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Implicit field learning for unsupervised anomaly 

detection in medical images 

***************************************************** 

1 ****** 
2 ****** 

Abstract. We propose a novel unsupervised out-of-distribution detection method 

for medical images based on implicit fields image representations. In our ap-

proach, an auto-decoder feed-forward neural network learns the distribution of 

healthy images in the form of a mapping between spatial coordinates and proba-

bilities over a proxy for tissue types. At inference time, the learnt distribution is 

used to retrieve, from a given test image, a restoration, i.e. an image maximally 

consistent with the input one but belonging to the healthy distribution. Anomalies 

are localized using the voxel-wise probability predicted by our model for the re-

stored image. We tested our approach in the task of unsupervised localization of 

gliomas on brain MR images and compared it to several other VAE-based anom-

aly detection methods. Results show that the proposed technique substantially 

outperforms them (average DICE 0.640 vs 0.518 for the best performing VAE-

based alternative) while also requiring considerably less computing time. 

Keywords: anomaly detection, unsupervised learning, implicit fields, occu-

pancy networks. 

1 Introduction 

Multiple deep learning methods have been proposed to automatically localize anoma-

lies in medical images, with fully-supervised approaches being able to achieve high 

segmentation accuracies [1]. However, these methods 1) rely on the availability of large 

and diverse annotated datasets for training, and 2) they are specific to the anomalies 

annotated in the dataset and are therefore unable to generalize to previously unseen 

pathologies. On the other hand, the unsupervised learning paradigm is not affected by 

these limitations. Unsupervised approaches usually aim at learning the distribution of 

healthy/normal unannotated images and at classifying as anomalies the images that dif-

fer from the learnt distribution. Two categories of generative models, namely Varia-

tional Auto-Encoders (VAEs) and Generative Adversarial Networks (GANs), have 

been implemented in many techniques for unsupervised anomaly detection. However, 

comparative studies [2] show that their performance is still far from that of equivalent 

supervised methods.  

 

Related Works: Generally, anomaly detection techniques make use of generative mod-

els to learn the distribution of healthy/normal images and leverage the learnt 
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distribution to compute voxel-by-voxel anomaly scores (AS), which identify image ar-

eas that differ from the normal anatomy. The vanilla VAE-based approach assumes that 

a model trained on normal data will not be able to reconstruct anomalies, and conse-

quently that the voxel-wise reconstruction loss can be used as AS. However, auto-en-

coders with enough capacity can also reconstruct abnormal samples, making VAE re-

construction loss a poor AS [2], [3]. Several methods have tried to overcome this limi-

tation. For instance, [3] proposed to leverage the KL divergence gradient w.r.t voxels 

as AS. [4] added context-encoding tasks to incentivise the VAE to properly generate 

restored (i.e. anomaly-free) images. In [5], the authors proposed to restore images by 

minimising a loss function composed by the VAE ELBO and a data consistency term. 

[6] proposed to generate restorations with a vector-quantized VAE by resampling low-

probability latent variables. GAN-based approaches [7], [8] rely on a similar ideas for 

restoration. However, GANs notably suffer from mode collapse, i.e. the tendency to 

learn to generate samples only from a subset of the normal image distribution. In addi-

tion, also GANs can generate anomalous samples [2]. Due to these issues, most of the 

approaches based on generative models have yielded limited anomaly detection perfor-

mance, struggling to reach DICE scores of 0.5 in brain MRI datasets [2]. 

Techniques based on supervised learning using datasets with synthetically-generated 

anomalies [9] have been very recently proposed for anomaly detection. They have 

achieved high accuracy in the MICCAI 2020 Medical Out-of-Distribution challenge 

(MOOD) [10], which partially included synthetic anomalies in its test set. While prom-

ising, these approaches move the focus to the task of generating realistic anomalies, and 

their performance on datasets with real abnormalities remains largely unexplored. 

 

Contributions: Recently, an approach referred to as implicit field learning (or occu-

pancy networks) has been introduced to reconstruct 3D shapes through learning their 

implicit surface representation [11], [12]. Instead of using convolutional networks to 

learn a distribution over a dense set of voxels, in this approach a linear neural network 

learns to map continuous spatial coordinates to either object/background labels (binary 

classification) [11], [12] or to the signed distance function with respect to the object 

surface [13]. Importantly, the authors of [13] also proposed to substitute the auto-en-

coder architecture with an auto-decoder architecture, removing the need for an encoder 

network to obtain the latent representation. 

In this paper, we propose a novel approach to unsupervised anomaly detection that 

leverages the implicit field learning paradigm. Our main contributions are the follow-

ing: 

- We propose a modification of the implicit field learning technique that enables 

learning relevant anatomical features for unsupervised anomaly detection; 

- We propose an anomaly detection neural network pipeline which overcomes the 

limitations of VAE models: by relying on an auto-decoder architecture, our net-

work generates anomaly-free reconstructions. Additionally, the implicit field 

representation is detached from a specific input resolution and can be scaled 

seamlessly to deal with high resolution 3D medical images; 

- We tested this approach in the task of unsupervised localization of gliomas on 

brain MR images and compared it to several other VAE-based approaches. The 
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proposed technique substantially outperforms the competition both in terms of 

accuracy (average DICE 0.640 vs 0.518 for the best performing competitor) and 

computing speed (55.4 s vs 293.1 s, respectively). 

2 Methods 

Implicit field representation: While a 3D image is typically represented by the inten-

sities of a set of discrete voxels, implicit field networks learn a continuous function 𝑓 

with spatial coordinates 𝒑 = (𝑥, 𝑦, 𝑧) ∈ ℝ3 as input. Instead of a binary label for ob-

ject/background classification, we propose that this function maps to the probability 

distribution over 𝐶 classes, each representing a range of voxel intensities (see next sec-

tion). In addition to the spatial coordinates, the network receives as input a latent vari-

able 𝒛 ∈ ℝ𝐷 which describes a specific 3D image: 

 𝑓: ℝ3 ×  ℝ𝐷 → {1, 2, … 𝐶} (1) 

The network 𝑓 learns the posterior probability over intensity ranges for continuous 

spatial coordinates 𝒑 and latent variables 𝒛. We model the posterior probability using a 

softmax activation: 

𝑃(𝑡 = j|𝒛, 𝒑) =
exp 𝑓𝑗(𝒛, 𝐩)

∑ exp 𝑓𝑖(𝒛, 𝐩)𝐶
𝑖

 

The latent variables 𝒛 are obtained using the auto-decoder architecture proposed in 

[13]: as opposed to training an encoder network to produce the latent representation, in 

the auto-decoder approach each training 3D image is paired with a 𝐷-dimensional vec-

tor in an embedding space. During training, backpropagation optimizes not only the 

network parameters but also the latent vector representation of each 3D image. In the 

auto-decoder architecture (see Fig. 1), at inference time, the latent vector is initialized 

randomly and optimization is used to find the latent representation that better represents 

the test 3D image. 

Specifically, during training the expression (2) is used to optimize latent codes and 

parameters 𝜽 of network 𝑓𝜽 by sampling 𝐾 data points from 𝑁 training 3D images: 

 argmin
𝜽, {𝒛𝑖}𝑖=1

𝑁
∑ (∑ ℒ(𝑓𝜽(𝒛𝑖 , 𝒑𝑖,𝑗), 𝑡𝑖,𝑗) +

1

𝜎2
‖𝒛𝑖‖2

2𝐾
𝑗=1 )𝑁

𝑖=1  (2) 

Note that ℒ is the cross-entropy loss between network output and the true voxel class 

𝑡 ∈  {1,2, … 𝐶}. Similarly to [13], we assumed the prior for the latent codes distribution 

to be a spherical multivariate-Gaussian with covariance 𝜎2𝐼. The 𝜎 hyperparameter al-

lows to modulate the amount of regularization in the latent distribution. During infer-

ence, the expression (2) is optimized only for 𝒛 (fixing network parameters 𝜽), obtain-

ing the latent code that best describes a given test 3D image. 
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We also utilized the coordinate encoding function described in [14], by which each 

of the coordinates in p is first normalized to the range [−1,1] and later encoded using 

the expression (3) (shown for 𝑥. We used 𝐿 = 10 in our experiments): 

 γ(x) = (sin(20πx), cos(20πx),···, sin(2𝐿−1πx), cos(2𝐿−1πx)) (3) 

Intensity range encoding: Instead of modelling 3D image intensities as a continuous 

variable, we discretize the intensity values in 𝐶 clusters, allowing the neural network to 

learn the probability distribution over 𝐶 classes of intensities. We wish to define the 

intensity clusters so that the encoding preserves as much information as possible in the 

original volume. With this objective, we use k-Means, treating the number of clusters 

as an hyper-parameter (see Fig. 2). 

 
Fig. 1 Schema for auto-decoder training. A latent vector is obtained for a training sample and 

concatenated with coordinates sampled from the 3D image volume. The network learns the 

mapping (latent features, coordinates) → multiclass encoding of voxels intensities. 

 

               

                 

  
 
 
 

                        

          

          

          

          

 

 

 

 

 

 

              

                 

                    

                 

         

         

           

                           

                
       

  

  

  

  

 

           

               

 
Fig. 2 Left: intensity and count of voxels per cluster (using kMeans, with 𝑘 =  10, on 2 mil-

lion voxels randomly sampled across multiple subjects). Right: effects of intensity range 

encoding on a sample image. 
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The rationale behind intensity range encoding is two fold. First, it enables a rather 

straightforward extension of implicit field learning approaches to the task of image re-

construction. Second, it allows to untie the computation of the AS from distances in 

image intensities between original image and reconstructed version (which is the most 

common strategy for approaches based on generative models). Instead, in the proposed 

technique the AS is derived from the predicted probability over intensity clusters, which 

we assume to better represent different tissue types. 

 

Mode-pooling smoothing: We found that smoothing and denoising the 3D images vol-

umes slightly improved anomaly detection accuracy for our approach. In order to pre-

serve the overall structures and only remove spurious intensity values, we propose a 3D 

mode-pooling layer which, for a 3-dimensional sliding window, returns the most com-

mon intensity cluster. We used a 2x2x2 mode-pooling filter in our training set and 

3x3x3 in validation and test sets. 

 

Voxel-wise Anomaly Score (AS): At inference time, we aim at retrieving a healthy 

image from the model consistent with a test image. The retrieved image is called a 

restoration, as it preserves consistency with the test image but it belongs to the learnt 

distribution of healthy images. Anomalies are finally located by comparing the restora-

tion with the test image. In order to generate a restoration, we move along latent space 

searching for the latent vector 𝒛 that minimizes the following expression over 𝐾 ran-

domly sampled data points: 

 argmin
𝒛

∑ ℒ(𝑓𝜽(𝐳, 𝒑𝑗), 𝑡𝑗) +
1

𝜎2
‖𝒛‖2

2𝐾
𝑗=1  (4) 

Minimization is performed with Adam optimizer for 700 steps with 𝐾 =  16,200. 

Once a restoration is generated with the retrieved 𝒛, we can compute a voxel-based 

anomaly score (AS). Specifically, we estimate the probability over intensity clusters 

for each voxel using the network and compute the voxel-wise cross-entropy loss be-

tween the test image and the restoration as anomaly score:  

 𝐴𝑆 =  −log 𝑃(𝑡 = 𝑡𝐺𝑇|𝒛, 𝒑) 

where 𝑡𝐺𝑇 is the true voxel intensity after intensity range encoding. The proposed 

voxel-wise AS is similar to the one in [7], replacing absolute residuals with cross-en-

tropy to account for the intensity range encoding. We also perform post-processing to 

denoise the obtained AS obtained using a min-pooling layer (with filter size = 3) and 

average-pooling layer (with filter size = 15), both 3-dimensional. 

3 Experiments and Results 

Experimental set-up: We tested our approach by training the proposed technique on a 

dataset of brain MR images from healthy subjects and testing it on images with gliomas. 

As benchmarks, we trained and tested 3 VAE-based anomaly detection techniques. 

Since these methods have been originally presented with 2D architectures, we created 
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a 2D version of our approach (which used MR slices as inputs) to enable a fairer com-

parison. In the 2D experiments we processed 1 every 4 axial slices, (i.e., 40 slices per 

volume). We then evaluated our approach in its native 3D implementation using 3D 

MR image volumes for training and testing.  

 

Datasets and data pre-processing: We use two publicly available brain MRI datasets: 

─ The Human Connectome Project Young Adult (HCP) dataset [15] with images of 

1,112 young and healthy subjects. 

─ The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [16], 2018 

edition dataset, consisting of images with annotated gliomas. 

The training set consists of 1,055 images from HCP, the test set of 50 images ran-

domly sampled from BRATS  and the validation set of 11 (6 from BRATS and 5 from 

HCP), used for hyper-parameter tuning. In both HCP and BRATS we use the pre-pro-

cessed, skull-stripped T2-weighted structural images. Additionally, in all experiments 

but one, both datasets were downsampled to 160x160x160 resolution, intensities were 

clipped to the percentile 98 and later normalized to the range [0,1]. In one experiment, 

we tested our approach using instead the original, high-resolution images, training at 

300 voxel resolution in HCP and testing at 240 voxel resolution in BRATS. No aug-

mentations were performed in training the proposed technique. Elastic transforms, scal-

ing, rotations and random brightness and contrast were instead applied to all VAEs 

benchmark experiments. In VAE experiments, images are also normalized to have zero 

mean and unit standard deviation. 

For our approach, 𝑘 = 10 was chosen for intensity clustering after tuning. 

 

Network architecture and implementation details: We used the same network archi-

tecture and training details from [13] for all our experiments. The decoder is a feed-

forward network composed of 8 fully-connected layers. Latent dimensionality is 256, 

all hidden layers have 512 units and use ReLU as activation and weight normalization. 

We apply dropout in all layers with probability 0.2. The embedding space is initialized 

with 𝑁(0, 0.012) and the prior covariance hyper-parameter is set to 𝜎 = 0.01. Training 

lasted 2,000 epochs with Adam optimizer and we applied a learning rate decay. Train-

ing batches are composed of 97,200 randomly sampled points (16,200 points from 6 

different volumes). Implementation, trained models and test sets are made publicly 

available in 1. All experiments were run using a Nvidia GTX 1070 GPU. 

In 2D experiments, we assign a latent code with 256 dimensions to each axial slice 

instead of the whole volume and prediction is also conditioned on the axial coordinate. 

At inference time, we obtain an AS for one axial slice every four. Each axial AS is 

replicated 4 times to return to the original axial resolution and the AS post-processing 

(min-pooling and average-pooling) is performed with 3D filters on the resulting vol-

ume. We also followed this methodology in all 2D VAE benchmarks. 

 

 
1 xxxxxxxxxxxxxxxxx 
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Performance evaluation: In order to assess the voxel-wise anomaly detection perfor-

mance we followed the conventions used in [2]. We report the best possible DICE-

score [DICE] in our test set which is calculated as the maximum DICE taking into con-

sideration all individual voxels in the test set. Additionally, we determine the optimal 

threshold for AS using the validation set and calculate the DICE score using this thresh-

old for each subject in the test set. Mean and standard deviations of subject specific 

DICE scores are reported in Table 1. We also report Average Precision (AP), area under 

Receiver Operating Characteristics (AUROC), the False Positive Rate at 95% recall 

(FPR@95R) and inference time per image volume in seconds (IT (s)). 

Table 1. Experimental results on BRATS 2018 dataset. 

Method [DICE] DICE (𝜇 ± 𝜎) AP AUROC FPR@95R IT (s) 

2 dimensional       

VAE (1) 0.472 0.447 ± 0.161 0.477 0.949 0.2229 0.1 

VAE restoration (2) 0.417 0.390 ± 0.146 0.413 0.936 0.2448 79.1 

VQ-VAE (3) 0.568 0.518 ± 0.188 0.593 0.972 0.1366 293.1 

IF 2D (ours) 0.612 0.555 ± 0.178 0.665 0.991 0.0456 55.4 

3 dimensional       

IF 3D (ours) 0.681 0.640 ± 0.177 0.733 0.992 0.0462 51.1 

IF 3D* (ours) 0.716 0.672 ± 0.155 0.771 0.994 0.0386 64.1 

1 – VAE with 10 latent dimensions, L1 reconstruction loss. 

2 – VAE with 128 latent dimensions, 500 restoration steps as described in [5]. 

3 – VQ-VAE with 20x20 latent, 8 restorations. Implementation and preprocessing from [6]. 

* – Trained and test in original high-resolution (300 voxel res. in HCP and 240 BRATS) 

 

At 160 voxel resolution, the proposed 3D implicit fields (IF) method improved mean 

DICE score by 12 points (0.640 vs 0.518 of VQ-VAE). A moderate increase of 4 points 

was also observed when comparing to the 2D IF implementation. Importantly, our 

method can also seamlessly capitalize, without architectural modifications, on the 3D 

high-resolution images, with the mean DICE score increasing to 0.672. While convo-

lutional architectures require pre-specified resolutions, the implicit fields auto-decoder 

approach allowed us to train and test in different resolutions. Qualitative results are 

shown in Fig. 3.  

These results show that our method improves on the state of the art in the task of 

localizing anomalies when training and testing using different datasets with different 

acquisition protocols. It is expected that image augmentation would help alleviate the 

differences produced by diverse acquisition pipelines, however augmentations were not 

applied in our method implementation. The auto-decoder architecture forces a latent 

code to be pre-assigned to each training sample, consequently the augmented images 

need to be consistent across training epochs.  

Inference computing time is also moderate, with 51 seconds per volume for the 3D 

experiments. Note that for 2D methods, the time reported correspond to only one every 

four axial slices and consequently it is not directly comparable with IF 3D methods. 
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The inference time is mostly associated with the optimization required to retrieve the 

latent test image representation. Adding an encoder network to the architecture would 

further reduce the inference time (either switching to an auto-encoder architecture or 

training an encoder after the auto-decoder, similarly to [8]).  

The optimization used to retrieve restorations translates in stochasticity at inference 

time because the minimization can converge to slightly different restorations. This 

could become a challenge if the algorithm converged to bad local minima, however it 

may present as well an opportunity to improve results by calculating the AS taking into 

consideration multiple restorations near the optimal 𝒛. 

Finally, in our experiment VAE restoration underperformed VAE reconstruction 

loss, which is unexpected given the previous studies [2], [5]. Differences in our imple-

mentation, namely deeper architectures with residual blocks, a smaller latent space, 

batch normalization and differences in image normalization, could have improved our 

VAE reconstruction or limited the effectivity of the restoration method. 

4 Conclusion 

We presented a novel unsupervised anomaly segmentation method based on implicit 

field learning that outperforms previous VAE-based approaches in glioma segmenta-

tion in brain MR images. In the future, we intend to perform further evaluations relative 

to other brain pathologies and medical image modalities.  

 

 

 

 

 

 
Fig. 3 Visual comparison of anomaly scores (pink) versus ground truth (black) for two dif-

ferent subjects (central axial slice). In brackets, DICE score for the whole subject. 
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