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Purpose: To establish whether deep learning methods are able to improve the signal-to-noise 12 
ratio of time-domain (TD) optical coherence tomography (OCT) images to approach that of 13 
spectral-domain (SD) OCT. 14 
Design: Method agreement study and progression-detection in a randomized, double-masked, 15 
placebo-controlled, multi-centre trial for open-angle glaucoma (OAG) [UK Glaucoma Treatment 16 
Study (UKGTS)]. 17 
Participants: Cohort for training and validation: 77 stable OAG participants with TDOCT and 18 
SDOCT imaging at up to 11 visits within 3 months. Cohort for testing: 284 newly-diagnosed OAG 19 
patients with TDOCT from a cohort of 516 recruited at 10 UK centres between 2007 and 2010. 20 
Methods: An ensemble of generative adversarial networks (GANs) was trained on TDOCT and 21 
SDOCT image pairs from the training dataset and applied to TDOCT images from the testing 22 
dataset. TDOCT were converted to synthesized SDOCT images and segmented via Bayesian fusion 23 
on the output of the GANs.  24 
Main Outcome Measures: 1) Bland-Altman analysis to assess agreement between TDOCT and 25 
synthesized SDOCT average retinal nerve fibre layer thickness (RNFLT) measurements and the 26 
SDOCT RNFLT. 2) Analysis of the distribution of the rates of RNFLT change in TDOCT and 27 
synthesized SDOCT in the two treatments arms of the UKGTS was compared. A Cox model for 28 
predictors of time-to-incident VF progression was computed with the TDOCT and the synthesized 29 
SDOCT. 30 
Results: The 95% limits of agreement between TDOCT and SDOCT were [26.64, -22.95], between 31 
synthesized SDOCT and SDOCT were [8.11, -6.73], and between SDOCT and SDOCT were [4.16, -32 
4.04]. The mean difference in the rate of RNFL change between UKGTS treatment and placebo 33 
arms with TDOCT was 0.24 (p=0.11) and with synthesized SDOCT was 0.43 (p=0.0017). The hazard 34 
ratio for RNFLT slope in Cox regression modeling for time to incident VF progression was 1.09 35 
(95% CI 1.02 to 1.21) (p=0.035) for TDOCT and 1.24 (95% CI 1.08 to 1.39) (p=0.011) for synthesized 36 
SDOCT. 37 
Conclusions: Image enhancement significantly improved the agreement of TDOCT RNFLT 38 
measurements with SDOCT RNFLT measurements. The difference, and its significance, in rates of 39 
RNFLT change in the UKGTS treatment arms was enhanced and RNFLT change became a stronger 40 
predictor of VF progression. 41 



Introduction 42 

Open-angle glaucoma is a progressive optic neuropathy in which retinal ganglion cell (RGC) axon 43 

loss, probably as a consequence of damage at the optic disc, causes a loss of vision, 44 

predominantly affecting the mid-peripheral visual field and in the ‘macula vulnerability zone’[1]. 45 

Glaucoma is the leading cause of irreversible blindness worldwide and the second major cause 46 

for blind registration in the UK[2,3]. The vision loss is associated with restricted mobility[4], falls 47 

and motor vehicle accidents[5]. Evaluating the rate of deterioration of the pathology is crucial in 48 

order to assess the risk of functional impairment and to establish sound treatment strategies. 49 

Therefore, accurately monitoring the efficacy of disease-modifying drugs in glaucoma therapy is 50 

of great importance. Clinically, standard automated perimetry (SAP) is employed to assess the 51 

status of the visual field (VF), whereas optical coherence tomography (OCT) is used as a surrogate 52 

measure to evaluate retinal ganglion cell (RGC) loss by measuring retinal nerve fibre layer (RNFL) 53 

thickness around the optic nerve head (ONH).  54 

Evidence that imaging can identify progressive glaucomatous damage has been 55 

extensively reported in literature, recognising the potential of structural measures to support VF 56 

testing[18-25]. Medeiros et al.[26,27] address whether biomarkers, such as IOP and imaging 57 

measurements can be used as valid surrogate endpoints in clinical trials evaluating new therapies 58 

for glaucoma. They suggest that a valid surrogate endpoint must be able to predict a clinically 59 

relevant endpoint, such as loss of vision or decrease in quality of life. Moreover, the authors 60 

propose that the effect of a treatment on the surrogate endpoint must capture the effect of the 61 

treatment on the clinically relevant endpoint. Specifically, imaging biomarkers could potentially 62 

be used in combination with functional outcomes in composite endpoints in glaucoma trials, 63 



overcoming weaknesses of using structural or functional endpoints separately. Studies should be 64 

designed and conducted in such a way that proper validation of potential biomarkers in glaucoma 65 

clinical trials could be demonstrated. Whereas spectral-domain (SD) and swept-source (SS) 66 

optical coherence tomography (OCT) are the state-of-the-art technologies for structural imaging 67 

of anatomy relevant to glaucoma, no large-scale clinical trials have yet employed SD or SS OCT to 68 

monitor glaucoma deterioration. The UK Glaucoma Treatment Study (UKGTS)[15] is the only 69 

glaucoma study to assess the vision-preserving efficacy of a disease-modifying drug with both VF 70 

and OCT outcomes. In the UKGTS, time-domain (TD) OCT was used as the imaging outcome since 71 

SD OCT (SDOCT), which offers better measurement precision, was not in widespread clinical use 72 

at the time of trial initiation. In the initial reports of the UKGTS, the rate of RNFL loss, measured 73 

with TD OCT, was unable to distinguish the treatment groups in the UKGTS and combining TD 74 

OCT and VF information did not improve detection of the treatment effect over the use of VF 75 

information alone[33]. This is most likely a result of the poor signal-to-noise ratio (SNR) and 76 

precision of TDOCT[23, 40].  77 

Meanwhile, various methods for super resolution (SR) using convolutional neural 78 

networks (CNNs), such as generative adversarial networks (GANs), have been proposed to 79 

transform image quality and appearance[28-32]. In medical imaging, GANs have been 80 

successfully employed to address the ill-posed nature of cross-modal synthesis. For example, 81 

GANs have been proposed to predict computed tomography (CT) and positron emission 82 

tomography (PET) images from magnetic resonance imaging (MRI)[28-30]. Concerning signal 83 

enhancement, synthesis has been achieved at different resolution scales and by enforcing cycle-84 

consistency, albeit not focusing on medical applications [31, 32]. These works may, however, 85 



present important limitations for SR in medical imaging. First, due to the restricted view of GANs’ 86 

spatial window, preservation of spatial smoothness and anatomical features in predictions is not 87 

always guaranteed. Second, single GAN predictions are characterized by spatial and intensity 88 

variability. Therefore, in order to extract robust anatomical quantifications from the output of 89 

GANs, principled schemes accounting for prediction uncertainty must be developed. This 90 

requires, for instance, probabilistic modelling of the uncertainty of the underlying signal 91 

distributions on distinct image parts, to preserve anatomical structures and account for spatial 92 

coherency. 93 

This paper evaluates whether deep learning ‘super resolution’ techniques to ‘learn’ 94 

SDOCT images from TDOCT images can improve the signal-to-noise ratio of TD OCT and improve 95 

the performance of TD OCT to identify glaucomatous RNFL changes over time. The motivation 96 

for the work was to improve the image quality of the only existing OCT data set from a large-scale 97 

clinical trial in glaucoma to enable the further exploration of imaging endpoints in future clinical 98 

trials of glaucoma therapy[ref companion piece by editor]. 99 

 100 

Methods 101 

The deep learning algorithm was trained and validated on paired TD and SD OCT images from 102 

one dataset (‘RAPID’) and then tested on the TD OCT images from the UKGTS.  103 

 104 

RAPID 105 

Eighty-two clinically stable glaucoma patients under standard treatment (intraocular pressure 106 

mean 14.0 mmHg [5th to 95th percentile 8.0 to 21.0 mmHg] and VF MD −4.17 dB [5th to 95th 107 



percentile -14.22 to 0.88dB]) were recruited to a test–retest study. Seventy seven (148 eyes) of 108 

the participants recruited attended for up to 10 visits within a 3-month period, for a total of 1256 109 

patient-eye visits. This data set was taken to represent a ‘stable glaucoma’ cohort; assumptions 110 

made include that, over such a short length of time, no clinically meaningful changes in the VF or 111 

RNFL structure would occur and that the variability characteristics of the VF and RNFL 112 

measurements are similar to those seen in clinical practice over longer periods of time. The study 113 

was undertaken in accordance with good clinical practice guidelines and adhered to the 114 

Declaration of Helsinki. The study was approved by the North of Scotland National Research 115 

Ethics Service committee on 27 September 2013 (reference no.: 13/NS/0132) and NHS 116 

Permissions for Research was granted by the Joint Research Office at University College London 117 

Hospitals NHS Foundation Trust on 3 December 2013. All patients provided written informed 118 

consent before the screening investigations were carried out. Recruitment criteria were based 119 

on those for the UKGTS. Patients were required to have reproducible VF loss with corresponding 120 

damage to the ONH and no other condition that could lead to VF loss, be aged > 18 years and 121 

have a visual acuity of ≥	20/40, a refractive error within ± 8 dioptres and an IOP of ≤	30 mmHg. 122 

The VF MD had to be better than –16 dB in the worse eye and better than –12 dB in the better 123 

eye. VF loss was defined as a reduction in sensitivity at two or more contiguous locations with p 124 

< 0.01 loss or more, three or more contiguous locations with p < 0.05 loss or more, or a 10-dB 125 

difference across the nasal horizontal midline at two or more adjacent locations in the total 126 

deviation plot. Participants attended approximately once a week for 10 visits, with VF testing and 127 

OCT imaging carried out twice at the first visit and once at each subsequent visit. VF testing was 128 

undertaken with the Humphrey Field AnalyserTM (HFA) and OCT imaging was carried out using 129 



Stratus TD OCTTM (Carl Zeiss Meditec Inc., Dublin, CA, USA) and Spectralis SD OCT (Heidelberg 130 

Engineering, Heidelberg, Germany) (software version 5.2.4). RAPID participants had slightly more 131 

advanced glaucoma (VF MD −4.17 compared to −2.65 dB) and lower IOP (14.0 compared to 19.0 132 

mmHg) than UKGTS participants. More details can be found elsewhere [33]. 133 

 134 

UKGTS 135 

The UKGTS is a multicentre, randomized, double-masked, placebo-controlled trial assessing 136 

visual function preservation in newly diagnosed open-angle glaucoma (OAG) patients (trial 137 

registration number, ISRCTN96423140). 516 newly-diagnosed (previously untreated) 138 

participants with OAG were prospectively recruited at 10 UK centres between 2007 and 2010. 139 

The observation period was 2 years, with subjects monitored by VF testing, quantitative imaging, 140 

optic disc photography and tonometry at 11 scheduled visits. ONH structure was monitored with 141 

Heidelberg Retina Tomograph at all study sites and with Stratus TD OCTTM(Carl Zeiss Meditec Inc., 142 

Dublin, CA, USA) (software version 5.0) and GDxECC Nerve Fiber Analyzer (Carl Zeiss Meditec Inc., 143 

Dublin, CA, USA) at study sites with those devices. With respect to the whole UKGTS cohort, the 144 

baseline mean IOP (±SD) was 18.9±4mmHg in the better mean deviation (MD) eyes (median [IQR] 145 

MD -1.27dB [-2.37, -0.19]) and 19.9±4.6mmHg in the worse MD eyes (median [IQR] MD -3.30dB 146 

[-5.60, -1.98]). The median (interquartile range) VF MD for all eligible eyes was -2.9 dB (-1.6 to -147 

4.8 dB). 148 

The participants were allocated randomly to receive the IOP-reducing prostaglandin analog 149 

latanoprost (0.005%) or placebo eye drops. The UKGTS, and the subsequent analysis of 150 

anonymized data in this study, adhered to the tenets of the Declaration of Helsinki and was 151 



approved by local institutional review boards (Moorfields and Whittington Research Ethics 152 

Committee on June 1, 2006, ethics approval reference, 09/H0721/56). Study participants 153 

provided written informed consent. A total of 488 from 516 enrolled participants with post-154 

baseline data were analysed in the trial (latanoprost, n=244; placebo, n=244). Out of those, a 155 

subset of 284 participants (143 participants in the placebo group and 141 participants in the 156 

latanoprost group) had adequate quality VF and OCT data, with > 6 months of follow-up, and five 157 

or more visits and with data for both VFs and OCT at the baseline visit. For eye-based analysis, 158 

the eye with the worse MD was used. VF deterioration was the primary end point in the trial; 159 

time to VF deterioration within 24 months. Deterioration (progression) analysis was performed 160 

in the Humphrey Field AnalyserTM (HFA) II-i Guided Progression AnalysisTM (GPA) software 161 

(version 5.1.1) (Carl Zeiss Meditec Inc., Dublin, CA, USA), a sensitive technique that considers 162 

changes at individual test locations in the visual field. Deterioration (progression) criteria and 163 

details of the trial design and trial outcome are published elsewhere[15,33]. In short, the time to 164 

VF deterioration was significantly longer in the treatment group than in the placebo group 165 

(adjusted hazard ratio, 0.44; 95% confidence interval, 0.28 to 0.69).  166 

 167 

Visual Field Measurements 168 

All VF tests were performed with the HFA II (or II-i) and the SITA standard 24-2 program. A reliable 169 

VF was one with a false-positive rate of < 15% and < 20% fixation losses (for fixation losses of > 170 

20%, reliability was based on the subjective judgement of the technician supervising the test and 171 

the clinician reading the test, including an assessment of the eye tracker trace). Unreliable tests 172 

were repeated, either on the same day (with a break of at least 30 minutes) or on a subsequent 173 



occasion. The reference standard analysis for VF deterioration was that used for the outcome of 174 

the UKGTS and was undertaken with the HFA II-i GPA software (version 5.1.1)[15]. 175 

 176 

Spectralis OCT Retinal Nerve Fiber Layer Measurement 177 

In the RAPID study, the circumpapillary RNFL thickness was measured with a 3.5 mm-diameter 178 

scan circle centred on the optic disc with the eye-tracking system activated with Spectralis SD-179 

OCT Heidelberg Eye Explorer (Heidelberg Engineering, Heidelberg, Germany) (software version 180 

5.2.4). Automatic real-time (ART) function was activated, thereby allowing multiple frames, i.e. 181 

B-scans, to be averaged for speckle noise reduction.  182 

 183 

Stratus OCT Retinal Nerve Fiber Layer Measurement 184 

In the RAPID and the UKGTS, the fast RNFL 3.4 scan protocol was used to measure the 185 

parapapillary RNFL with TD Stratus OCTTM (Carl Zeiss Meditec Inc., Dublin, CA, USA) (software 186 

version 5.0). A scan circle of 3.4 mm in diameter consisting of 256 A-scans was positioned 187 

manually at the centre of the optic disc.  188 

Right-hand orientation was used for documentation of clock hour measurements in 189 

SpectralisOCT and StratusOCT and RNFL measurements are provided as means (average RNFL 190 

around the ONH) and in clock-hour sectors. 191 

 192 

Imaging Analysis Protocol and Quality Control 193 

In the original UGKTS analysis, for TDOCT only, the images used followed the fast RNFL protocol: 194 

the OCT instrument software averages the measurements from three images acquired in quick 195 



succession and a signal strength of ≥ 7 was required; images were retaken if necessary. Images 196 

of lower quality, or those with a software alert, were not included in the analyses. As a result, 197 

10,633 (21.3%) OCT scans were excluded in the original UKGTS analysis[40]. In the present 198 

analyses, for TD OCT in the UKGTS and SD and TD OCT in the RAPID, images were excluded only 199 

when our pre-processing algorithm failed; this was based on the success of an algorithm to 200 

estimate the retinal pigment epithelium (RPE) location (which is subsequently used to flatten the 201 

images, as the topology around the optic nerve head undulates). As a result, in the RAPID study, 202 

from 4,902 TD OCT scans, 257 (5.2%) were excluded. From 1,789 SD OCT scans, 68 (3.8%) were 203 

excluded. A patient with N TDOCT and M SDOCT can theoretically produce a maximum of NxM 204 

TD–SD OCT image pairs which can subsequently be used for the learning process on cross-modal 205 

synthesis.  For the UKGTS TDOCT images, all the raw intensity OCT data were used, including each 206 

one of the three individual sequential ‘fast’ circular scans which are used for averaging, and 207 

images with any signal strength were accepted for application of our algorithm and further 208 

analysis. As a result, a total of 36,169 (31.6%) TDOCT individual scans failed the RPE detection 209 

algorithm. Note that patients were not excluded because of poor scan quality (as determined by 210 

the OCT software) since those scans could theoretically become scans with good quality after 211 

image enhancement. Analysis was based on participants who had 15 (3 x 5) or more raw images, 212 

i.e. five averaged images.  213 

 214 

Analysis 215 

Image Synthesis. We use cyclical GANs[32,34] to infer morphological descriptors from low to 216 

high quality anatomical information. OCT images have a very specific geometry where the 217 



background, i.e. vitreous cavity, is clearly separated from the retinal layers at the ILM. Thus, we 218 

used image stitching, exploiting the ILM identification, to separate background from layer signal. 219 

Moreover, cycle GANs require a fixed window on which spatial filters and mappings are learned. 220 

However, since OCT signal and noise properties are characterized by different spatial scales, a 221 

modality transfer method based on a fixed spatial window might not be able to capture all the 222 

necessary spatial information needed for synthesis. This reduces the chance for cross-modal 223 

distributions to share supports in latent space. To address this problem, we propose an ensemble 224 

of spatially coherent cycle GANs[32] to learn the TDOCT-to-SDOCT mapping and to translate a 225 

TDOCT into a synthesized SDOCT image. The scheme is the following. Each GAN is trained by 226 

employing a different spatial window size: 128 x 128, 256 x 256 or 512 x 512, learning a mapping 227 

from the observed TDOCT image ITD and random noise vector z, to the target SDOCT image ISD, 228 

G: {ITD, z} →	ISD. As a result, we train six GANs: three with background pairs and three with retinal 229 

layer pairs. The synthesized backgrounds and layers are stitched back according to the window 230 

size, i.e. I128x128, I256x256, I512x512, and the average synthesized stitched image 𝑰' is obtained. To 231 

preserve the morphological correlation between training pairs, cycle GANs were trained with 232 

windows centered at the same geometrical location in both pairs. This deep learning technique 233 

is based on learning the representation between TD and SD OCT using 24,792 paired examples. 234 

The transfer mapping is learned in an independent dataset, i.e. the RAPID dataset, which contains 235 

pairs of both modalities, and the method is applied to the UKGTS dataset, enhancing the TD OCT 236 

images via quality transfer from SD OCT. TD OCT images are converted to ‘synthesized SD OCT’ 237 

images and segmented via an ensemble of GANs: for each TD OCT, we produce three SD OCT 238 

candidates. Fig. 1 shows the proposed framework for OCT synthesis via the ensemble of GANs. 239 



The final RNFL segmentation is obtained on the average synthesized image of the segmented SD 240 

OCT candidates from each of the three GANs in the ensemble via the effective Bayesian label-241 

propagation of multi-atlas segmentation (MAS)[36]. For segmentation, we adopted the layer 242 

segmentation model of Mayer et al.[37]. For label fusion of the three segmented synthesized SD 243 

OCT candidates, we used, as atlases, their segmented RNFL sections and the original TD OCT RNFL 244 

segmentation.  We registered the retinal layers of the atlases, using the method described by Du 245 

et al. [38], in the average synthesized image (average of three SD OCT candidates). The Spectralis 246 

SD OCT images were segmented with the same software as that we used for the ‘synthesized SD 247 

OCT’ images. The intuition is that if we can produce realistic SD OCT images, an off-the-shelf 248 

segmentation model should output the same RNFL thickness as obtained with the original data. 249 

Note that the segmentation model of Mayer et al.[37] failed in segmenting TDOCT images. As a 250 

result, the original StratusOCT segmentation was used for TDOCT images. The technical details 251 

of the method are described in Lazaridis et al.[41].  252 



 253 

 254 

Statistical Analysis and Evaluation. We quantified the quality improvement of the ‘synthesized 255 

SD OCT’ images over the original TD OCT images in both the RAPID and UKGTS data sets. Fig. 2 256 

shows an example of a SDOCT image synthesized from a TDOCT image. Fig. 2a and Fig. 2b 257 

constitute the original TDOCT-SDOCT pair of images, whereas Fig. 2c is the synthesized SDOCT 258 

after modality transfer and synthesis. To compare the performance of the Cox models, i.e. Cox 259 

model before and after TDOCT image enhancement, we calculate the rank-based Somers’ D 260 

between predicted risk scores and observed survival times. We compare the rankings of rate of 261 

RNFL loss and time-to-VF progression per patient across the dataset and we assess their 262 

agreement. Somers’ D takes values between -1 when all ranking pairs disagree and 1 when all 263 

pairs agree. To estimate the standardized effect size for the same population before and after 264 

TDOCT image enhancement, we calculate Cohen’s D using the difference in the rates of loss 265 

between the treatment groups. Although there are no reference values for Cohen’s standardized 266 

Figure 1: SDOCT synthesis via ensemble of GANs. Box A: Backgrounds are painted black. Box B: Three 
GANs are trained with layer pairs. Synthesized images are stitched back with the backgrounds and the 
average synthesized stitched image is obtained. Separation of layers and background is illustrated with 
scissors. 



effect size measures, d = 0.2, 0.5 and 0.8 provide a conventional reference frame, corresponding 267 

to small, medium and large effects [43]. 268 

 269 

 270 

RAPID data set: we compared the agreement of the average RNFL thickness derived from i) the 271 

Stratus TD OCT software and ii) the ‘synthesized SDOCT’ (described above) with the paired 272 

Spectralis SD OCT average RNFL thickness with Bland Altman plots. To give context, we also 273 

present the agreement between SD OCT RNFL thickness measurements acquired on different 274 

days – this represents the ‘ceiling’ one would expect to see if synthesized SD OCT images were 275 

exactly the same as real SD OCT images.  276 

UKGTS data set: we compare the ability of the rate of RNFL loss measured with Stratus TD OCT 277 

and synthesized SD OCT to distinguish the treatment arms of the trial (Mann Whitney test). The 278 

effect size is estimated with Cohen’s D. We also present the respective strength of association of 279 

the rate of RNFL change with time to VF progression in a Cox proportional hazards model. 280 

 281 

Results 282 

Test-retest variability, summarized by the standard deviation of repeat measurements over the 283 

first three visits across all subjects of the RAPID study, was lower for the Synthesized SDOCT than 284 

for the original TDOCT data (Table 1). Table 1 also shows the 95% limits of agreement (LOA) and 285 

Figure 2: OCT synthesis results via fusion of GANs. (a) and (b) illustrate a pair of TDOCT and SDOCT 
images. (c) Synthesized SDOCT from (a). 



the mean difference between RNFL measurements. The 95% limits of agreement between TDOCT 286 

and SDOCT were [26.64, -22.95], between synthesized SDOCT and SDOCT were [8.11, -6.73], and 287 

between SDOCT and SDOCT were [4.16, -4.04]. Fig. 3 illustrates the corresponding Bland-Altman 288 

agreement plots of the RNFL measurements made from the segmented synthesized OCT images 289 

with respect to the ‘ground truth’ Spectralis SD OCT RNFL measurements derived with the same 290 

segmentation algorithm (RAPID data set). Table 2 presents the mean and the range of RNFL loss 291 

rates for TDOCT and synthesized SDOCT images. Table 3 and Table 4 illustrate the Cox 292 

proportional hazards model fitted to the time to VF progression for TD OCT and synthesized SD 293 

OCT. The hazard ratio for RNFLT slope in Cox regression modelling for time to incident VF 294 

progression was 1.09 (95% CI 1.02 to 1.19) (p=0.035) for TDOCT and 1.24 (95% CI 1.11 to 1.39) 295 

(p=0.011) for synthesized SDOCT. Fig. 4 illustrates the VF mean sensitivity (MS) change in decibels 296 

per year and the distribution of rate of RNFL thickness change for the subset of UKGTS 297 

participants with OCT images. Fig. 4b is generated from the original TD OCT whereas Fig. 4c from 298 

the synthesized SDOCT data. The placebo group had faster rates of deterioration than the 299 

latanoprost group in both cases. For the original TD OCT UKGTS data, the difference in 300 

distribution of slopes was not statistically significant (Mann-Whitney U Test, p = 0.08). For the 301 

synthesized SD OCT, the difference was statistically significant (Mann-Whitney U Test, p = 302 

0.0017). Table 5 illustrates the corresponding effect sizes (Cohen's D), with confidence intervals. 303 

It can be seen that Cohen’s D for synthesized SD OCT is closer to Cohen’s D for VFs than that for 304 

TD OCT, indicating a modest improvement in effect size. Table 6 compares the predictive power 305 

of the two Cox models; we calculate the rank order statistic Somers’ D with confidence limits[42]. 306 



It can be observed that Somer’s D is higher for the Cox model with synthesized SD OCT, indicating 307 

a stronger predictive power between the rankings of predicted risk and time-to-VF progression.  308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

Figure 3: Bland-Altman plots on the agreement between time domain and synthesized spectral 
domain OCT RNFL measurements versus the ‘real’ spectral domain OCT RNFL measurements on the 
RAPID dataset. The proposed method leads to significantly better agreement. 

Figure 4: (a) Distribution of the rate of VF mean sensitivity (MS) change in decibels per year for the subset 
of UKGTS participants with OCT images (placebo, n = 131 participants; latanoprost, n = 127 participants). 
Bottom: Distribution of the rate of OCT RNFL thickness change for the subset of UKGTS participants with 
OCT images. (b) Original UKGTS TDOCT data (placebo, n = 131 participants; latanoprost, n = 127 
participants). (c) Synthesized UKGTS SDOCT data (placebo, n = 131 participants; latanoprost, n = 127 
participants). 



 321 

 322 

 323 

 324 

 325 

 326 

 327 

Covariate  b  SE  Wald  p  Exp(b)  95% CI of Exp(b)  
Age  0.018  0.014  1.748  0.186  1.018  0.991 to 1.045  

Allocation  -0.770  0.287  7.226  0.007  0.463  0.264 to 0.812  
Baseline IOP  0.050 0.029  2.972  0.085  1.051  0.993 to 1.113 

Baseline VF MD  0.086  0.048  3.123  0.077  1.089  0.991 to 1.198 
OCT RNFL slope  0.086  0.041  4.430  0.035  1.089  1.031 to 1.412 

Disc haemorrhage  0.576  0.283  4.143  0.042  1.779  1.022 to 3.099 

 328 

Method  Synthesized SDOCT StratusOCT SpectralisOCT 
95% LOA   [8.11, -6.73]  [26.64, -22.95] [4.16, -4.04] 

Mean Diff.   0.69  1.84 0.06 
Mean SD   1.29  2.67 0.77 

Method StratusOCT Synthesized SD OCT  
Treatment  Placebo  Treatment  Placebo  

Mean (SD) (μm/year) 
 

-0.15 (3.971)  -0.39 (4.139)  -0.83 (2.6116)  -1.26 (2.6720)  

Diff. in mean rate (95% CI)  0.24 (-0.837 to 0.672)  0.43* (0.0279 to 0.8321)  
p-value 0.08 0.0017 

 
  

Table 1: Limits of agreement and mean difference between time domain, synthesized spectral domain, 
‘real’ spectral domain OCT RNFL measurements versus the ‘real’ spectral domain OCT RNFL 
measurements. The mean SD gives the standard deviation of the first three test-retest visits for both eyes. 
SDOCT = spectral domain optical coherence tomography; TDOCT = time domain optical coherence 
tomography 

. 

Table 2: Comparison of rate of RNFL change in Stratus OCT and synthesized spectral domain OCT in the 
UKGTS data set. The significance of the difference between treatment and placebo progression rates 
was calculated with the Mann Whitney U test. SDOCT = spectral domain optical coherence tomography; 
TDOCT = time domain optical coherence tomography 
 

Table 3: Cox proportional hazards model for time to incident VF progression in the UKGTS with the original 
TD OCT images. Note b = regression coefficient, Wald statistic = (b/SE)2, p = p-value associated with the 
Wald statistic and Exp(b) = the hazard ratio. (placebo, n = 131 participants; latanoprost, n = 127 
participants). 
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 330 

Covariate  b  SE  Wald  p  Exp(b)  95% CI of Exp(b)  
Age  0.021  0.009  5.444  0.113  1.021  0.922 to 1.152  

Allocation  -0.586  0.195  9.030  0.001  0.608  0.315 to 0.901  
Baseline IOP  0.106  0.089  1.418  0.109  1.111  0.811 to 1.429 

Baseline VF MD  0.041  0.022  3.473  0.062  1.041  0.883 to 1.312 
OCT RNFL slope  0.218  0.008  7.425  0.011  1.244  1.105 to 1.394 

Disc haemorrhage  0.251  0.109  5.302  0.027  1.285  1.126 to 2.836 
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Modality  Synthesized SDOCT StratusOCT Visual Fields 
Cohen’s D  0.256 0.223 0.491 

95% CI  [0.126, 0.487]  [0.076, 0.535] [0.289, 0.652] 
p-value   0.03 0.05 0.002 

Model  Synthesized SDOCT StratusOCT 
Somers’ D  0.326  0.289 

95% CI  [0.113, 0.581]  [0.129, 0.448] 
p-value    0.019 0.009  

Table 4: Cox proportional hazards model for time to incident VF progression in the UKGTS with the  
synthesized SD OCT images. Note b = regression coefficient, Wald statistic = (b/SE)2, p = p-value associated 
with the Wald statistic and Exp(b) = the hazard ratio. (placebo, n = 131 participants; latanoprost, n = 127 
participants). 

 

Table 5: Comparison of treatment groups effect size for each modality. Cohen’s D is calculated as measure 
of parametric group testing, measuring the effect size. SDOCT = spectral domain optical coherence 
tomography; TDOCT = time domain optical coherence tomography; CI = confidence interval. 

 

Table 6: Comparison of the predictive power of Cox models. Somers’ D is calculated as measure of the 
ordinal predictive power of each model. Confidence intervals and p-values for the predictive powers of 
each model are also computed. SDOCT = spectral Table 6: Comparison of the predictive power of Cox 
models. Somers’ D is calculated between predicted risk scores and observed survival times. Confidence 
intervals and p-values for the predictive powers of each model are also computed. SDOCT = spectral 
domain optical coherence tomography; TDOCT = time domain optical coherence tomography; CI = 
confidence interval. 

optical coherence tomography; TDOCT = time domain optical coherence tomography; CI = confidence 
interval. 

 



Discussion 342 

In this work, we demonstrate that a super resolution deep learning method applied to TD OCT 343 

images significantly improves the signal-to-noise ratio of the images, as quantified by the 344 

agreement of segmented RNFL thickness measurements with SD OCT measurements, and 345 

significantly reduces test-retest variability (Table 1, Figure 3) and the improves the ability of rates 346 

of RNFL loss to separate the treatment arms of the UKGTS. When the rate of RNFL loss in the 347 

UKGTS data set is calculated from the ‘synthesized SD OCT’ images (Table 2), the difference in 348 

RNFL slope measurements is able to distinguish the treatment groups (Mann-Whitney U Test, p 349 

= 0.0017).  350 

The ensemble of GANs approach produced segmented RNFL thickness values more consistent 351 

with the ground truth SD OCT values than the TD OCT, as demonstrated by narrower limits of 352 

agreement (Figure 3, Table 1), and reduced the test retest variability in the measurements by 353 

half, as demonstrated by the smaller standard deviation of repeat measurements (Table 1). The 354 

Bland–Altman plots revealed proportional biases in the evaluation of agreement between SD OCT 355 

and TD OCT, and between SD OCT and synthesized SD OCT RNFL measurements in the RAPID 356 

study data set, suggesting that there may be a calibration difference, possibly related to the 357 

inherent characteristics of the OCT instruments. These findings are in agreement with Leung et 358 

al.[22], where the same proportional bias was reported between Cirrus SD-OCT and Stratus TD 359 

OCT. 360 

When the super resolution method was applied to an independent test data set, from the UKGTS, 361 

the better separation of the treatment arms evidenced the data quality improvement. The 362 

analysis of the capability of TD OCT images to distinguish the UKGTS treatment arms showed 363 



that, although the rate of RNFLT loss was faster in the placebo-treated eyes, the difference from 364 

the latanoprost-treated eyes did not reach statistical significance (Table 2; Figure 4b). In contrast, 365 

the same analysis with the synthesized SD OCT images demonstrated a statistically significant 366 

difference between treatment and placebo progression rates (MannWhitney U Test, p = 0.0017 367 

(Table 2; Figure 4c). The difference between treatment groups in the rate of RNFL thinning 368 

(synthesized SD OCT) is closer to the difference between groups for the rate of VF MD 369 

deterioration (Figure 4) than for the TD OCT analysis (Table 5).  Our analysis further illustrates 370 

that the SD OCT imaging of RNFL may provide a sufficiently high precision for longitudinal 371 

assessment of RNFL changes, as low measurement variability is a prerequisite for detecting 372 

change during longitudinal analysis (Table 6); improving the longitudinal SNR. 373 

Further evidence for the improvement in data quality comes from the Cox proportional hazards 374 

model which was fitted to the time to VF progression original UKGTS data (Table 3). This 375 

demonstrated that treatment allocation, the occurrence of a disc haemorrhage during follow-up 376 

(either eye) and the rate of TD OCT RNFL change were significantly associated with survival. Pre-377 

treatment IOP and baseline VF MD approached statistical significance (p between 0.077 and 378 

0.085); the overall model fit was significant (p = 0.0007). The same model was fitted after TD OCT 379 

signal enhancement (Table 4) and showed a greater level of significance in the overall fit of the 380 

model (p = 0.0001). The significance of the association of treatment allocation, occurrence of a 381 

disc haemorrhage during follow-up (either eye) and rate of OCT RNFL change with time to VF 382 

deterioration also improved, with a larger hazard ratio for RNFL change.  383 

 384 

 385 



Study weaknesses and further work 386 

In this work, we have used randomised controlled trial data coming from the first large scale 387 

glaucoma trial with OCT data, i.e. the UKGTS. We further presented a super resolution approach 388 

to translate a TD OCT image into a synthesized SD OCT image. The image-enhancement approach 389 

is based on state-of-the-art image synthesis and semi-automated segmentation of the resulting 390 

synthesized SDOCT images, integrating label fusion and deep learning. The proposed 391 

methodology appears robust and flexible both in terms of architecture and label fusion. Since the 392 

training dataset is large and of high resolution, training of each individual model takes a lot of 393 

time, making the method computationally expensive for training. This, limitation, is however a 394 

negligible problem in practice as the algorithm can be run offline. As the agreement of 395 

synthetized SD OCT RNFL measurements with real SD OCT RNFL measurement did not reach the 396 

level of agreement indicated by the limits of agreement for repeat real SD OCT RNFL 397 

measurements, this study likely underestimates the potential utility of SD OCT imaging in future 398 

trials. 399 

The TD OCT images were segmented with the proprietary instrument software and the real and 400 

synthesized SD OCT images with a publicly-available algorithm; we did not have access to the 401 

proprietary algorithm to apply to SD OCT images and the publicly-available algorithm failed on 402 

the TD OCT images. Therefore, the results we report relate to comparisons of the compound 403 

‘image + segmentation algorithm’. 404 

 405 

Future work will focus on combining SD OCT RNFL rates of change to VF rates of change, in a 406 

similar way as that done for TD OCT[40], to see whether the addition of the imaging data 407 



improves study power over the use of VF data alone. The motivation is that although the signal-408 

to-noise ratio in the TD OCT UKGTS data is too poor to draw conclusions with respect to disease 409 

deterioration, the synthesized SD OCT data provided some evidence that imaging outcomes 410 

capture the effect of treatment on the VF outcome. 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

Conclusion 419 

In clinical trials with a vision function outcome, variability in measurements results in the 420 

requirement for large numbers of patients observed over long intervals. As a result, new 421 

beneficial treatments to patients may be delayed and may not be evaluated as trials become 422 

more costly. It is well established that imaging measurements of structural damage to the ONH 423 

are associated with VF loss in glaucoma. Furthermore, imaging measurements are often 424 

considered more precise than VF measurements, making them attractive as potential surrogate 425 

outcomes for clinical trials and clinical practice. The OCT data available in the UKGTS were from 426 

the TD OCT, with poor signal-to-noise characteristics. Previous analysis of the OCT data failed to 427 

distinguish the treatment arms[40]. Here, we show that a super resolution deep learning method 428 

was able to considerably improve data quality, demonstrated by better agreement of RNFL 429 



measurements from synthesized SD OCT images, compared with their source TD OCT images, 430 

with RNFL measurements from actual SD OCT images. When applied to an independent data set 431 

from the UKGTS, the data quality improved to the extent that imaging measurements were able 432 

distinguish treatment groups. These findings suggest that a benefit to trial power can be achieved 433 

by a) further increase the resolution of SDOCT using SR methods b) ensemble methods to 434 

segment more efficiently SDOCT images. 435 

 436 

 437 

 438 

 439 
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