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Abstract: Industrialization of construction makes building operation more environmental friendly
and sustainable. This change is necessary as it is an industry that demands large consumption of
water and energy, as well as being responsible for the disposal of a high volume of waste. However,
the transformation of the construction sector is a big challenge worldwide. It is also well known that
the largest proportion of the material used in multistory buildings, and thus its carbon impact, is
attributed to their slabs being the main contributor of weight. Steel-Concrete composite beams with
precast hollow-core slabs (PCHCSs) were developed due to their technical and economic benefits,
owing to their high strength and concrete self-weight reduction, making this system economical
and with lower environmental footprint, thus reducing carbon emissions. Significant research has
been carried out on deep hollow-core slabs due to the need to overcome larger spans that resist high
loads. The publication SCI P401, in accordance with Eurocode 4, is however limited to hollow-core
slabs with depths from 150 to 250 mm, with or without a concrete topping. This paper aims to
investigate hollow-core slabs with a concrete topping to understand their effect on the flexural
behavior of Steel-Concrete composite beams, considering the hollow-core-slab depth is greater than
the SCI P401 recommendation. Consequently, 150 mm and 265 mm hollow-core units with a concrete
topping were considered to assess the increase of the hollow core unit depth. A comprehensive
computational parametric study was conducted by varying the in situ infill concrete strength, the
transverse reinforcement rate, the shear connector spacing, and the cross-section of steel. Both full
and partial interaction models were examined, and in some cases similar resistances were obtained,
meaning that the same strength can be obtained for a smaller number of shear studs, i.e., less energy
consumption, thus a reduction in the embodied energy. The calculation procedure, according to
Eurocode 4 was in favor of safety for the partial-interaction hypothesis.

Keywords: composite beams; hollow-core slabs; sustainable; finite element analyses

1. Introduction

Researchers have been studying the impact that civil construction causes on the
environment. In this context, a concept that has been studied is embodied energy in
materials of buildings [1]. In Whitworth and Tsavdaridis [2,3], optimization studies were
presented in Steel-Concrete composite beams with the objective of presenting sustainable
structural designs by minimizing the embodied energy. The study showed that it is
possible to reduce the embodied energy of these structural systems, considering the design
recommendations of Eurocode 4 [4].

Conventional Steel-Concrete composite beams have a concrete slab that is placed at
the upper flange of the downstand steel profile. In this context, three types of slabs can be
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used: solid, composite or precast hollow-core slabs (PCHCSs). In composite beams with
PCHCSs, a cast in situ concrete topping is usually made to provide a smooth and uniform
finish [5]. The concrete topping can increase the strength and stiffness of the structural
system [6,7]. Other factors influence the strength of PCHCSs, such as the intensity of
the actual prestress, the prestress transmission length, the depth of the slab, and filled
cores [8]. PCHCSs are widely used in countries with cold climates in the construction of
residential or industrial buildings due to their fast installation. In Albero et al. [9], the
estimate of the number of PCHCS floors installed in Europe was estimated to be close to
1 billion square meters. The use of PCHCSs offers advantages; e.g., large spans, speed of
construction, and reduced construction costs [5,10–14]. In the European Union, according
to Ahmed and Tsavdaridis [15], construction and building are responsible for about 40% of
environmental impact. In Dong et al. [16], the precast and cast in situ construction methods
were compared using a case study. The authors concluded that the precast construction
could lead to a 10% carbon reduction for one cubic meter of concrete. The PCHCS is an
industrialized structural element that consumes less energy when constructed in-house in
comparison to in situ, and with a minimum waste of concrete, and thus with an overall
lower carbon footprint. In terms of sustainability, the PCHCS is a structural element that
contributes not only to the speed of construction, but also to the significant reduction of
CO2 emissions due to the lower consumption of concrete.

The present study aims to examine the flexural behavior of Steel-Concrete composite
beams with PCHCSs and a concrete topping, considering a hollow core unit (HCU) depth
greater than the SCI P401 recommendation. The finite element (geometrical nonlinear
analysis) model was developed based on tests [17,18]. The results were compared with the
SCI P401 procedure [19], and thus analytical models of shear-stud resistance capacity were
employed [19,20].

2. Background

Lam [17] and Lam et al. [21] presented flexural tests on Steel-Concrete composite
beams with PCHCSs. A four-point bending was considered. In these studies, the concrete
topping was not considered. The experimental results showed a sudden failure due to
the shear studs rupturing and the concrete cracking, resulting in a loss of stiffness. Lam
et al. [22] complemented the previous studies and carried out a parametric study in which
they observed that with an increase in the depth of PCHCSs (150 mm to 200–250 mm),
there was an increase in the ultimate strength. However, the slab could fail due to excessive
cracking. Ellobody and Lam [23] investigated the shear studs and the gap while considering
the flexural behavior. The authors concluded that the shear-stud resistance increased with
the increase of the gap, and the in situ infill concrete strength influenced the strength of
the shear studs. In 2003, SCI P287 [24] was published; it is a design criteria for composite
beams with PCHCSs [17]. This publication was subsequently updated to SCI P401 [19].
The document gathers recommendations of minimum dimensions, such as arrangement of
the shear studs and transverse reinforcement. However, some limitations were observed,
such as application only for 150–250 mm HCU depths; 12 mm or 16 mm transverse
reinforcement diameters are recommended for composite construction. For partial shear
connection, 16 mm diameter bars should be provided; for HCUs up to 260 mm, 16 mm
diameter bars should be considered, spaced at 200–350 mm. For full interaction, if the
plastic neutral axis (PNA) lies within the slab, the interaction degree must be reduced, or
the size of the steel profile increased. A technical report (COPPETEC, PEC-18541/2016),
which was presented by Batista and Landesmann [18], described tests on composite beams
with PCHCSs and concrete topping. According to the authors, at the ultimate strength,
the loss of stiffness was due to excessive cracking. In Ferreira et al. [25], a parametric
study was presented, considering PCHCSs with 150 mm of depth and 50 mm of concrete
topping. In this study, the presence of the concrete topping increased the strength of the
composite beams by at least 7%. As observed, few studies have investigated the behavior
of Steel-Concrete composite beams with PCHCSs [26]. Tawadrous and Morcous [4] and
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El-Sayed et al. [5] showed that, due to the successful use of PCHCSs, deeper HCUs were
developed to resist higher loads and to support longer spans. In this scenario, some
researchers carried out tests to investigate the behavior of deeper PCHCSs [12,13,27–32].
However, these investigations did not consider composite behavior, i.e., Steel-Concrete
composite beams.

3. Numerical Model: Validation Study

In this section, the methodology of the validation study is described. The ABAQUS
software [33] was used. Three types of Steel-Concrete composite beams were modeled,
considering symmetry:

1. 150 mm of HCU depth with a chamfered end (Figure 1a);
2. 150 mm of HCU depth and 50 mm of concrete topping with a squared end (Figure 1b);
3. 265 mm of HCU depth and 50 mm of concrete topping with a squared end (Figure 1c).
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Geometrical nonlinear analyses were processed using the Static Riks method. This
method was previously used in [25,34–40] and is based on the arc-length method. Residual
stresses were not considered. These stresses do not influence the ultimate strength of
composite beams subjected to only positive moments. The residual stresses increase the
effects of the negative moment [41,42].

3.1. Tests

The numerical models were calibrated considering tests on Steel-Concrete composite
beams with PCHCSs, at 150 mm and 265 mm of depth, and with or without a concrete
topping. Figure 2 and Table 1 show the details of the tests [18,43], in which d is the steel-
beam depth, bf is the steel-flange width, tf is the steel-flange thickness, tw is the steel-web
thickness, b is the effective slab width, g is the gap, hc is the depth of the HCU, c is the
concrete-topping thickness, Le is the distance between the end of the beam and the support,
Lp is the distance between the load application point and the support, Lb is the unrestrained
length, ϕ is the diameter of the transverse reinforcement, fy,f is the yield strength of the
flange, fy,w is the yield strength of the web, fy,s is the transverse reinforcement yield strength,
fc,HCU is the HCU compressive strength, and fc,in is the in situ infill compressive strength.

Table 1. Details of specimens (in mm and MPa).

Model d bf tf tw b g hc c Le Lp Lb ϕ fy,f fy,w fy,s fc,HCU fc,in

CB1 355 171.5 11.5 7.4 1665 65 150 - 150 1500 5700 16 310 355 585 50 a 32 a

CB2 355 171.5 11.5 7.4 1665 65 150 - 150 1500 5700 8 310 355 473 50 a 26 a

CB3 299 306 11 11 1756 156 150 50 185 1915 5830 12.5 345 345 500 45 b 30 b

CB4 299 306 11 11 1756 106 265 50 185 1915 5830 12.5 345 345 500 45 b 30 b

a Cubic resistance; b cylindric resistance.
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The shear-stud dimensions were 19 × 125 mm2 (CB1 and CB2) and 19 × 135 mm2

(CB3 and CB4). The shear-stud spacing of the CB1 and CB2 models was 150 mm. For
models CB3 and CB4, the spacing between the shear studs was 200 mm.

3.2. Materials

The concrete-damage plasticity (CDP) [44–46] model was used. This model is based
on the plastic theory, and can be used to describe the irreversible damage that occurs during
the fracture process [33], such as cracking and crushing. The concrete-damage plasticity
model makes use of the yield function of Lubliner et al. [45], with modifications proposed
by Lee and Fenves [46]. Concrete, as a brittle material, undergoes considerable volume
change called dilatancy [47], which is caused by inelastic strains. The flow rule followed
the Drucker–Prager model. The concrete-damage plasticity model can be regularized using
viscoplasticity. The regularization of Duvaut-Lions [48] was used. The input parameters
for defining the plastic behavior are presented in Table 2, in which ψ is the dilation angle,
ξ is the eccentricity, σb0 is the initial equibiaxial compressive yield stress, σc0 is the initial
uniaxial compressive yield stress, Kc is the ratio of the second stress invariant on the tensile
meridian to that on the compressive meridian, and µ is the viscosity parameter.

Table 2. Concrete Damage Plasticity input parameters [25,38,40].

Parameter Value Ref.

Ψ (◦) (In situ concrete) 40 [47,49]
Ψ (◦) (HCU concrete) 28 [28]

ξ 0.1 (default) [28,33,47,49]
σb0/σc0 1.16 (default) [28,33,47,49]

Kc 2/3 (default) [28,33,47,49]
µ (s−1) 0.001 -

The concrete model of Carreira and Chu [50,51] was used for both compression and
tension Equations (1)–(3). For steel, the perfect elasto-plastic behavior was considered.

σ

fc
=

βc(ε/εc)

βc − 1 + (ε/εc)
βc

(1)

σ

ft
=

βc(ε/εt)

βc − 1 + (ε/εt)
βc

(2)

βc =

(
fc

32.4

)3
+ 1.55(MPa) (3)
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where εc is the strain corresponding to concrete compressive strength, εt is the strain
corresponding to concrete tensile strength, fc is the compressive concrete strength, ft is the
concrete tensile strength, and βc is the stress–strain relationship form factor of concrete
in compression.

3.3. Interaction

Figure 3 shows the pairs of interactions. The tie constraint technique allowed us to
simulate the perfect bond between the contact surfaces. The contacts between the concrete
and the transverse reinforcements were made through the embedded region [33]. The
normal/tangential behavior was considered between the steel beam and PCHCS, the steel
beam and gap, the actuator and concrete topping, and the shear stud and gap. The shear
studs were located in the gap, using the same technique presented in [52]. The friction
coefficient was based on the Coulomb friction model. The literature reports some values of
the friction coefficient [53–55]. Friction coefficients of 0.2 and 0.3 were adopted for the gap
and headed stud and the steel beam and slab interfaces, respectively [55].
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3.4. Boundary Conditions

The boundary conditions (Figure 4) were applied considering the symmetry at midspan
(Uz = URx = URy = 0) [25,37–40]. The vertical displacement was restrained at the supports
(Uy = 0) and the lateral displacement at the ends of the slab (Ux = 0). Displacement control
was used. The difficulties with softening materials can be avoided by applying a simple
form of displacement control [56,57]. The disadvantages in displacement control are related
to the selection of the appropriate displacement variable [58]. Thus, the variable selected
for the stopping criterion was the midspan vertical displacement.
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3.5. Discretization

The discretization of the elements is shown in Figure 5. The dimension values of
the elements were adopted according to the literature [28,53,54], and with respect to the
master and slave surfaces. The S4R element was a quadrilateral element with four nodes.
This element had reduced integration. According to the ABAQUS, Dassault Systèmes,
software [33], the C3D8R element had eight nodes, reduced integration, supported plastic
analysis with large deformations, and allowed the visualization of the crack in the CDP
model. The T3D2 element had 2-node linear displacement.
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3.6. Results

The results are presented in Figure 6 and Table 3, in which MFE is the bending moment
of finite element model, MTest is the bending moment of experimental tests, δFE is the
midspan vertical displacement of the finite element models, and δTest is the mid-pan
vertical displacement of the tests. It was possible to observe the yielding at the lower
flange, and in the CB1 and CB2 models, the cracking was observed in the lower part of the
PCHCSs, according to Lam [17]. The behaviors of the CB3 and CB4 models were similar to
those presented in Batista and Landesmann [18]; that is, there was a propagation of cracks
that started in the central part of the PCHCS and extended over the entire width.
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Figure 6. Validation results: (a) CB1 model; (b) CB2 model; (c) CB3 model; and (d) CB4 model.

Table 3. Comparison of finite element analyses and tests results.

Model MTest
(kN.m)

δTest
(mm)

MFE
(kN.m)

δFE
(mm) MFE/Mtest δFE/δtest

CB1 497 32 496 33 1.00 1.03
CB2 474 35 485 34 0.95 0.97
CB3 846 70 895 71 0.95 1.00
CB4 985 37 1015 35 1.03 0.95

4. Numerical Model: Parametric Study

The following were the general considerations for the parametric study:

1. The thickness of the concrete topping was 50 mm;
2. The total transverse reinforcement length was 1000 + g, in mm;
3. A welded steel mesh with 4.2 mm × 100 mm was considered [20,25];
4. LP26 units (Figure 7), with fc = 40 MPa and g = 70 mm, were considered;
5. For the steel beam, the ASTM A572 Gr.50 steel was adopted (fy = 345 MPa). The

Young’s module and the Poisson’s ratio were 200 GPa and 0.3, respectively;
6. The composite beams were simply supported, and subjected to four-point bending.

The loads were spaced in L/4 from each support. Stiffeners were placed at the support
and points of loads;

7. The midspan vertical displacement of a maximum value equal to L/100 was adopted
as a stopping criterion [25].
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The studied parameters are shown in Table 4.

Table 4. Parametric study.

Parameters Variation

Section W360x51, W460x74, and W530x72
In situ concrete strength (MPa) 25, 30, and 40

Transverse reinforcement diameter (mm) 10, 12.5, and 16
Shear-stud spacing (mm) 125, 175, and 275

5. Results and Discussion

In this section, the results are discussed, according to the steel cross-sections that were
analyzed. At the end of this section, the results are compared with the resistant calculation
procedures for Steel-Concrete composite beams, as well as with the results presented in
Ferreira et al. [25], considering a 150 mm depth of the PCHCS with concrete topping.

5.1. W360x51 Section

Considering a spacing between shear studs of 120 mm, for the midspan vertical
displacement at 15 mm, only the region where the beam was supported reached the yield
strength. The maximum von Mises stresses in the lower flange, web, and upper flange
were approximately 290 MPa, 260 MPa, and 115 MPa, respectively. When the composite
beam reached the ultimate strength, for the midspan vertical displacement at 26 mm, the
lower flange and approximately 1/4 of the web depth were in the plastic regime. The yield
strength was reached in none of the regions where the shear studs were located. The von
Mises stresses in the upper flange were approximately 200 MPa. The ultimate strength was
governed by excessive cracking of the PCHCS (Figure 8).
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With the variation of the transverse reinforcement rate and in situ concrete strength,
there were no differences in the shear-slip and moment-deflection relationships (Figure 9).
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Figure 9. Influence of transverse reinforcement for the W360x51 section with 120 mm of spacing: (a) Shear-slip relationship
for fc = 25 MPa; (b) moment-deflection relationship for fc = 25 MPa; (c) shear-slip relationship for fc = 40 MPa; and (d)
moment-deflection relationship for fc = 40 MPa.

This can be explained as a function of the depth and area of the steel cross-section
in relation to the depth and effective area of the PCHCS and concrete topping. Upon
reaching the ultimate strength, as shown in Figure 8, the neutral plastic axis (NPA) was
in the concrete topping, a factor that generates excessive tensile stresses in the PCHCS.
This can be concluded since in the final configuration, the upper part of the PCHCS, which
was in the region of pure bending, was damaged. Another important observation was the
fragile behavior of the composite beams, since the slip values at the steel-concrete interface
were less than 6 mm, a parameter that Eurocode 4 [4] considers to characterize the ductile
behavior (Figure 9). Due to this fragile behavior, with the variation of parameters, such
as transverse reinforcement rate and in situ concrete strength, there were no significant
differences in terms of stresses, both in the shear studs and in the transversal reinforcement,
considering the ultimate strength. Some examples are illustrated in Figure 10. For the
models with fc = 25 MPa, it was observed that the smaller the transverse reinforcement
diameter, the lower the von Mises stresses in the shear stud. For fc = 25 MPa, the von
Mises stresses in the shear studs showed a variation of only 6 MPa. On the other hand, for
fc = 40 MPa, there were no variations between the von Mises stresses in the shear studs with
the variation of the transverse reinforcement diameter. The observations for fc = 30 MPa
were similar.
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Figure 10. The von Mises stresses in headed studs for the W360x51 section and spacing of 120 mm: (a) fc = 25 MPa and
ϕ = 10 mm; (b) fc = 40 MPa and ϕ = 16 mm.

On the other hand, for the shear-stud spacing at 175 mm and 225 mm, for the midspan
vertical displacement at 15 mm, the behavior was similar to the models with 120 mm
of spacing. However, at the ultimate strength, the midspan vertical displacements were
greater than in the previous situation, with the maximum value equal to 36 mm, considering
ϕ = 16 mm, fc = 40 MPa, and 175 mm of spacing. For the situation in which the spacing
was 225 mm, the midspan vertical displacement reached 42 mm, considering ϕ = 10 mm
and fc = 25 MPa. Regarding the ultimate strength, the composite beams with shear-stud
spacing of 175 mm and 225 mm made better use of the steel section; that is, approximately
half the web depth reached plastification (Figure 11). Then, the greater the spacing between
the shear studs, the better the use of the steel section.
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The variation in both the transverse reinforcement rate (Figures 12 and 13) and the
in situ concrete strength showed significant differences in the shear-slip and moment-
deflection relationships.
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Figure 12. Influence of transverse reinforcement for the W360x51 section, fc = 40 MPa and175 mm of spacing: (a) shear-slip
relationship; and (b) moment-deflection relationship.
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Figure 13. Influence of transverse reinforcement for the W360x51 section, fc = 40 MPa and 225 mm of spacing: (a) shear-slip
relationship; and (b) moment-deflection relationship.

As shown in the illustrations, even with the variation of the transverse reinforcement
rate and in situ concrete strength, the initial stiffnesses of the composite beams modeled
were similar, showing that the differences of these relations were significant in the non-
linear branch. Although the ultimate moment had an approximate value for the models
illustrated (ϕ = 10 mm, ϕ = 12.5 mm, and ϕ = 16 mm), the models with ϕ = 10 mm and
ϕ = 12.5 mm showed similar behavior in the shear-slip and moment-deflection relation-
ships, and were different from the model with ϕ = 16 mm (Figures 12 and 13). According to
Lam et al. [22], with the increase in the transverse reinforcement rate, the flexural strength
capacity increases, but reduces the ductility, leading to fragile rupture.

Another important observation was that in no model presented for the W360x51
section did the composite beams show ductile behavior. Thus, it was possible to conclude
that in all models analyzed for W360x51 section, the ultimate strength was characterized
as fragile. In most observations for both 175 mm and 225 mm of spacing, the von Mises
stresses in the shear studs were less than the models with 120 mm of spacing. For example,
for fc = 25 MPa, considering the 175 mm and 225 mm models, the von Mises stresses in
the shear studs were lower than the model with 120 mm of spacing. A similar situation
occurred for fc = 30 MPa. On the other hand, for fc = 40 MPa, there were models in which
the von Mises stresses in the shear studs, considering 175 mm and 225 mm of spacings,
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were greater than the model with 120 mm of spacing. This was observed specifically for
transversal-reinforcement diameters equal to 10 mm and 12.5 mm.

5.2. W460x74 Section

Considering 120 mm of spacing between the shear studs, for the midspan vertical
displacement at 15 mm, only the region in which the beam was supported reached the
yield strength. The von Mises stresses in the lower flange, web, and upper flange were
290 MPa, 290 MPa, and 120 MPa, respectively. When the composite beam reached its
ultimate strength, the upper flange and approximately 1/4 of the web depth were in the
plastic regime. The von Mises stresses in the upper flange were 230 MPa. The ultimate
strength was governed by excessive cracking of the PCHCS (Figure 14).
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Figure 14. Final configuration for the W460x74 section, fc = 25 MPa, ϕ = 10 mm, and 120 mm
of spacing.

With the transverse reinforcement rate variation and in situ concrete strength, there
were no differences in the shear-slip and moment-deflection relationships (Figure 15).

As noted, there were no significant differences in the behavior of these analyzed
composite beams, because the ultimate strength was achieved by excessive cracking of the
PCHCS, a situation analogous to the W360x51 section. Another important observation was
the fragile behavior of the composite beams, a situation similar to the W360x51 section.
Due to this fragile behavior, with the variation of the parameters such as transverse rein-
forcement rate and in situ concrete strength, there were small differences in the magnitude
of the von Mises stresses, specifically in the shear studs. Some examples are illustrated in
Figure 16.
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Figure 15. Influence of transverse reinforcement for the W460x74 section and 120 mm of spacing: (a) shear-slip relationship
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For the fc = 25 MPa models, the smaller the transverse reinforcement diameter, the
lower the von Mises stresses in the shear studs. There was no variation in the stresses in
the shear studs for fc = 25 MPa. A similar situation occurred for fc = 30 MPa models. For
the fc = 40 MPa models, the von Mises stresses in the shear studs varied with the variation
of the transverse reinforcement diameter. Unlike the fc = 25 MPa models, the smaller the
transverse reinforcement diameter, the greater the von Mises stresses in the shear studs.
This variation reached approximately 20 MPa between ϕ = 10 mm and ϕ = 16 mm.

Considering the models with 175 mm and 225 mm of spacing, it was possible to
observe two different situations. In relation to the 175 mm of spacing, for the midspan



Sustainability 2021, 13, 4230 15 of 25

vertical displacement at 15 mm, the yield strength was not reached in any region of the
steel profile. The maximum von Mises stresses in the lower flange, web, and upper flange
were 290 MPa, 290 MPa, and 120 MPa, respectively. When the composite beams reached
the ultimate strength, only part of the lower flange was in the plastic regime (Figure 17a).
For 225 mm of spacing between shear studs, the ultimate strength was characterized with
the lower flange, half the web depth, and part of the upper flange, which were in the region
of the loading application point, in the plastic regime (Figure 17b). This was the model in
which the composite action took advantage of the strength of the steel profile.
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Figure 17. Final configuration for the W460x74 section: (a) 175 mm of spacing, fc = 40 MPa, and
ϕ = 10 mm; and (b) 225 mm of spacing, fc = 40 MPa, and ϕ = 16 mm.

The variation in both the transverse reinforcement rate and the in situ concrete
strength (Figures 18 and 19) showed significant differences in the shear-slip and moment-
deflection relationships.
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Figure 18. Influence of in situ concrete strength for the W460x74 section, ϕ = 12.5 mm and 175 mm of spacing: (a) shear-slip
relationship; and (b) moment-deflection relationship.
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Figure 19. Influence of in situ concrete strength for the W460x74 section, ϕ = 16 mm and 225 mm of spacing: (a) shear-slip
relationship; and (b) moment-deflection relationship.

These differences were observed for the concrete with the highest strength and
transversal-reinforcement diameters equal to 12.5 mm and 16 mm. Figure 18 shows
that the greater the concrete strength, the greater the initial stiffness of the composite beam,
although the values for the ultimate moment were analogous, since the ultimate strength
was governed by the slab. However, as the spacing between the connectors increased;
that is, the interaction degree was reduced, as illustrated in Figure 19, the model with
fc = 30 MPa showed a different behavior in the shear-slip and moment-deflection relation-
ships. This change in behavior was previously presented in Araújo et al. [20] and Ferreira
et al. [25]. The authors reported that when the compressive strength of the in situ concrete
was close to 40 MPa, the failure mode could occur in the shear stud, and for resistance
values below 30 MPa, the failure could be governed by the in situ concrete.

Another important observation was that for models with 225 mm of spacing, consid-
ering the W460x51 section, the composite beams showed ductile behavior; that is, the slip
at the steel–concrete interface was greater than 6 mm. Thus, it was possible to conclude
that in all models analyzed for the W460x51 section and 225 mm of spacing, the behavior
at the steel–concrete interface was characterized as ductile, according to prescriptions
of Eurocode 4. For the fc = 25 MPa models, the von Mises stresses in the shear studs,
considering 175 mm and 225 mm of spacing, were greater than the models with 120 mm
of spacing. A similar behavior occurred for fc = 30 MPa models. For fc = 40 MPa, there
were models in which the von Mises stresses in the shear studs, considering 175 mm and
225 mm of spacings, were much higher than the models with 120 mm of spacing. This was
observed for all transverse reinforcement diameters analyzed.
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5.3. W530x72 Section

Considering 120 mm of spacing, for the midspan vertical displacement at 15 mm, the
region where the composite beam was supported and the lower flange reached the yield
resistance. The maximum von Mises stresses in the lower flange, web, and upper flange
were 345 MPa, 316 MPa, and 230 MPa, respectively. When the composite beam reached the
ultimate strength (Figure 20), for the midspan vertical displacement at 22 mm, the lower
flange and approximately 1/4 of the web depth were in the plastic regime.
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Figure 20. Final configuration for the W530x72 section, fc = 40 MPa, ϕ = 16 mm, and 120 mm
of spacing.

The ultimate strength was governed by excessive cracking of the slab. It is important
to note that in these models, there were a better use of the steel section, in comparison
with the previous cross-sections. This was due to the fact that the steel section had a depth
and area greater than the other steel sections studied. So, the NPA tended to move in the
direction of the steel section, a factor that favored the resistance of the hollow-core slab,
thus reducing tension stresses. With the variation of the transverse reinforcement rate and
in situ concrete strength, there were no differences in the shear-slip and moment-deflection
relationships (similar to previous situations). Regarding the von Mises stresses in the shear
studs, there were no significant differences, reaching values between 556 and 570 MPa.

On the other hand, considering 175 mm of spacing between the shear studs, for the
midspan vertical displacement at 15 mm, only the support region reached the yield strength.
The von Mises stresses in the lower flange, web, and upper flange were 316 MPa, 288 MPa,
and 116 MPa, respectively. At the ultimate strength (Figure 21a), the midspan vertical
displacement was 21 mm. In this loading stage, the lower flange was in the plastic regime.

For 225 mm of spacing, with the midspan vertical displacement at 15 mm, the results
were similar to the previous beam. However, the maximum von Mises stresses in the lower
flange, web, and upper flange were 288 MPa, 288 MPa, and 116 MPa, respectively. At
the ultimate strength (Figure 21b), with the midspan vertical displacement at 38 mm, the
lower flange, half the web depth, and the upper flange were in the plastic regime. With
the variation of the transverse reinforcement rate and the in situ concrete strength, it was
possible to verify some differences in the shear-slip and moment-deflection relationships
(Figures 22 and 23).
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Figure 22. Influence of transverse reinforcement for the W530x72 section, fc = 25 MPa and 175 mm of spacing: (a) shear-slip
relationship; and (b) moment-deflection relationship.
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Figure 23. Influence of transverse reinforcement for the W530x72 section and 225 mm of spacing: (a) shear-slip relationship
for fc = 25 MPa; (b) moment-deflection relationship for fc = 25 MPa; (c) shear-slip relationship for fc = 30 MPa; and (d)
moment-deflection relationship for fc = 30 MPa.

It was observed that for the models with 175 mm of spacing, there were some differ-
ences in the relationships presented in Figure 22, considering a transverse reinforcement
diameter of 12.5 mm and fc = 25–30 MPa. On the other hand, for the models with 225 mm
of spacing, these differences were observed (Figure 23) for a transverse reinforcement
diameter of 16 mm and similar strength values for concrete. It is important to note that the
behaviors shown in Figures 22 and 23 were similar to those presented in Figures 12 and 13.

5.4. Design

In this section, the results are presented in a summarized way, considering the ductile
behavior (Figure 24), the maximum midspan vertical displacement for the service limit state
for composite floors (Figure 25), and SCI P401 [19] procedure (Figure 26); and considering
the strength models for shear studs presented in [19,20]. Considering full interaction and
that NPA lies in the concrete slab (Equations (4)–(10)), in which Aa is the steel-section cross-
sectional area, Cc is the concrete-flange axial strength, fy is the steel-section yield strength, L
is the composite-beam length, Mpl is the plastic moment of the composite section, QR is the
shear-connector strength, tc is overall depth of the concrete flange (including the concrete
topping), Ta is the axial strength of the steel section in tension, and Lϕ is the transverse
reinforcement length.

∑ QR ≥ Aa fy (4)

0.85 fcbtc ≥ Aa fy (5)

Cc = 0.85 fcba (6)

b ≤
{

L/4
2Lφ + g

(7)

Ta = Aa fy (8)
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Figure 24. Maximum steel–concrete interface slips at ultimate behavior.
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Figure 25. Maximum midspan vertical displacement at ultimate behavior.
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For partial interaction, the linear method was used, according to Eurocode 4 (Equation
(11)), in which Mpl,a is the plastic moment of the steel section, Mpl,FULL is the plastic moment
of the composite section with full shear connection, and η is the ratio of the sum of the
strength of the shear studs provided to the sum of the strength of the shear studs needed
for full shear connection.

Mpl = Mpl,a +
(

Mpl,FULL − Mpl,a

)
η (11)

For a presentation of the results, a hypothesis of the minimum spacing was made;
i.e., 120 mm providing full interaction. On the other hand, for the other spacings, partial
interaction was considered. Therefore, for the spacings of 120 mm, 175 mm, 225 mm, the
interaction degrees were 1.0, 0.7, and 0.5, respectively. As shown in Figure 24, only one
situation for the W360 × 51 section presented a ductile behavior (fc = 25 MPa, ϕ = 10 mm,
and 225 mm of spacing). On the other hand, for all W460 × 74 and W530 × 72 models,
considering 225 mm of spacing, ductile behavior was observed. This means that the greater
the area of the steel cross-section and the greater the spacing between the shear studs,
the greater the sliding in the steel–concrete interface. Respecting the midspan vertical
displacement limit for floors (L/200), according to Eurocode 4, 52 observations were found
below the limit value, specifically for all models of full interaction (Figure 25). Therefore,
another observation was that the smaller the interaction degree, the greater the midspan
vertical displacement. Finally, considering the calculation procedures mentioned in this
section, a total of 60 observations were found in the conservative zone (MFE ≤ MRk). The
observations that were shown to be unsafe (MFE > MRk) were verified for models in which
full interaction was considered (Figure 26).

5.5. Comparative Analyses

In this section, a comparison of the models developed in the present work was
performed with those presented by Ferreira et al. [25] (Figure 27).
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Figure 27. Comparative analyses between 150 mm and 265 mm PCHCS depth with concrete topping.

As noted, in some models, the higher PCHCS provided greater strength. This dif-
ference reached a maximum of 30%, considering the ratio of the 150 mm-depth PCHCS
models to the 265 mm-depth PCHCS models. These values were measured considering the
W360 × 51 section. With the increase in the steel cross-section (sections W460 × 74 and
W530 × 72), this difference was not so significant. This demonstrated that for the models
studied, it was not advantageous to increase the depth of the PCHCS, since the collapse
was determined by the slab. In addition, the greater the depth of the hollow-core slab, the
greater the weight of the structural system due to the higher consumption of concrete, and
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thus the higher the costs. Therefore, from a sustainable and structural-efficiency point of
view, the 150 mm depth PCHCS was the best option of the models studied.

6. Conclusions

Steel-Concrete composite beams with precast hollow-core slabs are a sustainable
solution, and a better understanding of their parameters will yield more efficient designs.
The present study developed a reliable finite element model to investigate some limitations
imposed in the design recommendations of Steel-Concrete composite beams with precast
hollow-core slabs, such as hollow-core-slab depth, transverse reinforcement rate, and
shear-stud spacing. A parametric study was carried out, considering a 265 mm hollow-core
unit with a concrete topping, since the SCI P401 recommendation is only applicable for
150–250 mm-deep hollow-core units. The parameters investigated were the in situ concrete
strength, the transverse reinforcement rate, the interaction degree, and the steel cross-
section. In total, 81 models were analyzed. The numerical results were compared with
models of Steel-Concrete composite beams models, considering a 150 mm hollow-core unit
with a concrete topping. In general, for the models that were considered under the partial-
interaction hypothesis, there was a better efficiency of the structural system, providing
greater deformations. Therefore, when designing Steel-Concrete composite beams with
hollow-core slabs, considering partial interaction is a viable option, since it reduces the
cost of the project, due to the smaller number of shear studs to be used, as well as the labor.
Specifically, considering the parameters analyzed, it was concluded that:

1. In all models, the ultimate strength was reached by excessive cracking of the precast
hollow-core slab. This occurred because the neutral plastic axis lay within the -core
slab, a factor that generated tensile stresses. Thus, dimensioning Steel-Concrete
composite beams with deeper hollow-core slabs is not advantageous. This is because
the resistance is governed by the concrete slab, a factor that does not take advantage of
the steel section. Therefore, in these analyzed models, there was a waste of material.

2. The greater the area of the steel cross-section, the greater the use of the steel section.
When there is a larger steel cross-section, there is an increase in the plastic axial
strength of the steel profile. This increase causes the neutral plastic axis to descend
toward the steel profile, causing only compression stresses in the hollow-core slab.

3. The greater the spacing of the shear studs, the greater the use of the steel section.
When considering the hypothesis of partial interaction, as presented for the models
with 175 mm and 225 mm of spacing, the structural system can achieve ductile
behavior, a factor that favors the ability of the structural elements to deform without
reaching the ultimate strength. The use of a smaller number of shear connectors
(175 mm and 225 mm models) provided resistance equivalent to the 120 mm models.
Therefore, using a lower amount of material for the design of a structural system, as
was the case with modeled Steel-Concrete composite beams, from the point of view
of sustainability, there is a reduction in the embodied energy, since a smaller number
of installed connectors will require a smaller amount of electricity consumption.

4. The transverse reinforcement rate had little influence on the ultimate strength of the
models analyzed. This was because in most models, the fragile behavior was verified.

5. With the variation of the in situ concrete strength, there were no significant differences
in the ultimate strength. Therefore, the use of lower in situ concrete strength can be
advantageous; that is, the lower the concrete resistance, the greater the possibility
that the plastic neutral axis will lie within the steel section. However, it is worth
mentioning that the strength of concrete is also related to durability, a factor that
certainly influences the life cycle of the structural element. The greater the durability
of the structural system, the less the need for excessive maintenance, thus contributing
to the reduction of waste and embodied energy.

6. Ductile behavior was observed for models with 225 mm of spacing, considering the
W460 × 74 and W530 × 72 sections. It also was verified that the lower the interaction
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degree, the greater the midspan vertical displacement, which may exceed the limit
of L/200.

7. Regarding the verification of strength with the calculation procedure, some models
that considered full interaction proved to be unsafe (MFE ≤ MRk). On the other hand,
all observations considering partial interaction proved to be safe (MFE > MRk).

8. The numerical models with a 265 mm hollow-core unit presented greater resistance
than the models with a150 mm hollow-core unit, considering the W360 × 51 section.
However, for the W460 × 74 and W530 × 72 sections, there were no significant
differences. The basic difference between the models compared was 115 mm of
precast concrete. Therefore, for the numerical models evaluated, using a smaller
amount of precast concrete provided a better efficiency of the structural system.
The use of a lower volume of concrete in a structural project provides a reduction
in the structure’s own weight, and in terms of sustainability, a lower amount of
CO2 emissions.
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