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Deep Learning-based Spacecraft Relative Navigation Methods: A Survey
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Abstract

Autonomous spacecraft relative navigation technology has been planned for and applied to many

famous space missions. The development of on-board electronics systems has enabled the use of

vision-based and LiDAR-based methods to achieve better performances. Meanwhile, deep learning

has reached great success in di�erent areas, especially in computer vision, which has also attracted

the attention of space researchers. However, spacecraft navigation di�ers from ground tasks due to

high reliability requirements but lack of large datasets. This survey aims to systematically investi-

gate the current deep learning-based autonomous spacecraft relative navigation methods, focusing

on concrete orbital applications such as spacecraft rendezvous and landing on small bodies or the

Moon. The fundamental characteristics, primary motivations, and contributions of deep learning-

based relative navigation algorithms are �rst summarised from three perspectives of spacecraft

rendezvous, asteroid exploration, and terrain navigation. Furthermore, popular visual tracking

benchmarks and their respective properties are compared and summarised. Finally, potential ap-

plications are discussed, along with expected impediments.

Keywords: Deep learning, Space relative navigation, Terrain navigation, Asteroid exploration
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ALHAT Autonomous Landing Hazard

Avoidance Technology

ANN Arti�cial Neural Network

BCE Binary Cross-Entropy

CD Crater Detection

CI Crater Identi�cation

CL Convolutional Layer

CNN Convolutional Neural Network

COCO Common Objects in Context

CRO Candidate for a Regional Object

DEM Digital Elevation Map

DL Deep Learning

DMLP Deep Multi-Layer Perception

DNN Deep Neural Network

DoF Degree-of-Freedom

DRCNN Deep Recurrent Convolutional

Neural Network

EKF Extended Kalman Filter

ESA European Space Agency

FCL Fully Connected Layer

FPGA Field-Programmable Gate Array

GPOPS II General Purpose Optimal Control

Software

HDA Hazard Detection and Avoidance

HRNet High-Resolution Net

ICP Iterative Closest Point

KPEC Kelvins Pose Estimation Chal-

lenge

KRN Keypoint Regression Network

LCLF Lunar-Centred, Lunar-Fixed Co-

ordinates

LoG Laplacian of Gaussian

LRO Lunar Reconnaissance Orbiter

LSTM Long Short-Term Memory

LVLH Local-Vertical, Local-Horizontal

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Square Error

NASA National Aeronautics and Space

Administration

NEA Near-Earth Asteroid

NN Neural Network

NST Neural Style Transfer

ODN Object Detection Network

PnP Perspective-n-Point

PDS Planetary Data System

PyCDA Python Crater Detection Algo-

rithm

R-CNN Region-based Convolutional Neu-

ral Network

RANSAC Random Sample Consensus

RGB Red-Green-Blue

RMSE Root Mean Square Error

RNN Recurrent Neural Network
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RoI Region of Interest

RPN Region Proposal Network

S/C spacecraft

SLAM Simultaneous Localisation and

Mapping

SoC System-on-a-Chip

SPEED Spacecraft Pose Estimation

Dataset

SPN Spacecraft Pose Network

TRN Terrain Relative Navigation

URSO Unreal Rendered Spacecraft On-

Orbit

VO Visual Odometry

WAC Wide Angle Camera

1. Introduction

In recent years, there has been a growing interest in Arti�cial Intelligence (AI), Machine Learning

(ML), and Deep Learning (DL), especially amongst science, technology, engineering, and mathe-

matics disciplines. There have been several approaches to de�ne AI historically; the most common

refers to techniques enabling machines to mimic human intelligence. Then, ML is the key com-5

ponent responsible for automatically processing data inside an AI. A Neural Network (NN) is a

speci�c ML model aiming to approximate a certain function f � relating training examples x to

labels y by de�ning a mapping y = f (x ; � ) and learning the � � parameters that result in the best

approximation. NNs work by stacking many di�erent functions, called layers, and the number of

layers de�nes the depth of the NN. The term DL derives from this wording, typically signifying10

a NN with large depth [1]. A rough relationship among these three concepts is summarised and

illustrated in Fig. 1.

In the �eld of space exploration, autonomous vision-based spacecraft (S/C) navigation is one

key area with the potential of greatly bene�ting from DNN-based (Deep Neural Network) esti-

mation methods. Cameras are rapidly becoming the preferred sensor for autonomous rendezvous15

thanks to the introduction of compact and lightweight passive optical sensors as feasible onboard

instruments [2]. Additionally, vision-based techniques have been used in-ight for deep space nav-

igation tasks [3]. Potential future applications of domains include: 1) non-cooperative rendezvous

with a spacecraft; 2) terrain navigation for descent and landing; and 3) asteroid explorations and

asteroid patch pinpoint localisation. All of these scenarios involve the estimation of a chaser or20

4https://explore.mathworks.com/machine-learning-vs-deep-learning/chapter-1-129M-833I7.html .
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Figure 1: Relationship between AI, ML and DL (reproduced from Mathworks. 4)

lander spacecraft's relative state, typically through the six Degree-of-Freedom (DoF) poseTct of

the target object frame
~
F t relative to the chaser frame

~
F c, composed of a rotationR ct , and a

translation ct ct (see Fig. 2). Pose estimation methods have traditionally worked by relating fea-

tures of the target (expressed in
~
F t ), typically obtained from a model, to their images captured by

the onboard camera (expressed in
~
F c), whereas using DNN models would adequately capture the25

intrinsic nonlinearities between the input sensor data and the state estimates, especially for images

or Digital Elevation Maps (DEM).

(a) Rendezvous with non-cooperative

spacecraft

. . .

(b) Asteroid pinpointing via patch clas-

si�cation

(c) Terrain navigation

Figure 2: Identi�cation of potential relative navigation scenarios for the application of DNNs.

Previous studies have approached the topic of DL-based navigation for space. Kothari et al. [4]

collated various applications of DL for space, briey discussing the achieved and prospective goals of

4



onboard systems for spacecraft positioning during docking and landing. Aiming at non-cooperative30

spacecraft rendezvous speci�cally, Cassinis et al. [5] �rst provided a review of CNN-based (Convo-

lutional Neural Network) schemes in the context of monocular pose estimation systems discussing

in detail several works (e.g. [6, 7, 8]). However, there is a shortage of comparative analysis of DL

methods for general relative navigation in space. With this survey, we thus intend to bridge this
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Pose estimation
for Rendezvous

Direct DNN methods

Indirect DNN methods

Develop from popular networks

AlexNet [6],[23],[21]

Faster R-CNN [7]

ResNet [35],[22]

GoogLeNet [41]

VGG [18]

Propose new networks [22],[32],[40],[42]

U-Net, YOLOv3, ResNet [22]

Pose estimate by PnP

Pose estimate by EKF

MobileNet [45]

HRNet+Faster R-CNN [19]]

YOLO [45],[52]

Hourglass network [26]

Proposed new net [20]

VGG [58]

Crater classification

Hazard detection

Terrain navigation

CNN-based classifier [62-64]Validate selected features

Detect and identify

U-net based [66],[68],[24]

CraterIDNet(CNN) [60]

LunarNet(CNN-based) [73]

NN-based

CNN-based

Real-time application [78-79]

Hourglass-like CNN [80-81]

Altitude estimate only Proposed CNN [27]

S/C pose from crater matching CNN+EKF [25]

Relative navigation
Asteroid Research

NN-based work in earlier stage

Propose CNN networks

Estimate gravitation [95-96]

Optimal orbital confriguation [93,99]

Formulate missions [97]

Classify asteriod shape [100]

Develop from popular networks

Crater and hazard detection
Terrain Relative Navigation 

DNN-based

Terrain classfication [84-85]

Fuel-optimal control [86]

Navigation via patch matching MobileNet [90]

Landing sites detection ResNet, Faster R-CNN [100]

Figure 3: The tree diagram of DL-based S/C relative navigation approaches reviewed in this paper. The boxes in

yellow, blue, and white represent applications, methods, and candidate references, respectively.
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gap and provide a comprehensive reference for researchers and engineers aspiring to leverage deep35

learning for this subject, speci�cally for the three main applications identi�ed in Fig. 2. Fig. 3

shows the set of research methods and application domains covered by our survey. In Fig. 3, di-

rect DNN methods are end-to-end methods using DNNs, which constitute a direct, uninterrupted

pipeline from inputs x to the desired quantity to estimate y. In contrast, indirect DNN methods

are those in which the DNN is exclusively tasked with performing the image processing functions40

on the input, while the actual quantity to be estimated is achieved by combining this output with

other methods, such as classical ML, geometry-based optimisation, and Kalman �ltering.

This paper is organized as follows. Section 2 presents a review of DL-based pose estimation

algorithms for spacecraft rendezvous. Section 3 contains a detailed review of crater and hazard

detection of Terrain Relative Navigation (TRN) using DNNs. Section 4 provides a review of DL45

techniques with a focus on asteroid exploration. Finally, Section 5 lists the main conclusions and

discussions.

2. DL-based Pose Estimation for Spacecraft Relative Navigation

2.1. Related Works on Terrestrial Pose Estimation

With the successful application of deep learning approaches in various research areas, DL-based50

camera-relative pose determination techniques for terrestrial scenarios have been attracting a con-

siderable amount of interest.

Kendall et al. [9] proposed the PoseNet architecture for 6-DoF motion estimation in an end-to-

end manner. To develop the pose regression network, they used a modi�ed pre-trained GoogLeNet

[10] by replacing all softmax classi�ers with a�ne regressor. A weighted sum of theL 2 error norms55

of the position vector and the attitude quaternion is selected as the loss function for better training

of the location and orientation simultaneously. Their results demonstrate a 2 m and 3 deg accuracy

for large scale outdoor scenes and 0.5 m and 5 deg accuracy indoors.

Rather than self-localising with respect to a known world model, Wang et al. [11] presented

the DeepVO architecture to obtain a vehicle's egomotion from frame to frame based on monocular60

Visual Odometry (VO). The pipeline follows the architecture of a Deep Recurrent Convolutional

Neural Network (DRCNN) [12], in which a pre-trained FlowNet [13] �rst learns features from se-

quences of Red-Green-Blue (RGB) images, which are then processed by Long Short-Term Memory

6



Input Pose estimation

Deep learning

Deep learning

Feature extraction

Implicit 
feature extraction

Direct
methods

Indirect
methods

Machine learning

Figure 4: Direct versus indirect methods for DL-based pose estimation. The former use a DNN to directly estimate

the pose from the input, whereas the latter use it exclusively to identify features, or landmarks, on the target, which

are then input to a ML algorithm.

(LSTM) cells to estimate poses. The end-to-end DRCNN framework achieves an average Root

Mean Square Error (RMSE) drift of 5.96 % and 6.12 deg per trajectory for position and attitude,65

respectively, on lengths of 100 m{800 m, showing a competitive performance relative to Monocular

VISO2 [14].

Di�ering from the above end-to-end, or direct, methods, some works opt instead by following

indirect methods, for which the DNN is exclusively tasked with performing the image processing

functions on the input, while the actual quantity to be estimated is achieved by combing this70

output with other methods, such as classical ML or Kalman �ltering. For instance, Rad and

Lepetit [15] developed the BB8 algorithm for object pose estimation by combining a CNN to

regress the two-dimensional (2D) locations of the eight three-dimensional (3D) points de�ning

their bounding box with a Perspective-n-Point (PnP) algorithm [16] to retrieve the pose based on

those correspondences. The VGG architecture [17] was chosen as the basis for their work, and the75

classical reprojection (or geometric) error was used as the corresponding loss function [18].

Figure 4 illustrates the di�erence between direct and indirect methods, which are explored

further in this section.

7



2.2. Challenges and Motivations

Recent advancements in DL exhibit promising alternatives with respect to classical approaches,80

and related terrestrial frameworks also inspire the idea of DL-based spacecraft relative navigation.

However, there still exists a gap between the two domains of application.

Relative pose estimation of objects in space is a di�erent problem from pose determination of

objects on Earth due to the vast di�erences in environment. Additionally, real labelled on-orbit

images required for training DL algorithms are expensive and hard to obtain, which leads to a lack85

of space imagery datasets. Challenges in space missions for applying vision-based DL methods can

be summarised from previous research [7, 19, 20, 21, 22, 23, 24, 25, 26] as follows:

� Planets and stars acting as background distractors for the navigation system;

� Challenging visual conditions due to lack of atmosphere and light di�usion;

� Much stronger shadows and varied illumination conditions resulting in extreme image contrast90

and low signal-to-noise ratio;

� Limited properties of space hardware in power consumption and computational resources

(e.g., low sensor resolution);

� Training datasets for non-cooperative navigation of spaceborne objects are scarce;

� Concerns over the reliability of DL technique preventing their practice in the space industry.95

The characteristics of space images also challenge conventional vision-based navigation algorithms

for spacecraft, while the DL technique provides promising solutions and performance that can

alleviate these issues. In terms of dynamic lighting, DNN-based schemes show increased robustness

in attitude initialisation [22, 27]. With the deployment of high-performance devices, CNN-based

methods can not only provide a lower computational complexity in pose acquisition process, but100

also reduce the need for complicated dynamics models [28]. Additionally, DNN pipelines are able

to output various information and be combined with navigation �lters or other processes [25].

Motivated by the attractiveness described above, and to overcome current limitations in space-

craft relative pose estimation, European Space Agency (ESA) launched the Kelvins Pose Estimation

8



Challenge (KPEC)5 in 2019, inviting the community to propose and validate new approaches di-105

rectly from greyscale images acquired by an on-board camera. The data for training and testing

in this challenge consisted of Stanford's Spacecraft Pose Estimation Dataset (SPEED), which con-

tains labelled synthetic images of the Tango satellite, and a smaller, real set of images acquired in

laboratory using a replica of the target.

2.3. Direct Frameworks for Spacecraft Relative Pose Estimation110

In this survey, direct DL-based frameworks are de�ned as those in which the estimation of the

desired quantity is entirely relayed to the DNN, thus forming a continuous, uninterrupted pipeline

from input to output. For spacecraft relative navigation, the problem is posited as estimating

the 6-DoF pose of a target,
~
F t , in the frame of reference of a chaser,

~
F c (as shown in Fig. 2a).

The target may be non-cooperative, in which case it will not relay any explicit information to the115

chaser's onboard navigation system, and the relative pose is estimated from acquired images of the

target only.

By partitioning the relative pose space into discrete hypotheses, a classi�cation framework may

be established if the target spacecraft has a known model. Sharma et al. [7] have proposed a deep

CNN for relative pose classi�cation of non-cooperative spacecraft. Taking advantage of transfer120

learning, AlexNet model [29] pre-trained on the large ImageNet dataset [30] is modi�ed by replacing

the last few layers to adapt to the space imagery of the Tango spacecraft own in the Prisma mission

[31]. Ten datasets with di�erent added noises are created from synthetic images. The proposed

approach demonstrated greater accuracy than a baseline method using classical pose estimation

techniques from 2D-3D feature matching but is deemed not �ne enough for any application other125

than a coarse initialisation.

Sharma and D'Amico [8] later on improve their original work with the creation of the Spacecraft

Pose Network (SPN). The SPN (Fig. 5) uses a �ve-layer CNN backbone of which the activations are

connected to three di�erent branches. The �rst branch uses the Faster Region-based Convolutional

Neural Network (R-CNN) architecture [32] to detect the 2D bounding box of the target in the130

input image. To be robust towards intrusive background elements (i.e., presence of Earth), speci�c

features output by the �nal activation map of the �rst branch are extracted using R-CNN's Region

5https://kelvins.esa.int/satellite-pose-estimation-challenge .
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Figure 5: The Spacecraft Pose Network (SPN) architecture. Reproduced from Sharma and D'Amico [33].

of Interest (RoI) pooling technique, and then fed to the other two branches of the CNN containing

three fully connected layers.

The second branch classi�es the target attitude in terms of a probability distribution of dis-135

crete classes. It minimises a standard cross-entropy loss for theN closest attitude labels in the

viewsphere. Lastly, the third branch takes the N candidates obtained from the previous branch

and minimises another cross-entropy loss to yield the relative weighting of each. The �nal re�ned

attitude is obtained via quaternion averaging with resort to the computed weights, which can be

seen as a soft classi�cation method.140

Mathematically, the SPN utilises a Gauss-Newton algorithm to solve a minimisation problem

for the estimate of relative position, for which the required initial guess is obtained from the

bounding box (analogously to Kehl et al. [34]). The network is initially trained on the ImageNet

dataset, and then the branch layers are further trained with an 80 %{20 % train-validation split on

the SPEED dataset. As they report, the SPN method performs at degree-level and centimetre-level145

on relative attitude and position error, respectively.

In Ref. [33], Sharma and D'Amico expand their conference paper [8] by discussing two features

of the SPN, target-in-target pose estimation and uncertainty quanti�cation. The capability of

estimating the uncertainty associated with the estimated pose of the SPN emphasises that SPN

can be integrated with conventional navigation �lters. Additionally, the authors detail the proposed150

SPEED dataset, considering the solar illumination of the synthetic images and the ground truth

10
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Figure 6: The CNN pipeline in Ref. [36]. The CNN front-end is based on ResNet, of which the elementary blocks

implement skip connections that help mitigate the vanishing gradient problem in very deep networks.

calibration of the relative pose by the real images. The SPN is also trained in three versions by

using di�erent datasets, including SPEED, "Apogee Motor", "Imitation-25", and "PRISMA-25".

Experiments are also carried out to demonstrate two key features of SPN method and compare

it with their previous work, namely CNN-based [7] and image processing-based feature detection155

and correspondence [35] methods.

Instead of employing a bounding box feature detection, Proen�ca and Gao [36] modify a pre-

trained ResNet architecture [37] with initial weights trained on the Common Objects in Context

(COCO) dataset to keep spatial feature resolution. Similarly to Ref. [8], two branches are designed

to estimate 3D location and orientation, respectively. The position estimation consists of a simple160

regression branch with two fully connected layers and the relative error is minimised for better

generalisation in terms of loss weight magnitudes. The continuous attitude estimation is then

realised via a soft classi�cation method [38]. Additionally, the authors present their own synthetic

Unreal Rendered Spacecraft On-Orbit (URSO) dataset for training featuring Soyuz. Experiments

on renders of URSO and SPEED datasets are conducted to evaluate the proposed framework, with165

which their model achieved a third and a second place on the synthetic and real test set categories

of SPEED in KPEC, respectively. Moreover, the experimental results show that estimating the

orientation by soft classi�cation performs better than direct regression methods.

Hirano et al. [24] present a 3D keypoint estimator by using an AlexNet-based CNN architecture

to regress spacecraft pose information directly, rather than retrieving 3D objects from the location170

of 2D keypoints. The parameters of AlexNet are changed for the purpose of the pose estimation

11



task, and batch normalisation layers [39] are utilised in all Convolutional Layer (CL) and Fully

Connected Layer (FCL) for convergence in training. Synthesised images of a 3D model with the

3D keypoint position labels are generated on the Gazebo simulator [40] and used to train the CNN.

Real images taken by hardware simulators are imported to evaluate the trained CNN. Images in175

both training and test dataset include the e�ects of lighting, shadows, and random noise, which

leads the proposed framework to a potential application in practical space missions.

Arakawa et al. [41] also treat the attitude estimation as a CNN-based regression problem to

obtain spacecraft attitude quaternion from the constructed images, in which the output of the

proposed CNN is four independent real numbers corresponding to four quaternion elements. A180

3D model of the JCSAT-3 satellite is built in the Blender software to generate a training image

dataset. A point spread function is applied to the renders for simulating atmospheric uctuations

and optical e�ects. Compared with conventional image matching approaches, their results clarify

an improved performance on the accuracy, robustness, and computational cost.

Considering that natural feature-based methods for spacecraft pose estimation are not always185

su�cient, Sonawani et al. [19] develop a modi�ed model to assist a cooperative object tracker

in space assembly tasks. The proposed CNN architecture is similar to Ref. [7], but uses VGG-

19 as a backbone and replace the last layer with a 7-node one instead of an activation function.

Two di�erent models, namely a branch-based model and a parallel-based model, are developed

to estimate relative poses. The frameworks of the two models are illustrated in Fig. 7, in which190

the parallel model contains two parallel streams for position prediction and attitude estimation,

respectively. Synthetic images are generated in Gazebo, including truss-shaped objects labelled

with the pose. The Euclidean distance error between the predicted poses and actual ones is

de�ned as the loss function. Simulation results show their models are comparable to the current

feature-selection methods and are robust to other types of spacecraft.195

Aiming at vision-based uncooperative docking operations, Phisannupawong et al. [42] construct

a spacecraft pose estimation model by proposing an advanced GoogLeNet pre-trained on URSO.

The original GoogLeNet framework is modi�ed by using 23 layers of CNN presented in Ref. [9],

and the output for spacecraft pose is a seven-element vector. Experiments are carried out with an

exponential loss function and a weighted Euclidean loss function, separately. The simulating results200

suggest that the weighted Euclidean-based pose estimation model successfully achieves moderately
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Figure 7: The VGG-19-based architecture of Sonawani et al. [19]. The branch is used to preserve feature-position

information discarded by the later pooling layers.

high prediction accuracy, but the exponential-based model results in poor orientation estimation

accuracy.

Instead of estimating poses at individual timesteps, Kechagias-Stamatis et al. [43] propose a

DRCNN to regress the relative pose of spacecraft from frame to frame. For a relative spacecraft205

navigation system, these chained poses serve as continuous outputs, of which the continuity is

vital to autonomous missions such as rendezvous and formation yover. Speci�cally, the DRCNN

consists of a CNN module and followed a LSTM module to extract features of the input images

and automatically modelling the relative dynamics, respectively (see Fig. 8). 3D lidar data is

projected onto the image plane, yielding three di�erent 2D depth images to be processed by a210

regular CNN. As in Ref. [11], the loss minimises the pose Mean Square Error (MSE), but the

attitude is represented via a direction cosine matrix. Trials are conducted on both synthetic and

real data. For the former, the Elite target satellite platform is used to create a self-occluded point

cloud. The real dataset is acquired with a scaled mock-up of Envisat. Their results on both

simulated and real lidar data scenarios demonstrate that the DRCNN achieves better odometry215

accuracy at lower computational requirements than current algorithms such as Iterative Closest

Point (ICP) [44] and descriptor matching with H1 �ltering.

Oestreich et al. [22] study on-orbit relative pose initialisation by employing AlexNet-based

transfer learning and a post-classi�cation attitude re�nement algorithm, which provides a foun-

dation for future work in CNN-based spacecraft pose initialisation. Their research puts focus on220

answering several questions on the applicability of DL to this domain, including the necessary

amount of training imagery, attitude label discretisation, and the e�ects of lighting and image

13
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Figure 8: The DRCNN architecture of Kechagias-Stamatis et al. [43]. A shallow CNN architecture is utilised to

extract low-level features for projected images, which are then modelled with LSTMs.

background on CNN performance. Thus, AlexNet, used as the backbone of the proposed frame-

work, only changes the �nal FCL to yield attitude labels. The output attitude, obtained from a

single branch unlike Ref. [8], is then re�ned using the eight most likely labels via direction cosine225

matrix averaging. Synthetic images of the SpaceX Dragon capsule are rendered using Blender at

a �xed range of 20 m. Four di�erent synthetic image sets are created to study the performance of

the presented scheme and answer the proposed questions, namely considering a black and empty

background, Sun angle variation, Earth background variation, and sensor noise. Based on their

experimental results, it is indicated that: 1) both classi�cation accuracy and attitude error exhibit230

an asymptotic trend; 2) the CNN performs well in more challenging light conditions of the Sun

variation dataset but poorly for the Earth background and sensor noise datasets; and 3) using the

con�dence rejection threshold in the re�nement step can improve estimation accuracy slightly.

Recently, Cosmas and Kenichi [23] �rst investigated the feasibility of CNN-based spacecraft

pose estimation by assessing the onboard inference capabilities of the model. Accounting for power235
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Table 1: Summary of DL-based direct pose estimation methods for spacecraft relative navigation.

Ref. Backbone Transfer Type Dataset Comments

learning

[7] AlexNet ImageNet Classi�er PRISMA, synthetic Coarse initialisation

[8] Faster R-CNN ImageNet Soft classi�er SPEED, synthetic Introduction of SPN

[33] SPN ImageNet Soft classi�er SPEED, PRISMA, synthetic (OpenGL) Outperforms Ref. [7]

[36] ResNet-50 COCO Soft classi�er URSO (Soyuz S/C) Soft classi�er outperforms regressor in attitude

[24] AlexNet 7 Regressor Synthetic (Gazebo), real Direct 3D keypoint regression

[41] 2-layer CNN 7 Regressor Synthetic (Blender, JCSAT-3 S/C) Evaluates robustness to noise, outputs quaternions

[19] VGG-19 ImageNet Regressor Synthetic (Gazebo) Cooperative object tracker

[42] GoogLeNet PoseNet Regressor Synthetic (Unreal Engine 4, Soyuz S/C) Comparison of two loss functions

[43] Shallow CNN + LSTM 7 Regressor Synthetic (Elite S/C), real (Envisat S/C) Frame to frame motion estimator

[23] U-Net, ResNet, YOLOv3 7 Regressor SPEED Onboard FPGA implementation

[22] AlexNet ImageNet Classi�er Synthetic (Dragon S/C) Analysis of Sun angles, Earth presence, noise

consumption and cost-e�ectiveness, the Xilinx Zynq Ultrascale+ multiprocessor System-on-a-Chip

(SoC) hybrid Field-Programmable Gate Array (FPGA) is proposed as a suitable solution. Two

typical approaches and one presented framework are trained in Google Colab using the SPEED

dataset, showing that a U-Net-based detection network performs better than the ResNet-50 based

direct regression scheme, albeit poorer than the developed ResNet34-U-Net model. Later, the240

ResNet34-U-Net pipeline is implemented on the proposed hardware, starting with a YOLOv3 for

RoI detection, followed by a landmark localisation network to predict keypoints. Inference experi-

ments, including an evaluation of the performance, compared to a desktop-based implementation,

DL processing unit resource utilisation, and power consumption are analysed with results of satis-

factory accuracy and low on-chip power consumption of 3.5 W.245

To make a clear comparison between the aforementioned approaches, Table 1 summarises the

surveyed DL-based direct frameworks for relative pose estimation. As shown, over half of the solu-

tions employ transfer learning, which traditionally has also been considered by the most successful

applications of DNNs to terrain navigation problems. In terms of framework types, most are seen to

adopt an estimation by regression or soft classi�er. Open datasets of real images are limited; only250

PRISMA-25 and SPEED are available. On the other hand, synthetic imagery can be simulated by

di�erent software or platforms, such as OpenGL, Gazebo, Unreal Engine 4, and Blender, leading

to datasets such as URSO. Moreover, the recent research output volume demonstrates there is an

increasing interest in DL-based spacecraft pose estimation, including even a �rst report on onboard

implementations with FPGAs.255
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2.4. Indirect Frameworks for Spacecraft Relative Pose Estimation

Estimating the pose from images using end-to-end DL-based methods has been argued to yield

inadequate feature representation and limited explainability, either of which has so far achieved

subpar performances as opposed to geometry-based methods. Sattler et al. [45] discuss the limita-

tions of end-to-end CNN-based terrain pose regression and suggest that there is a gap for practical260

applications. Moreover, the DNN model has a risk of over�tting, which results in unpredictable

drops in performance between the training images and test images due to memorising, rather than

learning, properties of the former set that do not function well on the latter [1]. Therefore, some

research avenues have recently refocused on the indirect methods, which aim to combine DL and

conventional geometry-based techniques to re�ne the estimation of the pose.265

To promote the practical use of DL-based pose estimation in space missions, Park et al. [46]

take the SPN framework [8] and modify it by employing both a novel CNN for target detection and

Random Sample Consensus (RANSAC) algorithms for solving the PnP problem. The proposed

CNN is decoupled into the detection and pose estimation networks to determine the 2D bound-

ing box of the RoI and to regress the 2D locataion of keypoints, respectively. As demonstrated270

in Fig. 9a, the Object Detection Network (ODN) and the Keypoint Regression Network (KRN)

closely follow the pipeline of YOLOv2/YOLOv3 [47], but use MobileNetv2 [48] and MobileNet

[49], respectively. To drastically reduce the number of network parameters, traditional convolu-

tion operations of the network are replaced with depth-wise convolutions followed by point-wise

convolutions (see Fig. 9b).275

Considering the lack of real space-based datasets with representative texture and surface il-

lumination properties, Park et al. [46] also contribute with a new training procedure to improve

the robustness of CNNs to spaceborne imagery when trained solely on synthetic data. Inspired by

Ref. [50], they generate a new dataset by applying neural style transfer techniques [51] to a custom

synthetic dataset with the same pose distribution as SPEED. After training with the new texture-280

randomised dataset, the proposed network performs better on spaceborne images and scores 4th

place in KPEC.

The 1st place KPEC solution is also an indirect DL-based scheme proposed by Chen et al.

[20], where DL and geometric optimisation are combined to present a CNN-based pipeline for

pose estimation from a single image. Firstly, 3D landmarks of the satellite are computed from285
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Figure 9: Proposed DNN framework in Ref. [46] and comparison of three convolution operations.

the training set via multiview triangulation. A High-Resolution Net (HRNet) [52] is then trained

to regress the location of projected 2D corner point landmarks on the spacecraft from the input

greyscale image. Finally, the optimal poses are obtained by the proposed geometric optimisation

algorithm based on simulated annealing, where the initial pose is estimated from a PnP solver.

More speci�cally, the proposed DNN framework contains two modules. The �rst uses an HRNet290

front-end/Faster R-CNN combination to detect the 2D bounding box of the target in the input

image. The RoI is then cropped and resized for use in the second model, which consists of a pure

HRNet and is trained on an MSE loss between the predicted and ground truth heatmaps of the

visible landmarks in each image.

To achieve a fast and accurate estimate of the pose, Huo et al. [53] developed a novel DLs-based295

approach combining PnP and geometric optimisation. A new and lightweight tiny-YOLOv3 based

framework is designed to predict the 2D locations of the projected keypoints of the constructed

3D model. Fig. 10 shows the corresponding regression network, in which the output of tiny-

YOLOv3 is modi�ed to establish a box reliability judgement mode for detecting the S/C and

predicting the 2D RoI. Next, the regression of S/C keypoints is achieved by replacing the FCLs300
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with CLs to yield heatmaps. Finally, P nP and bundle adjustment are utilised to generate the initial

pose and optimise it, respectively, which improves the accuracy and robustness of the proposed

approach. Their method is evaluated on the SPEED dataset and achieves competitive performance

in spacecraft pose estimation with a lighter computational footprint.

Figure 10: The overall structure of the network designed by Huo et al. [53].

Another indirect DLs-based scheme combines a CNN-based feature detector with a PnP solver305

and an Extended Kalman Filter (EKF) to guarantee a robust pose estimation [27]. The authors

build an hourglass-shaped CNN composed of a six-block encoder and a six-block decoder to estimate

the heatmaps of 16 prede�ned corners on the Envisat spacecraft. A target detection module is not

incorporated since the presence of Earth in the background is not considered. Using the weights

from the heatmaps, an associated landmark covariance is calculated. Two testing campaigns are310

then performed. The �rst one uses a dataset composed of singular images and computes the relative

pose by incorporating the covariance of the regressed landmarks into the PnP procedure [54]. The

second campaign considers a sequential dataset simulating a V-bar approach with Envisat at a

�xed relative distance, where the target performs a roll rotation with respect to the Local-Vertical,

Local-Horizontal (LVLH) frame of reference. The relative pose is estimated by a tightly coupled315

EKF based on a Clohessy-Wiltshire dynamical model. Sensor measurements input of the �lter, the

landmark locations and covariances, come from the CNN. The �lter achieves steady-state position

errors inferior to 0.2 m for all axes, and the attitude errors are under 2 deg.

A pipeline similar to Ref. [53] is investigated by Huan et al. [21], achieving results nearly an order

of magnitude better in the precision and accuracy of position and attitude estimation relative to the320
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SPN framework. The training methodology consists of four steps: 1) manual selection of images

from the training dataset to be used for the reconstruction of the target 3D model, 2) detection

of the 2D bounding box by an ODN, 3) estimation of the 2D image location of keypoints from a

KRN, and 4) projection of the 3D groundtruth keypoints onto the image plane and solving the

PnP problem from the correspondences with the estimated keypoints. Di�ering from Ref. [53],325

the proposed target detection network and KRN in Ref. [21] apply the state-of-the-art HRNet as

backbone. The 6-DoF pose is �nally predicted by non-linear minimisation of a Huber reprojection

loss. The training dataset is constructed of synthesised greyscale images, and the test set images

are captured in real-time using a monocular camera.

Shi et al. [6] transfer the state-of-the-art CNN techniques to target CubeSat detection, but330

with no further discussion on pose estimation. Inception-ResNet-V2 [55] and ResNet-101 [37] are

combined and trained to estimate the bounding box of the target S/C with a laboratory test

platform. The �nal FCL of ResNet-101 is reduced to two classes to di�erentiate between the

"1U CubeSat" and "3U CubeSat" labels. The pre-trained weights of the CNN are obtained from

the COCO dataset [56] and further trained on a mixture of real and synthetic CubeSat images.335

Their simulation results indicate that the Inception-ResNet-V2 framework achieves a slightly higher

accuracy and precision for S/C detection, whereas the ResNet-101 network is less computationally

heavy. To tackle a similar problem, Ming [57] constructs a feature extraction network and Region

Proposal Network (RPN) structure framework based on Faster R-CNN [32] on the CNN Ca�e [58]

open platform. The proposed network performs intelligent identi�cation of a spacecraft module in340

the image sequence and �lters out the certain components of interest.

For other space missions beyond rendezvous, Yi [59] studies the relative position estimation

problem of a docking mission (below 10 m). Assuming relative attitude has been adjusted, the

method utilises a modi�ed VGG-16 to regress the relative position between docking rings. Further

position smoothing and relative speed estimation are achieved by Kalman �ltering. Additionally,345

a satellite positioning error compensation technique based on DL is discussed by Jiaming [60].

Large amounts of data are collected to generate a robust model; a CNN, a depth belief network,

and a Recurrent Neural Network (RNN) are trained on satellite location data are collected by

the Institute of Technology of the Chinese Academy of Sciences, which aims to generate a robust

model. A CNN, a depth belief network, and a RNN are trained on the collected data, of which the350
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Table 2: Summary of DL-based indirect pose estimation methods for spacecraft relative navigation.

Ref. Backbone Transfer Type Dataset Pose estimation by

learning

[46] YOLO, MobileNet 7 Keypoint regressor Synthetic (NST1), SPEED PnP

[20] HRNet + Faster R-CNN 7 Keypoint regressor SPEED PnP

[53] tiny-YOLOv3 COCO Keypoint regressor SPEED PnP

[27] Hourglass network 7 Keypoint regressor Synthetic (Cinema 4D, Envisat S/C) PnP + EKF

[21] 2-layer CNN 7 Keypoint regressor Synthetic, real (lab) PnP

[59] VGG-16 7 Position regressor Synthetic (Blender) EKF

[6] ResNet COCO Classi�er Synthetic, real CubeSat detection

[57] Faster R-CNN 7 Regressor Synthetic Object detection

[60] LSTM 7 Regressor Real Position error compensation

1 Neural Style Transfer; applied to randomise the texture of the spacecraft.

CNN performs the best compensation result.

Table 2 contains a brief summary of indirect DL-based algorithms for spacecraft pose estimation

and related applications. As illustrated, the earlier studies (last four referenced) are more focused

on parts of pose estimation missions, such as detection and position estimation. PnP and EKF are

commonly combined to re�ne poses output by DNNs. Moreover, transfer learning and very deep355

networks are rarely utilised when DL methods are combined with optimisers. This could potentially

be due to the fact that the pipelines rely heavily on these optimisation steps at the end, which

are able to guarantee a decent estimate of the pose. In this way, shallow networks can reduce the

computational cost, which is bene�cial for practical use and potential onboard implementations.

3. Crater and Hazard Detection for Terrain Navigation Using DL360

Exploring and landing on the lunar surface has long been a challenge of great interest within space

technology and science. Recent developments in DL have led to a renewed interest in learning-based

TRN. Craters are ideal landmarks for relative navigation on or around the Moon and asteroids

[61, 62]. Additionally, hazards should be avoided for a successful landing mission. This section,

therefore, reviews the �eld of DL-based terrain navigation in three aspects: crater detection, hazard365

detection, and TRN methods, all using DNNs. Figure 11 shows schematic diagram and di�erence

between the three aspects.
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Figure 11: Scenarios of crater detection, hazard detection for safe landing area, and terrain navigation.

3.1. Crater detection

With advances in computer vision and successful applications of CNNs in the object detection area,

CNN-based crater detection algorithms are also emerging. However, most of the earlier methods370

only utilise a CNN as a classi�er to validate selected features, such as in Refs. [63, 64, 65]. The

shapes of natural craters vary in morphology, including peak rings, central pits, and wall terraces

[66]. Some craters may also overlap with others. Considering the illumination conditions and

di�erent poses of on-board cameras, the imaged craters can be diverse in terms of dimensions and

appearance [61]. Conversely, robust crater detection algorithms have been developed by applying375

DNNs to fully process raw crater images, exhibiting promising results which have attracted a lot

of interest.

The Python Crater Detection Algorithm (PyCDA) [67] is an open-source crater detection li-

brary composed of a detector, extractor, and classi�er, which focuses on detecting new craters

that have never been catalogued. PyCDA uses a downsized U-Net architecture to compute the380
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Figure 12: Framework of CraterIDNet reproduced from Wang et al. [61].

per-pixel likelihoods of a crater rim from inputs of greyscale intensity images. The pixel prediction

map is then fed to the extractor to generate a list of crater candidates. A classi�er CNN is �nally

applied to determine true craters. Thanks to PyCDA, a considerable amount of craters have been

detected and categorised, thus helping to generate new labelled datasets for training and testing

of DL algorithms.385

Wang et al. [61] proposed an end-to-end fully CNN, CrateIDNet, for simultaneous crater de-

tection and identi�cation. CraterIDNet takes remote sensing images in various sizes and outputs

detected crater positions, apparent diameters, and indices of the identi�ed craters. Instead of using

large o�-the-shelf DNN models, a small CNN architecture pre-trained on Martian crater samples

[68] is �rst developed to extract feature maps. Next, two pipelines, namely Crater Detection (CD)390

and Crater Identi�cation (CI) are proposed for simultaneous detecting and identifying craters. The

CD process involves detecting the presence of craters and locating them within the image if they

exist. The output of CD is then fed to the CI process to match the detected craters to surface

landmarks in a known database, and matches of CI will provide position estimation. Fig. 12 shows

the whole framework of CraterIDNet. The CD modi�es the RPN architecture [32] as the backbone,395

regressing objectness scores and crater diameters from feature maps. Due to di�erent craters sizes,

two CD pipelines are designed by sharing same CLs but with di�erent parameters. Later, craters

are identi�ed by CI that combines a proposed grid pattern layer and CNN framework. For the

training and testing dataset, 1600 craters are manually catalogued and enlarged to a �nal sample

set of 16 000 instances through data augmentation. Experiments reveal that the light CraterIDNet400

with a size of 4 MB performs better than previous algorithms [64].
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Figure 13: Architecture of DeepMoon network [69]

Silburt et al. [69] employ a CNN architecture for robust crater detection on the lunar surface

using DEMs. The method relies on the developed DeepMoon network to identify the craters in

terms of their centroid and radius, and outputs pixel-wise con�dence maps of crater rims on the

surface of a rocky body. DeepMoon modi�es U-Net [70] by changing the input image size, the405

number of �lters in each convolution layer, and the use of dropout [71] in the expansive path for

memory limitations and regularisation respectively. Fig. 13 presents the DeepMoon architecture.

For training, the data used in DeepMoon is generated by merging two human-generated crater

catalogues, which are the Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) Global

Lunar DEM [72] and the LRO Lunar Orbiter Laser Altimeter DEM [73]. The dataset is split410

into equal train-validation-test parts, yielding 30 000 DEM images per part. The minimised loss

function is chosen as the pixel-wise Binary Cross-Entropy (BCE). DeepMoon produces a crater rim

prediction mask, which is then fed to a low-level image process and a template matching procedure

to determine the actual craters. The median fractional longitude, latitude and radius errors are 11 %

or less, representing good agreement with the human-generated datasets. Additionally, transfer415

learning from training on lunar maps to testing on maps of Mercury is qualitatively demonstrated
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Figure 14: Feature extraction steps of LunaNet [25]

successfully.

Downes et al. [25] propose the LunaNet framework to detect craters for lunar TRN, which is

quite similar to DeepMoon with the exception that it takes greyscale images as inputs. Thus, the

method is more suitable for implementation aboard a spacecraft equipped with an optical camera420

without the need for a depth sensor. The output of the CNN is, like DeepMoon, a crater rim

prediction mask. However, the craters are extracted through a di�erent method and, Fig. 14 shows

each feature extraction step of the LunaNet, including prediction mask, eroded and thresholded

prediction, contour detection, and ellipse �tting. The data preparation is also akin to the pro-

cess followed by DeepMoon, with the LRO WAC Global Lunar DEM dataset [72], followed by a425

histogram rescaling of the input greyscale images to match the intensity distribution of a DEM

image. Based on the pre-trained DeepMoon weights, LunaNet reduces the training e�ort and �nal

detection results. Experimental results indicate that LunaNet's performance surpasses DeepMoon

and PyCDA in terms of robustness to noisy images, location accuracy, and average crater detection

time.430

It has been observed that areas with low solar angles, where there is heavy shadowing, result

in reduced crater detection reliability. Lee et al. [74] employ a CNN-based object detector to

24



Figure 15: CNN-based CRO discriminator (LunarNet) [74]

distinguish likely landmark candidates and predict detection probabilities along various lighting

geometric ight paths, aiming to identify high-value landmarks by using optical navigation systems.

A massive dataset based on real lunar-surface data is collected. A Candidate for a Regional435

Object (CRO) is de�ned as an image object with speci�c latitudes and longitudes. The LunarNet

architecture (Fig. 15; see also the process of LunarNet-based landmark selection in Ref. [74]) is

then used and trained to identify CROs by maximising the discrimination between local areas of

the Moon. Finally, the CRO performance map is formed based on the scored CROs arranged by

considering the azimuth and elevation angles of the Sun during the year. Numerical experimental440

results demonstrate that the proposed landmark detection pipeline can provide usable navigation

information even at Sun angle elevations of less than 1.8 deg in highland areas, which indicates a

successful application for the worst dark highlands near the South Pole.

3.2. Hazard detection

Hazard detection is considered the vital research �eld of space TRN to avoid failures during landing.445

In 1974, Apollo program o�cials introduced manual hazard and target selection for lunar descent

guidance [75]. In the past decade, many algorithms have been developed which bene�t from the

increasing computational power of processor devices. Since 2006, promoted by the Autonomous

Landing Hazard Avoidance Technology (ALHAT) project [76] conducted by the National Aero-

nautics and Space Administration (NASA), there has been growing interest in hazard estimation450

based on DEMs. In 2012, Furfaro et al. [77] implemented an AI system to autonomously select a
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soft landing site in a region with safe terrains for Venus and Titan. In 2015, Maturana and Scherer

[78] used what they called a 3D-CNN to create a safety map for autonomous landing zone detection

for helicopters.

Earlier research in NN-based Hazard Detection and Avoidance (HDA) for lunar landing is stud-455

ied by Lunghi and Lavagna [79] and Lunghi et al. [80], who demonstrate the ability and attractive

properties of Arti�cial Neural Networks (ANN) for real-time applications. The ground truth is

calculated from the corresponding DEM by thresholding pixel-wise �gures. Input images of the

terrain are manually processed at a resolution of 1024 px� 1024 px to extract a 13-dimensional vec-

tor per pixel comprising the image intensity mean, standard deviation, gradient and the Laplacian460

of Gaussian (LoG) at three di�erent scales, and the Sun's inclination angle. Following this, the

crafted features are fed to a neural network, outputting a 256 px� 256 px hazard map with each

pixel value denoting a con�dence value. From the output hazard map, candidate landing sites are

obtained via pixel thresholding and scored global landing potential by analysing minimum radial

dimension requirements, distance to an a priori nominal landing site, and the NN scores of pixels465

inside the candidate radius. The target landing site is selected as the one that maximises the global

score. Two di�erent pipelines are developed: one based on a Multilayer Perceptron (MLP) with

15 nodes, and the other based on a cascading NN with successive layers of hidden information

added during training. A test set of 8 images including four landscapes in two Sun inclination

angles are utilised to evaluate two proposed pipelines. The predicted hazard maps during training470

have a negligible di�erence, with 0.0194 for the MLP and 0.020 39 for the cascade of pixel-wise

MSE. However, the former proved better at determining safe landing sites. In addition, qualitative

results have been presented for asteroid images acquired by the Rosetta probe.

Recently, Moghe and Zanetti [81] presented a more modern approach towards tackling the

same problem. Aiming at the hazard detection of the ALHAT project, the authors implement475

an hourglass-like CNN architecture with copy and crop connections based on U-Net [70]. The

framework processes DEMs directly and classi�es safe and hazardous landing spots with the output

map. Through data augmentation and transforming existing datasets, they create a new dataset

from the LRO dataset [63]. The output, similarly to Ref. [80], is a con�dence map followed by a

threshold to yield a binary landing/non-landing score, despite not provide a speci�c landing site.480

Results on a set of 100 testing images demonstrate an average hazard mapping Dice accuracy score
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Figure 16: The topology of the network in [82]

of 83 % and indicate the potential of real-time processing in future missions. Later, Moghe and

Zanetti [81] expand and modify their work in Ref. [82], using the same network architecture but

featuring improved layers covering the input size, output size, and layer width. The topology of the

modi�ed network is illustrated in Fig. 16. Similarly, the Albumentations data augmentation suite485

[83] is used to prepare data. The modi�ed CNN-based network outputs a mean pixel accuracy of

� 92 % on the same testing dataset of Ref. [81].

3.3. Terrain navigation

In the �eld of image-based planetary TRN, Campbell et al. [28] �rst utilise a CNN architecture

trained on a series of images rendered from a DEM simulating the Apollo 16 landing site to output490

the position of a spacecraft relative to the ground along one direction. The problem is posed by

taking a centre 128 px wide strip from the original 1024 px� 1024 px nadir base image, considering

each pixel location along the on-track dimension as its own class. 128 px� 128 px training images

are generated by sampling every 8 px horizontally across the strip and rendering it 11 times at

di�erent Sun illumination angles. The 1024-dimensional one-hot vector, which labels the position495

along the track line, is then applied to each image. The CNN is composed of three CLs and each

followed by a max pooling layer. Thirty images are rendered at unseen Sun angles to make up a

test dataset. Six of these are classi�ed correctly, while in general, the maximum error observed is

equal to 5 px. For a ground sample distance of 0.5 m, this means that achieved position errors are

bounded at 2.5 m. The testing is repeated for training images resampled at 4 px, and the errors500
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(a) NN-based classi�cation ow (b) The structure of DMLPNN (Deep Multi-Layer Perception)

Figure 17: DMLPNN classi�cation ow and proposed architecture of Bai et al. [85].

dropped to a maximum of 3 px (or 1.5 m).

In 2020, Downes et al. [26] explored how their LunaNet could be applied to the TRN problem

and reported a system for the robust estimation of relative position and velocity information. Thus,

LunaNet is utilised to detect and match craters to known lunar landmarks from frame to frame

across a trajectory. The matched craters are treated as features feeding to a feature-based EKF,505

where the state of the �lter is the position and velocity of the camera in Lunar-Centred, Lunar-

Fixed Coordinates (LCLF), as well as the location of detected features in this same reference

frame. Compared to an image processing-based crater detection method [84], the LunaNet +

EKF combination produces considerable improvements on the accuracy of the TRN, with reliable

performance in variable lighting conditions.510

Accurately identifying the detected terrain environment helps to achieve successful missions re-

lying on planetary rovers. However, vision-based TRN systems are di�cult to e�ectively perceive

the material and mechanical characteristics of the terrain environment. Thus, Bai et al. [85] and

Chengchao [86] investigate several terrain classi�cation and recognition methods from vibration

using DNNs. The experimental and NN classi�cation ows are illustrated in Fig. 17a. The authors515

compare three di�erent learning-based approaches towards terrain material perception and classi-
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Figure 18: The architecture proposed by Furfaro et al. [87]

�cation: an improved NN algorithm, a DMLPNN algorithm, and CNN-LSTM based algorithm.

Among these three schemes, the DMLPNN achieves the best performance [85]. To classify textures,

DMLPNN (shown in Fig. 17b) adopts a �ve-FCL architecture, in which the activation functions

are ReLU and softmax for the �rst four and last layers, respectively. For the dataset and training,520

three-dimensional raw vibration data collected by sensors is �rst segmented to a vector with a �xed

duration. Using the fast Fourier transform, the vector is then transferred to the frequency domain,

in which the eigenvectors are obtained for network training. Five di�erent textures, including brick,

sand, at, cement, soil, are trained and recognised by DMLPNN with high overall classi�cation

accuracy.525

For an autonomous lunar landing scenario, Furfaro et al. [87] propose a DNN architecture

that predicts the fuel-optimal control actions only using raw greyscale images taken by an on-

board lander camera (Fig. 18). The architecture is a �ve-layer CNN with three sequential images

as input for each timestep. The DNN is modi�ed with an LSTM back-end connected to two

further branches: one for regression and one for classi�cation. For training the network, a set of530

optimal trajectories is computed numerically via Gauss pseudo-spectral sampling methods using

the General Purpose Optimal Control Software (GPOPS II) [88], producing a set of initial and �nal

relative positions and velocities. Each state of the optimum trajectory is simulated by raytracing a

DEM of a patch on the Lunar surface, resulting in 562 images with 256 px� 256 px of resolution.

For better performance, the model is retrained explicitly with subsets of data that do not produce535

satisfactory results on the �rst try [89].

3.4. Brief summary

The use of DNNs in crater and hazard detection has not been widely investigated due to the lack of

labelled databases. Datasets containing crater images which are open to the public do exist, e.g. the
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Lunar Crater Database6 [63] or the Robbins Mars Crater Database [68]. Yet, manually catalogued540

craters are required for applying supervised DL methods as presented in [61, 90, 25, 72, 73]. There

exists still a gap towards the automatic generation of DL crater datasets, and in the past two years

there have been increasing studies of DNNs with promising performance for TRN tasks.

4. DL-based Relative Navigation for Asteroid Research

4.1. Challenges and Motivations for DL-based Asteroid Exploration545

Recent trends in small planetary exploration have led to a proliferation of studies that include as-

teroids and comets, pushed by scienti�c, planetary defence, and resource exploitation motivations

[91, 92]. Autonomous navigation is demanded due to the long communication delay and compli-

cated dynamic environment in the vicinity of asteroids [93]. Thus, it becomes necessary to develop

new autonomous navigation algorithms for future asteroid sample and return missions, for which550

DL techniques may provide a potential alternative.

The aforementioned studies demonstrate the potential of DNNs for image patch classi�cation

invariant under illumination changes applied to terrain navigation. The same principle could be

used for other relative navigation applications, such as asteroid location pinpointing, illustrated in

Fig. 2b. Near-Earth Asteroid (NEA) missions, however, are more challenging than lunar missions;555

this is because one has limited information on the gravitation and environment of asteroids. If the

celestial body and its orbit environment are in great uncertainty, all plans elaborated on-ground

may dramatically fail when implemented in space [94]. Additionally, the lack of labelled ground

truth data for asteroids challenges the application and development of DL techniques in asteroid

detection and landing [95].560

4.2. Previous Works Contributing to the Field

For asteroid missions, earlier researchers have made various contributions towards NN-based orbit

and dynamics uncertainty estimation. Harl et al. [96] develop a NN-based state observer to estimate

gravitational uncertainties that spacecraft experience in an asteroid orbiting scenario. The NN of

the proposed state observer outputs the uncertainty as a function of the states instead of discrete565

6https://astrogeology.usgs.gov/search/map/Moon/Research/Craters/lunar_crater_database_robbins_

2018.
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values of an EKF. Gu�anti [94] trains a neural network as an autonomous motion planning unit

to compute the optimal spacecraft orbital con�guration, which takes the uncertain NEA dynamics

parameters created by navigation �lters and the selected trade-o�. Song et al. [97] also employ

a six-hidden-layer DNN to quickly estimate the gravity and gradient of irregular asteroids and

further apply the DNN-based gravitational model in orbital dynamic analysis. Instead of focusing570

on-orbit estimation, Kalita et al. [98] introduce an NN to the formulation of asteroid missions in

terms of the planning and design phases, while Feruglio et al. [99] utilise a feed-forward NN to

autonomously identify a S/C impact event. Viavattene and Ceriotti [100] take advantage of a NN

to map the transfer time and cost for NEA rendezvous trajectory.

DNN-based optical navigation is an increasingly important area in asteroid exploration mis-575

sions, which can manage challenges of previous schemes, including traditional high-cost and high-

risk spacecraft systems, irregular and illuminated asteroids, and conventional image processing

techniques. In such a scenario (Fig. 2b), the chaser may be commanded to inspect a particular

patch on the surface of the asteroid it has rendezvoused with (observed on frame
~
F c), which is

intrinsically a localisation task requiring the estimation of Tct . If the asteroid has been previously580

mapped, and there exists a codebook with annotated landmarks (on frame
~
F t ) for comparison,

there are two possible approaches. The �rst follows the same direct classi�cation procedure as

Ref. [28], where a DNN is used to match the observed patch with the corresponding patch in the

codebook, which is annotated with the relative pose, but with the dataset of Lunar surface. The

alternative approach is to have a single class per patch on the database and train the DNN to be585

robust to viewpoint distortion, and then rely on classical image processing techniques to infer the

pose based on the di�erent observed features between the observations and matched patches.

Pugliatti and Topputo [101] �rst present CNN-based methods for on-board small-body shape

classi�cation since shape information can enhance the image processing and autonomy of self-task

planning. A set of 8 well-known models from the Planetary Data System (PDS) node7 is selected590

to represent the most important features of small asteroids at a global scale. Fig. 19 presents

a sketch of the steps for building the database and the proposed CNN framework for classifying

asteroids. The database is generated in Blender with an assumed camera pointing and illumination,

and further augmented in TensorFlow [102] with random rotations, translations, and scaling. The

7https://sbn.psi.edu/pds/shape-models .
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(a) Step ows for database generation

(b) Schematic representation of the proposed CNN

Figure 19: Database generation ow and proposed CNN architecture of Pugliatti and Topputo [101].

database composed of 20 988 images is divided into training, validation and test sets according to595

a 80 %-10 %-10 % split. Their CNN architecture has �ve CLs in sequence, with each followed by a

pooling layer, a reshape operation, and three FCLs to classify. A hyperparameter search is used to

obtain network parameters. Three traditional approaches, such as Hu invariant moments, Fourier

descriptors, and polar outlines, are compared, in which the proposed CNN-based scheme performs

best.600

Later, Pugliatti and Topputo [91] proposed on-board autonomous navigation using segmen-

tation maps and a CNN to estimate spacecraft position concerning an asteroid �xed reference

frame. The CNN transferred from the MobileNetV2 network [48] classi�es the segmentation maps

to generate a rough estimate of the position information from the input. The relative position is

�nally obtained by re�ning the output of the CNN using an advanced normalised cross-correlation605

method. Didymos and Hartley are selected as representatives of regular and irregular small-bodies

to create the dataset, which includes 49 716 samples of synthetic maps for �ve di�erent scenarios.

Experimental results indicate the capability of CNN in predicting the correct class and achieve a
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relative position error below 5 %{8 % of the range from the asteroid.

In 2021, Ravani et al. [95] developed a novel Mask-Region CNN to detect landing sites for610

autonomous soft-landing on asteroids. Since there is no open public dataset of potential landing

sites labelled with ground truth, the authors �rst gather image mosaics of the asteroid Vesta from

the PDS of NASA8 and then fragment the large images into smaller ones with a �xed size. Next,

the training dataset is labelled manually. For the Mask-Region CNN pipeline, it follows a backbone

network of ResNet-50-C4 for initialisation; an RPN for extracting feature maps; Faster R-CNN615

for RoI alignment; the network head is structured using FCLs for computing the bounding box;

and the mask head of a FCL network [103] is used for calculating the pixel-level mask. Comparing

with conventional image processing methods, the proposed network on their dataset results in an

accuracy of 94 % with lower computational time cost in the implementation phase.

5. Summary and Conclusion620

This work surveyed recent trends in deep learning techniques for 6-DoF relative pose estimation

in spaceborne applications. Contributions in the �eld of computer vision were presented, followed

by concrete applications from the literature to autonomous spacecraft navigation, including space-

borne pose estimation, crater and hazard detection of terrain relative navigation, and DL-based

asteroid navigation. This survey is motivated by the applicability of DL techniques in relative625

spacecraft navigation for future space missions, i.e. rendezvous, docking, formation ying, descent

and landing on the lunar surface, orbiting and inspecting asteroids. The general DNN frame-

work for the applications in this research area was reviewed in terms of network structure, type of

network, training method, dataset topology and generation, and attained performance.

First, a review of DNN-based S/C relative pose estimation techniques was given, in which a top630

level distinction between supervised and unsupervised methods was made, whereby contributions

in the space domain were found to belong exclusively to the former. Context in terms of preced-

ing ground-based applications was established. Further lower level categorisations were made; in

particular, it was found that many techniques favoured a direct approach (so called \end-to-end"),

where a DNN pipeline is trained directly on images to yield the relative state. Indeed, this is a635

very appealing property of deep learning, as not only is the feature extraction task relayed to a

8https://pds.nasa.gov .
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CNN, but so is the modelling task, eliminating the "middleman" and allowing the user to focus

mainly on the architecture design and optimisation of learnable parameters. However, it was seen

that more accurate solutions were obtained by combining them with classical methods. For these

indirect methods, a CNN was tasked with regressing the locations of 2D keypoints on the target640

and estimating the relative pose from geometrical correspondences with their 3D counterparts,

using techniques such as PnP or nonlinear optimisation. Furthermore, such solutions are easily

incorporated into navigation �lters to further re�ne the estimate with continuous, smooth consis-

tency (also beyond pose estimation). The role of RNNs, particularly LSTMs, is highlighted in the

processing of a continuous stream of images. Tables 1 and 2 summarises these �ndings in terms of645

relative pose estimation error for spacecraft rendezvous DL applications.

Second, the applications of DNNs to TRN were divided into three aspects for surveying, in

which the DNN-based crater and hazard detection methods were recognised as contributors to-

wards building a terrain navigation system. It was pointed out that public open data for training

and testing of DNN-based TRN frameworks is limited. Furthermore, DL-based relative naviga-650

tion methods focusing on asteroid missions were provided. The challenges and motivations were

discussed before a detailed review of this �eld.

Lastly, regarding unsupervised learning methods (i.e. concerning cases in which the desired

output for each input is not given during training), far too little attention has been paid to this

kind of technique for space navigation. However, unsupervised techniques such as CNN-SLAM655

(Simultaneous Localisation and Mapping) or unsupervised VO are underlined as a potential novel

approach for the space domain and may be investigated in future. Additionally, most publications

study the application of DL in space in a theoretical way without being concerned with compu-

tational performance; indeed, only a few publications [19, 22, 81] focus on actual deployments on

hardware, considering things like execution time, and size of the training dataset. Therefore, it can660

be concluded that these studies towards the actual engineering practice have been little discussed

and require further development.
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