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ABSTRACT
BACKGROUND: Diminished synaptic gain—the sensitivity of postsynaptic responses to neural inputs—may be a
fundamental synaptic pathology in schizophrenia. Evidence for this is indirect, however. Furthermore, it is unclear
whether pyramidal cells or interneurons (or both) are affected, or how these deficits relate to symptoms.
METHODS: People with schizophrenia diagnoses (PScz) (n = 108), their relatives (n = 57), and control subjects (n =
107) underwent 3 electroencephalography (EEG) paradigms—resting, mismatch negativity, and 40-Hz auditory
steady-state response—and resting functional magnetic resonance imaging. Dynamic causal modeling was used
to quantify synaptic connectivity in cortical microcircuits.
RESULTS: Classic group differences in EEG features between PScz and control subjects were replicated, including
increased theta and other spectral changes (resting EEG), reduced mismatch negativity, and reduced 40-Hz power.
Across all 4 paradigms, characteristic PScz data features were all best explained by models with greater self-
inhibition (decreased synaptic gain) in pyramidal cells. Furthermore, disinhibition in auditory areas predicted
abnormal auditory perception (and positive symptoms) in PScz in 3 paradigms.
CONCLUSIONS: First, characteristic EEG changes in PScz in 3 classic paradigms are all attributable to the same
underlying parameter change: greater self-inhibition in pyramidal cells. Second, psychotic symptoms in PScz relate to
disinhibition in neural circuits. These findings are more commensurate with the hypothesis that in PScz, a primary loss
of synaptic gain on pyramidal cells is then compensated by interneuron downregulation (rather than the converse).
They further suggest that psychotic symptoms relate to this secondary downregulation.

https://doi.org/10.1016/j.biopsych.2021.07.024
Reduced excitatory synaptic gain (i.e., decreased slope of the
presynaptic input–postsynaptic response relationship) is
believed to be a primary deficit in schizophrenia (1,2). This
reduction may primarily affect pyramidal cells (1) or inhibitory
interneurons (3). For example, loss of cortical interneuron
markers (in postmortem studies of people with schizophrenia
diagnoses [PScz]) was originally thought to indicate a primary
interneuron pathology, but recent work suggests that these
markers are activity dependent, so their loss may reflect
weaker pyramidal inputs (4). Decreased interneuron function in
the disorder may thus be primary or a compensatory response
to try to rebalance excitatory and inhibitory transmission in
cortical circuits (5). These hypotheses are difficult to test
in vivo, however.
ª 2021 Society o

N: 0006-3223
Various mechanisms may reduce synaptic gain in schizo-
phrenia: the most important is probably hypofunction of NMDA
receptors (NMDARs) and their postsynaptic signaling cascade
(1,2). Evidence for this comes from psychiatric genetics (6),
magnetic resonance spectroscopy imaging (7), neuropatho-
logical studies (4), and animal models (8), but of these, only
magnetic resonance spectroscopy is performed in humans
in vivo, and its glutamatergic measures are difficult to interpret.
Other neuromodulatory dysfunctions in schizophrenia [e.g.,
reduced cortical dopamine (9) or muscarinic receptors (10)] can
be assessed more directly using positron emission tomogra-
phy, but magnetic resonance spectroscopy and positron
emission tomography are very indirect measures of synaptic
gain.
f Biological Psychiatry. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. An overview of the analysis. This schematic illustrates the key steps in the preprocessing of the electroencephalography (EEG) (resting state [rs],
mismatch negativity [MMN], and 40-Hz auditory steady-state response [ASSR]) and resting-state functional magnetic resonance imaging (rsfMRI) paradigms
and their subsequent analysis using dynamic causal modeling (DCM) and parametric empirical Bayes. Simplified depictions of the paradigms are shown in the
first column (see the Supplement for details), with group differences in EEG data features in the second column (first 3 rows) and DCM in the third column. The
EEG data control group (Con) versus people with schizophrenia diagnoses (PScz) group differences are (from first to third rows) in rsEEG q, b, and g frequency
band power (Figure 2A), MMN responses (Figure 3A), and 40-Hz ASSR power (Figure 4C). The second column of the final row (rsfMRI) shows the Glasser
parcellation areas primary auditory cortex (A1) (middle), A4 (left), and 44 (right) containing the MMN sources A1, superior temporal gyrus (STG), and inferior
frontal gyrus (IFG), respectively; these were used as nodes in the rsfMRI analysis, so that results could be compared across data modalities. Key preprocessing
and analysis steps are described below the illustrations. DCM for EEG uses a cortical microcircuit model, shown on the left in the third column
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An alternative way to investigate synaptic gain is by using
electroencephalography (EEG) paradigms such as the
mismatch negativity (MMN), an auditory oddball paradigm (11),
and auditory steady-state response at 40 Hz (40-Hz ASSR); a
paradigm inducing neural oscillations using a click train (12); or
in the “resting state,”measuring with EEG (rsEEG) or functional
magnetic resonance imaging (rsfMRI). PScz show robust re-
ductions in 40-Hz ASSR (12) (d z 0.6) and MMN (11) (d z 1)
responses, which may relate to diminished synaptic gain and
decreased gain modulation (13), respectively, but these para-
digms are not direct indices of synaptic gain.

Neural mass models of noninvasive data can be parame-
terized in terms of synaptic gain and these parameters esti-
mated, for example, using dynamic causal modeling (DCM)
(14), furnishing model-based biomarkers (15,16). This has
several advantages: it can estimate subject-specific parame-
ters and can fit evoked (e.g., MMN) and induced (e.g., 40-Hz
ASSR or resting) EEG responses and rsfMRI, and thus
explain responses to different paradigms in terms of common
synaptic parameters, such as gain or self-inhibition on pyra-
midal cells or interneurons. Although fMRI models cannot
incorporate detailed microcircuit parameters, due to fMRI’s
coarse temporal resolution, they can assess local changes in
excitability. Third, one can employ hierarchical modeling, e.g.,
using group-level parameters recursively to inform single-
subject fits, for example, using parametric empirical Bayes
(PEB) (17).

To date, DCM studies of PScz have used modest sample
sizes and single paradigms but have found reasonably
consistent results, e.g., cortical disinhibition in EEG (13,18–20)
and rsfMRI (21) and diminished contextual gain modulation
(13,19,22). Nevertheless, foundational questions remain,
including the following: are well-replicated group differences
between PScz and control subjects (Con) across paradigms all
ascribable to the same model parameter(s)? How do symp-
toms in PScz relate to these parameters? Here, we address
these questions using DCM across multiple EEG and fMRI
paradigms, in PScz, Con, and first-degree relatives (Rel).

METHODS AND MATERIALS

Data were collected from PScz (n = 107) recruited from
outpatient clinics, first-degree relatives (n = 57), and control
subjects (n = 108) recruited from media advertisements, who
each underwent rsEEG, MMN, 40-Hz ASSR, and rsfMRI par-
adigms and recorded symptoms and other measures. PScz
and Con were well matched in terms of age (mean6 SD = 39.4
6 14.3 years and 39.4 6 13.9 years, respectively), sex (59%
and 68% male, respectively) and smoking status (33% and
39% smokers, respectively). PScz had mean Brief Psychiatric
Rating Scale scores of 14.4 out of 49 for positive symptoms
and 7.3 out of 28 for negative symptoms (Table S1). We first
performed conventional analyses of group differences in data
=

(also see Figure 2C). It contains superficial and deep pyramidal cells (blue triangl
The lower three DCM illustrations include macroscopic model structures, i.e., the c
a single-area DCM was used to reproduce power spectra characteristic of eac
parametric empirical Bayes was used to analyze group and individual difference
differences in DCM parameters between Con and PScz in the MMN. ICA, indepen
relative.

B

features for each paradigm. We then inferred the best expla-
nations for these differences in terms of DCM parameters.
Figure 1 summarizes the analysis (excluding results).

We used the DCM canonical microcircuit neural mass
model (Figure S1) to analyze the EEG paradigms; more details
are given in the Results, with a full description in the
Supplement. Model parameters include connectivity strengths
between populations, self-inhibition (synaptic gain) in these
populations, and membrane time constants and transmission
delays. For the rsEEG, MMN, and 40-Hz ASSR paradigms, we
analyzed group differences using conventional data features
(event-related potentials or power spectra). We then modeled
either group-averaged data (rsEEG) or estimated subject-
specific DCM parameters (MMN and 40-Hz ASSR). For
rsfMRI, we only modeled the network generating MMN (and
40-Hz ASSR, in part) for comparative purposes.

We used PEB to analyze group and individual differences in
synaptic (model) parameters, with the exception of rsEEG,
where characteristic group responses were modeled. We
interpret greater self-inhibition of pyramidal cells as an effec-
tive loss of pyramidal synaptic gain. Given known patho-
physiology in PScz, NMDAR hypofunction seems the most
likely explanation for loss of pyramidal gain, but other expla-
nations are possible (see Supplement for further discussion).

Age, sex, smoking, and chlorpromazine dose equivalent
covariates did not significantly affect the results, unless
otherwise stated. All t tests were two-tailed, and rank sum
tests were used if distributions were skewed; none are
Bonferroni-corrected unless stated.
RESULTS

In rsEEG, PScz Have Altered Power in q, b, and g

Frequency Bands

We first examined rsEEG power spectra by subtracting the 1/f
gradient, noting that gradients did not differ between groups
with eyes open or closed (p . .2). The mean adjusted power
spectra within the Con (n = 98) and PScz (n = 95) groups are
shown in Figure 2A, for eyes closed (left) and open (right)
conditions, with q/a/b/g frequency bands demarcated. A
repeated-measures analysis of variance (between-subjects
factor, group; within-subjects factors, eyes open/closed and
frequency band) demonstrated a significant interaction of
frequency 3 group (F3,573 = 6.59, p , .001) but not of eyes 3

group (F1,191 = 0.05, p = .8) or of frequency 3 eyes 3 group
(F3,573 = 0.4, p = .8). We therefore averaged the power in each
frequency band across eyes open and closed conditions and
performed Wilcoxon rank sum tests (as some distributions
were skewed), Bonferroni-corrected for 4 frequency bands
(Figure 2B). PScz had increased q (Z = 2.63, pCorr = .035),
decreased b (Z = 22.77, pCorr = .022), and increased
es), inhibitory interneurons (red circles), and spiny stellate cells (green stars).
ortical areas involved: A1, STG, and IFG (58). In the rsEEG analysis (top row),
h group. In the remaining paradigms, models were fitted to the data and
s. The final column depicts an example analysis (from Figure 3F) of group
dent component analysis; MEG, magnetoencephalography; Rel, first-degree
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Figure 2. Resting-state electroencephalography (rsEEG) results, dynamic causal modeling (DCM) model structure, and rsEEG simulations. (A) Mean
normalized eyes closed and eyes open rsEEG power spectra (6 SEM) across all channels for control subjects (Con) (n = 98; blue) and people with schizo-
phrenia diagnoses (PScz) (n = 95; red) groups, divided into 4 frequency bands (dotted lines): q (3–7 Hz), a (8–14 Hz), b (15–30 Hz), and g (.31 Hz). (B) Group
comparisons in mean power across both eyes closed and eyes open conditions in the q, a, b, and g bands are shown. The box plots show the mean, SEM, and
SD. p values are Bonferroni-corrected for 4 comparisons. (C) EEG DCMs used the current version of the canonical microcircuit model (59) (also see
Figure S1A). This microcircuit (left) consists of superficial pyramidal (sp) and deep pyramidal (dp) cells, inhibitory interneuron (ii), and spiny stellate (ss) cells.
They are interconnected with excitatory (arrowheads) and inhibitory (beads) connections; their self-inhibitory connections parameterize their responsiveness to
their inputs, i.e., synaptic gain. In EEG DCM, each modeled cortical area contains a microcircuit (middle); functional magnetic resonance imaging DCM uses a
much simpler neuronal model. Both DCMs have self-inhibition parameters (round gray beads), which—in EEG—inhibit superficial pyramidal cells specifically. A
schematic DCM diagram is explained on the right. (D) The top row shows the results of 5 sets (models 1–5) of simulations of microcircuit parameter changes
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g (Z = 2.58, pCorr = .040), but unchanged a (Z = 21.32,
pCorr = .75).

Increased Pyramidal Self-inhibition Explains q, b,
and g Changes in PScz

We used DCM’s canonical microcircuit model—a biophysical
model of interacting pyramidal, interneuron, and spiny stellate
populations (Figure 2C, left)—to identify the most likely syn-
aptic pathology. To model power spectrum changes in PScz,
we treated cortex as a single microcircuit in which specific
parameters were changed in 5 plausible ways (Figure 2D,
bottom): a loss of all microcircuit connectivity (model 1), a loss
of pyramidal connections to or from interneurons (model 2),
interneuron disinhibition (model 3), increased interneuron self-
inhibition (model 4), and increased pyramidal cell self-inhibition
(model 5). Note that this model does not fit the large a peak.

Only model 5 could explain the q, b, and g changes seen in
PScz (Figure 2D, upper row). Models 1 and 2 only reproduced
the q and b changes. Model 3 showed decreased b peak fre-
quency, which was quantitatively lower in PScz but not sta-
tistically significant (Figure S2A).

MMN and P100 Are Reduced in Both PScz and Rel

The MMN paradigm consisted of standard and duration-
deviant tones. The mismatch amplitude is the deviant–
standard response in electrode Fz (11), which was reduced
in both PScz and Rel around 200 ms (Figure 3A). There were no
significant group differences in MMN latency between Con
(mean 6 SD latency = 194 6 34 ms) and Rel (196 6 45 ms, p =
.8) or PScz (202 6 44 ms, p = .18). In the averaged deviant and
standard waveforms (Figure S2B), PScz showed reduced
response amplitudes around 50 to 100 ms in both, and an
exaggerated mismatch-like response around 175 ms in the
standard condition.

Smoothed sensor-level data were analyzed using cluster-
based statistics. Across Con and PScz, there was a strong
mismatch effect, peaking at 198 ms (peak familywise error-
corrected p [pFWE] , .001, t376 = 11.23) (Figure 3B), which
was reduced in PScz (peak at 186 ms, punc , .001, cluster
pFWE = .010, t376 = 3.46) and in Rel (peak at 198 ms, punc ,

.001, cluster pFWE = .011, t268 = 3.83) (Figure 3C). Likewise,
PScz had a reduced P100 response (peak at 82 ms, pFWE =
.003, cluster pFWE , .001, t376 = 4.83), as did Rel, although this
was only significant at an uncorrected peak threshold (peak at
94 ms, punc = .001, cluster pFWE = .8, t268 = 3.02) (Figure S2C).

DCM of MMN Indicates Increased Frontal Self-
inhibition in PScz, but Disinhibition in Broca Area
Relates to Abnormal Auditory Percepts

We first used model comparison to establish whether it was
best to fix or estimate various microcircuit parameters in the
MMN analysis (see Supplement). We compared 6 models
=

and their similarity to the rsEEG changes in q, b, and g bands in PScz (the mode
illustrated in the microcircuit schematics for models 1–5 (bottom row); parameter
model is used to produce 10 simulations, starting with standard parameter value
parameters illustrated below in increments of 3% to simulate PScz (up to the most
pyramidal self-inhibition, i.e., a loss of synaptic gain, reproduces the changes
negativity; STG, superior temporal gyrus.

B

(Figure 3D): model 6G estimates 6 connectivity (G) parameters,
models 4Ga-d consider subsets of these six, and model
6G,D,T also estimates delays and time constants. Bayesian
model selection preferred model 6G (also in Con and PScz
separately), with a protected exceedance probability of p = .89
(Figure 3E, left). This model fitted most participants’ data
accurately (e.g., Figure S3A). A histogram of R2 values is
shown in Figure 3E (right); the group mean R2 was 0.73. R2

were slightly higher in Con (mean 6 SD = 0.76 6 0.13) than in
PScz (0.70 6 0.14; rank sum Z = 3.12, p = .0018) and Rel (0.71
6 0.15; rank sum Z = 2.14, p = .033) (Figure S3C).

We then used PEB to ask which parameters best explained
group differences in MMN: self-inhibition within areas or con-
nections between areas. The reduced mismatch amplitude in
PScz was best explained by increased self-inhibition in
deviant—relative to standard—trials in left (L) inferior frontal
gyrus (IFG) (p . .95) and right (R) IFG (p . .99) (Figure 3F).
Including chlorpromazine dose equivalent covariates reduced
the posterior probability to p . .75, but age, sex, and smoking
had no effect. Conversely, there was no overall group effect
(across both standards and deviants) of PScz on the micro-
circuit parameters (all p , .95) (Figure S4C, left) unless chlor-
promazine dose equivalents were included as covariates; here,
PScz showed greater superficial pyramidal self-inhibition in L
and R IFG (both p . .99) (Figure S4C, middle and right) and
reduced interneuron self-inhibition throughout (p . .95). Rel
did not show effects of p . .95 in either analysis.

In PScz, the auditory perceptual abnormalities state mea-
sure was associated with disinhibition in L IFG (p . .99)—
within the Broca area—but increased self-inhibition in R IFG
(p . .95) in the mismatch contrast (Figure 3G). Historical
auditory perceptual abnormalities (the trait measure) showed
similar effects but at lower posterior probability (p . .75, not
shown).

PScz Had Reduced g Power and Peak Frequency in
40-Hz ASSR, and Rel Had Reduced g Power

We next considered induced responses during auditory
steady-state stimulation. Group-averaged 40-Hz ASSR are
shown in Figure 4A and the distributions of participants’ peak g
(35–45 Hz) frequencies in Figure 4B. PScz had slightly reduced
g peak frequency: mean peak frequencies (following subtrac-
tion of the 1/f gradient) (Figure S2E) were Con = 40.2 Hz (SD,
1.7), PScz = 39.5 Hz (SD, 1.7; t184 = 2.67, pCorr = .016), and
Rel = 39.9 Hz (SD, 2.1; t132 = 1.03, p = .3). Adjusted time-
frequency plots are shown in Figure 4C (and raw time-
frequency data in Figure S2F): Con showed a robust
increase in w40 Hz power around 100 ms, which is diminished
in PScz and Rel (p , .05; t tests at each frequency and time
point are circled on the middle and right plots, for Con vs. PScz
and Con vs. Rel in black and PScz vs. Rel in white; this many
differences are unlikely due to chance—Con vs. PScz and Con
l does not produce an a peak). The parameters changed in each model are
increases are denoted by whole lines and decreases by dotted lines. Each
s (to simulate Con) plotted in dark blue, and then reducing or increasing the
extreme change, plotted in dark red). Only model 5, an increase in superficial
seen in all 3 frequency bands. IFG, inferior frontal gyrus; MMN, mismatch
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Figure 3. Mismatch negativity data and modeling analysis. (A) Mismatch difference waves (i.e., deviant–standard, mean 6 SEM) for control subjects (Con)
(n = 94; blue), people with schizophrenia diagnoses (PScz) (n = 96; red), and first-degree relatives (Rel) (n = 42; green) at electrode Fz. Group differences are
computed using t tests (uncorrected [unc]) at each time point and are marked with red (PScz vs. Con) and green (Rel vs. Con) bars above the difference waves.
There were no significant PScz vs. Rel differences. (B) The lower plot shows the location of the mismatch effect (i.e., deviants—standard) at sensor level across
all Con and PScz, displayed at p , .05 (familywise error [FWE]). Fz is shown in white. The peak effect is shown in green (p , .001 [FWE], t376 = 11.23). The
upper plot shows sensors vs. time; the peak effect occurs at 198 ms. (C) These plots show the interaction of condition and group for the Con . PScz contrast
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vs. Rel both p , .001, PScz vs. Rel p = .006, permutation
tests). Maximum ASSR g power correlated with MMN ampli-
tude in PScz (r = 0.28, pCorr = .029) but not in Con (r = 0.04, p =
.7) or Rel (r = 0.14, p = .4).

40-Hz ASSR DCM Suggests a Loss of Pyramidal
Input to Interneurons in PScz and Rel and Greater
Self-inhibition in PScz

The peak cortical source—closest to primary auditory cortex
(A1)—was (50 212 4), hence bilateral sources at (650 212 4)
were used as priors for reconstruction of virtual electrode data:
the DCM comprised these bilateral sources and their thalamic
drive (Figure 4D). Empirical priors for several parameters were
used to optimize model fit (Figure S1A). Bayesian model
comparison between the full model (containing empirical priors
for the contribution of spiny stellate cells to measured signals,
the neural activation function, and synaptic time constants)
and models with standard priors for these parameters showed
that the full model was superior (Figure 4E, left). The 40-Hz
thalamic drive was modeled using a Gaussian bump function
of width w # 4 Hz (see Supplement); this width performed
better than a narrower bump of 1 Hz (model -w) (Figure 4E).
Model fits for the winning model were reasonable (mean R2 =
0.53) (Figure S3B). Group differences in R2 were not detected
(rank sum tests: all p . .1) (Figure S3C).

We performed group comparisons with PEB using schizo-
phrenia genetic risk (PScz1 Rel. Con) and diagnosis (PScz.
Rel) as explanatory variables (13,19), instead of PScz . Con
and Rel. Con comparisons (as in the MMN analysis). This was
because the group differences in data features were less
marked in the 40-Hz ASSR, and there were substantial differ-
ences between Rel and Con parameters, only some of which
were shared by PScz (Figure S6B). The genetic risk effect was
an increased conduction delay in L A1 (p. .95) (Figure 4F), and
reduced superficial pyramidal (sp) to inhibitory interneuron (ii)
connectivity (p . .99) (Figure 4G, left). The schizophrenia
diagnosis effect was increased superficial pyramidal self-
inhibition in bilateral A1 in PScz (both p. .99) (Figure 4G, right).
=

(left) and Con . Rel contrast (right) in the same format as Figure 2B, at the lower
similar differences from Con in the mismatch contrast in frontocentral sensors ju
which parameters were allowed to change from their priors (estimated G connectiv
included various combinations of superficial pyramidal and/or deep pyramidal cel
of superficial pyramidal and inhibitory interneuron cells. Note that each paramete
to be the same in every cortical area within subjects, except for superficial py
estimated delay (D) and time constant (T) parameters (these were fixed in the ot
exceedance probability is the probability a particular model is more likely than an
model with most free parameters is at the far right; it comes second to the 6G
parameters estimated. Right: a histogram of R2 values for all participants for the w
(PEB) analysis of mismatch negativity model parameters (i.e., connections) that c
left (with 95% Bayesian confidence intervals) and shown in schematic form on
contributing to the group difference effect are indicated with 1 (*) or 2 asterisks
forward (fwd) connections shaded yellow, and backward (bkwd) connections sha
scaling of the effect size; changes of exp (60.2) are of roughly 620%. Some
Supplement). The analysis indicates that PScz showed greater self-inhibition (
mismatch contrast. The Rel . Con contrast did not show significant effects. (G) P
correlate with current (state) abnormal auditory percepts within PScz only, plotte
relate to reduced self-inhibition in right (R) IFG but disinhibition in left (L) IFG (in Bro
of age, sex, and smoking covariates (p . .95). Inclusion of a chlorpromazine dose
makes the overall effect of PScz on L and R IFG self-inhibition become significa

B

40-Hz ASSR DCM Links Abnormal Auditory
Percepts to A1 Disinhibition in PScz

In PScz, the auditory perceptual abnormalities trait measure
related to a disinhibited sp-ii-sp circuit, i.e., increased sp-ii (p.

.99) and reduced ii-sp connectivity (p . .99), and greater self-
inhibition in L A1 (p . .99) (Figure 4H). The auditory state
measure had similar associations but at lower posterior
probability (p . .95 for sp-ii, p . .75 for ii-sp and sp-sp: not
shown).
rsfMRI DCM of the MMN Circuit Finds Increased
Self-inhibition in IFG in PScz and Rel

We then analyzed effective connectivity within the MMN
network during rsfMRI, i.e., the Glasser parcellation areas (in
the rsfMRI data) based on MMN source locations (see
Supplement): bilateral A1, A4, and 44 (Figure 1). The micro-
circuit model for fMRI data is simpler than the neural mass
models used for EEG; however, they retain inhibitory self-
connections. Model fits were accurate: R2s were .0.7 in all
groups, with no group differences (rank sum tests: all p . .05)
(Figure S3C).

In PEB analysis, PScz showed increased self-inhibition in L
and R IFG (p . .99 and p . .95, respectively) (Figure 5A).
These effects were robust to age, sex, and smoking covariates
(and to the removal of the 10 participants with the lowest
rsfMRI signal-to-noise ratio: 8 PScz and 2 Con; both p . .95).
These effects did not survive addition of chlorpromazine dose
equivalents (L IFG self-inhibition fell to p . .75). However, Rel
. Con showed the same increase in self-inhibition in bilateral
IFG (both p . .95) (Figure 5B). This group difference did not
survive addition of the age covariate: Rel were older than Con
(Rel mean age = 45.4 6 16.6 years, Con mean age = 39.4 6
14.3 years; t162 = 2.4, p = .02). These differences were not
detected using conventional functional connectivity analyses,
which cannot assess self-inhibition, or analyses of regional
variance (Figure S6B–E and Supplement for further
discussion).
threshold of p , .005 (unc) for display purposes. Both groups demonstrate
st before 200 ms. (D) Microcircuit models were compared, differing only in
ity parameters are shown, as in Figure 2C). These models’ free G parameters
l (blue) connections to or from inhibitory interneurons (red) and self-inhibition
r within each microcircuit could differ between subjects but was constrained
ramidal self-inhibition, which could differ throughout. The final model also
her five models). (E) Model comparison and evaluation. Left: the protected
y other tested model, above and beyond chance, given the group data. The
model with fixed delays and time constants and 6 microcircuit connectivity
inning model; it fits most participants well. (F) A parametric empirical Bayes
ontribute to the PScz . Con mismatch effect. The results are plotted on the
the right; parameters with posterior probabilities of p . .95 or p . .99 of
(**), respectively. On the plot, self-inhibitory connections are shaded gray,
ded purple (matching the colors in the schematic). The y-axis denotes log-
parameters have been eliminated during Bayesian model reduction (see

or reduction in synaptic gain) in bilateral inferior frontal gyrus (IFG) in the
EB analysis of mismatch negativity mismatch effect model parameters that

d in the same format as Figure 3F. Within PScz, abnormal auditory percepts
ca area). All effects shown in (F) and (G) are also present without the addition
equivalent covariate renders the analysis in (F) nonsignificant (p. .75), but it
nt (Figure S4C). STG, superior temporal gyrus.
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Figure 4. 40-Hz auditory steady-state response (ASSR) data and modeling analysis. (A) 40-Hz ASSR time courses at electrode Fz for control subjects (Con)
(n = 92; blue), people with schizophrenia diagnoses (PScz) (n = 94; red), and first-degree relatives (Rel) (n = 42; green). Sixteen clicks were played at 40 Hz,
starting at 0 ms. Group differences in the baseline deflection (not modeled subsequently) emerge after around 250 ms, shown with red bars (Con vs. PScz) and
green bars (Con vs. Rel), both p , .05 (t tests per time point, uncorrected). (B) g (35–45 Hz) frequencies with the strongest power (in the normalized spectrum)
in each participant are shown in a histogram. (C) These normalized time frequency plots show thew40 Hz responses around 100 to 400 ms. The PScz and Rel
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rsfMRI DCM Reveals Relationships of Positive
Symptoms to Cortical Disinhibition in PScz

PEB analysis within PScz found that trait auditory perceptual
abnormalities were associated with increased self-inhibition in
L and R IFG (both p . .99) (Figure 5C, left). Conversely, state
auditory perceptual abnormalities were associated with disin-
hibition in R A1 (p . .95) and L A1 and superior temporal gyrus
(STG) (both p . .99) and STG-A1 backward connectivity
bilaterally (both p . .99) (Figure 5C, right).

Similarly, Brief Psychiatric Rating Scale positive symptoms
(including age, sex, smoking, and negative symptoms cova-
riates) were associated with decreased self-inhibition every-
where except R STG (all p . .99 except L IFG and R A1, both p
. .95) and stronger forward connections everywhere except R
Al-STG (all p . .99) (Figure 5D, left). Brief Psychiatric Rating
Scale negative symptoms (including age, sex, smoking, and
positive symptom covariates) were associated with decreased
self-inhibition in all temporal—but not frontal—nodes (all p .

.99) (Figure 5D, right).
Note that many rsfMRI results were lost if global signal

regression was not performed (Supplemental Results,
Figure S7).

Self-inhibition Findings in PScz Across
Electroencephalography and rsfMRI Paradigms Are
Similar

In summary, we found clear evidence for increased self-
inhibition (evidence of reduced synaptic gain) in PScz
(Figure 6A) in all data modalities and paradigms. However,
auditory perceptual abnormalities within PScz were associated
with the opposite change: disinhibition (Figure 6B). A sensitivity
analysis (see Supplement) confirmed that increased superficial
pyramidal self-inhibition best reproduced the key data features
of MMN (i.e., decreased MMN amplitude but unchanged la-
tency) (Figure S8A) and, along with loss of sp-ii connectivity,
decreased 40-Hz ASSR (Figure S8B). Evidence for within-
subject correlations in self-inhibition parameters across para-
digms was weak, however (see Supplemental Results,
Figure S9).

DISCUSSION

DCM of EEG and fMRI produced two key cross-paradigm
findings. First, well-established effects in rsEEG (23), MMN
(11), and 40-Hz ASSR (12) paradigms in PScz were replicated,
and all could be explained by increased self-inhibition in
=

plots have areas of difference from Con encircled in black; the Rel plot has areas
frequency). (D) The left plots show the bilateral primary auditory cortex (A1) (trans
4]. The 40-Hz ASSR model structure is on the right: bilateral sources in A1. (E) Left
bilateral A1 in this nonstandard paradigm, we used empirical priors (also see Fi
encephalography (EEG) signal; S, the gain of the neuronal activation function; T,
The plot shows that the full model (with all the empirical priors) is superior to othe
instead of 4 Hz). Right: a histogram of R2s for all participants for the winning mode
Con showed increased neural transmission delays in left (L) A1. (G) Left: PEB an
psychosis genetic risk effect) had decreased superficial pyramidal (sp)–inhibitory
shows decreased sp self-inhibition in bilateral A1. (H) PEB analysis in PScz, show
sp-ii circuit (and increased sp self-inhibition in L A1). All effects shown in (F), (G
covariates (p . .95) and with inclusion of chlorpromazine dose equivalents as a

B

(superficial) pyramidal cells. Likewise, PScz also showed an
increase in prefrontal self-inhibition—similar to MMN—in
rsfMRI (Figure 6A). This strongly favors the hypothesis that
there is diminished synaptic gain on pyramidal cells (1,2,5) over
the hypothesis of diminished synaptic gain on interneurons (3)
in this sample of PScz with established illness.

Second, abnormal auditory percepts in PScz were associ-
ated with decreased self-inhibition in auditory areas selectively
across 3 paradigms (Figure 6B). This is consistent with 40-Hz
ASSR g power (24) [and phase locking of auditory g (25)]
correlating positively with auditory symptoms, despite being
reduced in PScz overall [as in the visual domain (26)], and with
hallucinations and psychotic-like experiences relating to
decreased self-inhibition in IFG across the psychosis spectrum
(27). Positive symptoms were also associated with disinhibition
in the rsfMRI analysis (Figure 5D). These opposing effects of
group and symptoms on self-inhibition (28)—and also on
cortical glutamate (29)—support the hypothesis (1,5) that
decreased synaptic gain (NMDAR hypofunction in particular) is
compensated by allostatic disinhibition of pyramidal cells (i.e.,
interneuron downregulation) and, furthermore, indicate that
psychotic symptoms result from this disinhibitory rebalancing
of excitatory and inhibitory transmission.

In rsEEG, increased q power in PScz is a well-established
finding (23,30). A U-shaped change in spectral power (here,
increased q, decreased b, increased g) has been seen several
times across q, a, and b frequencies (23). Increases (not de-
creases) in a and b in PScz have been seen in eyes open
rsEEG (30,31), but in unnormalized data; before subtracting the
1/f gradient, b power was numerically higher in our sample of
PScz as well. This speaks to the importance of distinguishing
band-specific changes from changes in 1/f slope, which itself
is increased by lower excitation:inhibition ratio (32,33). Of note,
low g (30–45 Hz) power is typically reduced in PScz with
longstanding diagnoses (34), but we lacked illness duration
information.

Decreased mismatch amplitude in PScz [and especially in
chronic PScz (35)] is well documented (11), and we found an
effect of similar size in Rel, larger than is typical (35). Under-
lying this effect, we found that deviant stimuli decrease
self-inhibition in IFG in Con but not in PScz, recapitulating
other DCM studies (13,22). The mismatch amplitude rarely
correlates with hallucinations in PScz [e.g., in only 3 of 22
studies (11)], but we found abnormal auditory percepts related
to (condition-specific) disinhibition in L IFG—Broca’s area.
Traditional MMN analysis (using electrode Fz) might miss
this lateralized effect. Nevertheless, there are reports of
of difference from PScz encircled in white (p , .05, t tests at each time and
verse temporal gyrus) sources chosen following source localization [650 -12
: to improve the dynamic causal modeling fit of the cross spectral densities in
gure S1A) for J(1), the contribution spiny stellate cells make to the electro-
population time constants; and w, the width of the w40 Hz Gaussian bump.
r models that used standard values for their respective priors (or for -w, 1 Hz
l. (F) Parametric empirical Bayes (PEB) analysis indicated that PScz 1 Rel .
alysis (in the same format as Figure 3H) indicated that PScz 1 Rel . Con (a
interneuron (ii) connectivity. Right: PScz . Rel (a psychosis diagnosis effect)
ing that abnormal auditory percepts are associated with disinhibition of the
), and (H) are also present without the addition of age, sex, and smoking
covariate. dp, deep pyramidal; Freq, frequency; Pow, power; R, right.
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Figure 5. Resting-state functional magnetic resonance imaging (rsfMRI) modeling analysis. (A) For comparative purposes, the rsfMRI connectivity analysis
was conducted on the same network as the mismatch negativity (MMN) analysis. Results for control subjects (Con) (n = 85) and people with schizophrenia
diagnoses (PScz) (n = 72) are shown in the same format as Figure 3F. As in the MMN, PScz showed increased self-inhibition in the bilateral inferior frontal gyrus
(IFG). Inclusion of chlorpromazine equivalent dose as a covariate still showed increased self-inhibition in left (L) IFG but only at p . .75. (B) rsfMRI connectivity
analysis without covariates for Con (n = 85) and first-degree relatives (Rel) (n = 45) is shown. Similar to PScz, Rel show increased self-inhibition in the bilateral
IFG, but this effect disappeared with addition of the age covariate (p , .75). (C) Left: within PScz, abnormal auditory percepts (trait measure) related to
increased self-inhibition in the bilateral IFG. Right: conversely, abnormal auditory percepts (state score, i.e., experiences within the last week only) relate to
disinhibition in temporal areas and also a loss of top-down connections within the auditory cortex. The right (R) primary auditory cortex (A1) effect was
attenuated if age, sex, and smoking covariates were not included and if a chlorpromazine dose equivalent covariate was added. (D) Left: within PScz, Brief
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Figure 6. Summary of key findings across para-
digms. This figure illustrates similar dynamic causal
modeling findings across paradigms using the
schematic illustrations from previous analyses. The
inset at bottom right shows the canonical microcir-
cuit model for electroencephalography (EEG)
(below), which exists in each modeled cortical area
(above). The microcircuit consists of superficial py-
ramidal (sp) and deep pyramidal (dp) cells (blue),
inhibitory interneuron (ii) (red), and spiny stellate (ss)
cells (green), interconnected with excitatory (arrow-
heads) and inhibitory (beads) connections. (A)
Crucially, the people with schizophrenia diagnoses
(Scz) group consistently exhibited increased self-
inhibition (as expected from a loss of synaptic gain)
in superficial pyramidal cells in particular (i.e., in the
EEG paradigms). This was the case (from left to right)
in primary auditory cortex (A1) in the 40-Hz auditory
steady-state response (ASSR) (when compared with
first-degree relatives [Rel]), in the bilateral inferior
frontal gyrus (IFG) in both the mismatch negativity
(MMN) (deviant–standard contrast) and the resting-
state functional magnetic resonance imaging
(rsfMRI), and in the rsEEG simulations. (B) Within the
PScz group, abnormal auditory percepts were linked
with disinhibition in A1 in both the 40-Hz ASSR
paradigm and the rsfMRI and with disinhibition in left
(L) IFG—i.e., Broca area—in the MMN (deviant–
standard contrast). Con, control subjects; R, right;
STG, superior temporal gyrus.
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left-lateralized (including IFG) associations of hallucinations
with auditory oddball responses in PScz (36).

In the 40-Hz ASSR, PScz showed decreased g power and
peak frequency, and Rel showed decreased power [as else-
where (12,20,37)]. DCM indicated that diminished pyramidal
connectivity to interneurons (and greater transmission delay)
was common to both PScz and Rel, but loss of pyramidal gain
was unique to PScz (Figure 4G). Others have modeled 40-Hz
ASSR in PScz by increasing interneuron time constants (38);
this reproduced a concurrent increase in 20-Hz power in PScz
(38), which was not observed in our data. We assumed time
constants did not differ in PScz in the ASSR or MMN, and
estimated connectivity parameters—and delays, in the
ASSR—instead (these can be regarded as synaptic rate
constants).

A previous rsfMRI DCM analysis in PScz found disinhibition
in the anterior cingulate cortex (21), rather than increased self-
inhibition in bilateral IFG (Figure 5A). This recalls a pattern of
altered intraprefrontal functional connectivity in early PScz (39):
increased connectivity of medial areas and more modest de-
creases in connectivity in lateral areas. Prefrontal
=

Psychiatric Rating Scale positive symptom score related to disinhibition throug
connections. Most effects were robust to addition of chlorpromazine dose equiva
of the hallucinations score from the Brief Psychiatric Rating Scale positive symp
analysis without covariates (all p . .99 except L IFG self-inhibition, p . .75). Right
to disinhibition in temporal nodes of the MMN network. All effects shown (excep
covariates and if participants (2 Con, 8 PScz) with rsfMRI signal-to-noise ratio ,

without global signal regression (Figure S7). No results change substantially with
bkwd, backward; PEB, parametric empirical Bayes; STG, superior temporal gyru

Bio
hyperconnectivity correlated positively with positive symptoms
(39). We similarly found that positive symptoms were associ-
ated with disinhibition in bilateral IFG and A1 (Figure 5D, left).
This relationship echoes findings that increased functional
connectivity of primary sensory areas (to the thalamus) corre-
lates with Positive and Negative Syndrome Scale scores (40),
and that increased A1 rsfMRI autocorrelation (a result of
reduced self-inhibition) in PScz relates to auditory hallucina-
tions (28) (Figure 5C, right). Our results have commonalities
with a spectroscopy mega-analysis that correlated positive
symptoms to frontal and negative symptoms to temporal
glutamate concentrations (29) (Figure 5D). Thus, symptoms
may depend not just on connectivity between nodes but on
synaptic gain within nodes; modeling is key to disambiguating
these possibilities.

More data are required to draw firm conclusions about the
Rel group. In MMN, no effects exceeded p . .95 despite Rel’s
similar data features to PScz. In 40-Hz ASSR, pyramidal self-
inhibition was reduced in Rel (Figure S5B), not increased. In
rsfMRI, however, Rel showed comparable IFG self-inhibition
increases to PScz (Figure 5B).
hout the MMN network and increased forward (fwd) connectivity in 3 of 4
lents as a covariate (all p . .99 except L IFG self-inhibition, p . .75), removal
tom total (all p . .95 except L IFG and R A1 self-inhibition, p . .75), and
: within PScz, Brief Psychiatric Rating Scale negative symptom score related
t Rel . Con) are also present without the addition of age, sex, and smoking
25 are excluded (all p . .95). Some rsfMRI results are no longer significant
inclusion of chlorpromazine dose equivalent as a covariate unless stated.

s.
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A crucial question is what changes in self-inhibition mean:
changes in synaptic gain or reciprocal coupling with in-
terneurons? Our interpretation of self-inhibition changes is
guided by known pathophysiology in PScz, i.e., given that
cortical synaptic gain is decreased [e.g., reduced function of
NMDA (1,2,6), dopamine D1 (9), and muscarinic (10) receptors]
and inhibitory interneurons downregulated (4,5), then the most
logical interpretation of increases and decreases in pyramidal
self-inhibition is diminished pyramidal synaptic gain (41,42)
and decreased interneuron function, respectively (gain in the
neural mass model is discussed in detail in the Supplement.) If
the fundamental pathology in PScz was a loss of synaptic gain
on interneurons, one would expect to see consistent group
effects of increased interneuron self-inhibition and/or
decreased pyramidal self-inhibition, neither of which were
found.

Regarding potential causes of reduced synaptic gain, some
PScz data features imply NMDAR hypofunction. In rsEEG,
increased g follows NMDAR antagonism (43), e.g., using ke-
tamine (which also suppresses b) (44), or in NMDAR enceph-
alitis (which also increases q) (15,45). In contrast, LSD and
psilocybin do not increase q (46), and D2 antagonists poten-
tiate a and b (47,48). The 40-Hz ASSR is sensitive to NMDAR
function (49) but also cholinergic (50), dopaminergic (51) and
serotonergic (52) manipulations; the latter do not affect MMN,
however, which is quite specific to NMDAR function (11). Ke-
tamine also reduces rsfMRI functional connectivity of IFG and
auditory cortices (53). Antipsychotic dose covariates weak-
ened the PScz MMN condition-specific effects (Figure 3F) but
strengthened the overall MMN effects (Figure S4C); they also
weakened the PScz rsfMRI effects, but similar rsfMRI effects
emerged in unmedicated Rel (Figure 5). Overall, these findings
resemble NMDAR hypofunction and seem unlikely to be
medication induced.

Several limitations are addressable. Given that pathophys-
iology is dynamic in PScz (1) and that subgroups may exist
(54), larger datasets should be analyzed, containing more
early-course (and preferably unmedicated) PScz. Notably,
even the latter show reductions (d . 1) in cortical glutamate
(55), consistent with the idea that pyramidal cell
hypofunction—rather than disinhibition—is primary in PScz.
DCM models with explicitly parameterized NMDA (and other)
receptor conductances (15) can explore self-inhibition in more
detail and across more cortical areas.

In conclusion, we found consistently increased self-
inhibition (i.e., diminished synaptic gain) in PScz, especially
in frontal areas, but disinhibition—in auditory areas in
particular—correlated with auditory perceptual abnormalities.
Psychotic symptoms may therefore be caused by interneu-
ronal downregulation that restores cortical excitation/inhibition
balance in PScz. These complex processes may explain why
successful glutamatergic treatments for PScz are elusive, and
why such treatments may have narrow therapeutic windows
(56) or depend on illness stage (57).
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