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Abstract—In this paper, a new recursive structure based
on the convolution model of discrete cosine transform (DCT)
for designing of a finite impulse response (FIR) digital filter
is proposed. In our derivation, we start with the convolution
model of DCT-II to use its Z-transform for the proposed filter
structure perspective. Moreover, using the same algorithm, a
filter base implementation of the inverse DCT (IDCT) for image
reconstruction is developed. The computational time experiments
of the proposed DCT/IDCT filter(s) demonstrate that the pro-
posed filters achieve faster elapsed CPU time compared to the
others. The image filtering and reconstruction performance of
the proposed approach on ultrasound images are presented to
validate the theoretical framework.

I. INTRODUCTION

DCT has found wide applications in signal and image

processing in general, and in data compression, filtering and

feature extraction in particular. The DCT has been proved

successful at decorrelating and correlating the energy of image

data. After decorrelation, each DCT coefficient can be en-

coded independently without lossing compression efficiency

since it has a strong ‘energy compation’ property in typical

applications [1]. In comparison to discrete Fourier transform

(DFT), DCT is a real transform that transforms a sequence of

real data points into its real spectrum and therefore avoids the

problem of redundancy. Also, as DCT is derived from DFT,

all the desirable properties of DFT (such as the fast algorithm)

are preserved. To reduce DCT computational complexities, the

development of fast and efficient algorithms for computing 2-

D DCT/IDCT becomes increasingly important. Various fast al-

gorithms for computing 2-D DCT were proposed to minimize

the computational complexity [2]. However, there are a variety

of DCT of which four are common (DCT-I, DCT-II, DCT-III,

and DCT-IV). Each differs by only a bit, and each has its

own usage in particular field. For image reconstruction, DCT

II is used to decompose and DCT III is used to reconstruct.

Each DCT has its cosine basis kernel which is orthogonal. The

most common variant of discrete cosine transform is the type-

II DCT, which is often called simply “the DCT”. Its inverse

is correspondingly often called simply “the inverse DCT” or

“the IDCT”. The N -point DCT-II of a discrete signal, x(n) is

given by

Xk = c(k)

N−1∑

n=0

x(n) cos

[
π

N

(
n+

1

2

)
k

]
, (1)

for k = 0, 1, . . . , N − 1, where

c (k) =





1√
N

, k = 0
√

2

N
, otherwise.

The above scale factor can be rewritten in

terms of the unit impulse and step functions as

c(k) =
[
δ(k) +

√
2u(k − 1)

]
/
√
N . The inverse 1-D

discrete cosine transform (IDCT)-II can be defined as

x(n) =

N−1∑

k=0

c(k)Xk cos

[
π

N

(
n+

1

2

)
k

]
, (2)

for n = 0, 1, . . . , N − 1.

Medical ultrasound images are usually corrupted by noise

in its acquisition and transmission. Hand-held ultrasound scan-

ners are increasingly being employed at the point of care and

used in telemedicine to serve rural population limited access

to hospitals [3]. However, image quality of these portable

systems are in general poorer than those of standard scanners.

They are also often used in scans by physicians rather than

by expert sonographers. Thus, the poor image quality is one

of major drawbacks of the ultrasound image due to speckle

noise. In general, ultrasound images have two main noise

components - electronic noise, modeled as an additive white

Gaussian noise, and speckle noise. In raw RF data, speckle

noise is multiplicative but in the B-mode image we consider

it as an additive noise due to the log transform. Speckle noise

is correlated with the signal and is not Gaussian [4]. However,
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the proposed denoising suppresses all additive components

regardless of their probability distribution. On the other hand,

multiplicative speckle noise is generally more difficult to

remove than additive noise, because the intensity of the noise

varies with the image intensity [5]. Image noise is usually

random, but ultrasound speckle is not random and results

from some patterns of constructive and destructive interference

shown as bright and dark dots in the image. Sometimes speckle

helps to identify the boundaries better in ultrasound images

than without speckle. In addition to speckle, there is thermal

noise in ultrasound images arising due to electronics. In this

research, the proposed method deals with the additive noise

which is pertinent to addressing the image quality of low cost

scanners in which noise performance of amplifiers may be

low compared to high end scanners. The proposed method

also allows for reconstruction after compression which may

be necessary in telemedicine (when images will need to be

transmitted over limited band widths). The presence of speckle

noise affects difficulties on features extraction and quantitative

measurement of ultrasound images. There are some algorithms

to suppress the speckle noise while attempting to preserve

the image content using combination of Gaussian filter and

DCT approach [6]. Furthermore, the main challenge in image

denoising techniques is to remove such noises while preserving

the important features and details. Filtering techniques can

be classified as single scale spatial filtering (linear, nonlinear,

adaptive methods, etc.) and multiscale filtering (anisotropic

diffusion-based methods, DCT, Wiener, wavelet, curvelet,

contourlet, etc.). Mean filtering and Gaussian filtering are

the examples of linear methods which blur the sharp edges,

destroy lines and suppress the details [7], [8]. The authors in

[8] also showed that filtering efficiency depends considerably

on DCT coefficient statistics.

In this paper, our approach toward deriving an FIR filter

structure is based on a convolution equation to simplify 1-

D DCT in terms of the flipped input signal. We then obtain

the transfer function of the FIR filter in Z-domain to find a

simple filter structure of DCT coefficients generation [9], [10].

Finally, using the orthogonality property of cosine function, we

derive the IDCT-II FIR filter structure to recover the original

signal based on its limited DCT-II coefficients by applying

the same method of transfer function design. The main con-

tribution of this study is in developing a new computational

algorithm for denoising of ultrasound images to have a better

image quality performance. Moreover, the proposed FIR filters

make an automatic system to accelerate the generated DCT

coefficients to apply it for the proposed DCT-based ultrasound

image filtering.

II. DERIVATION OF A RECURSIVE ALGORITHM FOR 1-D

DCT AND IDCT

Before deriving a recursive algorithm for 1-D DCT based

on FIR digital filter structure, we show how to get a 1-D signal

transform based on any kernel function using a simple discrete

convolution in the following Theorem.

Theorem 1. A discrete transformation of a discrete signal,

Fig. 1: A simple FIR filter structure with impulse response

hk(n) for generating DCT-II coefficients from a flipped input

signal.

f(n) of length N , over a kernel function of g(n, k) can be

derived by the discrete convolution of the kernel and the

flipped signal which is evaluated at N − 1.

Proof. The discrete transform for a 1-D signal f(n) of

length N with any kernel function of g(n, k), can be written

as:

Fk =

N−1∑

n=0

f(n)g(n, k). (3)

By changing n to N−1−n, the above equation can be written

as:

Fk =
N−1∑

n=0

f(N − 1− n)g(N − 1− n, k)

=
N−1∑

n=0

fF (n)g(N − 1− n, k)

= fF (n) ∗ g(n, k)
∣∣∣∣∣
n=N−1

,

(4)

where fF (n) is the flipped version of the input signal. Us-

ing the definition of 1-D discrete convolution for the above

equation, we end up with
∑N−1

n=0
f(n)g(n, k) = fF (n) ∗

g(n, k)
∣∣∣
n=N−1

, which completes the proof of Theorem 1. �

A. FIR filter implementation for 1-D DCT-II

By applying Theorem 1 to DCT-II definition in (1) and

considering the kernel function as a cosine signal, g(n, k) =
cos

[
π
N

(
n+ 1

2

)
k
]
, we get:

Xk = c(k)

N−1∑

n=0

x(n) cos

[
π

N

(
n+

1

2

)
k

]

= c(k)

{
xF (n) ∗ hk (n)

∣∣∣∣∣
n=N−1

}
,

(5)

where hk(n) = cos
[
π
N

(
n+ 1

2

)
k
]
. The function hk(n) is

called the digital filter impulse response which is the same

as kernel function g(n, k). Such a system is shown in Fig. 1.

The system feeds by a flipped signal and generates the DCT-II

coefficients which are sampled at N − 1.

To find the FIR filter structure of the above system, it is

easy to obtain the transfer function of the system in Z-domain

(Hk(z)). We start to expand the cosine function of hk(n) as

follow:

hk(n) = αk cos

(
πnk

N

)
− βk sin

(
πnk

N

)
, (6)
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Fig. 2: DCT network: Recursive FIR filter structure to generate

DCT-II coefficients for k = 0, 1, . . . , N − 1.

where αk = cos
(
πk
2N

)
and βk = sin

(
πk
2N

)
.

By taking the Z-transform of (6), we can find the transfer

function of the FIR filter as:

Hk(z) =
z
[
z − cos

(
πk
N

)]
αk − z sin

(
πk
N

)
βk

z2 − 2z cos
(
πk
N

)
+ 1

. (7)

Let ϕk = πk
N

, then αk = cos
(
ϕk

2

)
and βk = sin

(
ϕk

2

)
. Eq.

(7) can be rewritten as:

Hk(z) =
αk − (αk cosϕk + βk sinϕk) z

−1

1− 2z−1 cosϕk + z−2
. (8)

On the other hand, αk cosϕk + βk sinϕk = αk, then Eq. (8)

can be simplified as:

Hk(z) =
αk

(
1− z−1

)

1− 2z−1 cosϕk + z−2
. (9)

The transfer function in Eq. (9) can be implemented as an

FIR filter in Fig. 2. This filter contains three delay units and

three adders. Moreover, the filter uses three multipliers and

two negative feedback. The outputs of filter are sampled at

N − 1 to generate DCT coefficients for each different values

of k. The FIR system is quite simple since we have used the

flipped version of the original signal as system input unlike

the existing algorithms [2].

B. FIR filter implementation for 1-D IDCT-II

For IDCT-II which is described in (2), it is possible to apply

the same theorem and consider the same kernel function with

respect to k as the independent variable to get the following

convolution:

x(n) =
N−1∑

n=0

c(k)Xk cos

[
π

N

(
n+

1

2

)
k

]

= Y F (k) ∗ hn (k)

∣∣∣∣∣
k=N−1

,

(10)

where hn(k) = cos
[
π
N

(
n+ 1

2

)
k
]

and Y (k) = c(k)Xk. Note

that here, the impulse response hn(k) is different with the

earlier impulse response hk(n) because of the concept of the

independent variable in signals theory. Taking the Z-transform

of hk(n) with respect to the independent variable k and using

Fig. 3: IDCT network: Recursive FIR filter structure to re-

construct the original signal from its DCT-II coefficients for

n = 0, 1, . . . , N − 1.

the Z-transform of the cosine function, the FIR filter transfer

function can be written as:

Hn(z) =
1− z−1 cosωn

1− 2z−1 cosωn + z−2
, (11)

where ωn = π
N

(
n+ 1

2

)
. The transfer function in (11) can be

implemented as an FIR filter which is shown in Fig. 3. This

filter also contains three delay units and two adders as well

as two multipliers and two negative feedback. The outputs of

filter are sampled at N − 1 to recover the original signal for

each different values of n. The structure also has the flipped

version of the DCT coefficients which is multiplied by the

scale factor c(k).

C. Recursive Formulas for DCT and IDCT Based on the

Proposed Algorithms

The obtained transfer functions in (9) and (11) are in the

form of Yout(z)/Xin(z). Therefore, by knowing that each

delay term in Z-domain such as z−mQ(z), provides a differ-

ence form of q(n−m) for all integer m and assumed signal,

q(n), we can find a difference relation of the aforementioned

equations which are the same as a recurrence formula of the

system. For the first transfer function in (9) which is shown

as an FIR filter in Fig. 2, we have the following recurrence

relation:

Xk(n) = c(k)

{[
xF (n)− xF (n− 1)

]
cos

(ϕk

2

)

+ 2 cosϕkXk(n− 1)−Xk(n− 2)

}
,

(12)

where k = 0, 1, . . . , N − 1 and Xk(−1) = Xk(−2) = 0. The

second transfer function in (11) that is shown in Fig. 3, can be

converted to a recursive formula for reconstructing the original

signal as:

xn(k) = Y F (k)− (cosωn)Y
F (k − 1) + 2 cosωn

× xn(k − 1)− xn(k − 2),
(13)

3



where n = 0, 1, . . . , N − 1 and xn(−1) = xn(−2) = 0.

Equation (12) uses n as the independent variable while Eq.

(13) presents k as the independent variable for our derived

recursive formulas.

III. GENERALIZED ALGORITHMS FOR 2-D DCT/IDCT

IMPLEMENTATION

The same implementation could be applied for 2-D DCT-

II since there is a kernel separation for it and the transfer

function of 2-D FIR filter can be obtained from multiplication

of two transfer functions described in (9) and (11). The

implementation of 2-D FIR filter could be also generalized

using the 2-D convolution version of (5). The same procedure

can be applied for 2-D version of (10) to find the proper FIR

filter design for 2-D IDCT. For recursive formulas of 2-D

DCT, we can follow 2-D version of (9) to obtain the following

recurrence relation for computing 2-D DCT:

Xk1,k2
(n,m) = c1(k1)c2(k2)

{[
xF (n,m)− xF (n− 1,m)

− xF (n,m− 1) + xF (n− 1,m− 1)
]

× cos
(ϕk1

2

)
cos

(ϕk2

2

)

+ 2 cosϕk1

[
Xk1,k2

(n− 1,m)

+Xk1,k2
(n− 1,m− 2)

]

+ 2 cosϕk2

[
Xk1,k2

(n,m− 1)

+Xk1,k2
(n− 2,m− 1)

]

− 4 cosϕk1
cosϕk2

Xk1,k2
(n− 1,m− 1)

−Xk1,k2
(n,m− 2)−Xk1,k2

(n− 2,m)

−Xk1,k2
(n− 2,m− 2)

}
,

(14)

for k1, n = 0, 1, . . . , N − 1 and k2,m = 0, 1, . . . ,M − 1
where c1(k1) =

[
δ(k1) +

√
2u(k1 − 1)

]
/
√
N , c2(k2) =[

δ(k2) +
√
2u(k2 − 1)

]
/
√
M , ϕk1

= πk1/N and ϕk2
=

πk2/M (for an image with size of N × M ). It is easy to

find a similar recursive formula as above for reconstructing

the original image via its 2-D IDCT coefficients.

IV. EXPERIMENTAL RESULTS

The simulations have been performed using a wide set of

captured images based on different fetal scans (normal and

anomaly). These scans were performed in a trajectory (axially

from head to toe or toe to head followed by sagittally in

the opposite direction) in a display-less mode. All images

were extracted from different sets of videos. We selected

normal fetus, fetal cystic hygroma and fetal hydronephrosis

from the fetus ultrasound images for our experiments. Fig.

4 shows some of the fetus ultrasound images that we used

for our experiments. Note that the aim of the experiments

is to show that the proposed recursive algorithm for DCT

computation can be efficiently used as a plug-in into denoising

Fig. 4: Some examples of fetus ultrasound data-set images

used for experiments. The size of all images is 400× 400.

and reconstruction algorithms. We illustrate this on medical

ultrasound data.

A. Computational Time

In DCT calculation, the time is a critical issue because in

general the calculation of DCT coefficients is time expensive

and fast algorithms may help a lot. Their importance is even

more apparent if we are aware that a typical application of

DCT is in image compression where a close-to-real time

performance is desirable. We tested the time complexity of

the proposed methods and compared it to two reference

algorithms: the direct recursive structure method [2] and the

fast discrete cosine transform (FDCT) algorithm that utilizes

the energy compactness and matrix sparseness properties in

frequency domain to achieve higher computation performance

[11]. The computational complexity of the proposed recursive

structures is compared with those of the existing ones [2],

[11]. For the fast algorithms of the 2-D DCT, the recursive

structures for computing radix-r technique is applied in [2] and

the number of additions is reduced to at least 30% of method

[12]. The number of multiplications has no reduction and is

increased more than 100% which is a drawback of this method.

For the second fast DCT method described in [11], the authors

achieved a 40% of reduction in the number of multiplications

with no improvement for decreasing of the additions number.

To compare those algorithms with the proposed method using

digital filter technique, we obtained a 71% and 34% decrement

in the number of multiplications comparing to [2] and [11],

respectively. In terms of the number of additions, the proposed

method has almost a 79% reduction in comparison with [2].

Table I shows a comparison of the number of multiplications

and additions for computation of DCT coefficients based on

three different fast algorithms applied to all test images (size

of 400×400) which are presented in Fig. 4. Since the proposed

algorithm is developed based on the DCT filter structure,

there are many reductions in the number of additions and

multiplications. The advantage of the proposed technique is in

4
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Fig. 5: Average elapsed CPU times in seconds: full set of DCT

coefficients extraction for ultrasound data-sets using different

methods.

decreasing the number of additions while in [2] by decreasing

the number of multiplications, the number of additions starts

to increase which is a big drawback of the existing algorithms.

As can be seen from Fig. 5, the average elapsed time for

calculation the full DCT coefficients of our test ultrasound

images using proposed method is much better than [2] and

[11]. One of the most important advantage of the proposed

method is eliminating the pre-addition blocks of the existing

algorithms. We run the same speed test for the average

elapsed time of computing original image using its DCT

coefficients through IDCT filter structure. Fig. 6 clearly shows

that the speed performance of the IDCT recursive method for

image reconstruction from a set of finite DCT coefficients is

significantly faster than the other mentioned methods.

B. DCT-based Ultrasound Image Filtering

The state-of-the-art filters including the DCT-based denois-

ing [8], [13] and the Wiener-based techniques [14] provide

filtering performances for complex structure images and large

noise variance. In this paper, we use the Wiener DCT-based

image filtering with hard threshold. As discussed earlier, the

speckle noise of medical ultrasound image is modeled as

multiplicative noise and non-Gaussian distributed [15] and

defined by:

g(n,m) = x(n,m)v(n,m) + η(n,m), (15)

TABLE I: Number of multiplication and addition operations

for computation of DCT coefficients based on three different

methods for all fetus ultrasound test images shown in Fig. 4

with size 400× 400.

Operation
Fast algorithms

Proposed algorithm
[2] [11]

Multiplication 560 245 162

Addition 2450 N/A 520
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Fig. 6: Average elapsed CPU times in seconds: full set of IDCT

image reconstruction for ultrasound data-sets using different

methods.

where g(n,m) is an observed noisy image, n and m are

the image pixel values, x(n,m) denotes a noise-free im-

age, v(n,m) and η(n,m) are multiplicative noise and white

Gaussian noise not correlated with x(n,m), respectively. It

is suggested that the additive noise has weaker effect than

the multiplicative noise of medical ultrasound image. Conse-

quently, (15) can be written as:

g(n,m) ≈ x(n,m)v(n,m). (16)

Laplace and Rayleigh distribution have been used to model

the multiplicative noise distribution. For the B-Scan ultrasound

images, the logarithmic compression is applied and then (16)

is rewritten as:

log g(n,m) ≈ log x(n,m) + log v(n,m). (17)

Then, the multiplicative noise becomes the additive noise and

is approximated as an additive zero mean Gaussian noise [15].

It means, we could consider g(n,m) ≈ x(n,m) + v(n,m) as

the new model of ultrasound images in our coming experi-

ments in logarithmic mode. Similar to Wiener filter, the target

is to find an estimate of the noise-free image x̂(n,m) such that

it minimizes the mean square error (MSE). Thus, the Wiener

DCT-based filter in the DCT domain can be formulated as:

ĤW (k1, k2) =
P̂x(k1, k2)

P̂x(k1, k2) + λ(k1, k2)σ2
, (18)

where ĤW (k1, k2) is an estimate of the frequency response

of the Wiener filter and P̂x(k1, k2) is power spectral density

estimates of the noise-free image and σ2 is noise variance

since λ(k1, k2) is proportional to the image size, and λ(0, 0) =
0 because we assume the Gaussian noise to have zero mean.

We use the DCT instead of the Fourier transform for spec-

trum calculation in standard Wiener filter, i.e., P̂x(k1, k2) =
X2

k1,k2
, where Xk1,k2

is the DCT of a noise-free image.

5



In practice the noise-free image is not accessible to obtain

Xk1,k2
. For this reason, the estimate of image power spectral

density, P̂x(k1, k2), should be calculated using an observed

noisy image. Therefore, the image data has to be pre-filtered

to obtain some rough estimate of a noise-free image X̂k1,k2

and then to calculate P̂x(k1, k2) to implement the Wiener filter

in (18).

The last expression for the Wiener DCT-based filter transfer

function, Eq. (18), could be simplified assigning the unit

gain for all spatial DCT coefficients where |U(k1, k2)| ≥ βσ
and zero gain otherwise. This results in a hard thresholding

technique:

HT (k1, k2) =

{
1 ; |U(k1, k2)| ≥ βσ

0 ; otherwise
, (19)

where β is a control parameter. For our second experiment

which is denoising of ultrasound images based on the proposed

DCT filter structure, β can be varied from 0 to 1 based on

its quasi-optimal value [16]. Fig. 7 illustrates DCT filtering

efficiency for three sets of data: first row is the normal fetus,

second row is the fetal cystis hygroma and the third row shows

the fetal hydronephrosis. The sizes of all images are 400×400
pixels. Each image was denoised using a DCT-based Wiener

filter led by the proposed FIR filter structure with different

level of thresholds (β = 0.1, 0.5, 0.8). To show the quality

of filtered images, we use the statistical-normalization image

reconstruction error (SNIRE) in [17] to measure the difference

between the original image and the enhanced image by using

pixel values. Moreover, the blind/referenceless image spatial

quality evaluator (BRISQUE) is applied to get a score for

image measurement from a natural image model [18]–[20].

For this score, lower values conduct us to a better subjective

quality. These scores show that the quality of enhanced images

are improved after DCT filtering processes. Furthermore, we

compare the proposed algorithm with classical image denois-

ing method followed by conventional Wiener filter. The last

column in Fig. 7 shows the results for the denoised image of

the original image illustrated in the first column of the figure

by using Wiener filter. The second, third and forth columns

show the proposed DCT-based method to denoise the original

images with different level of hard thresholds. It can be seen

from the forth and last columns of the figure, when β = 0.1
the proposed algorithm has better performance and quite good

improvements than the classical Wiener filter method. Both

SNIRE and BRISQUE criterion confirm the effectiveness of

the proposed algorithm.

C. Ultrasound Image Reconstruction Using Proposed Filter

Structure

To show different reconstruction and recognition abilities

of the proposed IDCT filter, we carried out the following

experiment. Fig.8 shows the same ultrasound images that we

used for the previous experiment for denoising algorithms.

We calculated DCT coefficients using the recursive proposed

method up to order 400 which should theoretically provide

a possibility of loss-less reconstruction. We reconstructed the

original image using various DCT coefficients orders (maxi-

mum reconstruction orders are 50, 100, 200, 300 and 400 for

all images). We used the SNIRE and the structural similarity

(SSIM) index to measure the performance of the proposed

IDCT filtering. Lower values of SNIRE and higher values

of SSIM means a better reconstruction with less error. The

obtained results for both SNIRE and SSIM in Fig.8 illustrate

a better image reconstruction. For example, in the first row

of this figure, reconstruction using IDCT filter provides 77%

improvement with order of 300 in comparison with 50.

Fig. 9 shows the image reconstruction error analysis with

increasing rate of the DCT orders. This figure also illustrates

that an optimal trade-off between the accuracy and complexity

is provided by the maximum DCT order between 50 and 100,

depending on the data.
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Fig. 9: Image reconstruction error analysis by increasing DCT

orders. In the legend of graph, Images 1 and 6 refer to the

original images in the first and sixth rows of Fig. 7.
V. CONCLUSION

In this paper, a new approach has been proposed for

DCT/IDCT calculation based on FIR filter structures and

presented its performance on ultrasound image filtering and

reconstruction. This approach has been developed using con-

volution model of DCT to use its Z-transform for designing

an FIR digital filter network. The same approach has been

used to find a recursive filter to reconstruct ultrasound images

using IDCT structure. In order to evaluate the performance

of the new filters, a set of normal/abnormal fetus ultrasound

images have been applied to test the validity of the proposed

algorithms. It has also been shown that filtering efficiency

depends considerably on hard thresholding. By choosing a

correct threshold level, the denoising results using our method

is better than the classical Wiener filter denoising while the

proposed filter is simpler and faster. Additionally, to illustrate

the proposed method accuracy, BRISQUE, SNIRE and SSIM

indexes showed the image quality scores, the error measure-

ment and the structural similarity in our analysis, respectively.
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Fig. 7: DCT Filtering results for the real fetal ultrasound images captured for normal/anomaly fetuses using DCT-based proposed

method compared to classical Wiener filtering. The last two columns show that the proposed method is performing denoised

process better than Wiener filter.

The main advantage of our method is the speed and the ability

to perform both lossy and loss-less reconstruction.
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