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A quantum probability perspective on 

borderline vagueness 

Reinhard Blutner, Emmanuel M. Pothos, and Peter Bruza 

 

  

Abstract 

 

The term ‘vagueness’ describes a property of natural concepts, which normally have fuzzy 

boundaries, admit borderline cases and  are susceptible to Zeno’s sorites paradox.  We will 

discuss the psychology of vagueness, especially experiments investigating the judgment of 

borderline cases and contradictions. In the theoretical part, we will propose a probabilistic 

model that describes the quantitative characteristics of the experimental finding and extends 

Alxatib’s and Pelletier’s (2011) theoretical analysis. The model is based on a Hopfield 

network for predicting truth values. Powerful as this classical perspective is, we show that it 

falls short of providing an adequate coverage of the relevant empirical results. In the final 

part, we will argue that a substantial modification of the analysis put forward by Alxatib and 

Pelletier and its probabilistic pendant is needed. The proposed modification replaces the 

standard notion of probabilities by  quantum probabilities. The crucial phenomenon of 

borderline contradictions can be explained then as a quantum interference phenomenon. 
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1 Introduction 

The term ‘vagueness’ describes a property of natural concepts, which normally have fuzzy 

boundaries, admit borderline cases and are susceptible to Zeno’s sorites paradox (as long as 

there is a semi-continuous relevant dimension). For example, consider the concept of a ‘tall 

man’ as applied under usual circumstances. An important characteristic of such concepts is 

that they apparently lack precise, well-defined extensions. Questions such as ‘what is the 

smallest size of man called “tall”?’ do not make precise sense, since the boundary between 

‘tall’ and ‘not tall’ is not clearly defined. Also, predicates like ‘tall man’ admit borderline 

cases. These are instances where it is unclear whether the predicate applies. The lack of 

clarity about whether the chosen instance is tall or not cannot be eliminated by further 

information about the person’s exact height; rather, the underlying issue seems to be 

associated with the lack of a precise definition for the predicate. Such situations are related to 

Zeno’s sorites paradox, which aptly illustrates the problem with vagueness. It derives its name 

from the Greek soros, which means heap. Obviously, we could formulate a rule stating that if 

X is a heap of sand, then removing one grain will still result in a heap. However, when we 

repeat the action of removing grains often enough, one by one, eventually the repeated 

application of the formulated rule gives the paradoxical result that the last grain left must still 

count as a heap.    

 The phenomenon of vagueness has attracted intense interest from philosophers, logicians. 

Only recently has it become a principal research topic for experimental psychologists. There 

are three main streams in this experimental work on vagueness: (1) Research pioneered by 

Hampton and others concerning the structure of vague concepts (Hampton, 1988a, 1988b, 

2007; Wallsten et al., 1986; Budescu & Wallsten, 1995); (2) The investigation of Osherson 

and others regarding compositional theories of conceptual combination (Osherson & Smith, 

1981; Osherson & Smith, 1997); (3) the investigation of borderline cases pioneered by Bonini 
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et al. (1999) and Alxatib and Pelletier (2011). Hereby, borderline cases are exemplified by 

sentences where participants are normally unsure whether the sentence is true or false.  

 The present paper is devoted to the last research stream. Our main interest concerns the 

explanation of the acceptance of borderline contradictions, such as ‘X is tall and not tall’, 

where X refers to a borderline case. We will give an explanation of recent data found by 

Alxatib and Pelletier (2011) and some related findings by Sauerland (2010). Though we are 

particularly interested in explaining the data concerning borderline contradictions, we will 

argue that the present model is more general. 

 We are looking for a quantitative model of vagueness. Such an endeavor goes beyond 

purely logic-based approaches, as that by Alxatib and Pelletier (2011). The first model we 

propose employs classical probability theory, and is based on discrete hidden variables 

mimicking Alxatib and Pelletier’s (2011) assumption about the underlying logic and 

pragmatics of super- and sub-valuation. The second model introduces quantum interference 

effects. It is the superposition of ‘tall’ and ‘not tall’ that introduces additional interference 

terms, when we calculate the corresponding quantum probabilities. The details of the 

mathematical treatment are related to earlier work discussing probability judgment errors  

(Aerts, 2009; Blutner, 2009; Busemeyer, Pothos, Franco & Trueblood, 2011; Conte et al., 

2008; Khrennikov, 2006). 

 In the next section, we introduce psychologically relevant theories of vagueness and 

outline the findings of Bonini et al. (1999). Section 3 explains the basic data reported by 

Alxatib and Pelletier (2011) and their theoretical analysis. Based on this theoretical analysis, 

Section 4 presents a classical probabilistic model quantifying vagueness. We fit this model to 

the data presented in Alxatib and Pelletier (2011), but conclude that a fully satisfactory fit is 

elusive. Section 5 develops an alternative probabilistic model, based on interference effects, 

which can arise in quantum cognitive models. Section 6 concludes the paper with a discussion 

of our main findings and implications.  
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2 Psychological theories of vagueness 

We introduce four semantic theories of vagueness, which are taken as relevant for the 

construction of a psychological theory of vagueness (see also Bonini et al., 1999, Alxatib and 

Pelletier, 2011). 

2.1 Gap- and glut theories 

According to gap theory (Fine, 1975; Van Fraassen, 1966) a predicate such as ‘bald’ is vague 

because there is indeterminacy between these various ways of picking out a precise cut-off 

value separating bald from not bald. The set of these possibilities to make it precise are called 

‘precisifications’. In gap theory it is assumed that a sentence such as ‘Peter is bald’ is 

considered true, without qualifications, if the sentence is true independently of the precise cut-

off values, i.e., if the sentence is true for all precisifications. In this case, the term ‘super-true’ 

is used (and the method used in gap theory is called supervaluation). A sentence such as 

‘Peter is bald’ is considered ‘super-false’ if it is false for all precisifications. Sentences which 

are neither super-true nor super-false for a given system of precisifications are said to be 

vague. They fall into a truth-value gap. 

Glut theory (Hyde, 1997; Priest, 1989) is analogous to gap theory. Again, there is a set of 

precisifications, and sentences and predicates can be multiply precisified. However, instead of 

‘super-valuations’, so called ‘sub-valuations’ are considered for determining truth-values. A 

sentence is called ‘sub-true’ if there is a precisification that makes it true, and a sentence is 

called ‘sub-false’ if there is a precisification that makes it false. Interestingly, now the logical 

principle of ‘non-contradiction’ can be violated: there can be sentences which are both sub-

true and sub-false. Such sentences are said to fall into a truth-value glut.  

Gap and glut theories are logical theories. An assumption about psychological process is 

needed to connect logical theory with human behavior. Bonini et al. (1999: 379) proposed 
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that: “Speakers typically know what truth-value (if any) results from predicating vague 

adjectives like red, tall, and old of common objects. They tend to assent to such predications 

if they consider them true and to dissent from them if they consider them false.” In other 

words, it is assumed that speakers have access to a lexical base that contains the relevant 

classification of common objects. A simple example from Alxatib and Pelletier (2011) should 

illustrate this point and the idea behind gap- and glut theories.  

Assume we have five suspects of differing heights (Fig. 1). For some suspects X the 

sentence ‘X is tall’ is clearly accepted (e.g., for X = 3), for others it is clearly rejected (X=1 

and X =4), and for the remaining individuals (X=2 and X=5) we get the typical answer ‘can’t 

tell’. Note that we somewhat idealize the real situation, since we accept a clear separation 

between accepting ‘X is tall’, rejecting it and declaring it  unclear.  

 

Fig. 1: Suspects of differing heights (adapted from Alxatib & Pelletier, 2011). The scale 

values shown are heights in feet. 

 

Table 1 (left column) shows the lexical base for the adjective ‘tall’ for the fixed comparison 

class. It generates the classification F for instance #1 (see Fig. 1), null for instances #2 & #4, 

and T for instances #3 & #5.  
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Table 1: Example illustrating gaps in super-valuation theory and gluts in sub-valuation theory 

 

Two precisifications are considered in Table 1; one assigns the value T for instance #4 and the 

value F for instance #2; the other assigns the opposite values to the instances #2 and #4. As a 

consequence, we get the corresponding super- and sub-valuations, as shown in the last two 

columns of the table. 

On the gap hypothesis, speakers take super-true and -false and vague (null) as the relevant 

truth values. On the glut hypothesis, speakers take sub-true and -false as the relevant truth 

values. In the first case the principle of ‘non-contradiction’ is satisfied: there can be no 

sentences which are both super-true and super-false. Since we can have truth value gaps, the 

principle of ‘bivalence’ is violated. In the second case sentences can be both sub-true and sub-

false: gluts. In the second case, hence, the principle of ‘non-contradiction’ is violated, but the 

principle of bivalence is satisfied. Paraconsistent logic (Priest, 2002) can handle this case. 

It is obvious now how speakers can answer questions such as “who is the smallest person 

who can be called ‘tall’?” or “who is the biggest person where the property ‘tall’ is rejected?”. 

In the first case the answer is #5 for gap-theory and #4 for glut theory. In the second case it is 

#1 for gap-theory and #2 for glut-theory.  

In Bonini et al.’s (1999) experiment, two groups of subjects were asked to estimate (a) the 

smallest number x of years of age such that the sentence ‘a person is old’ is true (truth-

judgers), (b) the largest number x of years of age such that the sentence ‘a person is old’ is 

false (falsity-judgers). Other conditions involved other properties. In all cases, there was a 
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substantial positive difference between truth-judgers and falsity-judgers. Superficially, these 

data support the predictions of gap theories of vagueness (super-valuation) and they contradict 

glut theories (sub-valuations). Interestingly, Bonini et al. (1999) rejected this approach in 

favor of another account we will introduce in the following subsection: epistemic theories. 

The authors give the following main reason for rejecting gap-theories: these theories have 

problems describing higher order vagueness. 

2.3 Epistemic theories 

Epistemic theories of vagueness (‘vagueness as ignorance’) do not treat vagueness as an 

ontological problem, but rather attribute vagueness to lack of knowledge (Sorensen, 1991; 

Williamson, 1994). Epistemic theories assume the existence of an exact definition in each 

case, but one which is unknown to us. On this account, the indeterminacy connected with a 

vague expression stems from our inability to determine its exact definition.  

 Bonini et al. (1999) argue that their data are best explained by an epistemic theory. How, 

then can one explain the difference between truth judgers and falsity judgers? Why does this 

gap appear? Bonini et al. argue that gaps appear because speakers are more willing to commit 

errors of omission, than errors of commission. In other words, speakers have a tendency to 

prefer type II error over type I. Bonini et al (1999: 387) cite evidence that “people perceive 

errors of commission as graver than those of omission (Ritov & Baron, 1990; Spranca, Minsk, 

& Baron, 1991)”. 

 If the epistemic approach is correct, then there is no need for a lexical semantics that 

assigns borderline status to some objects. Rather, their ‘borderline status’ becomes an implicit 

consequence of the mechanism that directs errors of omission and commission. We have 

already noted that Bonini et al. (1999) do not present any empirical argument against gap 

theories. Rather they give two theoretical arguments for the departure from gap theory: the 
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existence of higher order vagueness and the alleged identity of metalinguistic and normal 

judgments. 

 Not all logicians find epistemic theories attractive, especially in relation to concrete 

examples. For instance, assume the vagueness of ‘bald’ has an epistemic origin. Therefore, a 

critical cut-off value of the number of hairs does exist, which separates the bald from the non-

bald, but it is unknown to us. Well before this view originated, Russell (1923) criticized this 

ignorance stance, pointing out that vagueness is determined by the end points only.  

2.4 Contextualism 

Contextualism (Åkerman & Greenough, 2009; Bosch, 1983; Kamp, 1981) sees vagueness as a 

result of a particular kind of context-sensitivity. Vagueness is context-dependence with 

respect to so-called v-standards (certain standards of application, which are distinguished 

from ordinary contextual elements, such as indexicals etc.). 

 

“The expression ‘here’ is vague, but its vagueness need have nothing to do with the fact that its reference can 

shift depending on the place of use. Equally, the application of the predicate ‘is tall’ can vary as a function of the 

operative comparison class and/or what is taken to be typically tall. But such shiftiness in the extension of ‘is 

tall’ need have nothing as such to do with vagueness. … we will use the term v-standards as a neutral 

placeholder for whatever contextual parameters are taken to be responsible for the shifts (Åkerman & 

Greenough, 2009, p.9)  

 

Taking up an idea of Hyde (1997), Odrowaz-Sypniewska (2010) suggested that 

contextualists should choose sub-valuation rather than super-valuation as their logic. This 

agrees with an earlier proposal of Bosch (1983), who sees every precisification as provided by 

a particular definition in a particular context. Looking at Table 1 makes it clear why we get a 

sub-valuation theory in this way. 

2.5 Fuzzy set theory 
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According to gap and glut theory, the concept of a vague sentence is itself a sharp concept. 

However, many authors argue that there is no sharp boundary between vague and sharp 

sentences. Similarly, the notion of a borderline case is itself vague. For that reason, 

proponents of fuzzy set theory argue that it is natural to allow for a continuum of intermediate 

truth-values, with a special logic, as proposed by Zadeh (1965). This idea fits nicely with 

treating vagueness as an ontological phenomenon, as is similarly done within gap- and glut-

theories (for an application, see Wallsten et al., 1986; Budescu & Wallsten, 1995). 

3 Alxatib and Pelletier (2011) 

Alxatib and Pelletier (2011) reported an experiment in which participants were presented with 

a picture of five suspects of differing heights in a police lineup (similar to Fig. 1). The 

suspects in the lineup were identified by the numbers #1 (5’4”), #2 (5’11”), #3 (6’6”), #4 

(5’7”), and #5 (6’2”) and they were shown in the picture not sorted by height, but with an 

ordering based on names. Participants also received a form with 20 questions and had to mark 

one of three check boxes corresponding to three possibilities (true, false, can’t tell). The 20 

questions consisted of four questions for each suspect, as demonstrated below for suspect #4. 

The ordering of the four questions for each suspect was randomized. 

 

(1) #4 is tall     True   False  Can’t tell  

#4 is not tall   True   False  Can’t tell  

#4 is tall and not tall  True   False  Can’t tell  

#4 is neither tall nor not tall True   False  Can’t tell  

 

The results, arranged by increasing height of the suspects, are shown in Fig. 2.  
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Fig. 2: Alxatib and Pelletier’s (2011) data.  —■— stands for accepting a proposition,  

---■--- for rejecting a negation, —— for accepting a negation,  and ------ for rejecting a 

proposition 

 

One can see that there is a consistent preference for denying a proposition () over accepting 

its negation (). Further, there is a substantial preference for rejecting a negation (■) over 

accepting a proposition (■).  

 Another important finding is that there are cases (about 30%) where ‘X is tall’ and ‘X is 

not tall’ are both considered false but ‘X is tall and not tall’ is considered true (Fig. 3). The 

same applies for ‘X is neither tall nor not tall’. In addition, Fig. 3 illustrates that accepting ‘X 

is neither tall nor not tall’ is preferred over accepting ‘X is tall and not tall’. This seems to be 

plausible. However, it is difficult to find a theoretical argument for it. In fact, Alxatib and 

Pelletier (2011) could not explain the difference. 
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Fig. 3: Alxatib and Pelletier’s (2011) data. —■— stands for accepting ‘and’, ---■--- for 

rejecting ‘and’, —— for accepting ‘neither’, and ------  for rejecting ‘neither’  

 

Moreover, there is no clear preference for either rejecting ‘neither’ or rejecting ‘and’, at least 

not for borderline cases.  

In order to suggest an explanation for their data, Alxatib and Pelletier (2011) proposed the 

following assumptions: 

 

1. Each sentence is ambiguous between a super-, and a sub-interpretation. 

2. A Gricean mechanism applies in order to select the appropriate interpretation in the given 

context. 

3. The Gricean solution conforms to the ‘strongest meaning hypothesis’ of Dalrymple et al. 

(1998). As presently relevant, the logically strongest hypothesis is selected.  

4. a. For ‘X is tall’ and ‘X is not tall’ the result will be a super-interpretation: ‘X is tall’ is 

true if and only if ‘X is tall’ is super-true;  ‘X is not tall’ is true if and only if ‘X is tall’ is 

super-false. Note that the resulting super-interpretation eliminates vagueness completely 

from the truth-conditions. If a sentence is not true, it is assumed to be false (bivalence).  

5.4 5.6 5.8 6.0 6.2 6.4
Hight foot
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b. For ‘X is tall and not tall’ the super-interpretation is semantically empty. This conflicts 

with the maxim of quality. Therefore, the super-interpretation cannot apply, but the sub-

interpretation does and conforms to the borderline cases, where X is neither tall nor not 

tall.  

 

Table 2 summarizes the consequences of these assumptions and illustrates it for a simple 

example. The first row shows the result of the Gricean mechanism in case of ‘X is tall’. The 

underdetermined value ‘null’ assigned by the lexical base (top level) is now replaced by the 

value F. The remaining three rows show the corresponding results of the Gricean mechanism 

for ‘not tall’, ‘tall and not tall’, and ‘neither tall nor not tall’.  

 

 

 

 

 

Table 2: Truth-conditional pragmatics for different expressions 

 

Hence, Alxatib and Pelletier’s (2011) theory implies that sentences such as ‘X is tall’ are 

either accepted or rejected. Their Gricean mechanism has eliminated the gap. The relatively 

low percentage of cases where subjects say ‘can’t tell’  about 10% in their experiment  is 

ignored in the theory.  

 Consider now the case of negation as in ‘X is not tall’. Table 2 shows that the Gricean 

mechanism leads to truth conditions that conform to the application of intuitionistic negation 

to the baseline ‘X is tall’. This  contrasts with two other possibilities of inner and outer 

negation (as defined in Table 3). For the last two expressions in Table 2, no standard analysis 

F null T  lexical base for ‘X is tall’ 

F 

T 

F 

F 

F 
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X is not tall 

X is tall and not tall 
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is available. Interestingly, both ‘tall and not tall’ and ‘neither tall nor not tall’ result in the 

same truth conditions, using this sketched mechanism of truth-conditional pragmatics.  

 

 

 

 

 

Table 3: Truth table for inner, outer, and intuitionistic negation  

 

Alxatib and Pelletier’s (2011) analysis has shortcomings, but it illustrates why there is a 

preference for denying a proposition over accepting its negation: A simple proposition can be 

denied both in the negative and the neutral region, whereas a negation can be accepted in the 

negative region only. Similarly, there is  an analogous explanation for the preference for 

rejecting a negation of a proposition over accepting the proposition. Further, the theory makes 

it clear why considering ‘X is tall’ and ‘X is not tall’ to be both false is associated with 

accepting ‘X is tall and not tall’ as true. As demonstrated in Table 2, this pattern is realized 

for borderline cases where the truth-conditional pragmatics of Alxatib and Pelletier’s (2011) 

theory results in rejections for simple and negated propositions, but predicts acceptance for 

conjunctions of both expressions. 

 However, there are shortcomings of Alxatib and Pelletier’s (2011) scheme. The analysis 

predicts that all instances where ‘X is tall and not tall’ is true are instances where ‘X is tall’ is 

false and ‘X is not tall’ is false. Empirically, this applies to only about 30% of the borderline 

cases (Alxatib & Pelletier, 2011: 315). Further, the analysis predicts that all instances where 

‘X is tall’  and ‘X is not tall’ are both false are instances where ‘X is tall and not tall’ is true. 

Empirically, this applies to only about half of the borderline cases (p. 316).  
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4 Quantifying vagueness: A classical probabilistic model 

Alxatib and Pelletier (2011) specified their theory in purely logical terms, and this led to 

implications, which are hard to reconcile with empirical observation (Section 3). We wonder 

whether these difficulties can be overcome by recasting their model in probabilistic terms. 

 The basic assumption is very simple. We assume that the lexical semantics, say for an 

adjective such as ‘tall’, does not produce a fixed, static characterization of the involved 

instances. Rather, the assignment of the three truth-values (T, null, F) is stochastic. Obviously, 

the distribution of the three truth values depends on the height x of X and the mean height a of 

individuals in the relevant population (comparison class). 

 Instead of working with one trinary random variable Truth, with the values T, null, and F 

we will work with two binary random variables, with values 0 and 1, called T and F. The 

correspondence between the two systems of random variables is: 

 

(2) Truth = T   iff T = 1 and F = 0  (   for short) 

Truth = F  iff T = 0 and F = 1  (   for short) 

Truth = null  iff T = 1 and F = 1  (   for short) 

 

In this way,  the distribution of the values for the random variables T and F give the values of 

the random variable Truth, assuming the combination T=0 and F=0 (    for short) is 

excluded. This can be interpreted as the exclusion of gaps. Equally, the correspondence 

between ‘null’ and    is consistent with the underlying glut-ness: A truth-value glut is 

realized for some proposition if it is true (T=1) and false (F=1) at the same time.  

 In order to assign probabilities for the Boolean combinations of the random variables T 

and F, depending on the height of an observed individual X and the mean height a of the 
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individuals in the comparison class, we consider a simple Hopfield network with two output 

nodes for the random variables  T and F. 

 

 

 

 

 

 

 

Fig. 4: Simple neural network with one input node (representing ‘X is tall’) and two output 

nodes (T and F).  

 

Fig. 4 shows a Hopfield network with three neurons (nodes). The input node stands for the 

activation of the target sentence, e.g. ‘X is tall’. The input node is connected with the two 

output nodes T and F with opposite weights, 1 and –1. We assume that the top node is 

activated as a function of the value xa, i.e.  the difference between the height of individual X 

and the mean height a of individuals in the relevant population. If x=a, then the T- and the F-

node get the same (zero) net input. The two output nodes are in inhibitory connection with 

each other. This means that for high values of k there is a strict tendency that they balance 

each other in opposite directions: if T gets activation 1 then F gets activation 0 and vice versa. 

For lower values of k this contrast effect can disappear. This means that it is possible to get 

the activations T=1 and F=1 expressing the proposition is true and false at the same time (i.e., 

a glut). Likewise, the output activation T=0 and F=0 is possible, expressing a ‘gap’. Later in 

this section, we will exclude this last possibility. 

T 

‘X is tall’ 

F 

1 –1 

–k 
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 Taking the standard formalism for Hopfield networks (Hopfield, 1982), we can calculate 

the energy function of the activation vectors s of our network,  ( )   ∑           .
 1

 

 The energy describes how stable a certain activation pattern s is, assuming the activation of 

the input nodes of s is clamped. The lower the energy the more stable is the pattern of 

activation. Unstable patterns normally decay into patterns of lower energy. A common way to 

describe the probability for the distributions of the states of a system is the Boltzmann 

distribution, which was discovered in the context of classical statistical mechanics. According 

to the Boltzmann distribution, the probability of a state is indirectly proportional to the 

exponential of the energy of the system:  ( )    ( )  . Two characteristics of the Boltzmann 

make it suitable here, first, the 0/1 endpoints, which can be associated with falsity/ truth, and, 

second, the parameter   (called ‘temperature’), which allows us to capture graded distinctions 

between concepts allowing for less and greater degrees of vagueness. Given the activation x–a 

of the top node, we can summarize the corresponding results as in Table 4.   

 

 

 

 

 

 

Table 4: Energies and probabilities for particular activation patterns in the Hopfield network 

of Fig. 4 

 

In order to get numerical predictions for the probabilities, we have to determine the 

normalization factor C. This factor arises from the requirement that the probabilities of the 

                                                 
1
 In Figure 4 we can see    as the top node and   ,    as the left and right bottom nodes. In this case, the 

(symmetric) connection weights are                        . 

Activation 

of node T 

Activation 

of node F 
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    (   )   
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available alternatives sum up to 1. For now, let us consider only the two activation patterns 

   (T=1, F=0) and     (T=0, F=1). This is the case of a binary logic without gluts. Using 

this case to guide normalization, we get the value      (   )    (   )  . We can now 

calculate the following probability for the activation pattern   , that is the probability for 
 

accepting the truth of the proposition ‘X is tall’:  

 

(3)   (  )   
 (   )  

 (   )     (   )  
  

 

     (   )  
   ( (   )

 
) 

 

The result is a logistic function (also called sigmoid function; Fig. 5).
 2

 

 

 

Fig. 5: Sigmoid-function  (   
 
) for a=6 and   = 0.2, 1.0, and 2.0 

 

 One crucial assumption in most of the theoretical analyses of vagueness discussed so far 

concerns the existence of either gaps or gluts. In the present Hopfield model, gaps can be seen 

as activation pairs (T=0, F=0) and gluts as activation pairs (T=1, F=1). It is easy to see that 

for k=0 gaps and gluts result in the same probabilities.
3
 Hence, from the present Hopfield 

model perspective, there seems not to be a substantial difference between glut and gap 

                                                 
2
 A very similar function is used in the Rasch-model. For a discussion of this model and applications to 

vagueness see Verheyen, Hampton, and Storms (2010) 

 
3
 This result is due to the choice of the numbers we have employed for true (1) and false (0); if we had taken true 

(0) and false (1) the converse result would appear. Interestingly, the choice true (+1) and false (1) makes gaps 

and gluts totally symmetric.   
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theories. However, for the purposes of the following discussion, we prefer to tell the story in 

terms of gluts, since gluts are better grounded philosophically (Odrowaz-Sypniewska, 2010). 

In the following section, we will find another argument in favor of glut-theories: They and 

only they allow for interference effects, when we look for a generalization of the present 

model in terms of quantum probabilities.  

 Let us consider now the case of a binary logic with gluts which can be described by three 

activation pattern:    (true);    (false);    (glut). The probability for the first activation 

pattern can be calculated as follows: 

 

(4)   (  )  
 

 
  (   )  , where    (   )     (   )         

 

This is the probability distribution for ‘X is tall’, noting that the normalization is now 

computed to take into account gluts as well. It is not difficult to see that for  
 

 
  , the 

contribution        corresponding to the activation (T=1, F=1) can be ignored, and the 

resulting distribution is the logistic distribution given by equation (3) (i.e., the probability that 

a person is tall, ignoring gluts). However, the term         cannot be ignored if the quotient 
 

 
 

is close to 1 or smaller than 1. In this case, the predictions of equation (4) will deviate from 

those based on the logistic distribution of equation (3).  

 What is the probability of rejecting the proposition ‘X is tall’? In their theoretical analysis 

based on Gricean pragmatics, Alxatib and Pelletier (2011) say that we can ignore the third 

answer possibility ‘can’t tell’, which accounts for less than 10% of responses. If we accept 

this idealization, then the probability for rejecting the proposition ‘X is tall’ is given by 

1 (  ).  

 The probability distribution for accepting ‘X is not tall’ (see Table 2) can be calculated as 

follows:  
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(5)   (  )   
 

 
   (   )   , where    (   )     (   )         

 

The probability for rejecting the proposition ‘X is not tall’ is described as 1 (  ).  

 Now we are ready to demonstrate how this neural network model can fit Alxatib and 

Pelletier’s (2011) experimental data, with the help of three parameters: a (the mean 

expectation for x), k (the strength of interdependence between T and F), and   (the 

temperature). We fit the three parameters (minimizing Pearson chisquare) by using the data 

shown in Fig. 2. The optimal values for the parameters are: a=5.86,  =0.24, k=0.29.  As can 

be seen from Fig. 6, the present model fits the shown data fairly well (chisquare(8) =5.34; p 

=.72). Note that for each of five suspects there are two independent questions (accept tall/ is 

not tall and reject tall/ is not tall), so that in total we have 4x2=8 degrees of freedom.  

 

 

Fig. 6: Fitting the Alxatib and Pelletier (2011) data. ■ stands for accepting a proposition,  

■ for rejecting a negation,  for accepting a negation,  and  for rejecting a proposition. 

 

Given the model fit relative to the frequencies concerning the statements with individual 

predicates, we can evaluate its ability to capture the data for ‘and’ and ‘neither’. As Table 2 
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illustrates, in both cases the probability of acceptance of the conjunctive expression with ‘and’ 

/ ‘neither’ is due to the ‘null’ column in the table. In our simple Hopfield network, this is 

described by the probability for (       ): 

 

(6)   (  )   
 

 
       , where    (   )     (   )         

 

The probability for rejecting the corresponding expressions is    (  ) (again, the ‘can’t 

tell’ answers are ignored). The distributions for P(TF) and 1–P(TF) were computed using the 

parameters identified before and are shown (together with the actual empirical data) in Fig. 7.  

 

 

 

Fig. 7: Fitting the Alxatib and Pelletier (2011) data. ■ stands for accepting ‘and’, ■ for 

rejecting ‘and’,  for accepting ‘neither’, and   for rejecting ‘neither’. The lower curve is 

the prediction for accepting ‘and’ / ‘neither’, the upper curve is the prediction for rejecting 

‘and’ / ‘neither’ 
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In this case, the calculated predictions are quite different from the empirical finding and the 

result is not satisfying. The observed and predicted frequencies turned out to be significantly 

different from each other (chisquare(8)=167, p<.0005).  

 An alternative fitting approach would be to identify the parameters which minimize 

predictive error for all the available empirical data concurrently (i.e., the data in both Figures 

3, 4). In this case, the optimization procedure led to parameter estimates of a=5.86,  =0.22, 

and k=0.01. The predicted frequencies still deviated significantly from the observed ones (chi-

square (16)=33.5, p<.005).  

 The above results indicate that any model based on classical probability theory would 

fail. Therefore, one could employ a model not based on probability theory at all. For example, 

in Fuzzy Trace Theory there is a distinction between verbatim and gist information. As the 

latter can be context/observer dependent, Fuzzy Trace Theory can predict several interesting 

violations of classical probability theory (Brainerd & Reyna, 2008). Such approaches are 

clearly valuable. Our interest presently is to explore whether Alxatib and Pelletier’s (2011) 

data can be captured by a formal probabilistic framework. This has the advantage that 

particular models in different domains all have to obey the same set of basic principles. This 

both makes individual models more principled and offers the promise of a unified, coherent 

account for a diverse range of phenomena. We will make use of quantum probabilities and the 

idea of interference effects, in order to assess whether the shortcoming of the classical model 

can be overcome.
 4

  

5 Quantifying vagueness: Quantum probabilities and inter-

ference 

                                                 
4
 Another motivation for abandoning the model based on Alxatib’s and Pelletier’s theoretical analysis is that it 

does not make any distinction between the ‘and’ / ‘neither’ cases.  This is a major problem, but one which goes 

beyond the present paper. The quantum approach shows some promise in terms of addressing this important 

problem, more so than the classical approach. 
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One of the main arguments for a quantum approach to cognitive phenomena is the existence 

of interference effects in higher cognitive processes such as perception, decision making, and 

reasoning (Aerts, 2009; Blutner, 2009; Bruza, Busemeyer, & Gabora, 2009; Busemeyer et al., 

2011; Conte et al., 2008; Franco, 2007; Khrennikov, 2006; Pothos & Busemeyer, 2009; 

Primas, 2007). In the first subsection, we will introduce some basic concepts of quantum 

cognition. The second subsection applies the idea of interference to the problem of vagueness 

and demonstrates that this idea leads to an improved analysis of borderline contradictions. In 

the third subsection, we discuss the issue of compositionality in connection with recent 

findings by Sauerland  (2010). 

5.1 The disjunction puzzle, quantum probabilities and interference 

The disjunction fallacy (Tversky & Shafir, 1992) occurs when decision makers prefer option 

A (versus  ) when knowing that event B occurs and also when knowing that event B does not 

occur, but they refuse A (or prefer  ) when not knowing whether or not B occurs. The 

disjunction fallacy is closely connected  to violations of the ‘sure-thing principle’, one of the 

basic claims made by a (classically) rational theory of decision making. In decision making, 

this principle is just a psychological version of the law of total probability. 

In everyday reasoning, however, human behaviour is not always consistent with the sure 

thing principle. For example, Tversky and Shafir (1992) reported that more students would 

purchase a non-refundable Hawaiian vacation if they were to know that they had passed or 

failed an important exam, compared to a situation where the exam outcome was unknown. 

Specifically, (A|B) = 0.54,  (A| ) = 0.57, and (A) = 0.32, whereby A stands for the event  

of purchasing a Hawaiian vacation, B for the event of passing the exam,   for the event of not 

passing the exam, and  for the averaged judgements of probability. Disjunction fallacies are 

fairly common in behaviour. 
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Assuming a classical (Bayesian) model of probabilities, the law of total probability 

requires that 

 

(7) P(A) = P(A|B)P(B) + P(A| )P( ). 

 

It is helpful to examine how the law of total probability arises. We require three assumptions. 

First, we assume that the underlying algebra of events is Boolean. That means essentially, that 

we have distributivity. In the present case, distributivity allows us to derive A=ABA . 

Second, we assume that probability is an additive measure function. In particular, we have 

P(A)=P(AB)+P(A ) for the two disjoint conjunctive events AB and A . Third, the standard 

definition of conditional probability allows us to write:  

 

(8) P(X|Y) = P(XY)/P(Y) 

 

The above three assumptions readily derive the law of total probability and explain the 

classical requirement that the predicted disjunction effect must always be zero.  

 Let us see now how the use of quantum probabilities changes the situation. Instead of 

using possible worlds as the underlying ontology for constructing propositions, quantum 

theory makes use of vectors in a Hilbert space ℋ (i.e., a vector space upon which an inner 

product is defined and which makes use of complex numbers). Further, one can define linear 

operators on ℋ. A special kind of linear operator is the so-called projection operator, which 

projects vectors to certain subspaces of ℋ. The algebraic structure underlying these projection 

operators is not a Boolean algebra, but an orthoalgebra. An orthoalgebra is similar to a 

Boolean algebra, but one key principle of Boolean algebra can be violated: the principle of 

distributivity. Recall, this principle was necessary for deriving equation (7).   
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 In the quantum approach, propositions are modeled by projection operators (or, 

equivalently, subspaces of ℋ). If A is a projection operator, then the functional composition 

of it with itself is A again: AA=A. In combining projection operators, order can matter. That 

is, it can be that AB≠BA for two projection operators A and B.  Interestingly, if all projection 

operators relative to a given Hilbert space commute (i.e., AB=BA), then we get a Boolean 

algebra of projectors. The important conclusion is that the algebra of projection operators 

contains the Boolean algebra as a special case (when projectors obey commutativity). 

 For what follows, it is essential to appreciate two main differences between the treatment 

of classical propositions and quantum proposition (projections). First, instead of union AB 

in the classical case, we consider the sum operation A+B in the quantum case (constructing 

the smallest subspace that contains the two subspaces corresponding to A and B.  The second 

difference refers to complementation. In the quantum case, a negated propositions refers to a 

subspace orthogonal to the original one. We will write  =IA for the orthogonal projection 

operator
5
 (I is the identity operator mapping any vector to itself). It is easy to see that   

    A=(IA)A=IAAA=AA=0. 

 Let us see now what happens with equation (7) in the quantum case. Even in the quantum 

case, a probability function is an additive measure function (now assuming that the two 

considered parts are orthogonal to each other). It turns out that the direct translation of 

equation (8) into Hilbert spaces does not work, since XY is not a Hermitian operator, if X and 

Y do not commute (this means that the operator is not associated with real values, an obvious 

requirement when considering behavioral models). A definition that does work is given by the 

following equation (Niestegge, 2008)
6
: 

 

                                                 
5
 Sometimes the symbol  A


  is used for indicating the orthocomplement. Since, from the context, it is always 

clear whether orthocomplementation is meant or the usual set-theoretic complement, we will use  the form   in 

both cases.  
6
 Niestegge follows the theory of Lüders (1951).  
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(9) P(X|Y) = P(YXY)/P(Y) 

 

The operator YXY is also called asymmetric conjunction. Note that P(YXY)=P(Y and then 

X), which is how Busemeyer et al. (2011) modeled conjunction in human decision making 

(see also Blutner, 2009; Bruza et al., 2011). In order to get the quantum version of equation 

(7), we can decompose the projector A in the following way:  

 

(10)   A=    (   ) (   )  BAB+ A +    +    

 

The four parts of this decomposition are orthogonal to each other. Using the definition of 

equation (9), we get  

 

(11)   P(A)=P(A|B) P(B)+P(A| )
 
P( )+(B,A), where (B,A)=P(   +   ) 

 

The term (B,A)  is called the interference term. It is zero if B and A commute, in which case 

equation (11) reduces to equation (7).  

 In the general case, by using equation (11), the disjunction effect can be related to the 

interference term P(   +   ): 

 

(12)  (A,B) = (B,A) = P(   +   ) 

 

The probability of a proposition A is the squared length of the projection of  into the 

subspace generated by the projector A: 

 

(13)   P(A) = A|A = |A 
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With the help of this so-called Born rule, we can calculate the following expression for the 

interference term, in the case of pure states:  

 

(14)  P(   +   ) =  √ (   ) ( )  √ ( | ) ( )  cos(). 
7
 

 

The phase shift relates to the impact of knowing B or   for assessing the likelihood of A. This 

angle is zero if the subspaces corresponding to the events A and then B (or A and then  ) are 

orthogonal. If they are not orthogonal, the subspaces are incompatible. This means that if a 

participant decides A, then he/she must necessarily be undecided regarding B. From a 

psychological perspective, the interference term is the correlation between two decision paths: 

(1) First considering you won’t pass the exam and then considering the trip to Hawaii and (2) 

first considering you will pass the exam and then considering the trip to Hawaii. A negative 

correlation corresponds to a negative interference term ((B,A)<0 in (11)), which will 

negatively impact on the law of total probability (i.e., reduce the probability for the trip, in the 

unknown case), and conversely for a positive correlation.  

5.2 Quantifying vagueness using quantum probabilities 

Now we are prepared to apply the quantum formalism and the key idea of interference to the 

case of vagueness. The first step is to reformulate the approach developed in Section 4 by 

using the formalism of projection operators. Let us assume that the state of tallness of a 

suspect X is described by a state vector X. We have to reconstruct the association between 

                                                 
7
 Proof of this equation:  P(BA  

 
+  AB) = | BA  

 
+  AB|  = |  AB| * + |  AB|  = 

 2 RE(| AB| ) = 2 RE(A | AB) = 2 || A  || || AB ||  cos() =  

  √ (   )   ( )   √ ( | ) ( )  cos(). Note that P(   ) = || AB||
2
 and P(   ) = ||    ||

2
. In 

other words, as noted in the text, P(   ) can be thought of as P(B and then A).  
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the three activation patterns (T=1, F=0), (T=0, F=1), and (T=1, F=1) and the three truth 

values, T, F, and null (=glut). We assume two commuting projection operators T and F and 

consider the three combinations        , and   . As mentioned in Section 4, we exclude 

gaps (   ). Hence, we require the assumption:  

 

(15)   +  +  =I  

 

Let us stipulate now the probabilities of the three combinations in the state X as follows: 

  

(16)   a.   (  )            
 

 
 (   )   

   b.   (  )            
 

 
 (   )   

   c.    (  )            
 

 
      

  

(17)      (   )    (   )         

 

It is obvious that equation (16a) exactly corresponds to equation (4) if the normalization 

constant C is set as in equation (17). Similarly, (16b) corresponds to (5) and (16c) to (6). As 

expected, we can reconstruct these classical probabilities by using the quantum formalism 

with commuting projections.  

 Let us look now for a quantum solution, assuming that the projection operators T and F 

no longer commute: TFFT. Since we assume a glut theory, the operators T and F are not 

orthogonal to each other, which implies that TF0. This gives the possibility of interference 
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between T and F. The crucial mathematical point is that equation (15) is no longer valid in the 

case of non-commuting operators. It has to be replaced by the following equations:
 8
 

 

(18) a.                      = I 

  b.                      = I 

 

The last two terms of the sums in (18a) and (b) are the interference terms (similar to the last 

two terms in (10)). They vanish if T and F commute and each sum reduces to  equation (15). 

 Introduce the following abbreviations for arbitrary projectors X and Y: 

 

(19)   a. X.Y  =def  ½ (XYX+YXY)  (symmetric conjunction) 

   b. (X, Y)  =    +     (interference term) 

 

Summing up (18a) and (18b), we get the following decomposition: 

 

(20)               (   )    (   ) = I 

 

Again, if T and F commute the interference terms vanish and we obtain the noted 

correspondence with equation (15). This fact and a comparison with the stipulations in 

equations (16)(a-c) justifies the following assumption:  

 

                                                 
8
 This can be proved by noting that        and then (   )(   )(   )   , and finally eliminating all 

expressions that contain ‘gap terms’ (such as   ). 
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(21)   a.   (   )             
 

 
 (   )   

   b.   (   )             
 

 
 (   )   

   c.    (   )             
 

 
      

 

However, because of the existence of the two interference terms in the sum (20), the 

normalization constant C is different from the earlier result in (17) and contains two 

additional terms,  (     )    cos(1) and  (     )    cos(2), as shown in (22). These 

additional terms express the probability relating to the interference terms, and have been 

computed using equation (14).  

 

(22)      (   )    (   )         +  (     )    cos(1) +  (     )    cos(2) 

 

The treatment is entirely analogous to that in Section 4, and so the probabilities for accepting 

the truth of the propositions ‘X is tall’, ‘X is not tall’, and  ‘X is tall and not tall’, are given by 

equations (21a), (21b), and (21c), respectively. The only difference compared to the classical 

case is that in the quantum case the normalization factor is given by Equation (22). It is this 

factor that contains the two interference terms. Further, the treatment of rejecting the 

corresponding propositions is again in exact correspondence to the classical case.
9
   

 As in Section 4, we fitted the relevant data of Fig. 2 and 3, now by using the quantum 

model. The optimal parameter values we identified were a=5.86,  =0.24, k=0, and 

cos()=0.35 (assuming 1=2=). We received a good confirmation of the quantum model: 

chisquare(16) =5.3; p>.99. Fig. 8 shows the result for the ‘and’ data. Further, we did not find 

                                                 
9
 For calculating the corresponding probabilities for rejections we have generally assumed a proportion of 15%  

for the ‘can’t tell’ answers, which is the mean value reported by Alxatib and Pelletier (2011) for the 

‘and’/’neither’ conditions. Thus, the probability for rejecting a proposition plus the probability for accepting it 

should sum up to .85 (instead of 1).  
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a significant difference when fitting the parameters for the data of Fig. 2 separately and 

applying the found values for describing the ‘and’ data of Fig. 3 (chisquare(8)=2.98, p>0.9).  

 

 

 

Fig. 8: Fitting the Alxatib and Pelletier (2011) data (both in Fig. 2 and 3).  ■ stands for 

accepting ‘and’, ■ stands for rejecting ‘and’. The curves show the corresponding predictions 

of the probabilistic model using interference.  

 

In Fig. 9 we show the sum of the probabilities for accepting ‘X is tall’, accepting ‘X is not 

tall’ and accepting ‘X is tall and not tall’. The classical model predicts that these three 

probabilities should sum to 1. Further, the classical model predicts that the probability for 

rejecting ‘X is tall’, plus the probability for rejecting ‘X is not tall’, minus the probability for 

accepting ‘and’ should give 1. Fig. 9 shows that empirically this is not the case 

(chisquare(4)=95.5; p<.005, testing against the null hypotheses that the proportions for all 

cases add up to 100%). 
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Fig. 9: Sums of probabilities. ▲ stands for the sum of the measured probabilities for 

accepting ‘X is tall’, accepting ‘X is not tall’ and accepting ‘X is tall and not tall’; ■ stands  

for the probability for rejecting ‘X is tall’ plus the probability for rejecting ‘X is not tall’ 

minus the probability for accepting ‘and’. The curves show the corresponding predictions of 

the quantum interference model, with the same parameters as those employed in Fig. 8.  

 

In contrast to the classical model (which has to predict a uniform 100% probability for all 

cases in Fig. 9), the quantum model produced a fairly satisfying prediction: chi-

square(4)=5.47; p=0.24.  

 Note that the present version of the quantum model does not explain the difference 

between ‘X is tall and not tall’ and ‘X is neither tall nor not tall’. Both reduce to the logical 

expression ‘X is tall and X is not tall’ vs. ‘X is not tall and X is tall’ (assuming the law of 

double negation).  

 Finally, note that the quantum model appears to have one more parameter, than the 

classical one. In practice this was not the case. When fitting the quantum model, it proved 

difficult to identify the optimal solution, without fixing either k or , as the two parameters 
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appeared to strongly interact.
10

  Thus, the quantum model fits were obtained after having set 

k=0 and so the quantum and the classical model both had the same number of parameters 

(note that equally good fits can be obtained if we fix  and optimize k instead). Interestingly, 

the choice of k=0 corresponds to the case where the three probabilities defined in equation 

(21) are equal for borderline cases (x=a). Hence, the decision k=0 corresponds to a kind of 

entropy maximization. 

5.3 Compositionality and quantum probabilities 

In Section 2.5, fuzzy logic was mentioned as a formalism that allows for a continuum of 

intermediate truth-values, between totally true (=1) and totally false (=0): 1X(A)0. The 

symbol A stands for a particular concept (such as ‘chair’) and X stands for a particular 

instance. A special logic was proposed for combining concepts A and B. For example, in the 

original literature (Zadeh 1965) the min-function was proposed for the conjunction of two 

concepts: X(A&B) = min(X(A), X(B). 

 A common characteristic of all the different approaches within fuzzy logic concerns 

compositionality. In the present case, we can express the requirement from compositionality 

by demanding the existence of a two-place function f such that X(A&B) = f[(X(A),X(B)]. 

This function takes the values X(A) and X(B) to form the value for X(A & B). 

 Recently, Sauerland (2010) has discussed the potential of fuzzy logic for modeling 

borderline contradictions. He suggested that several arguments against fuzzy logic – including 

the arguments put forward by Kamp (1975), Fine (1975), Kamp and Partee (1997) – are based 

on the claim that a sentence of the form ‘A and not A’ is always logically false, even if A does 

not have a definite truth value. It goes without saying that philosophers and logicians have not 

sought an empirical verification of this claim, but have taken this as self-evident. Sauerland 

                                                 
10

 This strong interactions do not mean that the parameters are not mathematically independent. Though we do 

not have a mathematical proof that the parameters are fully identifiable, simulations suggest that the parameters  

k and  are not functions of each other.  
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(2010) concluded that the results by Alxatib and Pelletier (2010) and others “show that the 

argument against fuzzy logic for linguistic semantics by Kamp (1975) and Fine (1975) is less 

clear-cut than it was previously made out to be” (p. 9). 

 However, this does not mean that we can adopt fuzzy logic for understanding vagueness 

and the interpretation of borderline characterizations. Sauerland (2010) gives an argument in 

support of this view based on violations of compositionality. Consider two properties A (say, 

‘being tall’) and B (say, ‘being rich’) and a particular instance X (say ‘a 5’ 10’’guy who has 

$100,000’). Let us assume that the instance X is a borderline case for both the property A and 

the property B. Let us further assume that X(A) X(B)50%. Assuming compositionality, we 

are led to predict that X(A&A)X(A&B), i.e., that the membership values for borderline 

contradictions and non-contradictory conjunctions should be approximately the same. This 

hypothesis was falsified empirically. Sauerland (2010) found on average 47.3% agreement to 

the contradictions X(A&A) and only 34.4% agreement to the non-contradictory 

conjunctions X(A&B), which is a substantial difference. This example makes it clear that 

fuzzy logic cannot provide a complete account of human judgments, concerning such 

conjunctions.   

 Violations of compositionality demand alternative models. Models based on quantum 

probabilities have the potential to solve the raised problems. They are clearly non-

compositional, and they are able to solve the conjunction/disjunction puzzle and other puzzles 

of human behavior (cf. Busemeyer & Bruza, 2012). One approach taken is to adapt general 

probabilistic methods developed in quantum physics to determine whether a system is 

compositional, or not (e.g., Aerts & Sozzo, 2011; Bruza et al., forthcoming). These analytic 

methods build on formal results that imply non-compositionality equates with not being able 

to model the system in a single probability space. If such results carry across to cognitive 

science, then non-compositional conjunctions cannot be modeled in a single probability space, 

a surprising result with potentially significant modeling consequences, as modeling usually 
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proceeds under that assumption that a single, appropriately defined probability space is 

sufficient. 

6 General discussion and conclusions  

In a recent paper, Aerts (2009) points out that “there is a well-established corpus of literature 

in theoretical physics describing methods to prove the presence of quantum structures by 

‘only looking at experimental data’...” (p. 315). There are some fields of research within 

cognitive science where the situation is similar to theoretical physics. First, there is a long and 

established empirical literature showing deviations from set theoretic rules in conceptual 

combination (Hampton, 1988a, 1988b; Storms, De Boeck, Van Mechelen, & Ruts, 1996). The 

relevant empirical results include violations of the conjunction and disjunction rules, the 

famous ‘guppy effect’, and cases of ‘dominance’, ‘over- and underextension’, which were all 

successfully described on the basis of quantum principles (Aerts, 2009; Aerts & Gabora, 

2005). Second, in one of the most impactful empirical traditions in psychology, Tversky, 

Kahneman and their colleagues demonstrated how naïve observers often produce judgments 

at odds with many of the key axioms of classical probability theory, such as the law of total 

probability or the requirement that a conjunction can never be more probable than individual 

constituents (Tversky & Shafir, 1992). Such and related results also have natural and intuitive 

explanations with quantum schemes (e.g., Busemeyer & Bruza, 2012; Busemeyer et al., 2011; 

Pothos & Busemeyer, 2009). Finally, recent analyses have revealed many non-classical 

effects in areas as diverse as memory (Bruza, Kitto, Nelson & McEvoy, 2009), perception of 

bistable figures (Atmanspacher, Filk & Römer, 2004), and concepts (Blutner, 2009, 2012; 

Busemeyer & Bruza, 2012).  

 The present paper considers the linguistic phenomenon of vagueness, especially in 

relation to borderline contradictions. In this domain, quantitative models are rare. Of course, 

there is fuzzy set theory and supervaluation theory, and some authors  (including Kamp & 
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Partee, 1997) have tried to model quantitative judgments of vagueness by elaborating on these 

models. However, such attempts have not been very successful. A real breakthrough, both 

empirically and theoretically, was made by Alxatib and Pelletier (2011), as we discussed in 

Section 3. Empirically, their paper reports data showing that the same participants, who 

consider the sentences ‘X is tall’ and ‘X is not tall’ as false, consider the apparently 

contradictory sentence ‘X is tall and not tall’ as acceptable. 

 Unfortunately, the analysis of Alxatib and Pelletier is not sufficient for a quantitative 

model of the data. This shortcoming was overcome in Section 4, where we proposed a 

probabilistic model for vagueness, based on Alxatib and Pelletier’s (2011) ideas. We have 

shown that this classical model can lead to a satisfying quantitative description for the data of 

the distributions for accepting and rejecting the clauses ‘X is tall’ and ‘X is not tall’. 

However, the classical model was not able to fit the additional data for borderline 

contradictions, such as ‘X is tall and not tall’. 

 A reformulation of the classical model in terms of commuting projection operators was 

given at the beginning of Section 5. This reformulation gives the term ‘classical model’ a 

formal expression: classical models are models based on commuting operators. Consequently, 

the notion of ‘classical’ we are using and the notion of ‘classical’, as used in theoretical 

physics, are one and the same. The proposal to look for quantum effects then is the proposal 

to look for models based on non-commuting operators. A consequence of such an approach is 

the possibility of interference effects analogous to those arising in quantum models in physics. 

In the present case of vagueness, these interference terms introduce the right corrections to the 

probability estimates for different statements, which are necessary to account for borderline 

contradictions.  

 Intuitively, it is the superposition of ‘tall’ and ‘not tall’ which can lead to interference 

effects. An interference effect can appear, since the superposed terms are not ‘orthogonal’, i.e. 

there is some overlap between ‘tall’ and ‘not tall’, as required by the assumed glut theory.  
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This is an interesting point, since a formulation in terms of gap theory would have excluded 

the potential of interference effects (without some overlap, there can be no interference). 

While in the classical case (Section 4) and the framework of Hopfield networks, gap-theories 

and glut theories can be seen as ‘notational variants’, this is not true if a quantum approach is 

adopted. Hence, the quantum approach can help to resolve the old philosophical issue of how 

to decide between gap and glut theories (cf. Odrowaz-Sypniewska, 2010). 

 The present model of quantifying vagueness is restricted in several respects. First, it only 

considers unmarked gradable adjectives like ‘tall’, which involve an ordering along a 

dimension of linear extent and which have relative (context-dependent) standards (Kennedy, 

2007; Toledo & Sassoon, 2011). We did not consider adjectives like ‘full’, ‘open’, ‘closed’, 

‘wet’, ‘dark’ etc., which have absolute (maximum/minimum) standards, but still allow for 

graduation. Further, we did not consider the distributional details of the comparison class 

(Solt, 2011). Second, we did not consider the observed differences between the 

acceptance/rejection data for ‘X is tall and not tall’ and ‘X is neither tall nor not tall’. From a 

quantum modeling perspective, such discrepancies suggest that the subspace corresponding to 

the concept “tall and not tall” is not orthogonal to the subspace corresponding to the concept 

“neither tall nor not tall”. The quantum model presented in this paper could, in principle, be 

generalized to model the interference term generated by the incompatibility of these two 

subspaces. 

 A third limitation is that our way of modeling borderline contradictions can potentially be 

applied to the conceptual combination data of Hampton (1987, 1988a, 1988b; see also Storms 

et al., 1996), but we have not pursued this direction in this paper. We think that an adaptation 

of the present model may well be able to account for these data. This is an interesting task, 

which could possibly be contrasted with Aerts’ (2009) thesis of the need of introducing ideas 

from quantum field theory, in order to deal with the Hampton data. 
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 It is somewhat remarkable that in 1982, just as John Hopfield proposed his model of a 

recurrent neural network with content-addressable memory (Hopfield, 1982), Richard 

Feynman published his first paper on quantum computation (Feynman, 1982). In Section 4, 

we made an attempt of quantifying vagueness by using a simple Hopfield network. It would 

be an interesting task to look for a quantum version of the original Hopfield model, following 

the line of quantum-inspired neural architectures (e.g. Menneer & Narayanan, 1995; Ventura 

& Martinez, 1998). Possibly, a powerful generalization of the present approach can be 

developed in this way.  
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