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Abstract. This paper investigates the aerodynamic impact of Gurney �aps on a research wind turbine of the
Hermann-Föttinger Institute at the Technische Universität Berlin. The rotor radius is 1.5 m, and the blade con-
�gurations consist of the clean and the tripped baseline cases, emulating the effects of forced leading-edge
transition. The wind tunnel experiments include three operation points based on tip speed ratios of 3.0, 4.3, and
5.6, reaching Reynolds numbers of approximately 2:5 � 105. The measurements are taken by means of three
different methods: ultrasonic anemometry in the wake, surface pressure taps in the midspan blade region, and
strain gauges at the blade root. The retro�t applications consist of two Gurney �ap heights of 0.5 % and 1.0 % in
relation to the chord length, which are implemented perpendicular to the pressure side at the trailing edge. As a
result, the Gurney �ap con�gurations lead to performance improvements in terms of the axial wake velocities,
the angles of attack and the lift coef�cients. The enhancement of the root bending moments implies an increase
in both the rotor torque and the thrust. Furthermore, the aerodynamic impact appears to be more pronounced
in the tripped case compared to the clean case. Gurney �aps are considered a passive �ow-control device worth
investigating for the use on horizontal-axis wind turbines.

1 Introduction

The energy yield of modern horizontal-axis wind turbines
(HAWTs) is supposed to be optimal while keeping the main-
tenance costs as low as possible over a lifetime of around
20 years. However, the performance of rotor blades faces
serious challenges, two of which are early separation and
roughness effects. Early separation is a problem especially
in the inner blade region towards the root, where the angles
of attack (AoAs) are elevated due to structural constraints,
such as limited chord length and twist angles (see Fig. 1a).
Over time, the resulting dynamic loads contribute to the ma-
terial fatigue of the blade (Mueller-Vahl et al., 2012). For
this reason, passive �ow-control (PFC) devices, such as vor-
tex generators (VGs), are implemented in the inner blade re-
gion of different-size HAWTs aiming at stall delay (Pechli-

vanoglou et al., 2013). At the same time, the long-standing
surface erosion causes roughness effects, especially close to
the leading edge (LE; see Fig. 1b). LE roughness is relevant
throughout the entire blade span and especially in the outer
region towards the blade tip. Apart from the broad range of
weather conditions, surface roughening is aggravated by rain
and insects as well as sand or salt particles (Pechlivanoglou
et al., 2010). Consequently, the energy yield of HAWTs is of-
ten found to be lower than predicted or regressing over time
(Wilcox et al., 2017).

This paper investigates the retro�t application of Gurney
�aps (GFs) in order to improve the aerodynamic performance
of rotor blades. This PFC device consists of a wedge or right-
angle pro�le that is attached perpendicularly to the pres-
sure side at the trailing edge (TE). The Gurney �ap height,

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



1646 J. Alber et al.: Aerodynamic effects of Gurney �aps on the rotor blades

Figure 1. Rotor blades of utility-scale wind turbines.(a) Flow indicators to detect early separation in the inner blade region, reproduced
from Pechlivanoglou et al. (2013).(b) Leading-edge erosion, with permission from Seilpartner Windkraft GmbH.

Figure 2. (a) Position of the Gurney �ap at the trailing edge of a Clark-Y airfoil section.(b) CFD simulation of the HQ17 airfoil at
ReD 1:0� 106, reproduced and modi�ed from Schatz et al. (2004a).

in relation to the chord length,c, is the main design pa-
rameter, illustrated in Fig. 2a. It is usually in the range of
0.5 %c< GF < 2.0 %c without taking the TE thickness into
account.

The research on TE �aps of airplane wings dates back to
the early 20th century (Gruschwitz and Schrenk, 1933). The
GF itself is named after the race car driver Dan Gurney, who
discovered the signi�cant gain in downforce when applying
the device on the rear spoilers. Following from that, GFs have
been implemented on high-lift-dependent transport airliners
(Bechert et al., 2000) and helicopter stabilizers (Houghton
et al., 2013). More recently, Vestas® has started offering

GFs in combination with VGs as so-called aerodynamic up-
grades of HAWTs, predicting annual yield improvements of
up to 2.0 % (Vestas, 2020). The design of the DTU 10 MW
reference wind turbine includes smooth wedge-shaped GFs
in the �rst half of the blade length, 0.05R < r < 0.4R, using
GF heights in the range of 1.3 %c< GF < 3.5 %c (Bak et al.,
2013).

Figure 2b illustrates the changes in the �ow �eld of
the laminar airfoil HQ17 when implementing different GF
heights, as reported by Liebeck (1978) by means of the New-
man airfoil. Key to the aerodynamic understanding is the
development of one vortex upstream and two counterrotat-
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Figure 3. (a) Closed-loop wind tunnel in top view, reproduced and modi�ed from Klein at al. (2018).(b) BeRT setup in front view looking
downstream.

ing vortices downstream of the GF, as such entailing a low-
pressure region in the TE wake. As a result, the downwash
angle of the �ow becomes steeper, the requirements for pres-
sure recovery on the suction side milder, the local boundary
layer thinner, and the suction peak higher. Additionally, the
�ow on the pressure side decelerates, leading to a positive
pressure built up in the TE region. The resulting shift of the
Kutta condition leads to increased circulation and thus to el-
evated lift forces, which is the main Gurney �ap characteris-
tic. At the same time, the low-pressure region aft of the TE
induces additional drag, especially if vortex shedding is ini-
tiated in the form of a Kármán vortex street. Hence, the lift
increase is accompanied by a certain drag penalty that affects
the lift-to-drag (L=D) ratio accordingly.

This is why various experimental and numerical research
projects aim to limit the adverse drag increase while main-
taining the bene�cial lift enhancement. Giguère et al. (1995)
and Kent�eld (1996) conclude that the GF height is sup-
posed to be submerged into the local boundary layer (BL)
in order to keep the drag at an acceptable level. Bechert et
al. (2000) demonstrate that additional holes, slits, and espe-
cially the pattern of dragon�y wings lead to reduced drag
on the HQ17 airfoil (thmax D 15:2 %c, ReD 1:0� 106). In
addition, promising results are presented for very small GF
heights in the range of 0.2 %c< GF < 0.5 %c, i.e., substan-
tially smaller than the BL thickness at the TE. Following
from that, wake simulations based on computational �uid dy-
namics (CFD) of Schatz et al. (2004b) reveal that the amount
of induced drag depends on the GF height, in fact, in a dispro-
portionate manner, as illustrated in Fig. 2b: for GFD 1.5 %c
a vortex street is triggered, while for GFD 0.5 %c the wake
is shed in a relatively smooth way. In a similar manner, Alber
et al. (2017) suggest the use of very small GF heights of ap-
proximately half the local BL thickness in order to maintain,
or even improve, the airfoil L=D ratio of different DU and
NACA airfoils.

The aforementioned design principle, GF <� , is applied on
the rotor blades of the Berlin Research Turbine (BeRT) using

GF heights of 0.5 %c and 1.0 %c. In addition, forced LE tran-
sition is triggered in order to emulate the effects of leading-
edge roughness.

The aerodynamic impact of GFs is investigated by means
of the following measurement methods:

– 3D ultrasonic anemometry in the turbine wake to deter-
mine the local AoA;

– chord-wise pressure taps to calculate the local pressure
distribution and the lift performance;

– strain gauges at the blade root to measure the �apwise
and the edgewise root bending moments.

In summary, the objective of the experiments is to assess
the suitability of retro�t GFs in order to alleviate the follow-
ing adverse effects:

– early separation due to the high-AoA regime, relevant
in the inner blade region (see Fig. 1a);

– decreasing lift forces due to leading-edge erosion, rele-
vant in the outer blade region (see Fig. 1b).

In the remainder of this paper, the experimental setup is
described in detail, followed by the presentation and the dis-
cussion of the results. The main conclusions are summarized
in the �nal section of this report.

2 Experimental setup

2.1 Berlin Research Turbine

The BeRT is a test bench of the closed-loop wind tunnel of
the Hermann-Föttinger Institut at the Technische Universität
Berlin. It is a unique wind turbine demonstrator to explore
speci�c �uid-dynamic phenomena based on a fully equipped
rotating system (Vey et al., 2015).

Figure 3a depicts the wind tunnel facility consisting of the
high-speed (2:0m� 1:4 m) and the low-speed (4:2m� 4:2 m)

https://doi.org/10.5194/wes-5-1645-2020 Wind Energ. Sci., 5, 1645–1662, 2020
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Figure 4. (a) Zigzag tape at the leading edge of the suction side.(b) Gurney �ap and ZZ tape at the pressure side of the trailing edge.

test section. The BeRT is situated in the low-speed test sec-
tion downstream of the �ow-conditioning screens and up-
stream of the wind tunnel contraction. The maximum in-
�ow velocity is 10 m s� 1. The third screen upstream of the
rotor plane is equipped with an additional turbulence �lter
mat (Vildedon P15/150s) in order to reduce the turbulence
intensity to 1.0 % < Ti < 1.5 %, as reported by Bartholomay et
al. (2017). Figure 3b displays the BeRT setup and the mea-
surement methods applied. The rotor radius isR D 1.5 m,
producing a relatively large blockage ratio of approximately
40 % in relation to the test section area. The blockage effects
on both the �ow and the rotor performance are discussed
in Sect. 3.1. Relative distances are expressed in relation to
the rotor radius,R, and the zero position at the center of
the rotor plane atX D Y D Z D 0. The blades consist of the
low Reynolds pro�le, Clark-Y, with a maximum thickness
of thmax D 11.9 %c and a modi�ed TE thickness of 0.75 %c.
The blade geometry is optimized aerodynamically, including
a linear decrease in both the chord lengths and the twist an-
gles from root to tip alongside most of the blade span. The
root section is contiguous to the round rotor hub, and the tip
section is pointy (see Fig. 4). The tip speed ratio (TSR) at
rated conditions is 4.3, developing a span-wiseRenumber
range from root to tip of 1:7 � 105 < Re< 3:0� 105. The ax-
ial in�ow velocity is captured by two parallel Prandtl tubes
that are permanently installed at approximately one rotor ra-
dius upstream, close to each wind tunnel wall and slightly
above hub height. At rated conditions, the in�ow velocity
is 6.5 m s� 1 at a rotational frequency off rot D 3.0 Hz. The
data acquisition system of the rotating sensors, such as pres-
sure taps and strain gauges, is installed within the rotational
spinner (see Fig. 6a). The electrical power is transferred to
the rotating system through a slip ring. Communication with
the host PC is established via Wi-Fi connection in order to
set and modify the rotational speed. The signals are captured
on all channels simultaneously at a rate of 10 kHz, generat-

Table 1. Blade con�gurations.

Tripped case Clean case

Baseline
GFD 0.5 %c Operation points
GFD 1.0 %c

ing around 6:0� 105 data points per measurement, which are
streamed to a host PC via network connection.

2.2 Blade con�gurations and operation points

The test matrix consists of six blade con�gurations (Table 1)
and three operation points (Table 2), which are speci�ed
throughout this section.

2.2.1 Forced transition

Following Klein et al. (2018), the principal baseline con�g-
uration of the BeRT includes zigzag (ZZ) turbulator tape: in
short, the tripped case. ZZ tape is applied in order to initi-
ate the laminar-to-turbulent transition of the boundary layer
(BL) at a �xed location. In practical terms, it is used to emu-
late LE roughness effects on both airfoil sections (van Rooij
and Timmer, 2003) and rotor blades (Zhang et al., 2017). Its
height is slightly smaller than the local BL thickness,� , in
order to trigger the BL transition while avoiding a dispropor-
tionate drag increase or even turbulent separation. The ZZ
tape is implemented on all BeRT blades at a chord-wise LE
position of both the suction side (SuS) atxSuSD 5.0 %c and
the pressure side (PrS) atxPrSD 10.0 %c. The BL thickness
of the clean baseline is calculated with the software XFOIL
(Drela, 1989) based on theRenumber, the AoA, and theN
criterion (Ncrit) modeling the transition location. The design
conditions of the Clark-Y airfoil are de�ned by� opt D 5.0� ,
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Table 2. Summary of operation points.

Stall Rated Feather

TSR 3.0 4.3 5.6
In�ow velocity in m s� 1 6.5 6.5 5.0
Rot. frequencyf rot in hertz 2.1 3.0 3.0
Renumber (Sect. 3.2) 2:2 � 105 2:8 � 105 2:7 � 105

AoA in � (tripped baseline; Sect. 3.1) 16.3 8.8 4.8
AoA in � (clean baseline; Appendix A) 16.5 8.6 4.6

ReD 2:5� 105, andNcrit D 6 accounting for the elevatedTi
inside the test section (Sect. 2.1). As such, the attached �ow
at prestall conditions is assumed two-dimensional in order to
estimate� by means of the XFOIL code. The absolute height
of the ZZ tape is adjusted in various steps in relation to the
chord length, as depicted in Fig. 4a. In addition, all experi-
ments are also performed under the consideration of the free
BL transition, i.e., without including ZZ tape: in short, the
clean case.

2.2.2 Gurney �aps

The GF height is supposed to be submerged into the BL at
the TE in order to keep the drag penalty at an acceptable
level, as discussed in Sect. 1. Hence, it is important to es-
timate� before dimensioning the GF height since the aero-
dynamic impact depends on the GF= � ratio. Apart from the
AoA and the transition location,� is related toRe. The Re
number range of the BeRT is signi�cantly lower compared
to the blades of multi-MW HAWTs. At design conditions
(ReD 2:5� 105), the XFOIL code predicts the BL thickness
at the TE to be� TE D 1.0 %c. Additionally, another GF height
of half the local� is chosen so that the GF con�gurations
consist of GFD 1.0 %c and GFD 0.5 %c. For comparison,
the FFA-W3-241 airfoil (thmax D 24.1 %c, ReD 12:0� 106),
which is used in the outer blade region of the DTU 10 MW
reference wind turbine (Bak et al., 2013), generates a BL
of � TE � 0:30 %c. As such, the application of GF > 0.30 %c
would be likely to cause the L=D ratio to decline, as illus-
trated in Fig. 2b.

Apart from the very tip section, the GFs are implemented
in the form of thin angle pro�les made of brass. One side
of the angle pro�les is cut in a linear way in order to match
the chord decrease, as shown in Fig. 4b. The other side of
the pro�le is attached with thin double-sided adhesive tape
adjacent to the TE.

2.2.3 Operation points

The operation points (OPs) include the so-called stall, rated,
and feather conditions, which are characterized by low,
medium, and high TSRs or AoAs, respectively (see Table 2).
Each measurement has a total duration of 60 s. No blockage
correction is applied so that the results refer to the conditions

Figure 5. (a) Ultrasonic anemometer, with permission from Thies
CLIMA. (b) De�nition of the azimuthal blade positions looking
downstream.

inside the closed test section. All sensors are calibrated, and
a zero-offset measurement is performed before each test run
in order to reduce experimental errors. The uncertainty of the
results is evaluated in Appendix B.

2.3 Measurement methods

The experimental approaches are summarized in Table 3 and
explained in detail throughout this section.

2.3.1 Ultrasonic anemometry

Three-dimensional ultrasonic anemometers (UAs) are widely
spread in the wind energy industry. The technology is rec-
ognized by different wind industry standards, such as the
IEC 61400 to determine the power curve of wind turbines or
the Association of German Engineers (VDI) for turbulence
measurements. There are numerous references for the use of
UAs in the context of wind tunnel campaigns, such as Weber
et al. (1995), Hand et al. (2001), and Cuerva et al. (2003).
The UA is a commercial product of Thies CLIMA (version
4.383). According to the manufacturer, they are precalibrated
and free from maintenance.

Figure 5a displays the three separate acoustic transmitter–
receiver pairs that are installed orthogonally to each other.
The velocity vectors,u, v, andw, are determined by six in-
dividual measurements based on the bidirectional time-of-

https://doi.org/10.5194/wes-5-1645-2020 Wind Energ. Sci., 5, 1645–1662, 2020
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Table 3. Measurement methods and quantities.

Sensor Measured quantity Derived quantity Blade position

Ultrasonic anemometer 3D wake velocities AoA 0.56R
Pressure taps Pressure distribution Lift coef�cients 0.45R
Strain gauges Flapwise and edgewise bending moments Blade root

Figure 6. (a) BeRT blade and pressure taps, with permission from SMART BLADE GmbH.(b) Chord-wise position of pressure taps at
r D 0.45R.

�ight principle, i.e., the duration of each signal to be sent
and received.

u D
L
2

�
1
t1

�
1
t2

�
; (1)

whereL is the exact running length between each sensor
pair so that the measurement volume amounts to 200mm�
200mm� 100mm. The velocity vectorsv andw are deter-
mined accordingly. Equation (1) shows that the 3D velocity
calculation depends solely on the average propagation time
of the ultrasound,t1 and t2, depending on the speci�c air-
�ow passing through the measurement volume. As such, the
output values already imply the density and temperature of
the air. Subsequently, the velocity vectors are transformed
into a natural coordinate system so that the output time se-
ries consist of the axial, lateral, and vertical velocity compo-
nents (u, v, andw). The device-internal data acquisition sys-
tem is a half-duplex interface that is completely independent
of both the wind tunnel and the BeRT system. According to
the manufacturer, the measurement accuracy is 0.1 m s� 1 per
integrated value and 0.01 m s� 1 with respect to each of the
three velocity components. The data are recorded at a sam-
pling rate of 60 Hz, thus providing around 3600 data points
per measurement. Considering the relatively large measure-
ment volume and the low sampling rate compared to, e.g.,
hot-wire or laser-based devices, the UA is not adequate for
the investigation of complex or high-speed �ow structures.
However, the BeRT wake �ow is expected to consist of an
axial and a tangential velocity component due to the forma-
tion of a rotating wake tube. The impact of complex tip and

root vortices is considered negligible in the midspan blade
region, as shown by Herráez et al. (2018).

The UA is installed at one static position downstream,
X D 1.3R; in the midspan region,Y D 0.56R; and at hub
height,Z D 0R (see Fig. 5b). It is positioned vertically with a
spirit level and turned around its own axis towards the undis-
turbed axial in�ow so that the lateral and the vertical compo-
nents,v andw, tend to 0. The setup is �xed at its �nal posi-
tion for all measurements, which are presented in Sect. 3.

2.3.2 Pressure taps

The pressure distribution is extracted by means of 18 pres-
sure taps (PTs) on the SuS and 12 on the PrS, located along
the chord length atr D 0.45R (see Fig. 6b). Each ori�ce is
connected via silicone tubing to its corresponding differen-
tial pressure sensor (HCL0025E), i.e., the pressure box in-
side the spinner. The sensor accuracy is given with 0.05 % of
the full-scale range of� 2500 Pa under nominal conditions.
The experimental procedure and the data postprocessing are
based on Soto-Valle et al. (2020).

The differential pressure values are transformed into the
pressure coef�cient,

cpi D
1p sti C prot

pdyn;ref
D

�
psti � pst;1

�
C

�
0:5� � (!r )2

�

pdyn;ref
; (2)

where

– 1p sti is the static pressure difference between each PT
and the in�ow Prandtl tube,pst;1 I
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– prot refers to the pressure due to the rotation of the blade
element (it is added to1p sti in the form of a constant
correction term in accordance with Hand et al., 2001);

– pdyn;ref describes the referential dynamic pressure, i.e.,
the effective �ow velocity experienced by the blade el-
ement (following Hand et al., 2001, it is determined by
the maximum pressure that is recorded on the pressure
side, the frontal stagnation point, wherecpi D 1.0; ac-
cording to Eq. 2 the referential dynamic pressure is then
calculated withpdyn;ref D 1p st;ref C prot).

The cp values are phase-averaged over an azimuthal an-
gle of ' D 10� (see Fig. 5b). Each PT provides a total of 36
pressure values at the following blade positions:' D [0, 10,
20 . . . 350� ] so that' D 270� contains the average of all data
points between 265� and 275� . The pressure difference,1c p,
is calculated by subtracting the integratedcp distribution be-
tween the PrS and the SuS in order to determine both the
normal coef�cient,cn, and the tangential coef�cient,ct. Per
de�nition, cn is orthogonal to the chord line pointing towards
the SuS, whilect is parallel to the chord line pointing towards
the LE.

According to Hand et al. (2001), the axial and tangential
coef�cients are calculated with

cn D
1
2

�
X 30

i D1

�
cpi C cpiC1

�
� (xi C1 � xi ) (3)

and

ct D
1
2

�
X 30

i D1

�
cpi C cpiC1

�
� (yi C1 � yi ) ; (4)

wherex andy are the normalized chord positions of each PT.
The numbering starts at the TE (x D 0.9) with the PTs on the
SuS, moving counterclockwise until the LE (x D 0) and back
to the TE on the PrS.

Subsequently, the lift coef�cient,cl , and the pressure drag
coef�cient, cdp; are determined by (Fuglsang et al., 1998)

cl D cn � cos(� ) C ct � sin(� ) (5)

and

cdp D cn � sin(� ) � ct � cos(� ) : (6)

The required AoAs,� , are adopted by the uncorrected in-
�ow and wake velocity measurements (Sect. 3.1). At pre-
stall conditions, i.e., considering small AoAs,ct � cn so that
cn � cl (Barlow et al., 1999). It is noted that Eq. (6) de-
scribes the pressure drag, which does not account for the
skin-friction drag component. Hence, it is not possible to ex-
tract the total drag,cd, of the blade element via the localcp
distribution (Houghton et al., 2013).

2.3.3 Strain gauges

The strain gauges (SGs) are mounted at the clamping of the
blade detecting the root bending moments (RBMs) in the out-
of-plane or �apwise and in-plane or edgewise direction (see

Fig. 6a). They are connected in a full-bridge con�guration
aiming at the mitigation of temperature and cross-talk effects
(FAET-A6194N-35). The experimental procedure to deter-
mine the RBMs is based on Bartholomay et al. (2018). For
the purpose of the presented baseline measurements, a sim-
pli�ed postprocessing protocol is applied without including
the data-based cross-talk correction.

Before testing each blade con�guration, the offset signal
is recorded in slow motion at the lowest rotating frequency
available,f rot D 0.1 Hz. In this way, the gravitational RBMs
are subtracted from the results, which are otherwise regis-
tered as a sinusoidal signal in the edgewise direction. At op-
erational frequencies, the axial forces due to the blade rota-
tion are causing a material deformation directed towards the
blade tip. They are quanti�ed as a combination of centrifugal
and gravitational forces by

Faxial D Fcent� Fgrav

D (mblade� rcg � ! 2) � (mblade� g � cos(' )) ; (7)

wherembladeD 5.67 kg, the center of gravity is located at
rcg D 0.31R, g is the gravitational constant, and' refers to
each phase-locked blade position. The rotational frequency,
! , is kept constant during each test run so that the centrifu-
gal forceFcent becomes a constant correction term at each
OP. The effective �apwise and edgewise RBMs, which are
related exclusively to the aerodynamic loads acting on the
blade, are determined by

M �ap (' ) D
�
Uf;raw(' ) � Uf;off(' )

�
� Kf1 � (Faxial � Kf2) (8)

and

Medge(' ) D
�
Ue;raw(' ) � Ue;off(' )

�
�Ke1� (Faxial � Ke2) ; (9)

where

– M �ap andMedgeare the aerodynamic �apwise or edge-
wise RBMs in Nm;

– Uf;raw andUe;raw stand for the raw data signal in V;

– Uf;off andUe;off describe the slow-motion offset signal
in V;

– K f1 and Ke1 refer to constant calibration factors to
transform V into Nm;

– K f2 and Ke2 refer to constant calibration factors to
transform the axial forces from N into Nm.

Applying Eqs. (8) and (9), both the out-of-plane and the in-
plane RBMs are computed for each of the 36 blade positions
(see Sect. 3).
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Figure 7. Tripped case atr D 0.56R and' D 270� . (a) Mean axial and tangential (tan) wake velocity normalized by the in�ow velocity.
(b) Standard deviation of the wake velocity normalized by the average wake velocity.

Figure 8. Angles of attack in the tripped case atr D 0.56R and ' D 270� . (a) Stall and rated conditions.(b) Rated and feather condi-
tions.(c) AoA difference between Gurney �ap con�gurations and the baseline.

3 Results

The measurement results of both the tripped and the clean
cases are presented and discussed. For space economy, the
clean case is only presented in terms of the concluding re-
sults, such as the lift performance in Sect. 3.2 and the root
bending moments in Sect. 3.3, but otherwise accessible in
Appendix A for completeness.

3.1 Wake velocities and angles of attack

Following Snel et al. (2009), Fig. 7a shows the average axial
and tangential wake velocity normalized by the axial in�ow
velocity at each OP, uu� 1

1 and wu� 1
1 .

Starting from the baseline, Fig. 7a shows that the axial
wake velocities are found to be signi�cantly higher com-
pared to typical free-�ow conditions without wind tunnel

walls. According to the steady-state blade element momen-
tum (BEM) method, the optimum axial wake velocity is
supposed to be around one-third of the in�ow (Burton et
al., 2011). In this case, it amounts to more than two-thirds
at all OPs. This phenomenon is caused by the wind tun-
nel blockage effects, previously shown by CFD simula-
tions using the �uid-dynamic code FLOWer. At rated con-
ditions of the BeRT, Klein et al. (2018) conclude that the
�ow decelerates to an axial wake velocity in the range of
0.62u1 < uCFD < 0.77u1 , which is in agreement with the ex-
perimental results,uexp D 0.69u1 : The corresponding tan-
gential velocity, on the other hand, is similar to the steady-
state BEM simulation of QBlade (Marten et al., 2013), with
wBEM D 0.18u1 compared towexp D 0.17u1 . According to
Eq. (11),w depends primarily on the rotational speed of the
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Table 4. Comparison of approximate AoA results at rated conditions and' D 270� .

Method Blade position Case AoA Reference

Pressure taps 0.45R Clean 8.0� Soto-Valle et al. (2020)
Ultrasonic anemometry 0.56R Tripped 8.8� Present study
Three-hole probe 0.65R Tripped 8.5� Klein et al. (2018)
CFD simulation 0.65R Tripped 8.2� Klein et al. (2018)

Figure 9. Pressure coef�cients in the tripped case with respect to different scales atr D 0.45R and' D 270� . (a) TSRD 3.0.(b) TSRD 4.3.
(c) TSRD 5.6.

blade. The tangential wake velocity is therefore less affected
by the wind tunnel blockage effect.

Regarding the impact of the GFs, Fig. 7a illustrates the
consistent decrease in the axial and the consistent increase
in the tangential wake velocity in relation to the GF height.
The lateral velocity component is neglected as it amounts
to v �

�
� 0:1ms� 1

�
�. Figure 7b shows the standard deviation

normalized by the corresponding average velocity compo-
nent describing the 1D turbulence intensity, expressed in per-
cent (Burton et al., 2011). As expected, the �ow separation,
TSRD 3.0, is captured by the UA in the form of a more tur-
bulent wake �eld, especially regarding the tangential compo-
nent. The GF con�gurations do not in�uence the wake turbu-
lence considerably, except for the tangential velocity compo-
nent at stall, where the GFs appear to mitigate the turbulence
level.

According to the BEM method (Hansen, 2015), the wake
velocity is converted into the axial and tangential rotor in-
duction factors,

a D
1
2

�
1 �

u
u1

�
(10)

and

a0D
w

2!r
: (11)

The induction factors,a anda0, describe the decrease in
the axial and the increase in the tangential velocity compo-
nent from a reference point suf�ciently far away from the
rotor plane rather than the rotor plane itself (Burton et al.,
2011). The wake measurements are recorded at a distance of
X D 1.3R downstream in order to avoid the in�uence of the
wind tunnel contraction (see Fig. 3a).

Subsequently, the AoAs are derived by means of Eqs. (10)
and (11) with

� D arctan
�

(1 � a)u1

(1C a0) !r

�
� � D arctan

�
u1 C u
2!r C w

�
� �; (12)

where the twist angle at the radial location of the UA is
� (0.56R) D 9.8� .

At rated conditions, the AoA of the baseline case is
� ZZ D 8.8� (see Fig. 8a and b). This outcome is in agreement
with different experimental and numerical investigations of
the BeRT, gathered in Table 4.

The relatively small deviations between the results are due
to the different measurement methods as well as blade con-
�gurations (Table 4). The AoA is therefore considered con-
stant in the midspan region within the range of 0.45R � r �
0:65R. In all cases, the AoAs are signi�cantly higher com-
pared to the original blade design of the BeRT,� opt D 5.0� .

Figure 8c displays the consistent AoA decrease caused by
the GF con�gurations. The AoA differences between GF and
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Figure 10. Lift coef�cients over angles of attack atr D 0.45R and' D 270� . (a) Tripped case.(b) Clean case.(c) Relative lift increase in
Gurney �ap con�gurations in relation to the corresponding baseline.

baseline con�gurations amount to1� GFD0:5 %c D 0.5� and
1� GFD1:0 %c D 0.9� , i.e., to a level that is closer to the op-
timum blade operation. The results quantify an important ef-
fect of retro�t GFs on the blade performance: decreasing ax-
ial wake velocities and thus reduced AoA.

In Sect. 3.2, the AoAs are correlated with the normal-force
coef�cients in order to obtain the lift coef�cients.

3.2 Pressure distribution and lift performance

Figure 9 shows the distribution of the pressure coef�cients,
cp, in relation to the different OPs.

Thecp curves shown in Fig. 9b and c represent the prestall
cases at� TSRD4:3 D 8.8� and � TSRD5:6 D 4.8� , respectively.
At stall (see Fig. 9a), the separation at the SuS is not yet com-
plete despite the elevated AoA,� TSRD3:0 D 16.3� . The curves
indicate the effect of stall delay due to the blade rotation, as
discussed hereafter.

The GF con�gurations cause an expansion of the pres-
sure differences between the PrS and the SuS,1c p, along
the complete chord length and regarding all OPs. This ef-
fect is particularly visible in terms of the aft loading to-
wards the TE at 0.5 <x < 0.9. The increased circulation due
to the GF applications is re�ected by1c p, as reported by
Storms and Jang (1994) based on the clean NACA 4412 air-
foil (thmax D 12.0 %c, ReD 2:0� 106).

In order to quantify the results, thecp distribution is trans-
formed into the local lift curve based on Eq. (5). The required
AoAs are adopted from Sect. 3.1 so that the lift coef�cients
combine the results of both the wake velocity and the pres-
sure measurements.

Figure 10a and b depict the lift coef�cients of both the
tripped and the clean cases. Starting from the baseline, the
tripped case shows smallercl at 4� < � < 5� because of the
forced BL transition at the LE. At 8� < � < 9� , this is not the
case anymore, while in the stall region, 15� < � < 17� , the ZZ
tape appears to develop a bene�cial effect on the lift perfor-

Figure 11. Lift coef�cients of the Clark-Y airfoil including Gurney
�ap, reproduced and modi�ed from Kheir-Aldeen (2014).

mance. This phenomenon is probably caused by the tripped
and more turbulent BL that remains attached until it is closer
to the TE. In the clean case, however, the less energetic BL
separates earlier, thus leading to smallercl at elevated AoA.
This observation is con�rmed by comparable airfoil exper-
iments on the FX 63-137 airfoil section (thmax D 13.7 %c,
ReD 2:0� 105) using ZZ tape with a thickness of 0.75 mm
(Holst et al., 2016). Despite the decrease in the prestall, the
lift coef�cients are found at a similar level in the poststall
region.

Looking at the GF con�gurations, thecl performance in
the tripped case is at a similar or even higher level consider-
ing the complete AoA range, 4� < � < 17� . Hence, forced LE
transition does not neutralize or mitigate the GF effect. In
fact, the GF con�gurations appear to alleviate the adverse ef-
fects of forced LE transition by improving the localcl perfor-
mance. Figure 10c highlights the relative lift increase,1c l ,
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Figure 12. Lift over pressure drag coef�cients atr D 0.45R and' D 270� . (a) Tripped case.(b) Clean case.(c) Pressure drag coef�cients in
relation to the corresponding baseline.

Figure 13. Flapwise and edgewise root bending moments in the tripped case.(a) TSRD 3.0.(b) TSRD 4.3.(c) TSRD 5.6.

between the GF and the corresponding baseline con�gura-
tions. At rated conditions, TSRD 4.3, 1c l;GFD0:5 %c D 0.11
or 9.3 %, and1c l;GFD1:0 %c D 0.19 or 16.9 %, illustrating the
main characteristic of retro�t GFs: the considerable lift in-
crease.

The level of bothcl;baselineand1c l;GFD1:0 %c is in agree-
ment with comparable wind tunnel experiments based on a
similar Clark-Y airfoil section, as depicted in Fig. 11.

Figure 11 compares the lift coef�cients of the clean
Clark-Y airfoil section (thmax D 14.0 %c, ReD 2:1� 105,
GFD 1.2 %c) and the clean Clark-Y blade element of the
BeRT (thmax D 11.9 %c, ReD 2:5� 105, GFD 1.0 %c). The
results demonstrate similarities for both the baseline and the
GF con�gurations. The elevatedcl in the case of the BeRT
are due to the thinner Clark-Y blade element. Atcl;max, the
blade performance is furthermore characterized by the radial
�ow due to the blade rotation causing stall delay. This be-

havior is in agreement with experiments on the �eld rotor
at the Delft University of Technology. Van Rooij and Tim-
mer (2003) report a signi�cant shift ofcl;max compared to
2D airfoil simulations.

For completeness, the lift over the pressure drag coef�-
cients (Eq. 6) is displayed as an indicator of the drag perfor-
mance. It is reiterated thatcdp < cd, as previously discussed
in Sect. 2.3.2.

Figure 12a and b illustrate the dependency ofcdp on
the OP, reaching values of 0.024 <cdp,prestall< 0.04 and
cdp;stall � 0.25. In general, the baseline results are compa-
rable to the clean S809 airfoil (thmax D 21.0 %c, ReD 3:0�
105) that is used for the NREL Phase VI test turbine (Hand
et al., 2001). Figure 12c visualizes the increase incdp in the
tripped case due to the implementation of the ZZ tape. The
GF con�gurations, on the other hand, in�uence thecdp values
in a less noticeable way.
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Figure 14. Flapwise (�ap) and edgewise (edge) root bending moments.(a) Tripped case.(b) Relative increase to tripped baseline.(c) Clean
case.(d) Relative increase to clean baseline.

After evaluating one area of the midspan blade region, the
impact of GFs over the complete blade span is presented in
Sect. 3.3.

3.3 Root bending moments

The integration of the aerodynamic loads, i.e., the lift and the
drag forces acting along the blade span, yields the RBMs.
The in-plane or edgewise RBMs are proportional to the rotor
torque and thus the mechanical power output. They are di-
rectly related to the out-of-plane or �apwise RBMs, which
are proportional to the rotor thrust and thus the structural
loads (Hansen, 2015).

Figure 13 displays the aerodynamic RBMs that are
recorded over one blade revolution in the form of 36 phase-
locked blade positions. The impact of the GF con�gurations
is registered as an overall increase in both the �apwise and
the edgewise RBMs. In order to quantify and to discuss the

results, the RBMs are presented as average values for both
the tripped and the clean cases.

The results of Fig. 14a con�rm the increment of the av-
erage RBMs in relation to the GF height in accordance with
Fig. 13. In the clean case, the overall trend is similar to the
tripped case considering all OPs (see Fig. 14c). This means
that the impact of the Gurney �aps, previously quanti�ed in
terms of the local lift coef�cients, is now registered in the
form of increased RBMs in both the �apwise and the edge-
wise direction.

In Fig. 14b, the performance of the GF con�gura-
tions is quanti�ed in relation to the tripped baseline.
At rated conditions, the average increase in the �ap-
wise RBMs amounts to1M �ap ;GFD0:5 %c D 3.8 Nm or
6.7 % and to 1M �ap ;GFD1:0 %c D 7.0 Nm or 12.4 %.
At the same time, the edgewise RBMs are en-
hanced by 1M edge;GFD0:5 %c D 1.0 Nm or 11.2 % and
1M edge;GFD1:0 %c D 1.8 Nm or 19.7 %. In the clean case
(see Fig. 14d), the overall trend is similar though less
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pronounced. In both cases, the GF con�gurations generate
performance improvements regarding the rotor torque, albeit
at the expense of the inherent increase in the rotor thrust.

Overall, the results reinforce the observation that GFs are
more effective in relation to the tripped compared to the clean
baseline. Looking at the relative increase shown in Fig. 14b
and d, the GF con�gurations appear to alleviate the effects of
forced LE transition, especially on the edgewise RBMs, as
previously discussed in Sect. 3.2 with respect to the local lift
performance.

4 Conclusions

The aerodynamic impact of Gurney �aps is investigated on
the rotor blades of the Berlin Research Turbine. The test ma-
trix consists of the clean and the tripped baseline cases as
well as two GF con�gurations of 0.5 %c and 1.0 %c. Three
measurement methods are applied, including 3D ultrasonic
anemometry, surface pressure taps, and strain gauges.

The baseline measurements con�rm the in�uence of
the prevailing wind tunnel blockage. At rated conditions,
TSRD 4.3, and in the midspan blade region, the axial wake
velocity is approximately double in comparison to ideal free-
�ow conditions without wind tunnel walls. The correspond-
ing angle of attack is elevated in comparison to the opti-
mum blade design and amounts to� exp D 8.8� rather than
� opt D 5.0� .

The impact of the Gurney �aps is registered regarding all
blade con�gurations and operation points. In the tripped case
and at rated conditions, the axial wake velocities are reduced,
and the angles of attack are decreased by1� GFD0:5 %c D 0.5�

and1� GFD1:0 %c D 0.9� . At the same time, the local lift co-
ef�cients are enhanced by1 cl;GFD0:5 %c D 0.11 or 9.3 % and
1c l;GFD1:0 %c D 0.19 or 16.9 %, which is the main character-
istic of Gurney �aps. The effect of the aerodynamic loads
over the complete blade span is analyzed by means of the
root bending moments. The average increase in the out-
of-plane direction amounts to1M �ap ;GFD0:5 %c D 3.8 Nm
or 6.7 % and to 1M �ap ;GFD1:0 %c D 7.0 Nm or 12.4 %.
Simultaneously, the in-plane bending moments are el-
evated by 1M edge;GFD0:5 %c D 1.0 Nm or 11.2 % and
1M edge;GFD1:0 %c D 1.8 Nm or 19.7 %. Hence, decreasing
angles of attack and increasing lift coef�cients appear to be
correlated with the enhancement of both the rotor torque and
the thrust. Overall, the aerodynamic effect is found to be
more pronounced in the tripped case compared to the clean
case.

The experimental results demonstrate the potential of
retro�t Gurney �aps to improve the rotor blade performance
in the following ways:

– decreasing angles of attack to a level that is closer to the
optimum blade operation;

– elevated lift forces compensating for the adverse effects
of forced leading-edge transition.

In summary, Gurney �aps are considered a passive �ow-
control device worth investigating for the use on horizontal-
axis wind turbines of different sizes. However, the design of
the Gurney �ap height in relation to the local boundary layer
thickness is crucial in order to achieve performance improve-
ments while avoiding detrimental effects such as additional
drag forces. Future research is required to quantify the im-
pact of Gurney �aps on dynamic loads, surface roughness,
and the power output of rotor blades that operate in open-
�eld conditions and at high Reynolds numbers.
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Appendix A: Results of the clean case

Figure A1. Clean case atr D 0.56R and' D 270� . (a) Axial and tangential (tan) wake velocity normalized by the in�ow velocity.(b) Stan-
dard deviation of the wake velocity normalized by the average wake velocity.

Figure A2. Angles of attack in the clean case atr D 0.56R and ' D 270� . (a) Stall and rated conditions.(b) Rated and feather condi-
tions.(c) AoA difference between Gurney �ap con�guration and the baseline.
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Figure A3. Pressure coef�cients in the clean case with respect to different scales atr D 0.45R and' D 270� . (a) TSRD 3.0.(b) TSRD 4.3.
(c) TSRD 5.6.

Figure A4. Flapwise and edgewise root bending moments in the clean case.(a) TSRD 3.0.(b) TSRD 4.3.(c) TSRD 5.6.
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Appendix B: Uncertainty estimation

The experimental uncertainty of the raw results is expressed
by means of the standard deviation,

� D

vu
u
t 1

n � 1

nX

i D1

j� i � � j2; (B1)

wheren is the number of samples, and� refers to the average
result. The values of� are rounded up conservatively and are
considered representative for both tripped and clean baseline
cases as well as the GF con�gurations.

As expected, the scatter of both the velocity and the
pressure data depends on the OP; i.e., it is higher at stall
(TSRD 3.0; see Table B1). Looking at the RBMs, however,
the experimental uncertainty of� (M �ap ) and � (Medge)
is in�uenced by the structural impact of the rotational fre-
quency that the SGs register simultaneously to the aerody-
namic forces. Overall, the standard deviation is not signi�-
cantly in�uenced by either of the GF con�gurations.

Table B1. Standard deviation and reference values in brackets.

Section Quantity TSRD 3.0 TSRD 4.3 TSRD 5.6

3.1 � (u1 ; m s� 1) 0.02 (6.57) 0.02 (6.57) 0.01 (5.02)
� (u; m s� 1) 0.20 (4.87) 0.06 (4.55) 0.04 (3.49)
� (w; m s� 1) 0.20 (1.06) 0.06 (1.12) 0.03 (0.71)

3.2� � min (1p ; Pa) 2.8 (21.8) 2.6 (102.5) 1.7 (6.1)
� max (1p ; Pa) 30.0 (� 193:6) 5.8 (� 269:1) 3.2 (� 41:6)

3.3 � (M �ap ; Nm) 1.9 (36.6) 2.9 (56.5) 2.2 (42.9)
� (Medge; Nm) 1.0 (8.5) 1.1 (9.1) 0.6 (4.4)

� Minimum and maximum standard deviation of pressure taps.

Table B2. The 95 % con�dence interval and reference values in brackets.

Section Quantity TSRD 3.0 TSRD 4.3 TSRD 5.6

3.1 " (u1 ; m s� 1) 5:0 � 10� 5 (6.57) 5:0 � 10� 5 (6.57) 2:8 � 10� 5 (5.02)
" (u; m s� 1) 6:1 � 10� 3 (4.87) 2:1 � 10� 3 (4.55) 1:2 � 10� 3 (3.49)
" (w; m s� 1) 7:1 � 10� 3 (1.06) 1:8 � 10� 3 (1.12) 1:1 � 10� 3 (0.71)

3.2� " min (1p ; Pa) 4:3 � 10� 2 (21.8) 4:0 � 10� 2 (102.5) 2:7 � 10� 2 (6.1)
"max (1p ; Pa) 5:1 � 10� 1 (� 193:6) 8:8 � 10� 2 (� 269:1) 4:8 � 10� 2 (� 41:6)

3.3 " (M �ap ; Nm) 2:9 � 10� 2 (36.6) 4:5 � 10� 2 (56.5) 3:4 � 10� 2 (42.9)
" (Medge; Nm) 1:5 � 10� 2 (8.5) 1:6 � 10� 2 (9.1) 9:6 � 10� 3 (4.4)

� Minimum and maximum con�dence interval of pressure taps.

Subsequently, the 95 % con�dence interval or so-called
random error is computed with

" D t �
�

p
n

� 1:96�
�

p
n

; (B2)

wheret is the Student'st distribution (Barlow et al., 1999).
The values of the 95 % con�dence interval (see Table B2),

are signi�cantly smaller compared to those of the standard
deviation (Table B1). The reason is the relatively large num-
ber of samples:n � 3:6� 103 in terms of the wake velocities,
u andw, andn � 1:7� 104 per azimuthal angle in the remain-
ing cases. Hence, the presented average results are contained
by a reasonably small con�dence interval.
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