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Abstract. Using flatback airfoils at the root of wind turbine (WT) blades is becoming more
popular as the WTs increase in size. The reason is that they provide significant aerodynamic,
aeroelastic and structural benefits. However, due to the blunt trailing edge (TE) , the wake
of such airfoils is highly unsteady and rich in three-dimensional vortical structures.This poses
significant challenges on the numerical simulation of the flow around them, given the highly
unsteady, three-dimensional turbulent character of their wake. In this work, computational
predictions for a flatback airfoil employing both RANS and DES approaches on three successively
refined grids up to 25 million cells are compared with available experimental data. Results
suggest that even though URANS and DDES are in good agreement in terms of lift and drag,
RANS simulations fail to accurately capture the turbulent wake unsteady characteristics.

1. Introduction
The practice of incorporating flatback airfoils, i.e. airfoils with a blunt trailing edge (TE), at the
root of wind turbine (WT) blades is becoming popular as WT rotor diameters increase in size.
The reason is that they offer several aerodynamic, structural and aeroelastic benefits. In regards
to aerodynamic performance, flatback airfoils can provide higher lift values due to the reduced
adverse pressure gradient over the aft part of the suction side [1]. Moreover, their aerodynamic
performance is insensitive to surface roughness when compared to that of traditional sharp
trailing edge airfoils [1]. In fact it has been shown that blades with flatback airfoils can be
up to 16% lighter than blades that use traditional airfoils without any performance penalty
[2]. Additionally, flatback blades have increased flapwise stiffness, due to the blunt TE and
increased blade cross-sectional area, which both are beneficial in terms of the structural design.
Finally, trailing edge flow control devices can be easily accommodated in order to improve their
performance and decrease the associated drag penalty [3, 4].

On the other hand, the blunt trailing edge leads to the formation of a von Karman street-like
wake. This inherent pitfall of flatback airfoils requires careful investigation of the shedding
frequencies that may lead to vortex-induced vibrations (VIV), as the latter can eventually
shorten the WT lifespan.

In regard to numerical analysis, these types of flow problems are often tackled by Unsteady
Reynolds-Averaged Navier Stokes (URANS) solvers, which commonly utilize conventional one
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and two-equation turbulence models. URANS solvers are not suitable for the simulation of
inherently unsteady separated flows, because they underpredict turbulence levels in the wake and
tend to artificially restrict flow three-dimensionality, resulting in patterns that closely resemble
2D-like flows [5].

The increased availability of computational resources has, in turn, increased the popularity of
higher fidelity turbulence modeling approaches, such as Large Eddy Simulation (LES). However,
grid requirements for LES at practical Reynolds numbers (Re > 106) remain prohibitive. An
attractive way to alleviate computational demands for the simulation of separated flows is
to utilize hybrid RANS-LES turbulence models like Detached Eddy Simulation (DES), or its
variants Delayed DES (DDES) [6] and Improved Delayed DES (IDDES) [7].

In the present work, the flow past a 30% thick airfoil with a 10% thick TE is investigated
using both URANS and IDDES approaches on identical grids of varying density. The predictions
are compared to previously published wind tunnel results [8]. The considered flow case is at a
low Angle of Attack (AoA) and remains attached over the airfoil surface. However, the focus of
the present comparison is on the wake downstream of the blunt TE, which is highly unsteady.
Results from experiments and numerical simulations are compared in terms of both integrated
loads (mean CL and CD, Strouhal numbers) and wake behavior (Reynolds Stresses and velocity
contours).

2. Experimental and Numerical Setup
2.1. Experimental Setup
The numerical results are compared against Stereo Particle Image Velocimetry (PIV), forces and
hot wire measurements in the wake of the airfoil. In the experiments, the chord based Reynolds
number was Re = 1.5 · 106, the model chord c = 0.5m and the model aspect ratio AR = 2.
Figure 2 presents a schematic of the experimental setup, where the Stereo PIV measurement
plane is shown along with the location of the hot wire probe in the wake of the airfoil. Extensive
description of the wind tunnel tests can be found in [8].

Figure 1: Schematic of the experimental set-up, showing the flatback airfoil under investigation,
LI30-FB10, the location of the hot wire probe in the wake and size of the Stereo PIV measurement
plane.

2.2. Numerical Framework
The CFD solver used for the numerical simulations is MaPFlow ([9],[10],[11]), which is developed
at the Laboratory of Aerodynamics of NTUA. MaPFlow is a compressible, cell-centered solver
that can use both structured and unstructured grids. The convective fluxes are discretized
using the approximate Riemann solver of Roe [12] with Venkatakrishnan’s limiter [13], while the
viscous fluxes are discretized using a second order piecewise linear scheme. Simulations of flows
in the incompressible region are feasible using Low Mach Preconditioning.
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For the URANS simulations presented in this work, the Spalart-Allmaras (SA) one-equation
RANS model was used [14]. In regards to results with hybrid RANS-LES modeling, the SA-
DDES(IDDES) model implemented in MaPFlow follows the suggestions of [7], from hereon
referred to as DDES.

3. Results
3.1. Numerical Predictions
In the present work the flow over the flatback airfoil at zero AoA is considered. In order to
quantify the effect of grid resolution on the predictions, three grids with varying resolutions are
generated, consisting of approximately 5, 10 and 25 million elements, respectively. The grids
are hybrid, having a structured region close to the airfoil (boundary layer) and the rest of the
domain is unstructured. In the spanwise direction, the mesh is extruded to one chord length
and symmetry conditions are applied to the side boundaries. The spanwise resolution varies
between 60 nodes on the coarser to 200 nodes on the finer grid. As the spanwise resolution
increased, the structured boundary layer grid (i.e. the RANS region grid) remained unchanged
in the chordwise and wall normal directions. On the other hand, the unstructured grid in the
wake (i.e. up to 2.5 chord lengths downstream of the wing TE) is refined in all directions to
maintain the cell aspect ratio close to unity. The same computational mesh is used for both
URANS and DDES simulations to avoid grid related deviations. Details on the computational
grid used can be found in Table 1.

Grid Cells Spanwise Spacing Spanwise Nodes y+
L3 5 · 106 0.016 60 ≈ 1
L2 12 · 106 0.008 125 ≈ 1
L1 25 · 106 0.005 200 ≈ 1

Table 1: Description of the computational grids used

Mean integrated loads for each computational mesh are first compared. The predicted lift
(CL) and drag (CD) coefficient for each grid can be seen in Figure 2 and Figure 3 respectively.
Evidently, the predicted loads when employing the L2 and L1 grids are in close agreement. The
differences when using the coarser L3 grid are greater, especially for the URANS simulations.
Regarding the comparison of URANS and DDES predictions, URANS simulations predict a
higher mean CL value whereas the results of CD are in good agreement.

Figure 2: Lift Coefficient (CL) as
predicted for the various grids

Figure 3: Drag Coefficient (CD) as
predicted for the various grids
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Even though the initial comparison shows similar mean CL, CD values, the two methods are
far apart when the unsteady characteristics are compared. Due to the thick trailing edge, the flow
around the flatback airfoils is unsteady even at small AoAs. Indeed, vortices are continuously
shed from the blunt trailing edge establishing a highly unsteady wake flow. The way URANS
and DDES approaches predict the evolution of the wake has a direct impact on the predicted
loads.

The CL time histories from the URANS and DDES simulations are shown in Figure 4 and
Figure 5, respectively. In URANS results, the CL response to the vortex shedding frequency
exhibits repeating patterns of increasing and after a while decaying amplitudes. This is more
pronounced when the finer L2 and L1 grids are used, whereas it is not present when employing
the coarser L3 grid. In the latter case, due to the increased numerical diffusion, the airfoil loads
are primarily affected by the vorticity near the TE. The increased diffusion also confines the
spanwise variation of vorticity.

On the contrary, DDES simulations do not exhibit the same characteristics. It is evident from
Figure 5 that as the mesh resolution increases, the amplitude of the CL signal also increases.
However, the unphysical ”beats” that the URANS simulations predict are not present in the
DDES results.

Figure 4: CL time signal for the URANS
simulations

Figure 5: CL time signal for the DDES
simulations

The previous comments also apply to the CD results. In Figure 6, where the CD time
histories from the URANS simulations are presented, it is clear that when the finer L2 and L1
grids are used the predictions exhibit large unphysical oscillations. These oscillations are not
present in the DDES predictions shown in Figure 7. The URANS CD signal also has two distinct
frequencies, similar to what was observed in the URANS CL signal (Figure 4). In the results
using the coarser grid the amplitude of the CD signal is very low due to the faster trailing edge
vorticity diffusion.

Regarding the DDES drag predictions in Figure 7, all three grids yield approximately the
same mean values. However, as the mesh resolution increases, the amplitude of the signal also
increases, while additional frequencies are excited. Comparing the results from the medium grid
(L2-10m cells) to those from the finer grid (L1-25m cells), the agreement is fair in terms of both
CL and CD.
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Figure 6: CD time signal for the RANS
simulations

Figure 7: CD time signal for the DES
simulations

In order to have a better understanding of the unsteady flow characteristics, the spectral
content of the CL time histories is shown in Figure 8 and Figure 9. The power spectral density
(PSD) is plotted against the Strouhal number (St = fhTE

U∞
). In the St number definition, f is the

dominant shedding frequency, hTE is the TE thickness and U∞ is the free stream velocity. As
Figure 9 suggests, when the computational grid is refined the main shedding frequency moves
to the right in the DDES simulations. On the contrary, for the URANS simulations (Figure 8)
the main shedding frequency remains unchanged even when using the coarse L3 grid. However,
high energy at low frequencies is noted which is due to the repeating patterns (amplifications
followed by decay response) shown in the CL time series of the URANS predictions (Figure 8).

Figure 8: Power Spectral Density (PSD) of
the CL signal vs the Strouhal Number for the
URANS simulations

Figure 9: Power Spectral Density (PSD) of the
CL signal vs the Strouhal Number for the DDES
simulations

Figure 10 and Figure 11 present a snapshot of the predicted vortical structures using the
Q-criterion [15] for both URANS and DDES approaches. Figure 10 contains the results from
the URANS simulation using the three successively refined meshes (from left to right). In the
coarser grid (Figure 10a) the shed vorticity quickly decays, contrary to the finer grids where the
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wake is preserved. Nevertheless, the wake predicted by the URANS simulations has coherent
vortices in both the 10M (Figure 10b) and 25M meshes (Figure 10c). It is noticeable that when
the 10M grid is employed, the wake exhibits stronger 3D effects that in the predictions using the
finer grid. This is probably a grid induced artifact since it is not reproduced in the refined mesh.
The fact that vorticity remains coherent in the URANS simulations can explain the excitation
of the lower frequencies expressed as ”beats” in the CL and CD time signals.

On the other hand in DDES simulations (Figure 11) wake structures are preserved even at the
coarser grid which indicates that in DDES analysis the 3D character of the flow is revealed even
with relatively coarse grids (Figure11a). Increasing the mesh resolution to 10M (Figure 11b)
and 25M (Figure 11c) results to a better resolved vorticity patterns in the wake. Additionally
in the medium and fine DDES simulations the generation of streamwise vorticity in the wake is
evident. The main spanwise vortices give raise to multiple streamwise hairpin vortices.

(a) RANS 5 million grid (b) RANS 10 million grid (c) RANS 25 million grid

Figure 10: RANS predictions – Isosurfaces of Q=1.5 coloured by streamwise vorticity. The
2D-like vortical structures are evident in the wake in the finer 10M and 25M meshes. On the
coarser grid, vorticity decays rapidly.

(a) DDES 5 million grid (b) DDES 10 million grid (c) DDES 25m miliion grid

Figure 11: DES predictions – Isosurfaces of Q=1.5 coloured by streamwise vorticity. The high
three dimensionality of the flow can be seen even in the coarser 5 million grid. As the grid is
refined more flow features are resolved

3.2. Comparison with Measurements
The comparisons between the experiments and the simulations in terms of lift coefficient (CL),
drag coefficient (CD) and St number are given in Table 2. The dominant frequency is extracted
from the velocity time series in the wake of the airfoil in the experiments, and from the CL time
signals in the simulations. As the grid is refined, both URANS and DDES simulations converge
to Str ≈ 0.21, which deviates by ≈ 10% from the measured Str. Regarding the standard
deviation of the CL and CD time signals, it is clear that the URANS results yield large load
fluctuations, especially for CD.
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CL CD CL STD CD STD St
Experiment 0.399 0.042 - - 0.240
RANS(L3-5M cells) 0.347 0.052 0.0157 0.00075 0.207
DES (L3-5M cells) 0.353 0.059 0.0211 0.0011 0.200
RANS(L2-10M cells) 0.367 0.065 0.1123 0.0191 0.211
DES (L2-10M cells) 0.362 0.066 0.0802 0.0079 0.210
RANS(L1-25M cells) 0.366 0.060 0.0947 0.0194 0.211
DES(L1-25M cells ) 0.361 0.064 0.0801 0.0060 0.214

Table 2: Lift and Drag Coefficient values,standard deviation (STD) and Strouhal number from
the experiments and the different numerical cases

In Figures 12 and 13 time-averaged velocity fluctuation contours from experiments and
simulations are shown. It is evident that the overall agreement with the experimental results is
fair regardless of the turbulence modelling approach used. However, for both u′u′ and v′v′ the
DDES simulations are in closer agreement with the PIV measurements. Regarding u′u′ in Figure
12, both URANS and DDES underpredict the magnitude of the fluctuations when compared to
the experimental data, although DDES simulations capture the asymmetry between the upper
and lower side of the TE seen in the PIV measurements. Concerning v′v′ in Figure 13, URANS
results clearly underpredict the overall fluctuation magnitude, whereas DDES results are in very
good agreement with the experimental data.

Figure 12: Normalized u′u′ contours at
the mid-plane normal to the wing span.
The PIV plane limits are outlined by a
dashed line on the numerical results. DDES
simulation capture the assymetry evident
in the measurements

Figure 13: Normalized v′v′f contours at
the mid-plane normal to the wing span.
The PIV plane limits are outlined by a
dashed line on the numerical results.DDES
simulations are good agreement with the
measurements.

The aforementioned comments also apply to the u′v′ comparison as shown in Figure 14. It is
evident that the URANS underpredict the time averaged velocity fluctuations as compared to
the DDES simulations and the Stereo PIV measurements. It is noted here that a finer grid would
probably make the comparison of the DDES simulations even better with the experimental data.

Finally, in Figure 15 time-averaged streamwise velocity contours are presented. Computations
and measurements are in very good agreement regardless of the employed turbulence modeling
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approach. DDES results are in better agreement with the PIV data, even though in this case
the differences are marginal.

Figure 14: Normalized u′v′ contours at
the mid-plane normal to the wing span.
The PIV plane limits are outlined by a
dashed line on the numerical results.DDES
simulations are good agreement with the
measurements.

Figure 15: Time-averaged streamwise
velocity contours at the mid-plane normal
to the wing span. The PIV plane limits are
outlined by a dashed line on the numerical
results. DDES simulation capture the
assymetry evident in the measurements

4. Conclusions
In the present work, the flow past a flat back airfoil has been investigated both computationally
and experimentally. The focus was on the URANS-DDES turbulence modeling approach
comparison in terms of prediction accuracy and overall wake behavior. The simulations utilized
the SA-URANS and SA-DDES variants, using grids with increasing resolution. Identical
meshes were used regardless of the turbulence modeling approach, to eliminate any grid-related
discrepancies.

When comparing DDES and URANS predictions in terms of averaged spanwise loads, both
models seem to accurately capture mean lift and drag values. However, a closer inspection of
the CL and CD signals reveals that URANS results are qualitatively different from those using
DDES. Interestingly, URANS simulations seem to deteriorate as the grid resolution increases.

The two methods agree fairly well when the coarser grid is employed. On the contrary,
URANS results using finer meshes yield large load variations. These variations are not present
in the experimental data and the DDES predictions and are attributed to the coherency of the
shed vorticity in the URANS approach.

As the wake visualization suggests, when coarser grids are used in both URANS and DDES
approaches, vorticity quickly decays and there is minimal spanwise variation. However, as mesh
resolution increases, the results from URANS and DDES deviate. URANS predictions form
coherent, 2D-like structures, which lead to large oscillations in the predicted loads. On the
contrary, when DDES is employed the wake is highly three dimensional even when the coarser
5M grid is used. Results suggest that when dealing with separated flows, URANS predictions
should be carefully examined, especially if very fine grids are utilized. The URANS approach
has the tendency to enforce two-dimensionality, which can amplify the wake effect on the loads,
leading to unphysical load fluctuations which are not present in experimental measurements.
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