticities are in all cases
less than one in absolute value. These results confirm the findings that electricity
is a normal good for European countries and that demand is price inelastic. At the
same time, the results show differences in the estimated elasticities across countries,
which can be attributed to differences in per-capita GDP and in energy efficiency
levels attained.

The remainder of this paper is organized as follows. Section 2 provides a short
review of the most relevant literature on residential electricity demand modelling.
Section 3 presents the dataset employed in the analysis and describes the econo-
metric methodology adopted, while estimation results are reported and discussed in
Section 4. Section 5 concludes.

2 Literature

Forecasting future needs of electricity and understanding the responsiveness of elec-
tricity demand to changes in its main drivers income and price are of great impor-
tance for both the power industry and the policy makers. The power industry is
especially interested in determining the optimal operations and investment plan-
ning of electricity generation and distribution. Policy makers are most concerned
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with the design of energy and environmental policies that allow to achieve secure,
sustainable and affordable supplies (European Commission, 2015).

In the past decades, a large number of academic and policy papers have been
published on both the estimation of income and price elasticities and the forecast-
ing of electricity. Scholars have proposed alternative methods for estimating and
forecasting electricity demand (often referred to as load) for different time horizons.
These latter are typically grouped into four categories (see Weron, 2006 and Hong
and Fan, 2016): (a) very short-term load forecasting, which considers the interval
from minutes to one hour ahead and is applicable to real-time load control; (b) short-
term load forecasting, where load is sampled at daily basis and the forecast serves for
scheduling the generators and operating the transmission system;(c) medium-term
forecasting, which ranges from one week to one year ahead and is used for forecasting
fuel needs and maintenance of the system elements; (d) long-term forecasting, where
the horizon is several years ahead and the purpose is the strategic planning of the
power system and the design of energy policy. Weron (2006) provides an overview
of the most used modelling and forecasting methods, which include statistical tech-
niques (namely multiple linear regression, semi-parametric additive models, autore-
gressive moving average models and exponential smoothing models) and artificial
intelligence techniques (namely artificial neural networks, fuzzy regression models,
support vector machines and gradient boosting). Hong et al. (2020) provide a re-
view of the literature on load forecasting and illustrate some of the emerging lines of
research. In particular, they discuss the use of machine learning and artificial intel-
ligence techniques, forecast combinations, hierarchical forecasting and probabilistic
load forecasting. The last two methods are those where the literature is most limited
at present. Hong and Fan (2016) provides a review of the literature on probabilistic
load forecasting, whereas Taieb et al. (2021) is one of most recent contribution on
hierarchical probabilistic forecasting using UK residential smart meter data.

This paper adds to the strand of literature on statistical modelling of residential
electricity demand. In particular, our empirical exercise aims to estimate income
and price elasticities that can help designing energy and environmental policies for
European countries. Given the aim of the paper, in what follows we focus only on
reviewing the most recent literature on the estimation of income and price elasticities
for residential electricity demand. These studies can be divided in two broad groups:
the first, and largest one, using aggregate data on electricity consumption, income,
price and various other factors such as price of substitute products, climate indexes,
housing stock, population and degree of urbanization; the second one, more limited,
using micro data from surveys on household features, dwellings characteristics and
use of appliances. To the first group of studies belong, among others, Silk and Joutz
(1997), Beenstock et al.(1999), Filippini (1999), Fatai et al.(2003), Holtedahl and
Joutz (2004), Hondroyiannis (2004), Narayan and Smyth (2005), Halicioglu (2007),
Narayan et al. (2007), Dergiades and Tsoulfidis (2008), Amarawickrama and Hunt
(2008), Eskeland and Mideksa (2010), Nakajima and Hamori (2010), Alberini and

4



Filippini (2011), Azevedo et al. (2011), Dilaver and Hunt (2011a, b), Filippini
(2011), Jamil and Ahmad (2011), Blázquez et al. (2013), Atalla and Hunt (2016),
Cialani and Mortazavi (2018), Filippini et al.(2018) and Csereklyei (2020). In the
second group we find, among others, Filippini and Pachauri (2004), Bernard et al.
(2011), Krishnamurthy and Kriström (2015), Miller and Alberini (2016), Schulte
and Heindl (2017).

In the 1990s and in the first decade of the 2000s, nonstationary time series models
were the most used methods to estimate electricity demand, due to the popularity
of cointegration analysis in econometrics. Beenstock et al. (1999), Fatai et al.
(2003) and Amarawickrama and Hunt (2008) estimate electricity demand using the
two-step Engle and Granger method (Engle and Granger, 1987). Silk and Joutz
(1997), Beenstock et al.(1999), Fatai et al. (2003), Hondroyiannis (2004), Holtedahl
and Joutz (2004), Amarawickrama and Hunt (2008) and Jamil and Ahmad (2011)
employ the maximum likelihood estimation approach to multivariate cointegration
analysis developed by Johansen (1988). Fatai et al. (2003), Narayan and Smyth
(2005), Halicioglu (2007), Amarawickrama and Hunt (2008), and Dergiades and
Tsoulfidis (2008) adopt the autoregressive distributed lag (ARDL) bounds testing
approach to cointegration developed by Pesaran and Shin (1999) and Pesaran et
al. (2001). Cointegration methods allow to obtain short- and long-run elasticities
estimates that are optimal as long as no outliers and structural breaks are present.
But when this is not the case, the econometric analysis may be affected by the well
known omitted variable problems.

The modelling and forecasting of outliers in electricity demand have been ad-
dressed only by time-series forecasting studies, see among others Arora and Tay-
lor(2013) for an example with high-frequency data, and by the literature using
STSM (see among others Amarawickrama and Hunt 2008, Dilaver and Hunt 2011a,
b, Atalla and Hunt 2016). The STSM approach, originally by Harvey (1989), in-
volves decomposing a time series into several unobserved components (i.e. trend,
seasonality, cycle, irregular) and estimating each component separately. A STSM
can then be transformed into a behavioural model by adding exogenous variables,
such as income and price if one wants to estimate the related elasticities. The main
drawback of these studies is that they do not test for all possible T outliers and T
breaks that may have occurred over the period of observation. This in fact is fea-
sible only by using an automatic model selection algorithm that allows to estimate
a model when there are more variables than observations, but none of the studies
above implements such an algorithm.

More recently, panel data methods have started to be used extensively. Fil-
ippini (1999), Eskeland and Mideksa (2010), Azevedo et al. (2011), Bernard et
al.(2011) and Miller and Alberini (2016) use static panel data models. Filippini
(2011), Alberini and Filippini (2011), Blázquez et al. (2013), Cialani and Mortazavi
(2018), Filippini et al. (2018) and Csereklyei (2020) use dynamic panel data models.
Narayan et al. (2007) and Nakajima and Hamori (2010) adopt panel cointegration
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analysis. The main limitation of panel data studies is that they neglect outliers
and structural breaks, which is not a surprise given the existing limited theoretical
framework for the identification of structural breaks in panel data.

Table 1 provides a summary of the most recent literature that uses aggregate data
together with the estimates of the long- and short-run income and price elasticities
of residential electricity demand. Income and prices elasticities vary significantly
across the studies. Short-run income elasticities range between 0.1 to 1.96, while
short-run price elasticities vary between -0.84 and -0.04. Long-run income elasticity
is estimated to vary between 0.25 to 1.97, while long-run price elasticity between
-2.27 to -0.02. As pointed out by meta-analysis studies (see among others Espey and
Espey, 2004 and Labandeira et al., 2017) differences in estimated elasticities may
be due to several factors, including the specification of the demand model and the
estimation method, the type of data (i.e. time series versus cross-section or panel
data), the type of consumer, the country and the sample period and the outlet
where the paper has been published. In particular, Labandeira et al. (2017) show
that price elasticities from panel data studies are significantly larger that those from
time-series ones and that elasticities are smaller for studies using data subsequent
to energy crises (i.e. 1973, 1979 and 2008). Fouquet (2014) in a study on trends
in income and price elasticities of energy demand in the United Kingdom between
the early 19th and the early 21st centuries shows that the absolute values of both
elasticities have declined over time, and by implication, as the level of income rose.

This paper proposes to adopt a novel econometric approach for estimating in-
come and price elasticities for residential electricity demand, which allows to over-
come the limitations of past studies in controlling for all possible outliers and struc-
tural breaks. The approach consists in specifying a general unrestricted error cor-
rection model for residential electricity demand, which we saturate with T Impulse
and T Step Indicator dummies that control for all possible outliers and structural
breaks that may have occurred over the period of observation. Estimation is made
feasible by using the search algorithm Autometrics, which allows to conduct auto-
matic model selection when there are more variables than observations, as is our
case.
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3 Data and Econometric Methodology

3.1 Data Sources

The dataset used in this paper consists of annual time series collected for twelve
major European countries: Austria, Belgium, Denmark, France, Germany, Ireland,
Italy, Spain, Portugal, Sweden, the Netherlands and the UK for the period 1975-
2018. The data are from the International Energy Agency (IEA, 2019) and the
Eurostat (2020). The series are:

- Residential electricity consumption per capita in kWh (Ct): to construct these
series the residential electricity consumption series from the IEA(2019) have
been divided by the series of Population by the Eurostat (2020). The value of
residential electricity consumption for 2018 is from the Eurostat (2020);

- Real gross domestic product per capita (2015 USD) (GDPt): to construct
these series the GDP series from the IEA(2019) have been divided by the
series of Population by the Eurostat (2020);

- Real residential electricity price (2015 USD/kWh) (Pt): these are total prices
from the IEA(2019);

- Heating Degree Days index (HDDt) from the Eurostat (2020): the values are
calculated as: if T i≤ 15◦C, then HDD =

∑
i(18 − Ti) else HDD = 0, where

Ti is the temperature in Celsius degrees,

- Cooling Degree Days index (CDDt) from the Eurostat (2020): the values are
calculated as: if T i≥ 24◦C, then CDD =

∑
i(Ti − 21) else CDD = 0

3.2 Econometric Method

In this paper, we use automatic model selection, saturation methods and Automet-
rics to estimate the residential electricity demand for each of the twelve countries
separately. Autometrics is a search algorithm implemented in the econometric soft-
ware OxMetrics8 1 that performs automatic model selection following the “Hendry”
or “LSE” general-to-specific procedure (Doornik, 2009). This approach starts from
the specification of a general unrestricted model (GUM) that incorporates every-
thing that potentially matters in a relationship (i.e. variables, dynamic effects,
breaks, outliers, nonlinearities, trends) and applies a sequence of reductions consist-
ing in the elimination of variables that are statistically insignificant, so as to find
a congruent and parsimonious model encompassing the GUM for representing the
relationship under examination. When the GUM contains many variables, the re-
duction can be very time consuming to be undertaken manually, if not unfeasible in

1OxMetrics is a software for econometric analysis of time series, forecasting, financial econometric
modelling, and statistical analysis of cross-section and panel data http://www.oxedit.com/products
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the case when there are more variables than observations. Automatic selection al-
gorithms are therefore necessary to perform this task. Doornik (2009) and Doornik
and Hendry (2018) provide the details of Autometrics that this subsection briefly
summarizes.

The Autometrics algorithm performs a tree search, where at the root of the
tree there is the GUM while every branch of the tree represents a possible reduc-
tion path from the GUM. Thus, at every node and subnode of the tree there is a
model containing fewer variables than the GUM. The search process starts from
eliminating the most insignificant variable from the GUM and continues until the
branch that started with the elimination of that variable has finished. When the
reduction process is completed, the resulting model is called a terminal and Auto-
metrics moves on to exploring another branch. The modeller chooses the so-called
target size, which is the proportion of irrelevant variables that survive the reduction
process. If a terminal does not pass the full battery of the diagnostic tests, then
Autometrics backtracks until a valid model is found. The diagnostic tests are: the
error autocorrelation test (Godfrey, 1978); the ARCH test (Engle, 1982); the Nor-
mality test (Doornik and Hansen, 1994); the heteroscedasticity test (White, 1980)
and the RESET test (Ramsey, 1969).

Autometrics allows to add into automatic model selection impulse and/or step
indicators for every data point in the sample so as to capture outliers and breaks.
Impulse-Indicator Saturation (IIS) and Step-Indicator Saturation (SIS) are proce-
dures to test for an unknown number of breaks, occurring at unknown times and are
well documented in the literature by papers illustrating their theoretical properties
and studies presenting interesting empirical applications (see inter alia Hendry, 1999;
Santos et al., 2008; Johansen and Nielsen, 2009; Castle et al., 2011; Castle et al.,
2012, Castle et al., 2015, Hendry and Doornik, 2014, Bergamelli and Urga, 2016 and
Ericsson, 2017). IIS uses the zero–one impulse indicator dummies which are defined
as Ii,t = 1 for t = i, zero otherwise to saturate a model. A model for a sample of T
observations will include T of such dummies in its general unrestricted formulation.
SIS uses one-off step dummies which are defined as Si,t = 1 for t ≤ i, zero otherwise.
Step dummies are useful to capture permanent or long-lasting changes that are not
otherwise incorporated into a specific empirical model.

The inclusion of T impulse and T step dummies for a sample of T observa-
tions generates by default a model with more variables than observations, making
estimation unfeasible at first sight. However, estimation can be done since Auto-
metrics creates blocks of dummies for subsets of observations, includes one block
of dummies into the model, select those which are significant, repeats the process
for another block of dummies, and finally re-estimates the model with the retained
dummies from the different blocks and selects the statistically significant dummies
from the combined set. Autometrics also offers as an option to set certain variables
as “fixed”, that is variables that are forced to be included in the final selected model
and hence that cannot be deleted by the algorithm, even if they are not statistically

9



significant.
For modelling residential electricity demand, we specify an unrestricted error

correction model that contains both IIS and SIS. The general equation is:

∆lnCt = α0+α1∆lnCt−1+α2∆lnGDPt+α3∆lnGDPt−1+α4∆lnPt+α5∆lnPt−1+

α6∆lnHDDt+α7∆lnHDDt−1+α8∆lnCDDt+α9∆lnCDDt−1+β1lnCt−1+β2lnGDPt−1+

β3lnPt−1 + β4lnHDDt−1 + β5lnCDDt−1 +

T∑
i=1

γiIi,t +

T∑
i=1

δiSi,t + εt (1)

where ∆lnCt is the annual rate of change of residential electricity consumption
per capita, ∆lnGDPt is the annual rate of change of GDP per capita, ∆lnPt is
the annual rate of change of residential electricity price, ∆lnHDDt is the annual
rate of change of HDD, ∆lnCDDt is the annual rate of change of CDD, ∆lnCt−1,
∆lnGDPt−1, ∆lnPt−1, ∆lnHDDt−1 and ∆lnCDDt−1 are the one-year lagged rates
of change of the relating variables, while lnCt−1, lnGDPt−1, lnPt−1, lnHDDt−1 and
lnCDDt−1 are the one-year lagged of the logs of residential electricity consumption
per capita, GDP per capita, residential electricity price, HDD and CDD respectively.
In running these regressions, we set the last four variables as “fixed”.

The presence of a meaningful long-run relationship between the variables is
checked by verifying that the coefficient associated with the lagged dependent vari-
able in log-levels (β̂1) is statistically significant with negative sign (Dufour, 1997).
The correct specification of the selected model is evaluated using the battery of
diagnostic tests listed above. Finally, the long-run income and price elasticities are
calculated.

4 Results and Discussion

Table 2 and Table 3 report the estimated models automatically selected by Auto-
metrics for the twelve European countries. For each country considered, the final
selected model is a congruent and parsimonious error correction model. The imple-
mentation of model saturation with IIS and SIS determines that the selected impulse
and step indicator dummies capture anomalous events, i.e. outliers and breaks, that
have featured the demand in a particular year.

In all models, the estimated coefficient of the error correction term β̂1 is statis-
tically significant at the 1% significance level and negative, therefore indicating the
presence of cointegration or long-run relationship between electricity consumption,
income (as measured by GDP), price and the climate variables HDD and CDD.
The estimated coefficients on income and price in log-levels, namely β̂2 and β̂3, are
statistically significant for all countries at conventional significance levels, with ex-
ception of the estimated coefficient on the log-level of income for Germany. The
coefficient on lnHDDt−1, representing the impact of cold weather and hence the
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demand of electricity for heating purposes, is statistically significant for Germany,
Denmark, France, Ireland, Italy, Spain and the UK, whereas the variable accounting
for hot weather, namely lnCDDt−1, is not statistically significant for most of the
countries with the exception of Belgium, Germany and Spain, for which however
the coefficients are quite small.

The short-run impact coefficients on income (α̂2 and α̂3) and price (α̂4 and α̂5)
are statistically insignificant for most of the countries, since the variables in first
difference are not retained in the final selected models. The coefficients associ-
ated to ∆lnHDDt, representing the estimated short-run impact of cold weather on
electricity consumption are statistically significant for Austria, Belgium, Germany,
Denmark, France, Ireland and the UK, whereas when we look at the short-rum im-
pact of hot weather, namely the coefficients on ∆lnCDDt, for no country we a find
a statistically significant coefficient. The finding that electricity demand is more
sensitive to cold than to hot weather is in line with Cialani and Mortazavi (2018)
who offer as an explanation the fact that in Europe periods of heating are generally
longer than periods of when air conditioning is needed.

Table 4 reports the long-run income and price elasticities, calculated for each
selected model by dividing the β̂2 (coefficient on GDP) and β̂3 (coefficient on price)
by the relevant β̂1 (coefficient on electricity consumption at time t-1). We also report
95% confidence intervals to provide an indication of the uncertainty in estimates of
the income and price elasticities. All the long-run income and price elasticities are
statistically significant at the conventional 1% and 5% level, with the exception of
income elasticity for Germany, which is not significant, and of income elasticity for
Denmark, which is significant at the 10% level. In addition, all long-run elasticities
have the expected sign, i.e. positive for income and negative for price. The width of
the confidence interval reflects the different standard errors of the point estimates.
The confidence interval of income elasticity of Austria is very large reflecting the
relatively large standard error of the estimated coefficient on GDP, whereas the
confidence interval of income elasticity of France is quite narrow because of the very
small (relative to the coefficient size) standard errors of both the estimated coefficient
on GDP and the estimated coefficient on electricity consumption. Long-run income
elasticities are less than one for all countries, which suggests that electricity is a
necessity good rather than a luxury good for European countries. The differences in
income elasticities across countries can be explained by several idiosyncratic factors.
A first factor is the different level of per-capita GDP of the countries. In particular,
we observe that countries with a relatively lower per-capita GDP (in terms of average
value over the years 1975-2018) feature a larger income elasticity than countries with
a comparatively higher per-capita GDP. For example, Denmark has an average per-
capita GDP (in 2015 US dollars) of $ 40,462 and a long-run income elasticity of
0.19, whereas Portugal has an average per-capita GDP (in 2015 US dollars) of $

24,330 and a long-run income elasticity of 0.74. Figure 1 displays the relationship
between long-run income elasticities and per-capita GDP from which it emerges a
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Table 4: Estimated long-run income and price elasticities and related 95% confidence
intervals.

Long-run Income
Elasticity

[95% Conf.
Interval]

Long-run Price
Elasticity

[95% Conf.
Interval]

Austria 0.930 [0.064 5.375] -0.760 [-0.858 -0.258]
Belgium 0.591 [0.305 1.051] -0.295 [-0.389 -0.144]
Denmark 0.194 [-0.026 0.671] -0.347 [-0.462 -0.097]
France 0.400 [0.265 0.565] -0.266 [-0.326 -0.192]
Germany 0.164 [-0.161 1.219] -0.354 [-0.391 -0.231]
Ireland 0.242 [0.074 0.586] -0.803 [-0.937 -0.737]
Italy 0.765 [0.459 1.260] -0.155 [-0.191 -0.095]
Netherlands 0.637 [0.266 1.559] -0.081 [-0.108 -0.014]
Portugal 0.739 [0.152 2.178] -0.755 [-0.874 -0.465]
Spain 0.708 [0.180 1.664] -0.699 [-0.785 -0.651]
Sweden 0.809 [0.112 2.819] -0.668 [-0.748 -0.439]
UK 0.506 [0.241 1.057] -0.607 [-0.703 -0.562]

negative relationship between the two variables, the only exceptions being Austria
and Sweden. This result is consistent with the finding of Fouquet (2014) that income
elasticity declines as income increases due to saturation effect, namely with greater
income, consumption of goods increases only moderately. A second factor relates

Figure 1: Relationship between long-run income elasticities and per-capita GDP
(average value 1975-2018 in 2015 US $).
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to the different energy efficiency scores achieved by countries. Figure 2 reports the
overall energy efficiency scores for households calculated over the period 2000-2018
from the ODYSSEE-MURE Database2. The overall energy efficiency score gives
a snapshot of the current energy efficiency level reached by a country. The scores
are calculated on three energy efficiency criteria: the energy efficiency level, the
energy efficiency progress and the energy efficiency policies. For each of the three
criteria each country is scored between 0 and 1 on the basis of a variety of indicators
(extracted from the ODYSSEE Database) and of energy policies (extracted from the
MURE Database), the overall energy efficiency score is an average of the scores for
each criteria. Figure 3 shows that countries that score the highest (i.e. Ireland, UK,
France) feature a long-run income elasticity smaller than 0.5, whereas countries
that score the lowest (i.e. Italy, Portugal, Austria, Sweden) display the largest
long-run income elasticity. This could be interpreted as that for countries that
have effectively implemented energy efficiency policies and have a newer stock of
appliances as income rises, consumption of electricity will increase only moderately.

Residential electricity demand for all countries is price inelastic not only in the
short-run but also in the long-run, as the calculated long-run price elasticities always
have an absolute value of less than one. This is not a surprise given that electric-
ity is an essential good which can be substituted by natural gas only for heating
and cooking services. The differences in long-run price elasticities across countries
are due to idiosyncratic factors, most importantly limited possibility to substitute
electricity with other fuels for some services.

Overall, the differences in long-run income and price elasticities across countries
highlight that despite the implementation of several reforms to achieve a common
market and to improve energy efficiency standards at EU-level, idiosyncratic com-
ponents still prevail, such as different per-capita income level and different energy
efficiency levels attained.

We can compare the estimated elasticities in this study against those reported
in the literature on European countries. The average of the estimated income elas-
ticities in our study is 0.56, which is in line with the value of 0.61 reported in
Csereklyei (2020), but smaller than the range of 0.87-0.92 reported in Cialani and
Mortazavi (2018) and the 0.8 value found by Eskeland and Mideksa (2010). The
estimated income elasticity in our study for Spain is slightly larger than that found
by Blázquez et al. (2013), which is 0.61. The average price elasticity in this study
is -0.48, which is slightly smaller than -0.53 in Csereklyei(2020) but larger than the
findings in Cialani and Mortazavi (2018), where the value of long-run price elastic-
ity ranges from -0.30 and -0.19. Our estimate of price elasticity is also larger than
the -0.20 reported by Eskeland and Mideksa (2010). The estimated price elasticity

2The ODYSSEE-MURE database provides detailed energy consumption by end-use (heating,
appliances, solar penetration, other thermal uses), energy efficiency and CO2 related indicators as
well as energy efficiency policy measures by sector for EU countries, Norway, Serbia, Switzerland
and the United Kingdom. The data are available from 2000 only. https://www.odyssee-mure.eu/
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in this study for Spain is larger than that found by Blázquez et al. (2013), which
is -0.19. As pointed out by meta-analyses research (see among others Espey and
Espey, 2004 and Labandeira et al., 2017) differences in estimated elasticities may
be due to several factors, including the specification of the demand model and the
estimation method, the type of data (i.e. time series versus cross-section or panel
data), the type of consumer, the country and the sample period and the type of
outlet where the paper has been published.

As residential electricity demand is price inelastic for all twelve countries, any
policy aimed at energy conservation using only price increases as an instrument
would have a limited effect on reducing electricity consumption, while causing a
heavy loss in consumer welfare. Hence, to meet the long-term goals of decarboni-
sation, the EU policy makers should continue on the pathway of increasing energy
efficiency of appliances and buildings, and of improving consumers’ awareness and
education to environmentally friendly habits.

Figure 2: Overall energy efficient scores for households of 12 European countries
(2000-2018). Source: Enerdata (2021). ODYSSEE-MURE Database.

16



Figure 3: Relationship between long-run income elasticities and energy efficiency
scores.

5 Conclusions

The aim of this paper was to contribute to the literature on estimating income and
price elasticities for residential electricity demand by adopting a novel econometric
approach that consists in using automatic model selection, saturation methods and
Autometrics. This approach allowed to get consistent estimates of elasticities by
automatically selecting all the relevant variables that affect electricity demand as
well as outliers and breaks.

The residential electricity demand was estimated for Austria, Belgium, France,
Germany, Denmark, Ireland, Italy, Spain, Portugal, the Netherlands, Sweden and
the UK, using annual time series for 1975-2018. The final selected model for each
country was a correctly specified error correction model, from which it emerged a
cointegrating relationship between electricity consumption, income, electricity price
and the climate variables HDD and CDD, once that impulse and step dummies
were incorporated into the specification to capture outliers and breaks occurring at
unknown times. The long-run income and price elasticities of residential demand
unveiled similarities between major European countries, given that electricity was
found to be a normal good (with estimated long-run income elasticity smaller than
one) and price inelastic for all twelve countries. In particular, the estimated long-
run income elasticities ranged between 0.93 (Austria) and zero (Germany), while
long-run price elasticities were found to be between -0.80 (Ireland) and -0.08 (the
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Netherlands). The results showed differences in the estimated elasticities across
countries, which can be attributed to differences in per-capita GDP and in energy
efficiency levels attained. Residential electricity demand being price inelastic bears
important consequences on the choice of the most effective policy tool to promote
energy conservation in Europe. Any policy based exclusively on price increases
(e.g.energy taxes) could produce a heavy loss in consumers’ welfare, discouraging
consumption only marginally. EU decision makers should therefore continue to focus
on promoting alternative energy efficiency policies to increase energy saving.

The main findings in this paper suggest interesting developments. First, the
empirical analysis could be extended to all other countries in Europe to investigate
further whether and to what extent commonalities in households’ electricity con-
sumption exist across the European area. In addition, this method could be applied
to model the industrial electricity demand. Finally, the results of this study could
be used to build a full cost-benefit analysis to evaluate alternative policy options to
achieve the EU’s long-term decarbonisation target. These developments are left to
future work.
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