

City Research Online

City, University of London Institutional Repository

Citation: Thomaidis, I., Camara Casado, A. & Kappos, A. (2022). Dynamics and seismic performance of asymmetric rocking bridges. Journal of Engineering Mechanics, 148(3), 04022003. doi: 10.1061/(asce)em.1943-7889.0002074

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/27069/

Link to published version: https://doi.org/10.1061/(asce)em.1943-7889.0002074

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

 City Research Online:
 http://openaccess.city.ac.uk/
 publications@city.ac.uk

1

2

3

4

5

DYNAMICS AND SEISMIC PERFORMANCE OF ASYMMETRIC ROCKING BRIDGES

Ioannis M. Thomaidis¹, Alfredo Camara¹, and Andreas J. Kappos²

¹School of Mathematics, Computer Science and Engineering, City, University of London, London, United Kingdom
 ²Department of Civil Infrastructure and Environmental Engineering, Khalifa University, Abu Dhabi, United Arab
 Emirates

10 ABSTRACT

11 The governing equations of motion for bridges with rocking piers of unequal height and unequal span lengths 12 are derived accounting for the effect of end joint gaps and the abutment-backfill system. The attenuation of the rocking 13 motion stems from the impacts at the rocking interfaces, described through the coefficient of restitution, and also from 14 the impacts (pounding) of the superstructure on the abutment backwalls. This is the first study that combines both energy dissipation sources in the analytical derivation of the equations of motion. The results of response-history 15 16 analysis of bridges with different levels of asymmetry in their pier height show that the performance of both the 17 symmetric and asymmetric configurations is very similar with regard to longitudinal displacements. Although the 18 studied bridges safely resisted ground motions with an intensity about twice that of the design earthquake, regardless 19 of the degree of asymmetry, it was found that the higher the difference in the pier height, the larger is the rotation of 20 the superstructure due to the differential uplift of the piers, a point that has to be addressed in seismic design for 21 rocking response.

22 KEYWORDS

23

Rocking bridges, unequal pier height, asymmetry, abutment, backfill, analytical methods, rigid body dynamics

Cite as:

Thomaidis IM, **Camara A** and Kappos AJ (2021). Dynamics and seismic performance of asymmetric rocking bridges. *Journal of Engineering Mechanics*. Currently in Press.

24 INTRODUCTION

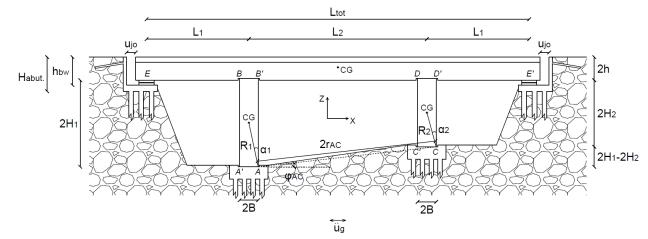
25 The seismic response of structures with rocking piers is characterized by a sequence of self-centering rigid body 26 rotations that are combined with dissipative impacts each time the structure returns to the original position of 27 equilibrium, and it continues until the total energy is dissipated through these impacts; this system is characterized by 28 a highly nonlinear behavior. The first systematic study on the topic was published by Housner (1963) who developed 29 a simple analytical two-dimensional (2D) model that has been extensively validated (Bachmann et al. 2018, Thomaidis et al. 2018 and Ceh et al. 2018). Thereafter, a number of studies have addressed the dynamic response of rocking 30 31 columns and established the high stability of this simple configuration (see i.a. Makris and Roussos 2000, Makris and 32 Zhang 2001, Dimitrakopoulos and DeJong 2012, Vassiliou and Makris 2012, Acikgoz and DeJong 2014, Vassiliou 33 and Makris 2015, Makris and Kampas 2016, Thiers-Moggia and Malaga-Chuquitaype 2018).

34 Other authors studied the seismic response of frames wherein the columns have the same section (both in 35 elevation and cross-section) and height, as is common in ancient monuments (see i.a. Psycharis et al. 2000, Drosos 36 and Anastasopoulos 2014). Makris and Vassiliou (2013) developed the Equation of Motion (EoM) of a beam 37 supported on an infinite number of equal-height columns (symmetric or regular configuration), as well as the energy 38 dissipation at the impacts at the rocking interfaces using the concept of the Coefficient of Restitution (CoR). However, 39 real bridges usually have piers of different heights to accommodate the topography of the site. To account for this, 40 DeJong and Dimitrakopoulos (2014) and Dimitrakopoulos and Giouvanidis (2015) studied the dynamics of a frame 41 supported on two rocking columns with same section but different height (asymmetric or irregular configuration). In 42 both studies the concept of CoR was utilized for the impact at the rocking interfaces. These works do not address the 43 effect of the abutment-backfill system, which was found to be significant in the rocking response of symmetric bridges 44 by Thomaidis et al. (2020a) due not only to the longitudinal constraint to the deck movement, but also to the vertical 45 impacts between the deck and the abutment seats. Different failure modes were observed in the response of rocking 46 bridges when the effects of the abutment-backfill are considered, but to the authors' knowledge this has not been 47 considered in analytical studies of bridges with unequal pier heights. Developing the EoM and exploring the seismic 48 response of asymmetric/irregular rocking bridges is the aim of the present study.

The dynamics of asymmetric bridges with two rocking piers of different height are studied here by extending the analytical models of Dimitrakopoulos and Giouvanidis (2015) and Thomaidis et al. (2020a) to account for the abutment-backfill (not included in the former study) and the pier asymmetry (not addressed in the latter). The EoM accounts for the difference in the spans, the presence of end joints, and the longitudinal and vertical effects of the deck support at the abutment seats. The CoR in this general case is derived following the 'classical' impulse formulation but incorporating a new inherent energy dissipation mechanism to describe the impact of the superstructure on the abutment backwall by means of an additional CoR. The proposed formulation is used to analyze the response of asymmetric rocking bridges subject to high intensity ground motions, and it assesses their seismic behaviour with a view to establishing the effect of asymmetry in rocking bridges.

58 ANALYTICAL MODEL OF THE ROCKING RESPONSE OF ASYMMETRIC59 BRIDGES

60 This section presents an analytical model to describe the longitudinal rocking motion of straight bridges 61 supported by two piers with the same section and different heights, and by seat-type abutments, accounting not only 62 for the vertical support at the abutment seat, but also for the activation of the abutment-backfill system when the end 63 gap closes. Fig. 1 illustrates the general bridge configuration at the at-rest position, subject to a horizontal ground 64 acceleration history \ddot{u}_g . The deck consists of a continuous box girder section with depth 2h, cross-sectional area A_{deck} 65 and total length $L_{tot} = 2L_1 + L_2$, with L_1 and L_2 being the side and central spans, respectively. The deck is free to move longitudinally until the joint gap between one of its ends and the abutment is closed (u_{i0}) . At this instant, an impact on 66 67 the abutment backwall with height h_{bw} occurs. The superstructure is supported on frictionless sliding bearings at the 68 abutment seats E and E' that can accommodate the up-and-down (cyclic vertical) motion of the superstructure; this 69 selection is conservative in the context of a performance assessment considering that the superstructure is not 70 restrained and, therefore, the prevailing failure mode of the abutment-backfill system (see discussion below) can be 71 activated more easily. The two free-standing rocking piers have a width 2B and unequal heights $2H_1$ and $2H_2$ for the 72 tall and short pier, respectively. The semi-diagonals of the piers are given by $R_1 = \sqrt{H_1^2 + B^2}$ and $R_2 = \sqrt{H_2^2 + B^2}$, while the slenderness parameters are $\alpha_1 = \tan^{-1}(B/H_1)$ and $\alpha_2 = \tan^{-1}(B/H_2)$, respectively. Special grooved caps are 73 74 introduced at the bottom and the top surfaces of both piers to allow free rocking on the base (pivot points A'-A for the 75 tall pier and C'-C for the short pier) and the deck interfaces (pivot points B-B' and D-D'). Two additional parameters 76 are used in the analytical formulation of the asymmetric bridge rocking motion, namely the distance between the pivot points of the piers at the foundation level $2r_{AC} = \sqrt{(2H_1 - 2H_2)^2 + L_2^2}$, and the angle between this line and the 77 78 horizontal $\varphi_{AC} = \tan^{-1}((2H_1 - 2H_2)/L_2).$



- 79
- 80 81

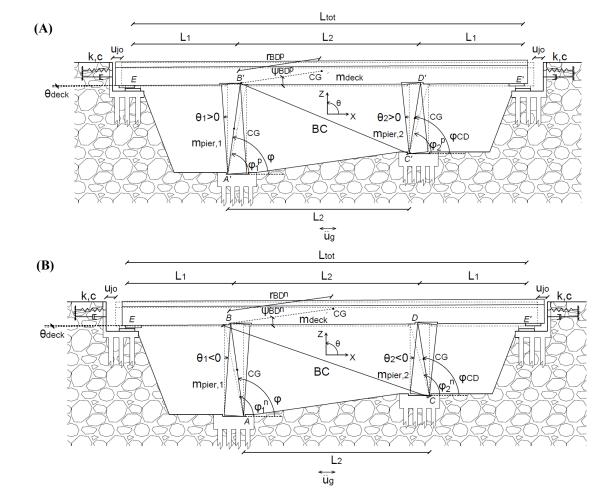
Fig. 1. Schematic of an asymmetric bridge (at the at-rest position) supported on two rectangular-in-elevation free-standing rocking piers, and frictionless sliding bearings at the abutment seats.

82 The following assumptions are adopted to formulate the rocking motion of the asymmetric bridge structure:

- The rocking motion is constrained within the plane of the bridge, thus ignoring three-dimensional (3D)
 rocking response (Chatzis and Smyth 2012a, Vassiliou 2017).
- The deformability of all structural members is ignored (rigid body dynamics), without a significant loss of
 accuracy, as shown i.a. by Agalianos et al. (2017) and Thomaidis et al. (2020b).
- The piers are designed to rock freely on the foundation (pivots A'-A and C'-C) and the deck interfaces (pivots
 B-B' and D-D'), without sliding at the initiation of movement, as shown for free-standing rocking columns
 by Taniguchi (2002), and throughout the entire motion. This can be achieved by means of grooves provided
 on the top surface of the foundation and at the soffit of the deck, and it prevents slide-rock movement
 (Taniguchi 2002, and Jeong et al. 2003).
- Fig. 2A, B illustrate the rocking motion of the asymmetric bridge for counter-clockwise (positive, superscript *p*)
 and clockwise (negative, superscript *n*) rotations, respectively. The effect of the abutment and the backfill at each end
 of the bridge is modelled with a Kelvin-Voigt system (spring (*k*) and dashpot (*c*) elements in parallel).
- 95 Despite the apparent complexity of the longitudinal rocking motion, it can be described by a single Degree of 96 Freedom (DoF). This is selected as the angle φ formed between the horizontal axis (X) and the diagonal of the tall 97 pier (starting from the pivot point at its base). Consequently, the relative rocking rotation of the tall pier (θ_1) is given 98 by the following expression

99
$$\theta_1 = \varphi - \varphi_1^{p/n}, \tag{1}$$

100 where $\varphi_1^{p/n} = \pi/2 \mp \alpha_1$ represents the angle of the tall pier diagonal with respect to the horizontal at the at-rest 101 position. It is noted that the diagonal that is required for determining φ_1^p and φ_1^n is different depending on the direction 102 of the movement and, therefore, it is determined in each case by the pivot points that drive the rocking motion of the 103 tall pier, as shown in Fig. 2. This is described mathematically by means of the double sign operator ' \mp ', with the top 104 sign referring to positive relative rotation of the piers and vice-versa for the bottom one.



106

105

Fig. 2. Schematic of an asymmetric bridge with rocking piers during rocking motion. The structure sustains (A) counter-clockwise (positive) rotation of the piers, and (B) clockwise (negative) rotation of the piers.

109 Similarly, the rocking rotation of the short pier is $\theta_2 = \varphi_{CD} - \varphi_2^{p/n}$, where $\varphi_2^{p/n} = \pi/2 \mp \alpha_2$ is the angle of this 110 pier at the at-rest rotation. With this notation the dependent variable φ_{CD} is a function of the geometrical properties of 111 the rocking configuration

112
$$\varphi_{CD} = \pi + \tan^{-1} \left(\frac{R_1 \sin \varphi - r_{AC} \sin \varphi_{AC}}{R_1 \cos \varphi - r_{AC} \cos \varphi_{AC}} \right) - \cos^{-1} \left(\frac{BC^2 + 4R_2^2 - L_2^2}{4R_2BC} \right),$$
(2)

where $BC = \sqrt{(2R_1)^2 + (2r_{AC})^2 - 8R_1 \cdot r_{AC} \cdot \cos(\varphi - \varphi_{AC})}$ is the distance from point B to point C (or from B' to C'), as shown in Fig. 2. Due to the unequal height of the piers, the deck is forced to have a translational movement in the longitudinal and vertical directions (along the X and Z axes, respectively) that occurs simultaneously with its rotational movement (about the Y axis). The rocking rotation of the deck is

117
$$\theta_{deck} = \tan^{-1} \left(\frac{-R_1 \sin \varphi + r_{AC} \sin \varphi_{AC} + R_2 \sin \varphi_{CD}}{-R_1 \cos \varphi + r_{AC} \cos \varphi_{AC} + R_2 \cos \varphi_{CD}} \right).$$
(3)

118 The longitudinal (*u*) and the vertical (*v*) relative displacements of the Centre of Gravity (CG) of the tall and the 119 short piers are expressed in terms of the DoF φ as

120
$$u_{pier,1}^{CG} = R_1 \cos \varphi \mp B$$
 and $v_{pier,1}^{CG} = R_1 \sin \varphi - H_1$, (4)

121
$$u_{pier,2}^{CG} = R_2 \cos \varphi_{CD} \mp B$$
 and $v_{pier,2}^{CG} = R_2 \sin \varphi_{CD} - H_2$, (5)

and the corresponding displacements of the CG of the deck are

123
$$u_{deck}^{CG} = 2R_1 \cos \varphi + r_{BD}^{p/n} \cos \left(\theta_{deck} + \psi_{BD}^{p/n}\right) \mp B - \frac{L_2}{2} \qquad \text{and} \qquad$$

124
$$v_{deck}^{CG} = 2R_1 \sin \varphi + r_{BD}^{p/n} \sin \left(\theta_{deck} + \psi_{BD}^{p/n}\right) - 2H_1 - h$$
, (6)

wherein, as shown in Fig. 2, $r_{BD}^{p/n} = \sqrt{h^2 + (L_2/2 \mp B)^2}$ is the length of the segment that connects the upper pivot of the tall pier (B' or B) with the CG of the deck, and $\psi_{BD}^{p/n} = \tan^{-1}(h/(L_2/2 \mp B))$ represents its angle with respect to X. The convention for positive displacements is shown in Fig. 2.

During the free rocking motion of the system, the translational masses of the tall pier ($m_{pier,1} = 8\rho \cdot B^2 \cdot H_1$), of the short pier ($m_{pier,2} = 8\rho \cdot B^2 \cdot H_2$) and of the deck ($m_{deck} = 2\rho \cdot A_{deck} \cdot L_{tot}$) tend to restore the bridge to the at-rest position. Additionally, the rotational masses of all members with respect to the Y axis resist the induced rotational movement according to their corresponding rotational inertias $I_{pier,1}^{CG}$, $I_{pier,2}^{CG}$ and I_{deck}^{CG} .

132 Initiation of Rocking Motion

133 The principle of virtual works is applied to the asymmetric bridge at the onset of rocking under a lateral ground 134 acceleration $\ddot{u}_{g,\min}$ that is the minimum value capable of inducing uplift in the system

135
$$\begin{split} m_{pier,1}\ddot{u}_{g,\min}\delta u_{pier,1}^{CG} + m_{pier,2}\ddot{u}_{g,\min}\delta u_{pier,2}^{CG} + m_{deck}\ddot{u}_{g,\min}\delta u_{deck}^{CG} = \\ m_{pier,1}g\delta v_{pier,1}^{CG} + m_{pier,2}g\delta v_{pier,2}^{CG} + m_{deck}g\delta v_{deck}^{CG}, \end{split}$$
(7)

136 where $\delta u_{pier,1}^{CG}$, $\delta v_{pier,2}^{CG}$, $\delta v_{pier,2}^{CG}$, δu_{deck}^{CG} and δv_{deck}^{CG} are the partial derivatives of Eqs. (4) to (6) with respect to the 137 DoF of the system, φ . Substituting the relative rotations of the piers (θ_1 and θ_2) into Eq. (7) and by taking into account 138 that the rocking motion initiated at this instant, hence $\theta_1 = \theta_2 = \theta_{deck} = 0$, Eq. (7) is simplified to

139
$$\ddot{u}_{g,\min} = \pm \lambda g \tan \alpha_1 = \pm \frac{m_{pier,1} + m_{pier,2}\overline{h} + m_{deck} \left[1 + \overline{h} - 2\overline{b} \left(\pm \overline{h} \mp 1\right)\right]}{m_{pier,1} + m_{pier,2} + 2m_{deck} \left[\frac{\overline{b}h}{H_1} \left(\pm \overline{h} \mp 1\right) + 1\right]} g \tan \alpha_1,$$
(8)

140 where $\bar{h} = H_1/H_2$ is a ratio relating to the level of asymmetry in the height of the piers, and $\bar{b} = B/L_2$. Unlike 141 in the case of symmetric bridges, Eq. (8) shows that for asymmetric bridges the initiation of rocking occurs for different 142 values of the ground acceleration $\ddot{u}_{g,\min}$ depending on the direction of motion, while the constant λ is influenced by 143 the geometrical characteristics of the system; it is noted that the latter was found equal to 1 for regular configurations 144 independently of the geometry of the system (Thomaidis et al. 2020a). In order to explore the effect of asymmetry 145 through the parameter λ in the value of $\ddot{u}_{g,min}$, Fig. 3 compares the values of $\ddot{u}_{g,min}$ obtained using Eq. (8) for different 146 levels of the pier asymmetry. The bridge considered in the analysis has length $L_{tot} = 2L_1 + L_2 = 2 \cdot 38 + 60 = 136$ m, 147 and the superstructure consists of a simplified single-cell box girder with depth 2h = 1.7 m, and cross-sectional area $A_{deck} = 6 \text{ m}^2$. The bridge has square piers with width 2B = 2.6 m, height of the tall pier $2H_1 = 26 \text{ m}$ and a height of 148 the short pier 2H₂ that ranges from 4 m ($\bar{h} = 6.4$) to 26 m ($\bar{h} = 1$) to evaluate the influence of the asymmetry on $\ddot{u}_{g,\min}$. 149 150 The results show that the higher the asymmetry in the height of the rocking piers, the stronger the ground motion 151 should be to initiate rocking motion; the minimum ground acceleration that triggers rocking in the bridge with piers of very unequal height ($\bar{h} = 6.4$, $\ddot{u}_{g,min} = 0.35g$) is 3.5 times larger than the ground acceleration limit for the same 152 bridge with piers of equal height ($\bar{h} = 1$, $\ddot{u}_{g,min} = 0.10g$). We note that the value of λ in Eq. (8) is always greater than 153 1, and the results included in Fig. 3 indicate that it increases with \overline{h} , particularly for asymmetric bridges with $\overline{h} > 2$. 154 155 This indicates that designers could potentially delay the initiation or rocking, or even prevent it for moderate 156 earthquakes below certain intensity, if it is possible to reduce the height of the shortest pier while keep the tallest 157 unchanged. Further studies in this direction are recommended in order to propose design recommendations.

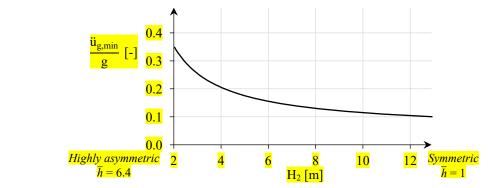


Fig. 3. Minimum ground acceleration to initiate rocking motion $(\ddot{u}_{g,\min})$ for bridges with rocking piers of different degree of asymmetry, accounting for the influence of the short pier height (H_2) . Results obtained for constant deck mass and cross-section in the tall pier.

162 It should be noted that Eq. (8) reduces to the rocking initiation acceleration for symmetric bridges given by 163 Thomaidis et al. (2020a) when $\bar{h} = 1$. Moreover, the value of $\ddot{u}_{g,\min}$ in asymmetric rocking bridges is identical to that 164 reported by Dimitrakopoulos and Giouvanidis (2015) for asymmetric frames, because the longitudinal and vertical 165 rocking effects at the abutment (neglected in rocking frame models) only appear after rocking starts when the 166 superstructure contacts the abutment backwall and impacts at the abutment seats, respectively (Thomaidis et al. 167 2020a).

168 Equation of Motion during Rocking

158

169 Considering that the ground motion is strong enough to initiate rocking of the bridge in Fig. 1 (i.e., $\max(|\ddot{u}_g|) >$ 170 $|\ddot{u}_{g,\min}|$), its response can be described by the energy balance using Lagrange's equation

171
$$\frac{d}{dt}\left(\frac{\partial T}{\partial \phi}\right) - \frac{\partial T}{\partial \varphi} + \frac{\partial V}{\partial \varphi} = Q, \qquad (9)$$

where T, V and Q are the kinetic energy, the potential energy and the effect of the non-conservative forces, respectively. The kinetic energy of the system with respect to the corresponding CG of the members is

174
$$T = \frac{1}{2} m_{pier,1} \left[\dot{u}_{pier,1}^{CG}{}^{2} + \dot{v}_{pier,1}^{CG}{}^{2} \right] + \frac{1}{2} I_{pier,1}^{CG} \dot{\phi}^{2} + \frac{1}{2} m_{pier,2} \left[\dot{u}_{pier,2}^{CG}{}^{2} + \dot{v}_{pier,2}^{CG}{}^{2} \right] \\ + \frac{1}{2} I_{pier,2}^{CG} \dot{\phi}_{CD}^{2} + \frac{1}{2} m_{deck} \left[\dot{u}_{deck}^{CG}{}^{2} + \dot{v}_{deck}^{CG}{}^{2} \right] + \frac{1}{2} I_{deck}^{CG} \dot{\theta}_{deck}^{2}$$

$$(10)$$

175 where $\dot{u}_{pier,1}^{CG}$, $\dot{v}_{pier,2}^{CG}$, $\dot{u}_{pier,2}^{CG}$, \dot{u}_{deck}^{CG} and \dot{v}_{deck}^{CG} are the first time-derivatives of Eqs. (4) to (6), respectively, while the 176 angular velocities of the short pier ($\dot{\phi}_{CD} = \dot{\theta}_2$) and the deck ($\dot{\theta}_{deck}$) are

177
$$\dot{\phi}_{CD} = \frac{d\phi_{CD}}{dt} = \frac{\partial\phi_{CD}}{\partial\phi}\frac{d\phi}{dt} = \frac{\partial\phi_{CD}}{\partial\phi}\dot{\phi},$$
(11)

178
$$\dot{\theta}_{deck} = \frac{d\theta_{deck}}{dt} = \frac{\partial\theta_{deck}}{\partial\varphi} \frac{d\varphi}{dt} = \frac{\partial\theta_{deck}}{\partial\varphi} \dot{\phi}.$$
 (12)

By introducing Eqs. (11) and (12) into Eq. (10), the total kinetic energy of the system with respect to the activepivot point (as explained below) of each member is

181
$$T = \begin{bmatrix} \frac{1}{2} I_{pier,1}^{Pivot} + \frac{1}{2} I_{pier,2}^{Pivot} \left(\frac{\partial \varphi_{CD}}{\partial \varphi} \right)^2 + \frac{1}{2} I_{deck}^{Pivot} \left(\frac{\partial \theta_{deck}}{\partial \varphi} \right)^2 \\ + m_{deck} \left(2R_1^2 + 2R_1 r_{BD}^{p/n} \cos\left(\varphi - \theta_{deck} - \psi_{BD}^{p/n}\right) \frac{\partial \theta_{deck}}{\partial \varphi} \right) \end{bmatrix} \dot{\varphi}^2, \tag{13}$$

wherein $I_{pier,i}^{Pivot} = 4 m_{pier,i} \cdot R_i^2/3$ is the mass moment of inertia of the *i*-th pier with respect to one of its bottom corners (pivot point) that drive the rocking motion, with i = 1,2; $I_{deck}^{Pivot} = I_{deck}^{CG} + m_{deck} \cdot r_{BD}^{p/n_2}$ is the mass moment of inertia of the deck with respect to the active pivot points at the deck-pier contacts.

185 The potential energy components that describe the gravity effects (V_{in}) and the elastic spring forces at the 186 abutments (V_{as}) are

187
$$V_{in} = g \Big[m_{pier,1} v_{pier,1}^{CG} + m_{pier,2} v_{pier,2}^{CG} + m_{deck} v_{deck}^{CG} \Big], \qquad (14)$$

188
$$V_{as} = \begin{cases} 0 \\ \frac{1}{2} k \left[u_{deck}^{CG} \pm u_{jo} \right]^2 \end{cases} \quad \text{if} \quad \begin{vmatrix} u_{deck}^{CG} \\ u_{deck}^{CG} \end{vmatrix} < u_{jo} \\ \begin{vmatrix} u_{deck}^{CG} \\ u_{deck} \end{vmatrix} \geq u_{jo}$$
 (15)

189 The total potential energy of the free-standing asymmetric system is $V = V_{in} + V_{as}$. It can be obtained by 190 introducing Eqs. (4) to (6) in Eqs. (14) and (15), but it is not included here, for economy of space.

191 The total effect of the generalized forces is $Q = Q_{in} + Q_{ad}$, with $Q_{in} = \partial W_{in} / \partial \varphi$ and $Q_{ad} = \partial W_{ad} / \partial \varphi$ given by 192 the variation of the virtual work $\delta W_{in} = -\ddot{u}_g \cdot [m_{pier,1} \cdot u_{pier,1}^{CG} + m_{pier,2} \cdot u_{pier,2}^{CG} + m_{deck} \cdot u_{deck}^{CG}]$ and $\delta W_{ad} = -c \cdot \dot{u}_{deck}^{CG} \cdot 193$ 193 $[u_{deck}^{CG} \pm u_{jo}]$, respectively. Substituting Eqs. (4) to (6) and the first time-derivative of Eq. (6) in the expressions of the 194 generalized forces

195
$$Q_{in} = \ddot{u}_g \begin{bmatrix} \left(m_{pier,1} + 2m_{deck} \right) R_1 \sin \varphi + m_{pier,2} R_2 \sin \varphi_{CD} \frac{\partial \varphi_{CD}}{\partial \varphi} \\ + m_{deck} r_{BD}^{p/n} \sin \left(\theta_{deck} + \psi_{BD}^{p/n} \right) \frac{\partial \theta_{deck}}{\partial \varphi} \end{bmatrix},$$
(16)

196
$$Q_{ad} = -4cR_1^2 \left[\sin\varphi + \overline{r}^{p/n}\sin\left(\theta_{deck} + \psi_{BD}^{p/n}\right)\frac{\partial\theta_{deck}}{\partial\varphi}\right]^2\dot{\varphi}, \qquad (17)$$

197 in which $\bar{r}^{p/n} = r_{BD}^{p/n} / 2R_1$.

198 Introducing Eqs. (13) - (17) into Eq. (9) yields the EoM for the asymmetric rocking bridge

$$\ddot{\varphi} = -\frac{g}{R_{1}} \left[-\frac{R_{1}}{g} \left(\frac{T_{f2}(\varphi)}{T_{f1}(\varphi)} \right) \dot{\varphi}^{2} + \left(\frac{V_{inf}(\varphi)}{T_{f1}(\varphi)} \right) - \frac{\ddot{u}_{g}}{g} \left(\frac{Q_{inf}(\varphi)}{T_{f1}(\varphi)} \right) \right], \quad (18)$$

$$abutment-backfill contribution
-\frac{g}{R_{1}} q \left[k \left(\frac{V_{asf}(\varphi)}{T_{f1}(\varphi)} \right) + c \left(\frac{Q_{adf}(\varphi)}{T_{f1}(\varphi)} \right) \dot{\varphi} \right]$$

200 where

201

$$T_{f1}(\varphi) = \frac{I_{pier,1}^{Pivot}}{R_{1}^{2}} + \frac{I_{pier,2}^{Pivot}}{R_{1}^{2}} \left(\frac{\partial\varphi_{CD}}{\partial\varphi}\right)^{2} + m_{deck} \left[4 + 8\overline{r}^{p/n}\cos\left(\varphi - \theta_{deck} - \psi_{BD}^{p/n}\right)\frac{\partial\theta_{deck}}{\partial\varphi}\right] + \frac{I_{deck}^{Pivot}}{R_{1}^{2}} \left(\frac{\partial\theta_{deck}}{\partial\varphi}\right)^{2} + m_{deck}\overline{r}^{p/n}\cos\left(\varphi - \theta_{deck} - \psi_{BD}^{p/n}\right)\frac{\partial^{2}\theta_{deck}}{\partial\varphi^{2}} - \frac{I_{pier,2}^{Pivot}}{R_{1}^{2}}\frac{\partial\varphi_{CD}}{\partial\varphi}\frac{\partial^{2}\varphi_{CD}}{\partial\varphi^{2}} + 4m_{deck}\overline{r}^{p/n}\left[\cos\left(\varphi - \theta_{deck} - \psi_{BD}^{p/n}\right)\frac{\partial^{2}\theta_{deck}}{\partial\varphi^{2}} - \sin\left(\varphi - \theta_{deck} - \psi_{BD}^{p/n}\right)\frac{\partial\theta_{deck}}{\partial\varphi}\left(1 - \frac{\partial\theta_{deck}}{\partial\varphi}\right)\right]$$

$$+\frac{I_{deck}^{Pivot}}{R_{1}^{2}}\frac{\partial\theta_{deck}}{\partial\varphi}\frac{\partial^{2}\theta_{deck}}{\partial\varphi^{2}}$$

204
$$V_{inf}(\varphi) = \left[m_{pier,1} + 2m_{deck}\right] \cos\varphi + m_{pier,2}\overline{R}\cos\varphi_{CD}\frac{\partial\varphi_{CD}}{\partial\varphi} + 2m_{deck}\overline{r}^{p/n}\cos\left(\theta_{deck} + \psi_{BD}^{p/n}\right)\frac{\partial\theta_{deck}}{\partial\varphi}$$

205
$$Q_{inf}(\varphi) = \left[m_{pier,1} + 2m_{deck}\right] \sin\varphi + m_{pier,2}\overline{R}\sin\varphi_{CD} \frac{\partial\varphi_{CD}}{\partial\varphi} + 2m_{deck}\overline{r}^{p/n}\sin\left(\theta_{deck} + \psi_{BD}^{p/n}\right) \frac{\partial\theta_{deck}}{\partial\varphi}$$

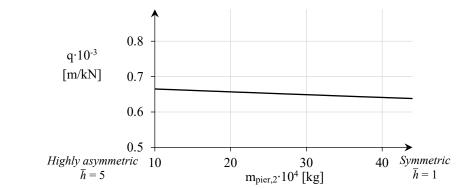
206
$$V_{asf}(\varphi) = \left[m_{pier,1} + m_{pier,2} + 3m_{deck}\right] \left[\frac{-\cos\varphi - \overline{r}^{p/n}\cos\left(\theta_{deck} + \psi_{BD}^{p/n}\right)}{\pm \frac{B}{2R_1} + \frac{L_2}{4R_1} \mp \frac{u_{jo}}{2R_1}} \right]$$

207
$$\left[\sin\varphi + \overline{r}^{p/n}\sin\left(\theta_{deck} + \psi_{BD}^{p/n}\right)\frac{\partial\theta_{deck}}{\partial\varphi}\right]$$

208
$$Q_{adf}(\varphi) = \left[m_{pier,1} + m_{pier,2} + 3m_{deck}\right] \left[\sin\varphi + \overline{r}^{p/n}\sin\left(\theta_{deck} + \psi_{BD}^{p/n}\right)\frac{\partial\theta_{deck}}{\partial\varphi}\right],$$

209 and $\overline{R} = R_2/R_1$. The EoM described in Eq. (18) is composed of two parts; the first one (*'frame system'*) describes the motion before the deck contacts the abutments in the longitudinal direction ($|u_{deck}^{CG}| < u_{jo}$), whilst the second term 210 (*'abutment-backfill contribution'*) is only active when the deck contacts the abutments longitudinally ($|u_{deck}^{CG}| \ge u_{jo}$), 211 and it describes the constraint of the rocking motion of the frame due to the presence of the abutment-backfill system. 212 213 This second term has a significant effect on the seismic response of asymmetric rocking bridges, as shown below. If there is no contact between the superstructure and the abutments at the ends of the deck ($|u_{deck}^{CG}| < u_{jo}$), the spring 214 stiffness (k) and the dashpot coefficient (c) of the end supports are neglected and the EoM reduces to that of an 215 216 asymmetric frame without end restraints as presented by Dimitrakopoulos and Giouvanidis (2015). Moreover, Eq. 217 (18) coincides with the corresponding EoM for symmetric bridges presented by Thomaidis et al. (2020a) for the case of two rocking piers with same height ($\bar{h} = 1$ and $m_{pier,1} = m_{pier,2}$). In this context, the proposed EoM is a generalization 218 219 of the aforementioned works.

The effect of the abutment-backfill system on the longitudinal rocking response is directly linked to the 220 221 parameter $q = 4R_1/g \cdot [m_{pier,1} + m_{pier,2} + 3m_{deck}]$, and it is beneficial as q > 1. In order to explore this effect, we 222 consider a typical bridge with square piers of dimension 2B = 2.6 m and height of the tall pier $2H_1 = 26$ m, thus 223 resulting in $m_{pier,1} = 44 \cdot 10^4$ kg, and a deck mass $m_{deck} = 200 \cdot 10^4$ kg. Fig. 4 plots the value of q with respect to the 224 mass of the short pier $(m_{pier,2})$, which is obtained by changing the height of this member $(2H_2)$ from 26 m (symmetric case, $\bar{h} = 1$) to 5.2 m (asymmetric case, $\bar{h} = 5$). It is seen from Fig. 4 that bridges in which the mass of the short pier 225 226 is much smaller than that of the long one (i.e., with a higher level of asymmetry), have larger interaction with the 227 abutment-backfill system due to the reduction in the total mass of the system. However, the difference between the 228 two extreme cases is only 4%, which shows that the contribution of the abutment-backfill system is not significantly 229 affected by differences in the height of the piers.



230

231Fig. 4.Influence of the abutment-backfill system (q) in bridges with rocking piers of different degree of asymmetry232expressed by the mass of the short pier $(m_{pier,2})$. Results obtained when the tall pier section and the deck233mass are constant.

234 Impact on the Abutment Backwall

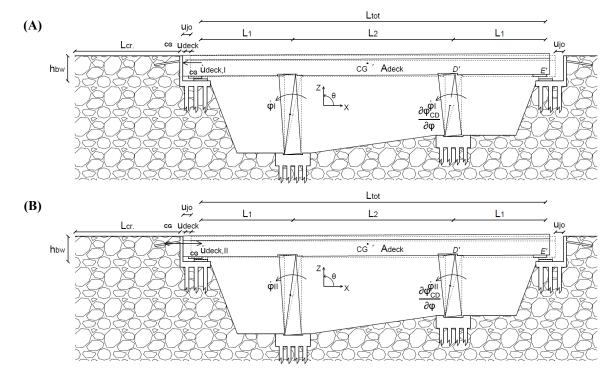
When a bridge starts rocking as described by Eq. (8), the term of the EoM in Eq. (18) that is related to the 'frame system' describes the time-history of the angle of rotation (φ) of the tall pier before the deck is in contact with the abutments. If the joint gap is closed ($|u_{deck}^{CG}| = u_{jo}$), the deck impacts on the backwall of one of the abutments. This impact dissipates energy instantly, and subsequently the structure either behaves as a frame system in a free rocking motion described by the first part of Eq. (18) (i.e., 'frame system') if the dissipation is large enough and the ground motion decays, or otherwise it continues activating the abutment-backfill system and the time-history of angle of rotation is described by both parts of Eq. (18) (i.e., 'frame system' plus 'abutment-backfill contribution').

242 The pounding problem is modelled using several concepts (e.g., Muthukumar and DesRoches 2006, Shi and 243 Dimitrakopoulos 2017), the key idea being to capture the attenuation of motion whenever an impact between 244 superstructure and abutment takes place. The present study adopts the 'stereomechanical approach' based on the 245 conservation of linear momentum in the normal direction, as described in the study of Muthukumar and DesRoches 246 (2006). This approach utilizes the CoR (e) to describe pounding. Fig. 5A illustrates the superstructure of the rocking system just before impacting on the abutment backwall with a longitudinal velocity $\dot{u}_{deck I}^{CG}$, while Fig. 5B depicts the 247 248 post-pounding condition where the superstructure moves longitudinally, either towards the at-rest position or towards 249 the abutment-backfill system, with a decreased value of longitudinal velocity $\dot{u}_{deck,II}^{CG}$.

250 The pre-pounding and post-pounding longitudinal velocities of the superstructure are related as follows

251
$$\boldsymbol{w}_{aeck,\mathrm{II}}^{CG} = \boldsymbol{w}_{aeck,\mathrm{I}}^{CG} - [1+e] \frac{m_{abut.} \left[\boldsymbol{w}_{aeck,\mathrm{I}}^{CG}\right]}{m_{abut.} + m_{deck}}, \qquad (19)$$

252 wherein $m_{abut} = \rho_s \cdot L_{cr} \cdot B_{abut} \cdot h_{bw}$ refers to the mass of the backfill related to the mass density of the soil (ρ_s), the 253 length of the backfill soil that is expected to resist the impact of the superstructure on the abutment backwall (L_{cr}), as 254 well as the width $(B_{abut.})$ and the height (h_{bw}) of the abutment backwall that represent the contact surface between the 255 deck and the abutment. It is noted that this definition of m_{abut} is valid for seat-type abutments with 'sacrificial' 256 backwalls; when this is not the case, a larger mass of the abutment will resist the deck impact (through passive 257 pressure), and in that case the proposed value is on the safe side. Introducing the first time-derivative of Eq. (6) in Eq. 258 (19) gives the ratio of the angular velocities of the tall pier $(\dot{\phi}_{II}/\dot{\phi}_{I})$ to describe the pounding effect in the abutments 259 of asymmetric bridges with rocking piers



260

261

262Fig. 5.Schematic of the pounding problem considered in the rocking motion of an asymmetric bridge with rocking263piers, including (A) the pre-pounding state with a longitudinal velocity of the superstructure $\dot{u}_{deck,I}^{CG}$, and (B)264the post-pounding state with an associated deck velocity $\dot{u}_{deck,II}^{CG}$.

$$\frac{\boldsymbol{v}_{aeck,II}^{CG}}{\boldsymbol{v}_{aeck,I}^{CG}} = \frac{\boldsymbol{\phi}_{II}}{\boldsymbol{\phi}_{I}} = 1 - \left[1 + e\right] \frac{m_{abut.}}{m_{abut.} + m_{deck}}.$$
(20)

Thus, when the superstructure impacts on the abutments, the angular velocity of the tall pier will be reduced according to Eq. (20).

268 Impact at the Rocking Interfaces

During the rocking motion, when the structure returns to the at-rest position ($\theta_1 = \theta_2 = \theta_{deck} = 0$ or $\varphi = \varphi_1^{p/n}$) impacts at the rocking interfaces occur, thus dissipating energy. This is described by means of a CoR $\eta = |\dot{\varphi}|_{II}/\dot{\varphi}|_{I}$ that relates the independent variable of the angular velocity of the tall pier before and after impact ($\dot{\varphi}_{I}$, and $\dot{\varphi}_{II}$, respectively). An impulse formulation is adopted here that extends the work of Dimitrakopoulos and Giouvanidis (2015) by incorporating in the formulation the effect of the abutments acting as vertical supports, as well as the length of the end spans (L_1). This is based on the following assumptions:

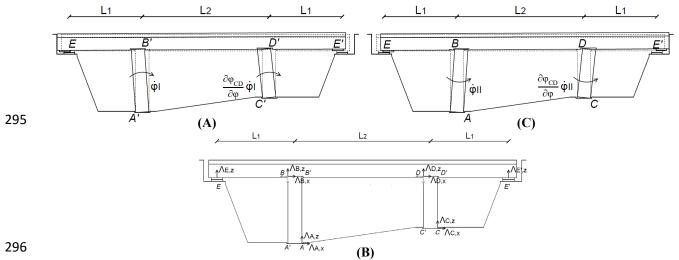
- The reversal of the rocking direction at each impact at the rocking interfaces takes place smoothly, without
 bouncing or sliding. Therefore, the angular momentum is conserved just before and after the impact. This is
 strictly valid only for slender piers (Cheng 2007) and for large values of the coefficient of friction (Di Egidio
 and Contento 2009).
- The impact forces are concentrated at the corresponding pivot points (Housner 1963), thus ignoring the
 potential migration of the resultant force towards the center of the pier base due to an extended contact
 surface (Kalliontzis et al. 2016).

and these assumptions have been found accurate in the study of Bachmann *et al.* (2018) who showed that the analytical
 model of Housner (1963) is capable of capturing experimental results in a statistical sense.

284 Without loss of generality, let the displaced position of the bridge change from counter-clockwise (positive) to 285 clockwise (negative) as shown in Fig. 6. Considering that additional reaction forces (or impulses) are developed at the 286 abutment seats compared to the corresponding asymmetric frame without abutments, there are seven unknowns that 287 need to be determined. These are the impulses $\Lambda_{A,x}$ and $\Lambda_{A,z}$ at pivot A of the tall pier, $\Lambda_{C,x}$ and $\Lambda_{C,z}$ at pivot C of the 288 short pier, Λ_{Ez} as well as $\Lambda_{E'z}$ at the two abutment seats E and E', respectively, and the angular velocity of the tall 289 pier after the impact at the rocking interfaces $\dot{\varphi}_{II}$. However, only five equations can be used to describe the impact 290 problem. For this reason, two additional relationships between the impulses at the abutment seats and those at the pier-291 deck interfaces are introduced, based on the fraction of the weight of the deck that is resisted by each support of the 292 bridge under gravity loading

293
$$\Lambda_{E,z} = \frac{L_1}{L_1 + L_2} \Lambda_{B,z}, \qquad (21)$$

294
$$\Lambda_{E',z} = \frac{L_1}{L_1 + L_2} \Lambda_{D,z} .$$
 (22)



297Fig. 6.Schematic of the impact problem considered in the rocking motion of an asymmetric bridge with rocking
piers that (A) undergoes counter-clockwise (positive) rotation with an angular velocity of the tall pier $\dot{\phi}_1$,299(B) impacts at the corresponding pivot points, and then reverses to (C) clockwise (negative) rotation with
an angular velocity of the tall pier $\dot{\phi}_{II}$.

Introducing the conservation of linear momentum before and after impact at the rocking interfaces along the Z axis for the tall and the short piers into Eqs. (21) and (22), respectively, establishes the relationship between the impacts at the abutments (E-E') and those at the base of the piers (A-C)

304
$$\Lambda_{E,z} = \frac{L_1}{L_1 + L_2} \Big[\Lambda_{A,z} + m_{pier,1} B (\phi_1 + \phi_{11}) \Big].$$
(23)

305
$$\Lambda_{E',z} = \frac{L_1}{L_1 + L_2} \Big[\Lambda_{C,z} + m_{pier,2} B \overline{h} \left(\phi_1 + \phi_{11} \right) \Big].$$
(24)

Eqs. (23) and (24) reduce the unknowns of the impact problem from seven to five ($\Lambda_{A,x}$, $\Lambda_{A,z}$, $\Lambda_{C,x}$, $\Lambda_{C,z}$ and $\dot{\varphi}_{II}$),

and the following equations are considered in the determination of these unknowns;

308 1. Linear momentum along the longitudinal (X) axis for the entire bridge

$$\Lambda_{A,x} + \Lambda_{C,x} = \left[m_{pier,1} + m_{pier,2} + 2m_{deck} \right] H_1 \left(\dot{\varphi}_{\mathrm{I}} - \dot{\varphi}_{\mathrm{II}} \right) + 2m_{deck} \overline{b} h \left[\overline{h} - 1 \right] \left(\dot{\varphi}_{\mathrm{I}} + \dot{\varphi}_{\mathrm{II}} \right).$$
(25)

310 2. Linear momentum along the vertical (Z) axis for the entire bridge

311
$$\Lambda_{E,z} + \Lambda_{A,z} + \Lambda_{C,z} + \Lambda_{E',z} = 2m_{deck}B\overline{b}[\overline{h}-1](\dot{\phi}_{\mathrm{I}}-\dot{\phi}_{\mathrm{II}}) - [m_{pier,1}B + m_{pier,2}B\overline{h} + m_{deck}B(\overline{h}+1)](\dot{\phi}_{\mathrm{I}}+\dot{\phi}_{\mathrm{II}}).$$
(26)

312 3. Angular momentum about pivot B for the tall pier

313
$$2H_{1}\Lambda_{A,x} + 2B\Lambda_{A,z} = \left[m_{pier,1}H_{1}^{2} - I_{pier,1}^{CG}\right] (\dot{\phi}_{\mathrm{I}} - \dot{\phi}_{\mathrm{II}}) - m_{pier,1}B^{2} (\dot{\phi}_{\mathrm{I}} + \dot{\phi}_{\mathrm{II}}).$$
(27)

314 4. Angular momentum about pivot D for the short pier

315
$$2H_2\Lambda_{C,x} + 2B\Lambda_{C,z} = \left[m_{pier,2}H_1H_2 - I_{pier,2}^{CG}\overline{h}\right] \left(\dot{\phi}_{\mathrm{I}} - \dot{\phi}_{\mathrm{II}}\right) - m_{pier,2}B^2\overline{h} \left(\dot{\phi}_{\mathrm{I}} + \dot{\phi}_{\mathrm{II}}\right). \tag{28}$$

316 5. Angular momentum about pivot A for the entire bridge

$$-[L_{I}+B]\Lambda_{E,z} - [2H_{I}-2H_{2}]\Lambda_{C,x} + L_{2}\Lambda_{C,z} + [L_{I}+L_{2}-B]\Lambda_{E',z} = \begin{bmatrix} -m_{pier,1}H_{1}^{2} - I_{pier,1}^{CG} - m_{pier,2}H_{1}(2H_{1}-H_{2}) - I_{pier,2}^{CG}\overline{h} \\ -2m_{deck}H_{1}(2H_{1}+h) + 2m_{deck}\left(\frac{L_{2}}{2}-B\right)B\overline{b}(\overline{h}-1) \end{bmatrix} (\phi_{I}-\phi_{II}) + \\ \begin{bmatrix} m_{pier,1}B^{2} - m_{pier,2}B\overline{h}(L_{2}-B) - 2m_{deck}(2H_{1}+h)\overline{b}h(\overline{h}-1) \\ -m_{deck}\left(\frac{L_{2}}{2}-B\right)B(\overline{h}+1) - I_{deck}^{CG}2\overline{b}(\overline{h}-1) \end{bmatrix} (\phi_{I}+\phi_{II}) \end{bmatrix} (\phi_{I}+\phi_{II})$$

$$(29)$$

318

317

After solving the system of equations, the CoR at the rocking interfaces $\eta = |\dot{\varphi}_{II}/\dot{\varphi}_{I}|$ is given by

$$a_{1} \Big[H_{1}^{2} - B^{2} \Big] m_{pier,1} + a_{1} I_{pier,1}^{CG} + a_{1} \Big[H_{1}^{2} - \overline{h}^{2} B^{2} \Big] m_{pier,2} + a_{1} \overline{h}^{2} I_{pier,2}^{CG} \\ + \left[\frac{4a_{1}H_{1}^{2} \pm 4a_{2}H_{1}h\overline{b}(\overline{h}-1) - 4a_{3}h^{2}\overline{b}^{2}(\overline{h}-1)^{2}}{-B^{2} \left(a_{4}(\overline{h}+1)^{2} - 4a_{5}\overline{b}^{2}(\overline{h}-1)^{2}\right) \mp 2a_{6}\overline{b}(\overline{h}^{2}-1)} \right] m_{deck} \\ 319 \qquad \eta^{p/n} = \left| \frac{\dot{\phi}_{II}}{\dot{\phi}_{I}} \right| = \frac{-4a_{3}\overline{b}^{2} \Big[\overline{h} - 1 \Big]^{2} I_{deck}^{CG}}{a_{1} \Big[H_{1}^{2} + B^{2} \Big] m_{pier,1} + a_{1} I_{pier,1}^{CG} + a_{1} \Big[H_{1}^{2} + \overline{h}^{2} B^{2} \Big] m_{pier,2} + a_{1} \overline{h}^{2} I_{pier,2}^{CG}} \\ + \left[\frac{4a_{1}H_{1}^{2} \mp 4a_{7}H_{1}h\overline{b}(\overline{h}-1) + 4a_{3}h^{2}\overline{b}^{2}(\overline{h}-1)^{2}}{H_{2}a_{8}\overline{b}(\overline{h}^{2}-1)} \right] m_{deck} \\ + 4a_{3}\overline{b}^{2} \Big[\overline{h} - 1 \Big]^{2} I_{deck}^{CG} \\ + 4a_{3}\overline{b}^{2} \Big[\overline{h} - 1 \Big]^{2} I_{deck}^{CG} \\ \end{array} \right]$$

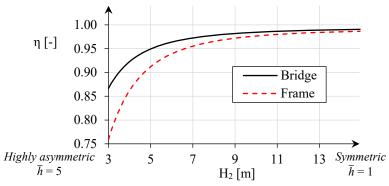
320 where

$$\begin{aligned} 321 \qquad \alpha_1 &= 4\overline{L}^3 + 6\overline{L}^2 + 4\overline{L} + 1 \qquad \alpha_2 &= 4\overline{L}^3 + 4\overline{L}^2 + \overline{L} \qquad \alpha_3 &= 2\overline{L}^2 + 3\overline{L} + 1 \\ 322 \qquad \alpha_4 &= 2\overline{L}^3 + 4\overline{L}^2 + 3\overline{L} + 1 \qquad \alpha_5 &= \left[\overline{L} + 1\right]^2 \qquad \alpha_6 &= 2\overline{L}^3 + 3\overline{L}^2 + \overline{L} \\ 323 \qquad \alpha_7 &= 4\overline{L}^3 + 8\overline{L}^2 + 7\overline{L} + 2 \qquad \alpha_8 &= 2\overline{L}^3 + 5\overline{L}^2 + 5\overline{L} + 2 \end{aligned}$$

and $\overline{L} = L_1/L_2$ describes the effect of the span arrangement. It is observed that, due to the asymmetric configuration, Eq. (30) depends on the direction of rocking reversal, and the value of η obtained with the upper signs in the operators '±' and '∓' corresponds to the movement in which the rotation of the rocking piers changes from positive to negative, and vice-versa for the lower signs; the impulse formulation that leads to the bottom signs of Eq. (30) is not presented herein (for brevity), and can be found in Thomaidis (2020). It must be noted that both expressions of Eq. (30) (i.e., with upper or lower signs) reduce to the CoR at the rocking interfaces of the symmetric bridges with two rocking piers (Thomaidis et al. 2020a) when both piers have the same height.

331 Eq. (30) is different from that for the CoR η in asymmetric frames with rocking columns (Dimitrakopoulos and 332 Giouvanidis 2015) due to the additional impulses developed at the abutment seats. If such impulses are neglected $(\Lambda_{E,z} = \Lambda_{E',z} = 0)$ in the system of Eqs. (25) to (29), the solution of this system of equations gives exactly the CoR 333 334 derived by Dimitrakopoulos and Giouvanidis (2015) for asymmetric frames. To this end, and to establish the effect of 335 the additional impacts at the end of the superstructure in the value of η , Fig. 7 compares the values obtained using Eq. 336 (30) with those from the corresponding expression for asymmetric rocking frames. The bridge considered in this 337 comparison has three spans of equal length ($\bar{L} = 1$), to make the expression proposed by Dimitrakopoulos and Giouvanidis (2015) applicable. The bridge has square piers with width 2B = 2.5 m, height of the tall pier $2H_1 = 30$ m 338 and a height of the short pier 2H₂ that ranges from 6 m ($\bar{h} = 5$) to 30 m ($\bar{h} = 1$) to evaluate the influence of the 339 asymmetry on the response. The superstructure in the bridges and frames has length $L_{tot} = 2L_1 + L_2 = 2.45 + 45 =$ 340 341 135 m and consists in a simplified single-cell box girder with depth 2h = 2 m, width of the bottom and the top slabs 342 $B_{bot} = 6.5$ m and $B_{top} = 10$ m, respectively, and flange and wall thicknesses $t_f = 0.35$ m and $t_w = 0.9$ m, respectively, thus resulting in $A_{deck} = 7 \text{ m}^2$. The mass of the tall pier is equal to $m_{pier,1} = 47 \cdot 10^4 \text{ kg}$ and that of the superstructure is 343 $m_{deck} = 240 \cdot 10^4$ kg, while the mass moment of inertia of the box girder section of the deck is $I_{deck}^{CG} = 360 \cdot 10^7$ kg·m². 344 345 The results show that the value of η is always larger in the bridge than in the corresponding frame with the same 346 dimensions. This indicates that the presence of the abutment (vertical) supports reduces the energy dissipation (at the

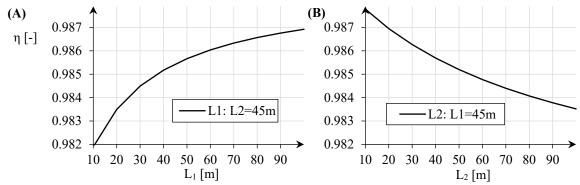
pier-deck interfaces) as the abutments carry part of the deck weight. The increase in the value of η for bridges with rocking piers with respect to the equivalent frames is relatively small for levels of asymmetry below $\bar{h} = 2$ (the difference is 0.5% for the symmetric configuration, $\bar{h} = 1$), but it increases significantly above this value, reaching 12.5% for the highly asymmetric configuration ($\bar{h} = 5$). This is expected taking into account that the effect of the deck weight carried by the piers due to the presence of the end supports is more significant when short piers are considered (i.e., as in highly asymmetric configurations) noting that in the case of tall piers the total weight impacting on the bottom rocking interfaces is already large due to the self-weight of the pier.



354

Fig. 7. CoR at the rocking interfaces (η) for bridges with rocking piers of different degree of asymmetry and for corresponding frames (Dimitrakopoulos and Giouvanidis 2015), accounting for the influence of the short pier height (H_2). Results obtained for constant deck mass and tall pier section.

358 The value of the CoR at the rocking interfaces of the asymmetric bridge described in Eq. (30) is also influenced 359 by the span arrangement (lengths L_1 and L_2). The effect of these parameters on η is presented in Fig. 8, which considers 360 the same bridge dimensions as in the previous study on the influence of the pier asymmetry, with the exception of a constant height of the short pier equal to $2H_2 = 20$ m ($\bar{h} = 1.5$) and variable span lengths. For comparison purposes, 361 362 the mass of the deck is kept constant ($m_{deck} = 240 \cdot 10^4$ kg), regardless of its length. It is seen from Fig. 8A (depicting 363 influence of L_1 for constant $L_2 = 45$ m) that by increasing the length of the end spans (L_1) while keeping constant the 364 length of the intermediate spans (L_2) the CoR η increases slightly, leading to lower energy dissipation. This is due to 365 the axial forces at the piers that are progressively decreasing (they are increasing at the abutment seats), which reduces 366 the energy dissipation at every impact at the rocking interfaces during the rocking motion. On the other hand, Fig. 8B (depicting influence of L_2 for constant $L_1 = 45$ m) shows that higher amount of energy is dissipated when the length 367 368 of the central span (L_2) is increased while keeping constant the length of the end spans (L_1) ; the justification is based 369 on the same reasoning as before.



370

371 372

373

Fig. 8. CoR at the rocking interfaces (η) for asymmetric bridges with rocking piers, accounting for the influence of (A) the length of the end spans (L_1) and (B) the length of the intermediate spans (L_2). Results obtained for constant deck mass.

It must be noted that the CoR calculated from Eq. (30) and presented in Figs. 7 and 8 is conservative, i.e. higher than those expected in reality because the analytical formulation ignores (*i*) the angular velocity just before impact (Jankowski 2007), (*ii*) the inelastic behaviour of the interface material at the instant of impact (Roh and Reinhorn 2010), (*iii*) the sliding effects that take place during rocking motion (Chatzis and Smyth 2012b) and (*iv*) the imperfections of the contact surfaces (ElGawady et al. 2011).

379 RESPONSE HISTORY ANALYSIS OF ASYMMETRIC ROCKING BRIDGES UNDER

380 GROUND MOTIONS

This section addresses the seismic response of symmetric ($\bar{h} = 1$) and asymmetric ($\bar{h} > 1$) bridges with rocking 381 382 piers subjected to seismic ground motions. The rocking motion is analyzed using an algorithm based on the equations 383 given in the previous section, implemented in MATLAB (2016). The analysis starts with the calculation of the 384 minimum ground acceleration that initiates rocking using Eq. (8). If the ground motion is not capable of exceeding 385 this value, rocking motion does not take place and the piers remain in a vertical position. When this is not the case, 386 the EoM Eq. (18) is integrated step-by-step using the Runge-Kutta method with a time-step of 10^{-3} s that was selected through a sensitivity analysis. Response-history analysis of bridges with rocking piers requires identifying the instants 387 at which impact on the abutment backwall $(|u_{deck}^{CG}| = u_{jo})$, and at the rocking interfaces $(\varphi = \varphi_1^{p/n})$ occur. This is 388 389 implemented in the code with an iterative process that reduces the time-step down to a value of 5.10⁻⁶ s in the vicinity 390 of these impact effects. After impact is identified, the next time-step updates the angular velocity of the rocking motion 391 using the restitution coefficients defined in Eqs. (20) and (30). Failure of the rocking structures, as defined in the 392 following, is checked at each time-step of the analysis and triggers its termination if met.

393 For practical implementation, a simplified procedure was devised for analyzing asymmetric bridges governed by EoM Eq. (18). The procedure aimed to avoid using the full expressions for the first and second partial derivatives 394 of Eq. (2) with respect to the DoF $\varphi \left(\partial \varphi_{CD} / \partial \varphi \right)$ and $\partial \varphi_{CD}^2 / \partial \varphi^2$ and also the first and second partial derivatives of Eq. 395 (3) $(\partial \theta_{deck} / \partial \varphi \text{ and } \partial \theta_{deck}^2 / \partial \varphi^2)$, which take a significant amount of time to calculate. These expressions reduce to 396 397 linear and second-order parabolic (regardless of the degree of asymmetry) when plotted for the full range of φ i.e. 398 from $\varphi = -\pi/2$ (representing the overturning condition in the range of negative rocking tilt of the tall pier) to $\varphi =$ 399 $\pi/2$ (representing the same condition in the corresponding positive range). Therefore, the complex expressions were 400 substituted by simpler ones that depend on φ , which speed up the solution of the EoM in each time-step of the analysis; 401 the simplified equations are not given here, for brevity, and can be found in Thomaidis (2020).

402 Description of the Studied Bridges

403 Three bridges with two rocking piers and different levels of asymmetry in their height are analyzed to establish the effect of pier irregularity on the seismic response. The height of the left pier is constant, equal to $2H_1 = 26$ m for 404 405 all bridges, with the level of asymmetry being introduced through the height of the right pier (H_2) to yield: (i) a symmetric configuration with $2H_2 = 26$ m, hence $\bar{h} = 1$, (ii) a moderately asymmetric configuration with $2H_2 = 20.8$ 406 407 m, hence $\bar{h} = 1.25$, and (*iii*) a highly asymmetric configuration with $2H_2 = 13$ m, hence $\bar{h} = 2$. In all cases, the width 408 of the square piers is 2B = 2.6 m. The decks consist in a continuous prestressed concrete box girder with length $L_{tot} =$ 409 $2L_1 + L_2 = 2 \cdot 38 + 60 = 136$ m, depth 2h = 1.7 m, width of the bottom and the top slabs $B_{bot} = 6$ m and $B_{top} = 9.5$ m, 410 respectively, and flange and wall thicknesses $t_f = 0.3$ m and $t_w = 0.8$ m, respectively. With these dimensions the 411 cross-section area of the deck is $A_{deck} = 6 \text{ m}^2$. The bridges are built on soil type C according to the European Seismic 412 Code EN-19981 (CEN 2004) in a seismicity zone with PGA equal to 0.36 g.

Table 1 provides further details of each bridge analyzed. The parameter $\gamma = m_{deck}/(m_{pier,1} + m_{pier,2})$ relates the mass of the deck to that of the piers, and it is an indicator of stability in rocking seismic response (Makris and Vassiliou 2014). The more asymmetric the bridge configuration, the higher are the values of the longitudinal influence of the abutments and the backfills (*q*), and (even more so) of the deck mass ratio (γ). This is favorable for the rocking stability of asymmetric bridges, and it is due to the reduction in the mass of their substructure ($m_{pier,1} + m_{pier,2}$) compared to the symmetric bridge with tall piers.

The abutment-backfill system is defined with a longitudinal spring with effective stiffness k = 132 MN/m and displacement at failure $u_{ab} = 100$ mm taken from the analysis presented by Kappos et al. (2007), further discussed in Thomaidis et al. (2020a) and Thomaidis (2020). A longitudinal dashpot with coefficient c = 48 MN·s/m (Mylonakis et al. 2006) is introduced to account for the effect of both material and radiation damping of the backfill soil that is a typical dense sand of category C according to Eurocode 8 (CEN 2004). The springs and dashpots form a Kelvin-Voigt system activated when the joint gap closes, and the superstructure contacts the backwall.

425Table 1. Information on the bridges with rocking piers of different degree of asymmetry, including the deck mass426 (m_{deck}) , the pier masses $(m_{pier,1} \text{ and } m_{pier,2})$, and the total mass (m_{tot}) as well as the stabilizing factors of the427superstructure mass effect (γ) and the longitudinal influence of the abutment-backfill system (q).

Degree of Asymmetry	$m_{deck} \cdot 10^4$ [kg]	<i>m_{pier,1}</i> ·10 ⁴ [kg]	$m_{pier,2} \cdot 10^4$ [kg]	$m_{tot} \cdot 10^4$ [kg]	γ [-]	q ·10⁻³ [m/kN]
Symmetric $(\bar{h} = 1)$	204	44	44	292	2.3	0.761
Moderately asymmetric $(\bar{h} = 1.25)$	204	44	35	283	2.6	0.771
Highly asymmetric $(\bar{h} = 2)$	204	44	22	270	3.1	0.786

428 A CoR value of e = 0.6 is used to describe pounding between the deck and the abutment backwalls, which is in 429 line with the values of this coefficient reported by Jankowski (2007). The minimum gap sizes at each end of the 430 superstructure are equal to 60 mm for all bridge configurations based on shrinkage, creep, temperature and prestressing 431 requirements. However, due to the relatively large longitudinal influence of the abutment-backfill system (q) reported 432 in Table 1, the abutment-backfill system is expected to suppress considerably the longitudinal displacement of the deck during rocking, which would not permit to properly evaluate the seismic response of bridges with rocking piers 433 434 which are characterized by large displacements. For this reason, a relatively large gap size $u_{i0} = 120$ mm was selected 435 for the end joints, to reduce the longitudinal effective stiffness in the closed gap stage of the systems.

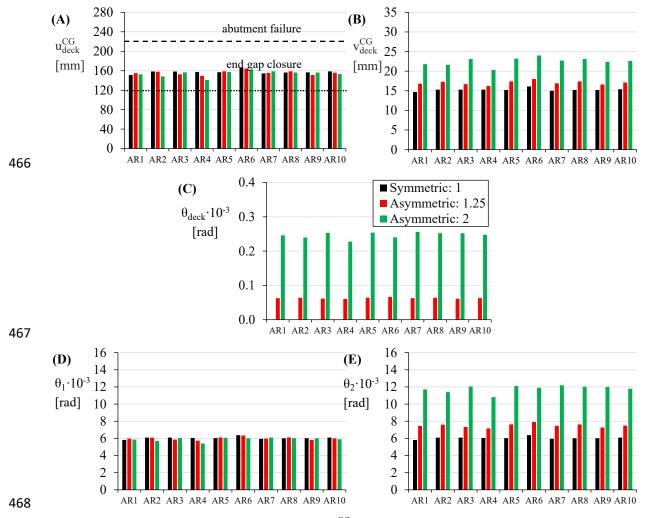
436 Failure Criteria

The overturning failure mode occurs when a rocking pier exceeds its overturning capacity that is described by $|u_{pier,1}^{CG}| \ge B$ and $|u_{pier,2}^{CG}| \ge B$ for the tall and short rocking pier, respectively (Fig. 1). Moreover, failure of the abutmentbackfill system is considered when $|u_{deck}^{CG}| \ge u_{jo} + u_{ab}$ (ultimate displacement of the abutment-backfill system exceeded). Therefore, the predominant failure mode of the asymmetric bridges is failure of the abutment-backfill system if $B > u_{jo} + u_{ab}$, while overturning of the piers occurs if $B < u_{jo} + u_{ab}$. Both failure modes would occur simultaneously if $B = u_{jo} + u_{ab}$. In the structures analyzed here, the abutment-backfill failure always precedes pier overturning because B = 1.3 m, much larger than $u_{jo} + u_{ab} = 0.22$ m, as is the case in most bridges.

444 Rocking Response under Ground Motions

A total of ten Artificial Records (ARs) are utilized for the analyses. The ARs were generated with a view to matching the shape of the reference Eurocode 8 target spectrum (CEN 2004) but for a PGA higher than the design one. This is because the suppression of the rocking motion (q) by the abutment-backfill system makes it necessary to increase the seismic displacement demand to detect potential differences in the response of the examined configurations. To this end, the ARs were generated to match the Type 1 Eurocode 8 spectrum for site conditions C (CEN 2004) scaled to a PGA equal to 0.6 g.

451 Figs. 9A, B, C illustrate the peak displacements of the superstructure in the three bridges. Fig. 9A also depicts 452 the longitudinal displacement of the deck for which contact with the abutments starts ($u_{io} = 120$ mm, dotted line), and 453 the ultimate longitudinal deck displacement for which the abutment-backfill system fails (220 mm, dashed line). It is 454 observed that while the joint gaps are closed during rocking, none of the bridges fails under the strong ground motions 455 (almost double the design one) applied. The results also indicate that the peak longitudinal displacement of the deck (u_{deck}^{CG}) is not strongly influenced by the asymmetry in the height of the piers, although the most asymmetric bridge 456 457 $(\bar{h} = 2)$ has the lowest demand of longitudinal displacements for six out of ten records. This may be attributed to the 458 effect of the larger stabilizing factors of the deck effect (γ) and the effect of the abutment-backfill system on the 459 longitudinal rocking motion (q) shown in Table 1, as \bar{h} increases. This result expands the finding of the study of 460 Dimitrakopoulos and Giouvanidis (2015) that the degree of pier asymmetry does not affect the rocking response, by 461 establishing that this applies regardless of the effects of the end supports. From the seismic performance point of 462 view, it is observed that the symmetric bridge reaches the largest value of its capacity against the governing failure 463 mode (i.e., failure of the abutment-backfill system), which is around 46% for AR6, while in the moderately and highly 464 asymmetric systems the corresponding values are 44.5% and 42%, respectively, i.e. very similar to those for the 465 symmetric bridge.



469 Fig. 9. Peak responses of the: (A) longitudinal (u_{deck}^{CG}) and (B) vertical displacements of the superstructure (v_{deck}^{CG}) ; 470 (C) superstructure rotation (θ_{deck}) ; (D) relative rotation of the left rocking pier (θ_1) and (E) relative rotation 471 of the right rocking pier (θ_2) for the bridges with rocking piers of different degrees of asymmetry.

Fig. 9B shows that the more unsymmetrical the configuration, the larger is the maximum uplift of the deck, with 472 473 values of v_{deck}^{CG} in the moderately and highly asymmetric systems that are up to 14% and 52% larger than those of the 474 symmetric structure, respectively. This can be explained by the rotation of the superstructure (θ_{deck}) shown in Fig. 9C, 475 which is zero in the symmetric structure because the top of the two piers have exactly the same synchronous 476 longitudinal movements, and it increases significantly with the level of asymmetry; the peak deck rotations are 0.07 477 and 0.26 rad for the moderately and highly asymmetric bridges subject to the AR6 and AR7 accelerograms, 478 respectively. The unequal rotation of the piers (θ_1 and θ_2) shown in Figs. 9D, E increases significantly the vertical movement (v_{deck}^{CG}) of the deck in asymmetric rocking bridges (Fig. 9B); introducing pier asymmetry $\bar{h} = 1.25$ and 2 479 480 results in increments of v_{deck}^{CG} of 17% and 50% compared to the demand in the symmetric bridge, respectively, which 481 needs to be considered in the design of the abutment supports (e.g., by allowing uplift through appropriate bearings). 482 This effect is mostly due to the larger rotation of the short pier (θ_2), with the rotation of the tall pier (θ_1) being almost 483 unaltered.

484 To further explore the effect of asymmetry on the rocking behaviour, Fig. 10 shows the response histories of the 485 superstructure and the piers for the three different bridge configurations subjected to the ground motion AR7. It is noted that the start of the rocking motion in the highly asymmetric bridge ($\bar{h} = 2$) is delayed with respect to that in 486 other structures, which can be explained from the discussion about the effect of \bar{h} on $\ddot{u}_{g,\min}$ in Fig. 3. For this record, 487 the symmetric bridge starts rocking at $t \approx 5.5$ s ($\ddot{u}_{g,min} = 0.10$ g), the moderately asymmetric structure at 6 s ($\ddot{u}_{g,min} =$ 488 489 0.13g), and the highly asymmetric bridge at $t \approx 7$ s ($\ddot{u}_{g,min} = 0.15g$), when the other two bridges develop longitudinal 490 movements that are able to close the end joint gaps and engage the abutment backwalls in the response (see dotted 491 line in Fig. 10A). After rocking evolves, as can be seen in Fig. 10A, the superstructure moves longitudinally in a 492 similar way for all bridge configurations for the remainder of the ground motion, showing similar amplitudes and the 493 same number of rocking cycles. Therefore, the longitudinal behaviour of the superstructure is hardly affected by the 494 bridge asymmetry.

495 Figs. 10B and C further confirm that the irregular structures present substantially larger vertical deck displacements (v_{deck}^{CG}) and deck rotations (θ_{deck}) than the symmetric bridge. As expected, this is more significant in the 496 497 highly asymmetric configuration due to the differential rotations of its two piers. Figs. 10D, E show the histories of 498 the rocking rotations of the two piers θ_1 and θ_2 , respectively, and it is seen that the tall rocking pier (whose height 499 remains constant) has almost the same response at each rocking cycle regardless of the height of the short pier. 500 However, reducing the height of a pier increases significantly its rotation at each rocking cycle, reaching rotational 501 demand that is up to 140% larger than that in the piers of the symmetric bridge at $t \approx 12$ s. Nevertheless, the rocking 502 movement attenuates faster in asymmetric structures thanks to the higher energy dissipation introduced by the impacts 503 at the rocking interfaces, which is particularly clear after $t \approx 24$ s. This is explained by the lower values of the CoR η 504 (which are equal to 0.986, 0.982 and 0.96 in the symmetric, moderately, and highly asymmetric bridges in Fig. 7, 505 respectively), and by the slightly higher influence of the abutment-backfill system in the longitudinal movement (q, q)506 see Table 1). Finally, it is observed that the irregularity in pier height reduces the number of impacts during the 507 earthquake, which can improve the structural integrity of the rocking interfaces in the bridge (e.g., Mathey et al. 2016).

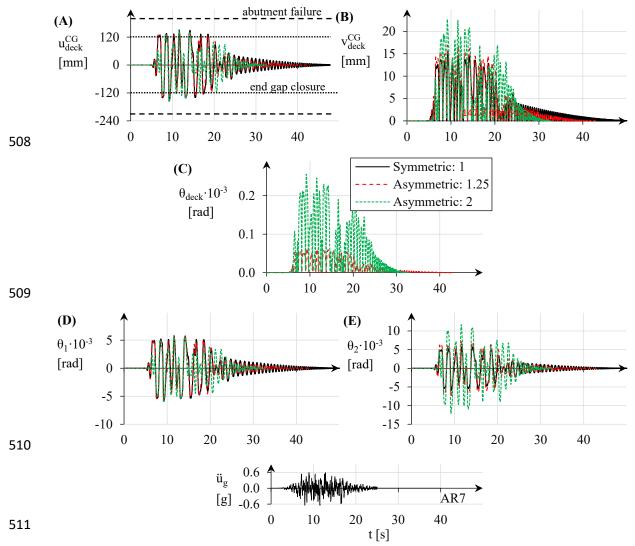


Fig. 10. Histories of the: (A) longitudinal (u_{deck}^{CG}) and (B) vertical displacements of the superstructure (v_{deck}^{CG}) ; (C) superstructure rotation (θ_{deck}) ; (D) relative rotation of the left rocking pier (θ_1) and (E) relative rotation of the right rocking pier (θ_2) for the bridges with rocking piers of different degrees of asymmetry. Results obtained when subject to AR7.

516 CONCLUSIONS

A new analytical model was developed to capture the rocking response of bridges with unequal pier heights, including in the formulation the end joint gaps and the abutment-backfill system. The expressions to describe initiation of rocking motion, movement during rocking, and impact at the rocking interfaces were derived based on the assumptions of (*i*) rigid body dynamics and (*ii*) avoidance of pier end sliding throughout the rocking movement; it is noted that both assumptions have been found to be fairly accurate for the rocking movement described herein. A key novelty of the analytical model is the treatment of the energy dissipation due to pounding of the superstructure on the abutment backwall through a CoR value based on the conservation of momentum. 524 The first part of the analysis showed that the deck supports at the abutments of asymmetric structures do not 525 affect the magnitude of the ground acceleration that initiates rocking, so long as the abutments do not restrain the 526 longitudinal movement of the superstructure (open end joint). A general form of the EoM for asymmetric rocking 527 bridges was developed, which includes a term that is not present in corresponding rocking frames without end supports 528 and expresses the stiffness and damping of the backfill when the longitudinal end joint gap is closed. A parameter q529 was introduced that includes the masses of the bridge components and represents the level of longitudinal resistance 530 of the abutment-backfill. Moreover, a new expression for describing the impact at the rocking interfaces was derived, 531 accounting for the vertical impulses developed at the abutment seats, and for different span lengths. Application of 532 these expressions showed that the vertical supports at the abutment seats increase the value of the CoR at the rocking 533 interfaces (η) , leading to lower energy dissipation by the bridge compared to the corresponding frame without end 534 supports. This is more significant for higher degree of asymmetry in the pier heights. Arguably, the most critical 535 finding in a design context is that for both symmetric and unsymmetric bridge configurations the critical failure mode 536 is not overturning of the piers (that was the focus of the bulk of previous analytical studies of rocking bridges) but 537 rather the failure of the abutment-backfill system due to large longitudinal displacements of the deck.

538 The seismic response of rocking bridges with different levels of asymmetry in the pier height was studied using 539 the developed analytical model. The results reveal that bridges with rocking piers resisted a high seismic excitation (PGA = 0.60 g, almost double that of the design seismic action) with a significant reserve capacity against the 540 541 prevailing failure mode (i.e., failure of the abutment-backfill system); this reserve capacity is slightly higher in the 542 more asymmetric structures. Importantly, so long as the critical assumptions made are valid (in particular that sliding 543 does not occur during rocking) overturning of rocking pier is not an issue. It was also observed that reducing the height 544 of one of the piers, hence reaching a more asymmetric configuration, increases significantly its rotation demand during 545 the rocking motion and also the rotation and the uplift of the deck; importantly, however, it does not increase the 546 longitudinal displacement demand of the bridge. Furthermore, the response-histories of the bridges showed that 547 structures with higher level of asymmetry experience less impacts during the rocking motion due to the delay in the 548 initiation of the rocking motion, and the slightly higher attenuation of this motion. The latter is explained because 549 asymmetric bridges have a slightly lower CoR at the rocking interfaces (η) and higher levels of participation of the 550 abutment/backfill (q). Finally, it should be noted that the uplift of the deck at the abutments of bridges with rocking 551 piers with unequal height should by duly accommodated in design; one option is to use end bearing that allow this

- uplift, e.g. with concave surfaces (as in friction pendulum bearings). If this uplift is prevented (by a proper design of
- the anchorage of the bearings) the rocking response will be different from that described herein.

554 **REFERENCES**

- Acikgoz, S., and DeJong, M.J. (2014). "The rocking response of large flexible structures to earthquakes." *Bulletin of Earthquake Engineering*, 12, 875-908.
- Agalianos, A., Psychari, A., Vassiliou, M.F., Stojadinovic, B., and Anastasopoulos, I. (2017). "Comparative assessment of two rocking isolation techniques for a motorway overpass bridge." *Frontiers in Built Environment*, 3(47), 1-19.
- Bachmann, J.A., Strand, M., Vassiliou, M.F., Broccardo, M., and Stojadinovic, B. (2018). "Is rocking motion predictable?." *Earthquake Engineering and Structural Dynamics*, 47, 535-552.
- 562 Ceh, N., Jelenic, G., and Bicanic, N. (2018). "Analysis of restitution in rocking of single rigid blocks." Acta
 563 Mechanica, 229, 4623-4642.
- 564 CEN (2004). "Eurocode 8: Design of structures for earthquake resistance Part 1: General rules, seismic actions and
 565 rules for buildings (EN1998-1)." *Comité Européen de Normalisation*, Brussels, Belgium.
- 566 Chatzis, M.N., and Smyth, A.W. (2012a). "Modeling of the 3D rocking problem." *International Journal of Non-linear* 567 *Mechanics*, 47, 85–98.
- 568 Chatzis, M.N., and Smyth, A.W. (2012b). "Robust modeling of the rocking problem." *Journal of Engineering Mechanics*, 138(3), 247-262.
- 570 Cheng, C-T. (2007). "Energy dissipation in rocking bridge piers under free vibration tests." *Earthquake Engineering* 571 *and Structural Dynamics*, 36, 503-518.
- 572 DeJong, M.J., and Dimitrakopoulos, E.G. (2014). "Dynamically equivalent rocking structures." *Earthquake* 573 *Engineering and Structural Dynamics*, 43, 1543-1563.
- 574 Di Egidio, A., and Contento, A. (2009). "Base isolation of slide-rocking non-symmetric rigid blocks under impulsive
 575 and seismic excitations." *Engineering Structures*, 31, 2723-2734.
- Dimitrakopoulos, E.G., and DeJong, M.J. (2012). "Overturning of retrofitted rocking structures under pulse-type
 excitations." *Journal of Engineering Mechanics*, 138, 2294-2318.
- 578 Dimitrakopoulos, E.G., and Giouvanidis, A.I. (2015). "Seismic response analysis of the planar rocking frame."
 579 *Journal of Engineering Mechanics*, 141(7), 04015003.
- 580 Drosos, V.A., and Anastasopoulos, I. (2014). "Shaking table testing of multi-drum columns and portals." *Earthquake* 581 *Engineering and Structural Dynamics*, 43, 1703-1723.
- ElGawady, M.A., Ma, Q., Butterworth, J.W., and Ingham, J. (2011). "Effects of interface material on the performance of free rocking blocks." *Earthquake Engineering and Structural Dynamics*, 40, 375-392.
- Housner, G.W. (1963). "The behavior of inverted pendulum structures during earthquakes." *Bulletin of the Seismological Society of America*, 53(2), 403-417.
- Jankowski, R. (2007). "Theoretical and experimental assessment of parameters for the non-linear viscoelastic model
 of structural pounding." *Journal of Theoretical and Applied Mechanics*, 45(4), 931-942.
- Jeong, M.J., Suzuki, K., and Yim C-S. (2003). "Chaotic rocking behaviour of freestanding objects with sliding motion." *Journal of Sound and Vibration*, 262, 1091–1112.
- Kalliontzis, D., Sritharan, S., and Schultz, A. (2016). "Improved coefficient of restitution estimation for free rocking
 members." *Journal of Structural Engineering*, 142(12).
- Kappos, A.J., Potikas, P., and Sextos, A.G. (2007). "Seismic assessment of an overpass bridge accounting for non linear material and soil response and varying boundary conditions." *Conference: ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering*, Rethymno, Greece.
- Makris, N., and Kampas, G. (2016). "Size versus slenderness: Two competing parameters in the seismic stability of
 free-standing rocking columns." *Bulletin of the Seismological Society of America*, 106(1).

- 597 Makris, N., and Roussos, Y. (2000). "Rocking response of rigid blocks under near-source ground motions."
 598 *Geotechnique*, 50(3), 243-262.
- Makris, N., and Vassiliou, M.F. (2013). "Planar rocking response and stability analysis of an array of free-standing
 columns capped with a freely supported rigid beam." *Earthquake Engineering and Structural Dynamics*, 42, 431 449.
- Makris, N., and Vassiliou, M.F. (2014). "Are some top-heavy structures more stable?." *Journal of Structural Engineering*, 140(5), 06014001.
- Makris, N., and Zhang, J. (2001). "Rocking response of anchored blocks under pulse-type motions." *Journal of Engineering Mechanics*, 127(5), 484-493.
- Mathey, C., Feau, C., Politopoulos, I., Clair, D., Baillet, L., and Fogli, M. (2016). "Behavior of rigid blocks with
 geometrical defects under seismic motion: An experimental and numerical study." *Earthquake Engineering and Structural Dynamics*, 45, 2455-2474.
- 609 MATLAB (2016). "Version 9.1.0.441655 (R2016)." *Natick*, Massachusetts: The MathWorks Incorporation.
- Muthukumar, S., and DesRoches, R. (2006). "A Hertz contact model with non-linear damping for pounding simulation." *Earthquake Engineering and Structural Dynamics*, 35, 811-828.
- Mylonakis, G., Nikolaou, S., and Gazetas, G. (2006). "Footings under seismic loading: Analysis and design issues
 with emphasis on bridge foundations." *Soil Dynamics and Earthquake Engineering*, 26, 824-853.
- Psycharis, I., Papastamatiou, D., and Alexandris, A. (2000). "Parametric investigation of the stability of classical columns under harmonic and earthquake excitations." *Earthquake Engineering and Structural Dynamics*, 1093-1110.
- Roh, H.S., and Reinhorn, A.M. (2010). "Nonlinear static analysis of structures with rocking columns." *Journal of Structural Engineering*, 135(5), 532-542.
- Shi, Z., and Dimitrakopoulos, E.G. (2017). "Comparative evaluation of two simulation approaches of deck-abutment
 pounding in bridges." *Engineering Structures*, 148, 541-551.
- Taniguchi, T. (2002). "Non-linear response analyses of rectangular rigid bodies subjected to horizontal and vertical ground motion." *Earthquake Engineering and Structural Dynamics*, 31, 1481-1500.
- Thiers-Moggia, R., and Málaga-Chuquitaype, C. (2018). "Seismic protection of rocking structures with inerters."
 Earthquake Engineering and Structural Dynamics, 48, 528-547.
- Thomaidis, I.M. (2020). "Analytical and numerical investigation of the seismic behaviour of bridges with rocking
 piers." *Thesis (PhD)*, City, University of London, London, UK.
- Thomaidis, I.M., Camara, A., and Kappos, A.J. (2018). "Simulating the rocking response of rigid bodies using general purpose finite element software." *Conference: 16th European Conference on Earthquake Engineering*,
 Thessaloniki, Greece.
- Thomaidis, I.M., Kappos, A.J., and Camara, A. (2020a). "Dynamics and seismic performance of rocking bridges
 accounting for the abutment-backfill contribution." *Earthquake Engineering and Structural Dynamics*, 49(12), 1161-1179.
- Thomaidis, I.M., Kappos, A.J., and Camara, A. (2020b). "Rocking vs Conventional seismic isolation: Comparative
 assessment of asymmetric bridges in a design context." *Conference: 17th World Conference on Earthquake Engineering*, Sendai, Japan.
- Vassiliou, M.F. (2017). "Seismic response of a wobbling 3D frame." *Earthquake Engineering and Structural Dynamics*, 1-17.
- Vassiliou, M.F., and Makris, N. (2012). "Analysis of the rocking response of rigid blocks standing free on a seismically
 isolated base." *Earthquake Engineering and Structural Dynamics*, 21, 177-196
- Vassiliou, M.F., and Makris, N. (2015). "Dynamics of the vertically restrained rocking column." *Journal of Engineering Mechanics*, 2015, 141(12), 04015049.