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Abstract

The traditional power network has now evolved into the smart grid, where cyber technology enables automated control,
greater efficiency, and improved stability. However, the integration of IT technologies exposes critical infrastructure
to potential cyber-attacks. Furthermore, the interdependent nature of the smart grid’s composite networks (IT and
OT) means that vulnerability extends across interconnected devices and systems. A DDoS attack is relatively easy to
deploy but capable of being highly disruptive, and strategic DDoS attacks against the smart grid can be particularly
egregious. In this paper, the F-C compromise propagation model is proposed, alongside a behavioural DDoS model,
to study the relationships between interdependency, DDoS dynamics, and attack-driven compromise propagation. The
model is thoroughly tested and mathematically explored, before being validated against simulations conducted with
cyber-security providers L7 Defense.

Keywords: Smart grids, DDoS modelling, DDoS mitigation, Smart grids, Critical infrastructure, Epidemiology.

1. Introduction

Interoperability, and the subsequent characteristic of in-
terdependency, are key features of modern critical infras-
tructure systems. Interoperability describes the collabo-
rative functionality of two or more systems, most likely
involving an exchange of information [1] [2]. Interdepen-
dency can then be defined as the reliance of these systems
on each other (and the data flows produced) for their own
functionality.

In the smart grid, which is defined as a cyber-physical
system by NIST [3], the term refers to the connection be-
tween information technology (IT) and operational tech-
nology (OT). The former, also referred to as ‘cyber’, en-
ables communication for monitoring, control, and main-
tenance. The latter enables direct interfacing and manage-
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ment of physical systems and processes. For its own func-
tionality, an IT or OT entity can depend on one or more
entities of the same or opposite technology. If the req-
uisite entities fail, normal operations are disrupted in the
dependent entities as well. As such, interdependency can
make a critical system vulnerable to cascading or prop-
agating failures. It is therefore essential to develop an
understanding of the role of interdependency in network
security.

With the IT network, the previously-offline and pri-
vate grid becomes remotely accessible at various points
(to varying degrees) for the sake of end-to-end commu-
nication. This exposes it to cyber-attacks launched re-
motely and designed to disrupt or manipulate communi-
cation flows. The use of IoT for distributed and machine-
to-machine (M2M) data sharing introduces the vulner-
abilities of WSNs (Wireless Sensor Networks) into the
smart grid and creates a larger attack surface [4]. Further-
more, the smart grid inherits the vulnerabilities and threats
typically associated with conventional TCP/IP networks,
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which may now have unique implications and expanded
impact.

One such inherited threat is that of DDoS (Distributed
Denial-of-Service) [4] [5] [6] [7]. DDoS is an attack
on the availability and functionality of systems and ser-
vices, and can be categorised as a network-based attack
[4]. It involves the generation of malicious packets, sent
by many distributed systems to some target. The vic-
tim is typically an Internet-facing server providing re-
mote access to systems or services [8]. The nature of the
DDoS packets determines the type of attack. For exam-
ple, a flooding attack may involve packets generated in
very large quantities to overwhelm the victim. A crafted
attack uses packets designed to consume and hold re-
sources. Attacks can also be classified according to the
Internet protocol stack. Application layer attacks can ex-
ploit HTTP/HTTPS, whilst transport layer attacks disrupt
TCP and UDP. Network interdependency means that ser-
vice disruptions can have reverberating impact on other
processes. Given that system continuity and stability is
paramount for electrical power supply networks, attacks
on availability must be mitigated to prevent failures and
outages.

In order to develop effective smart grid defences, we
need to understand how DDoS may lead to system-wide
compromise. Specifically, we wish to investigate how
a DDoS attack targeting the IT network can cause fail-
ures within the IT network, and subsequently also within
the dependent OT network. To this end, we propose the
novel F-C (Functional-Compromised) model, which uses
a tiered state-based approach where each tier represents a
different subset of the smart grid population. These pop-
ulations are modelled as a pair of interdependent graphs
that are used to define the relationships between the tiers.

We also propose a new DDoS depletion model, which
is connected to one of the F-C tiers to relate the proper-
ties of a DDoS instance to resource degradation and con-
sequent failures. Using the proposed F-C model, we aim
to examine the scale and scope of compromise across the
grid, given the network structure and the DDoS instance.

To summarise, our contributions are as follows:

• A stochastic and tiered state-based F-C model of sys-
tem failure with network interdependency, tracking
the spread of compromise driven by a DDoS attack.

• A dynamic process model of DDoS-driven resource

depletion on targeted nodes for the attack duration,
including incremental recovery.

• Testing and validation of the models mathematically
and via simulations of the AMI network provided by
industry partners L7 Defense.

This research is a part of Energy Shield [9], a project
funded by the European Union’s H2020 initiative with
the aim of developing toolkits and processes for the im-
proved cyber-defence of smart grids. The project is a
collaborative effort between the energy sector, the cyber-
security industry, and academia. Our contribution to En-
ergy Shield is in the focus area of DDoS mitigation. The
work presented in this paper is a continuation of the re-
search in [10]. The F-C model is an enhanced iteration
of the earlier S-A-C, a deterministic model based on epi-
demiological techniques and assuming homogenous mix-
ing and the continuous targeting of the entire IT network
population [10]. This was one half of a pair of tools de-
signed to estimate the scale of attack-driven compromise.
The F-C model seeks to improve on this by considering
specific targeting and mixing based on contact probabil-
ity.

The paper is organised as follows. In Section 2, we
present work related to this research, highlighting key
pieces and discussing their contributions in context with
our own. In Section 3, we provide a definitions and de-
scriptions of the DDoS and F-C models. In Section 4,
testing exercises and results are detailed, including sen-
sitivity analysis, numerical simulations, and validation
against AMI simulations. A discussion of the work is pro-
vided in Section 5, considering model behaviours and the
implications of our findings. Finally, we summarise and
conclude in Section 6.

2. Related Work

Research into smart grid cyber-security can be broadly
separated into works that focus on the role played by the
underlying grid infrastructure, or on the characteristics
and detection of possible attacks. The former tend to cen-
tre on the role of network interdependency and cascading
failures, which are primarily explored using graph theory
and network percolation. These works model the power
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and communication networks as a pair of interconnected
graphs, and are often based on real life grid designs or
incidents.

In their foundational paper (based on an Italian black-
out in 2003), Buldyrev et al. [11] analytically modelled
cascades using first order percolation phase transition. A
single node is initially removed (along with its edges).
Nodes losing connectivity as a result are removed in the
next iteration, and the process continues as such. At the
end, the giant amongst mutually connected clusters repre-
sents any remaining functionality. Ruj and Pal [12] used
a similar approach to compare the impact of random and
targeted attacks, where attack probability increases with
node degree. They also considered the remaining giant
components to assess the proportion of functionality left
after the attack-triggered cascade.

Using graphs based on real networks in the USA,
Brummitt et al. [13] studied load shedding between
grids. Using the Bak-Tang-Wisenfeld sandpile method,
they modelled random load distribution, where nodes
shed load if their individually-assigned thresholds are ex-
ceeded. The failure count is then estimated using multi-
branching, where failure probability for a node is higher
for smaller degrees. These papers exemplify the graph-
based approach, which is good for approximating real net-
works and can be explored via simulation models. How-
ever, these models may also be complicated to produce
and costly to run, depending on the size of networks,
whilst being undetailed in terms of impacting factors.

Some researchers have incorporated additional mod-
elling to capture the influence of grid-specific dynamic
processes. Rosato et al. [14] combined their graphs (also
based on Italian smart grids) with a pair of dynamical
models for power and traffic flows, the latter based on one
presented in [15]. These were used to assess the quality
of service on their respective networks.

Inspired by IEEE 39-Bus and Chinese Guangdong
structures, Cai et al. [16] used graphs of data dispatch-
ing networks in mesh and double-star topologies. They
incorporated a dynamic power flow model to calculate
power redistribution caused by failures, and a data ex-
change model to characterise the data flows. A cascade
is triggered if the issued commands are not received be-
fore more lines become overloaded.

Poulin and Kane [17] developed a new simulation ap-
proach to model interdependency in heterogeneous net-

works. They created a simulation graph to capture event
relationships, which is used to support a dependency net-
work graph. They then produced a counterfactual event
graph (CEG) to explore different outcomes for events, and
subsequently for the whole simulation.

These works add depth to the basic graph-based ap-
proach by considering actual flows rather than just the
edges they act through. To create a simpler and more
generic tool, we decided to focus on populations, with ref-
erence to node connectivity, rather than full-scale graphs.
We then added process modelling for incoming traffic to
explore the influence of the DDoS attack force.

Epidemiological models are population-based and have
been widely applied within cyber-security, specifically
where growth is a factor. Past applications include botnet
propagation across timezones [18] and worm spread [19]
[20]. Many assume mass action, implying homogeneous
mixing within the observed population. This is in contrast
to the spread of failures captured in graphs, which depend
on edges between individuals.

Kenah and Miller [21] combined a stochastic epidemic
model with graph theory in an epidemic percolation net-
works (EPNs). They considered both mass action and
contact network-based spread, with a focus on an EPN’s
degree distribution and component size distributions.

Based on an understanding of a network’s degree distri-
bution, we simplify further by summarising contact rela-
tionships into mean degree probabilities. Our proposed
alternative applies an epidemic-style state machine and
splits the target population up into subsets [22], each af-
fected differently. Hence, we use stochastic epidemic
modelling like [21] with account of graph structure, but
move nodes between states instead of percolating. In this
way, compromise spread in any network can be measured
at a high level.

This work centres on DDoS as the source of disruption.
Existing DDoS research tends to be focused on defensive
systems, but some have attempted to capture the dynamics
of the attack itself.

Ramanauskaite and Cenys [23] proposed a system of
two statistical DoS models for attacks on bandwidth and
memory in the presence of a defensive filtering system.
They consider the number of channels and their band-
widths, query sizes and arrival rates, traffic bit rates, buffer
size and query processing times to define probabilities for
bandwidth exhaustion, memory depletion, and blocking
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of legitimate traffic (via filtering or being dropped). These
are then used to derive a composite attack probability.
Similarly, Singh and De [24] developed a statistical DDoS
model. Following [23], they focused on bandwidth and
the buffer as depletion targets, deriving degradation prob-
abilities for each. These are then combined into a single
attack probability. Unlike [23], they also consider inter-
arrival rate, positing that total exhaustion is more likely at
smaller rates.

Shuaib et al. [25] tested the resiliency of smart me-
ters against attacks, including DoS in the form of ICMP
and SYN floods. Their simulation setup featured a smart
meter connected via a LAN switch to it’s server and a
malicious host. They report that the smart meter is easily
overwhelmed and functionality severely diminished.

Some works do not focus on DDoS but apply simi-
lar methods. Cao et al. [26] used a statistical model to
estimate available bandwidth. The model is defined in
sections: the packet stream, traffic load, bandwidth, and
queues. Each has its own set of parameters. Packets are
sequentially placed on a channel to form a stream or are
queued within limited-sized buffers. The bandwidth and
utilisation are measured, with the latter defined as the pro-
portion of the bandwidth currently in use (i.e. traffic bit
rate).

Meanwhile, in their review of methods for measuring
smart grid resilience, Das et al. [27] related the Figure of
Merit (FOM) approach used by Janic [28] to measure the
resilience of rail transport networks to service availability
in smart grids. The proposed FOM defines the trajectory
of service degradation following an incident, including its
minimum value, recovery, and eventual restoration.

These models characterise the traffic flows themselves
by identifying the fundamental components they are com-
prised of, though they may be somewhat generic in ap-
plication. Using a similar approach, combined with the
graph-adjacent dynamical traffic models presented in [14]
and [16], we characterise DDoS traffic, and similar to
FOM by [28], capture its impact trajectory in the context
of the cascades caused.

3. Model Design

The aim of this research is to model failure propagation
between interdependent graphs, specifically in the context

Figure 1: Main components & behaviours of proposed dynamical DDoS
model.

of smart grids, using state-based systems to capture pop-
ulation dynamics, as an alternative to graph theory and
percolation. Our proposed approach is captured in the F-
C (Functional-Compromised) model. We further narrow
the context by specifically considering DDoS-driven fail-
ures, where there is a relationship between the scale of
the DDoS attack and the rate of failure, and the DDoS
model captures the dynamics of an attack against a tar-
get. Both models are described in detail in the following
subsections.

3.1. Dynamical DDoS Model

This model captures the impact of incoming traffic on a
target which has some finite resource capacity. Formally,
given measurements of traffic volume and timings, the
model outputs resource availability over time. The nature
of the traffic (benign or malicious) depends on the con-
text and the number of input channels is adjustable. The
target and the resource are intentionally abstract to allow
adaptation for different scenarios. Here, we treat the tar-
get as a server with a finite processing capacity [8]. The
model, as presented, is deterministic because we wish to
find precise outputs for given inputs. However, it can be
easily made stochastic by applying sampling of relevant
probability distributions for selected parameters.

Figure 1 presents a diagrammatic overview of the
DDoS model components and behaviours.
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Parameter Description
M Target’s maximum resource capacity.
α Target’s maximum processing capacity (restoration of resources).
FT Target’s functional threshold.
FC Target’s functional capacity.
dstart, bstart Start time of DDoS (d) and benign (b) activity.
dstop, bstop Stop time of DDoS (d) and benign (b) activity.
ddur, bdur Duration of DDoS (d) and benign (b) activity.
dprog, bprog Time since start of DDoS (d) and benign (b) activity.
DDoSB1(t), BENB1(t) DDoS or benign (BEN) activity start status (Boolean value).
DDoSB2(t), BENB2(t) DDoS or benign activity stop status (Boolean value).
DDoSE, BENE Turn DDoS or benign activity ON (1) or OFF (0).
DDoSL, BENL DDoS or benign message load (for targeted resource).
DDoSA, BENA DDoS or benign message arrival rate (for target).
βDDoS, βBEN Overall resource cost of DDoS or benign activity.
(DDoS)mD(t), (BEN)mD(t) Resources depleted at time t due to DDoS or benign activity.
(DDoS)mR(t), (BEN)mR(t) Resources recovered at time t due to DDoS or benign activity.
(total)mD(t), (total)mR(t) Total resource depletions and recoveries at time t.
mdelta(t) Net change in available resources at time t.
m(t) Actual available resources at time t.
ω Estimated traffic activity-based resource depletion rate.
γ Estimated processing capacity-based resource recovery rate.

Table 1: Summary of parameters in proposed dynamical DDoS model.

3.1.1. Target Characterisation

As mentioned, we do not focus on a particular type of
target, only on the units of the resource which is being
depleted as a result of the received traffic. The target has
a maximum resource capacity of M. The current avail-
able resource capacity at a given time is denoted by m(t),
which is always some proportion or fraction of the total
M. Additionally, m(t) is bounded so that its value is al-
ways between 0 and M.

The functional threshold, FT, is the minimum percent-
age of units needed for the target to remain functional.
For example, FT = 75% means the target can tolerate loss
of only 25%. If consumed resources exceed this, it will
reach failure state. The functional capacity (FC) is then
the proportion of M below which the target fails, and re-
places 0 as the value representing complete depletion. If
FT = 0, then FC = M and the target must reach 0 before
it ‘fails’. For simplicity, this is considered to be the case
for the rest of the model explanations in this section.

3.1.2. Traffic Activity

Within some observation period, the DDoS attack has a
start and a stop time, denoted by dstart and dstop, which can
be used to determine the activity duration ddur. The DDoS
period may not be the same as the observation period, so
dprog is used to denote the intervals since dstart. At each
interval of the observation period, the status of the DDoS
attack at time t is denoted by DDoSB1(t). The value will
be 1 if the attack activity is ongoing at time t, and 0 other-
wise. Notification of whether the attack has ended or not
is similarly given by DDoSB2(t). The value will be 1 if the
attack has started and ended at time t, and 0 otherwise.
DDoSB2(t) is relevant when calculating gradual recovery.

The DDoS attack itself can be characterised by its
scale. We do not focus on particular type of DDoS, only
on its scale. The mean load per DDoS message, in re-
lation to target resources, is given by DDoSL. This is the
number of resource units consumed per message. A larger
DDoSL means that each DDoS message is costlier to the
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target. The mean DDoS message arrival rate is denoted
by DDoSA, which is the number of messages hitting the
target in each interval. A larger DDoSA value results in
more messages for the target to deal with in each interval.

Benign traffic activity is defined in the same way as at-
tack activity, so that two traffic streams are established.
The model allows for start and stop times to be adjusted,
but benign activity is intended to represent the ongoing
background activity of a production network.

3.1.3. Activity Impact
In each interval where there is ongoing activity, M is

going to be depleted. The number of units depleted by
DDoS per interval is denoted by βDDoS, which is the prod-
uct of DDoSL and DDoSA. This gives the total unit load
of the attack per interval. The units depleted by benign
activity is similarly defined as βBEN. The actual units lost
per interval, (DDoS)mD(t), depends on attack start status
DDoSB1(t), given by:

(DDoSL DDoSA) DDoSB1(t) = βDDoS DDoSB1(t) (1)

This determines what happens once the attack has be-
gun. At t=0, m(t) will be M – (DDoS)mD(0), and at sub-
sequent times, m(t) will be m(t-1) – (DDoS)mD(t). Mean-
while, DDoSB2(t) can be used to determine what happens
after the attack has ended. When β is assumed to be con-
stant, (DDoS)mD(t) can be calculated as:

DDoSE [((βDDoS dprog) DDoSB1(t))+

((βDDoS ddur) DDoSB2(t))]
(2)

Here, DDoSE is an optional parameter with a value of
1 or 0. This simply allows the model user to turn ac-
tivity types ON or OFF. The same approach is used to
find the actual units lost via benign activity per interval,
(BEN)mD(t). Total depletion (total)mD(t) is then the sum
of (DDoS)mD(t) and (BEN)mD(t).

In each interval, some units are recovered. This is de-
noted as α, which is predetermined based on the specific
target under consideration. The target has a fixed num-
ber of units it can process per time, regardless of the traf-
fic it receives. Thus, the assumption is that an ongoing
attack does not diminish this basic processing capacity.
Rather, the attack is successful in causing impact when
this is overcome. The actual units regained per interval,

(DDoS)mR(t), depends on DDoSB1(t) and DDoSB2(t), and
is calculated as:

[(α dprog) DDoSB1(t)] + [(α dprog) DDoSB2(t)] (3)

Again, recovery for benign activity is calculated in the
same way. Total recovery (total)mR(t) is then the sum of
(DDoS)mR(t) and (BEN)mR(t). The net change in avail-
able units is mdelta(t), calculated as –(total)mD(t) + (to-
tal)mR(t). Then, the target’s available resources at time t,
m(t), is given by M + mdelta(t). Both β and α are assumed
to be constant throughout. If, say, the attack is supposed
to grow over time, DDoSA should be measured at each in-
terval and βDDoS recalculated each time. When the attack
ceases, depletion activity also stops, i.e. (DDoS)mD(t)
becomes 0. Meanwhile, recovery continues, gradually
restoring the target’s available resource units. Therefore,
m(t) becomes m(tstop) + (total)mR(t).

3.1.4. Rate Estimations
The previously defined βDDoS and βBEN are the deple-

tion rate of units through attack and benign activity, re-
spectively. The target depletion rate ω, is the rate at which
the target itself fails as a result. First, we consider the case
where failure state requires resources to reach 0 (FC = 1).
When both are constant, time to failure state will be M di-
vided by the sum of the β values, denoted by tω. This gives
the interval count (or period) needed to go from M to 0.
Then, the inverse of this period gives the rate of reaching
failure state for the target. Hence, ω denotes how many
targets (or how much of a target) is lost per time, calcu-
lated as:

1/
M

DDoSE × (βDDoS + βBEN)
=

1
tω

(4)

If the functional threshold FT is defined, the target may
fail at a value greater than 0. Therefore, failure state is
now when the target’s resources drop below FC. The tar-
get is therefore allowed to lose M – FC resource units
before becoming non-functional. Hence, tω is amended
and ω is calculated as:

1/
M − FC

DDoSE + βDDoS + βBEN
=

1
tω

(5)

When FC is greater than 0, ω with FC will be greater
than without for the same β because it will take less time
to reach the FC value than to reach 0.
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The previously defined α is the recovery rate of units.
The target recovery rate γ is the rate at which the target it-
self recovers from the attack. The interval count or period
needed to go from 0 to FC is tγ. Given that above FC is
where the target regains functionality, γ will be:

1/
FC
α

=
1
γ

(6)

When FC is greater than 0, γ with FC will be larger
than without for the same α because it will take less time
to reach M from FC than from 0.

The parameters of the dynamical DDoS model are sum-
marised in Table 1.

3.2. Functional-Compromised (F-C) Model

The model captures the impact of a DDoS attack (or
similar kind of disruptive event) on a pair of intercon-
nected networks, conceptually realised here as the IT and
OT networks of the smart grid. Formally, given properties
of the network graphs and the attack, the model outputs
the fractions of functional and compromised populations
over time. The DDoS attack targets one or a few Internet-
facing IT nodes, and disruption to these nodes has an im-
pact on their dependents. Thus, this impact propagates
throughout the targeted and dependent networks. The F-
C model is based on epidemic modelling approaches, and
serves as a development on the S-A-C model presented in
[10].

3.2.1. Network Population
As with standard graph-based approaches, the smart

grid is abstracted into a conceptual pair of interconnected
graphs. Unlike those approaches, rather than using the
graphs directly, their sizes and connections will act as in-
puts to the model. The IT graph is denoted as GX = {VX,
EX}, where VX is the set of IT nodes and EX is the set of
intra IT-network edges. The OT graph is denoted as GY

= {VY, EY}, with VY representing OT nodes and EY repre-
senting intra-OT network edges. A third set of edges, EZ,
represents inter-network edges connecting the IT and OT
graphs.

Edges are directed and embody a dependency relation-
ship between a pair of nodes. We refer to the source node
as the dependent and the sink node as the requisite. In
other words, the direction of the edge maps a dependent

node to its requisite node. For simplicity, only OT-to-
IT dependencies are considered for inter-network edges.
The probability λXX captures the likelihood of a depen-
dent contact between two X (IT) nodes. It is calculated as
the number of intra-X edges over the maximum possible
edges in GX as:

EX

|VX|(|VX| − 1)
(7)

Similarly, λYY is the probability of a dependent contact
between two Y (OT) nodes, and is calculated in the same
way for graph GY. For edges between X and Y, λXY is de-
fined as the probability of dependent contact, and is cal-
culated as follows:

EZ

|VX|(|VY|)
(8)

The node sets VX and VY determine the population sizes
for the model, such that the total population N is VX +

VY. A subset of the IT graph (X) is defined to hold the
IT nodes which are targeted by the DDoS attack. This
is denoted by T. This creates 3 sub-populations of N, ar-
ranged in three tiers as T, X, and Y. Two possible states for
the nodes are defined as functional (F) and compromised
(C) and applied across the tiers. Now, attack targets are
denoted as FT and CT, IT nodes as FX and CX, and OT
nodes as FY and CY. This means N = FT + CT + FX +

CX + FY + CY. The model is presented in the form of a
state-flow diagram in Figure 2.

3.2.2. Mathematical System

Epidemic models, and those based on them, consider
changes in populations over time, where each popula-
tion represents some state inhabited by individuals. Each
state has a set of characteristics that define the individ-
ual’s status. An individual moves between states at some
rate, and the trajectories of populations are used to pre-
dict growth/decay and to define preventative or remedia-
tion strategies. This modelling approach is adapted to the
F-C model.

The follow equations deterministically define the pro-
posed model as a system of differential equations:
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FT

dt
= −(ωA FT) − (ωD (λXX FT CT)) + (γ CT) (9)

CT

dt
= +(ωA FT ) + (ωD (λXX FT CT)) − (γ CT) (10)

FX

dt
= −(ωD (λXX FX CT)) − (ωD (λXX FX CX)) + (γ CX) (11)

CX

dt
= +(ωD (λXX FX CT )) + (ωD (λXX FX CX)) − (γ CX) (12)

FY

dt
= −(ωD (λYX FY CX )) − (ωD (λYY FY CY)) + (γ CY) (13)

CY

dt
= +(ωD (λYX FY CX )) + (ωD (λYY FYCY )) − (γ CY) (14)

where:

• ωA is the rate at which nodes become non-functional
due to DDoS.

• ωD is the rate at which nodes become non-functional
due to dependencies.

• γ is the rate, at which nodes return to functional state
by recovering resources.

• λXX is the degree probability of an IT node having a
dependent edge to another IT node.

• λYX is the degree probability of an OT node having a
dependent edge to an IT node.

• λYY is the degree probability of an OT node having a
dependent edge to another OT node.

In this work, we focus on the stochastic implementa-
tion of the these equations, as a system of probabilities as
follows:

PT1 = ωA FT {FT − 1,CT + 1} (15)

PT2 = ωD (λXX FT CT) {FT − 1,CT + 1} (16)

PT3 = γ CT {FT + 1,CT − 1} (17)

PX1 = ωD (λXX FX CT) {FX − 1,CX + 1} (18)

PX2 = ωD (λXX FX CX) {FX − 1,CX + 1} (19)

PX3 = γ CX {FX + 1,CX − 1} (20)

PY1 = ωD (λYX FY CX) {FY − 1,CY + 1} (21)

PY2 = ωD (λYY FY CY) {FY − 1,CY + 1} (22)

PY3 = γ CY {FY + 1,CY − 1} (23)

Figure 2: State-flow diagram of the proposed F-C model.

For both versions, the overall state of N (or the system)
at time t is presented as S = {FT(t), CT(t), FX(t), CX(t),
FY(t), CY(t)}. Summary descriptions of the probabilities
are provided in Table 2.

3.2.3. Transitions
The attack is absorbed by the T tier, with the impact of

the attack-based depletion captured by ωA. This is ap-
plied only to the FT population. Nodes in FT become
compromised by the attack with probability PT1 and move
into CT. Meanwhile, the impact of failing requisite nodes
is captured in the dependency-based depletion rate ωD.
This is applied to the proportion of FT × CT contacts
constituting a dependency relationship, provided by λXX.
Here, nodes become compromised with probability PT2
and again move into CT.

Events happening in the T tier have a consequential im-
pact in the wider IT network (i.e. the X tier) for which
some requisite nodes are now in CT. This means FX will
suffer compromises due to these losses, and nodes will
transition into CX. Hence, FX loses nodes with the prob-
ability PX1 and PX2 through T-to-X and X-to-X connec-
tions, respectively.

Similarly, a similar process unfolds at the Y tier, where
events happening in the X tier have an impact. FY will
suffer compromises due to the loss of requisite nodes, cur-
rently sitting in CX and CY. Hence, FY loses nodes with
probability PY1 and PY2 through X-to-Y and Y-to-Y con-
nections. At each tier, nodes also recover functionality at
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Parameter Description
PT1 T compromise where an FT node loses functionality via attack.
PT2 T compromise where an FT node loses functionality via CT nodes.
PT3 T recovery where a CT node regains functionality.
PX1 X compromise where an FX node loses functionality via CT nodes.
PX2 X compromise where an FX node loses functionality via CX nodes.
PX3 X recovery where a CX node regains functionality.
PY1 Y compromise where an FY node loses functionality via CX nodes.
PY2 Y compromise where FY node loses functionality via CY nodes.
PY3 Y recovery where a CY node regains functionality.

Table 2: Probabilities defined in proposed stochastic F-C model.

the rate γ, and with the probabilities PT3, PX3, and PY3.
Attacked nodes will recover when they are able to free
up and regain depleted resources. Conceptually, depen-
dent nodes will recover when their requisite nodes regain
functionality.

3.2.4. Parameters
The attack-based depletion rate ωA is derived from the

properties of the DDoS attack, as described in Section
3.1.4. The dependency-based depletion rate ωD is cho-
sen by the user of the model to allow for network-specific
factors to be considered. The deriving of a mathematical
definition for ωD is part of our future planned work.

The recovery rate γ is derived from the properties of the
targeted node/s, also described within Section 3.1.4. CT

node restoration depends on how quickly a target is able
to recover resources, whereas CX and CY node restoration
rate depends on that of CT nodes. We assume a negligible
delay between CY and CX restoration, so that they recover
at the same rate as CT. Hence, the same γ is applied to
depletions of both types.

Degree probabilities (λXX, λYY, and λYX) denote the like-
lihood of contact events being dependency-based. The
standard approach in population-based models is to as-
sume mass-action, which means that there is an equal
chance of contact between each pair of nodes [29] [21].
However, the model is to be aligned with the properties of
the underlying networks. This means that not every con-
tact is actually representative of a dependency relation-
ship. Therefore, the relevant degree probability is applied
to the contact rate to scale it appropriately. In this way,
we aim to achieve a middle-ground between mass action

and network-based propagation [21].

3.2.5. Behaviour Pattern
The analysis of the F-C model’s behaviour patterns dur-

ing a DDoS attack and subsequent recovery is elaborated
on in this section. Here, we study the probability of DDoS
attack and recovery rates at a given time t to determine
the status of the F-C model and also to determine how the
recovery pattern gains over the attack pattern during the
attack.

Let BP be the observed F-C model behaviour pattern at
time t, so that o(t) = BP. Also, let BP = a + r, where a
corresponds to the attack pattern, and r corresponds to the
recovery pattern. Then, the probability of the attack rate is
Pr[attack pattern] = a

BP . Similarly, the probability of the
recovery rate is Pr[recovery pattern] = r

BP . Therefore, at
any given point in time t, the model is said to be healthy
based on its behaviour pattern if the recovery rate is much
greater than attack rate, i.e. Pr[recovery pattern] = r

BP
>> Pr[attack pattern] = a

BP .
Furthermore, at time ti, let ri be the recovery pattern

and ai be the attack pattern. During the healthy status of
the F-C model, it may be checked that at any point of time
ti, ri + ai = BP, where ri ≤ BP and ai ≥ 0 for all i’s. The
sequence of the recovery pattern {ri}i=0,1,2,··· is a monotone
increasing sequence. Clearly,

lim
i→∞

ri

BP
=

BP
BP

= 1 (24)

Similarly, the sequence of the attack pattern {ai}i=0,1,2,···
is a monotone decreasing sequence. Clearly,

lim
i→∞

ai

BP
=

0
BP

= 0 (25)
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(a) Trajectories of DDoS, benign, and cumulative impact. (b) Impact of changing βDDoS via DDoSA.

Figure 3: Outputs from numerical simulations on dynamical DDoS model.

Therefore, the recovery pattern gains over the attack pat-
tern with time during the DDoS attacks.

4. Testing

The model formulations described in Section 3 were
informed by discussions within the Energy Shield project
consortium, as well as by our direct collaboration with L7
Defense [30]. The models were tested for functionality,
sensitivity, and validity through numerical simulation and
using the L7 Defense’s AMI simulation environment. In
this way, we were able to tune, refine, and expand upon
different aspects of the models, and to test them within
realistic smart grid scenarios.

4.1. Numerical Simulations

To explore the models in terms of the inputs/outputs
and the relationships between parameters, numerical sim-
ulations were conducted. These also served as uni-variate
sensitivity tests [31]. By establishing a baseline, and then
varying values of a single parameter at a time, we were
able to assess the models’ functionality and identify any
indirect relationships.

4.1.1. Setup
To test the dynamical DDoS model, the observation pe-

riod was set to 300 seconds (5 minutes). Benign activity,
representing general background traffic to the target, be-
gins at 10 seconds and stops at 250. This is to allow us
to observe any acceleration in recovery when there is no
activity. Meanwhile, DDoS activity begins at 30 seconds
and stops at 90 seconds, replicating a short burst-style at-
tack. For easy comparison, DDoSL and BENL were both
set to 5.5 units per message, assuming that DDoS mes-
sages mimic the size of normal messages [8]. For arrival
rates, BENA was set to 25/s, whilst DDoSA was more in-
tense at 50/s. On the target, α was set to 100, and maxi-
mum resource capacity is set to 5,000 units.

Using this baseline, we performed uni-variate analysis
on α, DDoSL, BENL, DDoSA, BENA, FT, and activity du-
rations. In each case, we observed the trajectory of m(t)
for the two activity types individually and collectively.
Whilst we performed multiple runs in each case, we did
not use Monte Carlo simulation given that the model is
deterministic.

To test the F-C model, the observation period was also
set to 300 seconds. It is assumed that the attack is ongo-
ing and continues to degrade targets throughout this pe-
riod. For the baseline, both NX and NY were initialised at
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500 nodes each, where FT = 10, FX = 490, FY = 500. The
edge counts (which determine the dependency probabili-
ties λXX, λYY, and λYX) were EX = EY = EZ = 500. Note that
a dependency probability of 1 would mean that a depen-
dency exists between every inter- and intra-network node
pair. Meanwhile, for simplicity, ωA and ωD are both set to
0.5, and γ is set to the slower rate of 0.1.

Using this baseline, we performed uni-variate analyses
first (for base parameters) on ωA, ωD, and γ, and second
(for network parameters) on EX, EY, and EZ. In each
case, we observed the trajectories of the different sub-
populations over time. Given that the stochasticity of the
process, Monte Carlo simulation and averaging was used.

4.1.2. DDoS Model Results
For the relationship between activity types, when both

have the same scale, the one starting earlier can mask the
other with its depletion. When depletion events caused by
either activity overlap (i.e. occur in the same intervals),
the cumulative impact is felt on the target. This is depicted
in Figure 3 (a).

As βDDoS is the product of DDoSL and DDoSA (and the
equivalent is applicable for BEN), increasing either causes
a steeper (and earlier) downward trajectory for m(t). How-
ever, this only becomes apparent if m(t) has not already
been significantly reduced by earlier activity. At very
large values for β, where it overcomes α, m(t) drops to
minimum value almost instantly. Both parameters also
cause increases in ω, as they directly contribute to it. As
γ is a function of the target and not the traffic, the up-
ward slope for m(t) recovery remains consistent regard-
less of traffic scale. Figure 3 (b) demonstrates the impact
of changing β via DDoSA, where attack message size and
benign traffic scale remains constant.

The recovery trajectory is however influenced by activ-
ity duration. Longer ddur or bdur means that a longer re-
covery period is needed to approach M. Furthermore, the
longer the duration, the more likely it is that m(t) reaches
0 (or FC). The upward recovery slope is also pushed later
in time, so that services are impacted for longer.

As expected, increasing α leads to a flatter downward
trajectory. A larger α causes increases in (DDoS)mR(t)
and (BEN)mR(t) so that more of M is recovered, and at
very large values of α, m(t) = M and remains constant.
This is because the target is able to process and recover
incoming messages before there is any significant impact

on resources. Meanwhile, γ increases with α, as the latter
feeds directly into the former.

When FT = 0, FC also equals 0 (i.e. when m(t) drops
below 0, the target will fail). Then, M – FC = M, meaning
the target can deplete all the way to 0. To return to func-
tionality, m(t) must also reach 0. Hence, the time between
the failure point and the recovery point is nil. In this case,
γ rate becomes infinite so that the target recovers instantly.
Meanwhile, when FT = 100, FC = M, meaning that the
target can tolerate 0% loss. Then, M – FC = 0. The time
to reach FC will be nil, so that ω rate becomes infinite.
Then, when traffic is received, the target fails instantly.
To return to functionality, m(t) must increase from 0 to
FC, which is equal to M. Increasing FT therefore causes
an increase in ω and a decrease in γ.

4.1.3. F-C Model Results
IncreasingωA generally causes a larger number of com-

promises to happen sooner, resulting in a steeper decline
in the F populations . Across all test cases, CY was ob-
served to be greater than CX. This is likely caused by
the fact that the Y-tier represents the whole of network Y,
whilst the X-tier represents network X minus the targeted
nodes, so when NX = NY, (FY + CY) > (FX + CX). Further-
more, the Y-tier has a greater number of dependencies via
EY (intra-Y connections) and EZ (inter X-Y connections).

Increasing ωD similarly causes more compromise
events in a shorter amount of time, but with significantly
greater impact due to ωD being applied across all tiers
(whereas ωA is only applied in the T-tier). At very high
values forωD, decline in F populations happens almost in-
stantly, whilst very low values almost completely dimin-
ish any decline. This highlights the significant role of in-
terdependency in compromise propagation. The contrast-
ing impacts of the two ω rates is demonstrated in Figure
4 for CY populations (i.e. the furthest that compromises
may reach).

As expected, compromise events are also minimised as
the value of γ is increased. As this value is reduced, a
sharper decline is observed in the F populations, a be-
haviour that becomes more pronounced as γ drops below
both ωA and ωD. When γ = ωA = ωD, both FX and FY

drop by approximately half of their initial populations and
then remain constant. An explanation for this is that initial
decline is driven by the two ω rates plus a large F popu-
lation, which overcome the γ rate. Once the available F
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(a) Impact of changing ωA on the CY population. (b) Impact of changing ωD on the CY population.

Figure 4: Outputs from numerical simulations on F-C propagation model.

population is reduced, this force is lessened so that the γ
rate can sustain the populations at those levels. This effect
generally appears stronger in the stochastic F-C model
compared to the deterministic version.

When EX is 0 (i.e. there are no intra-X dependencies),
there is no activity beyond the T-tier because there is no
means for compromises to propagate. As EX is increased,
so do the number of compromises within the X network,
and subsequently, in the Y network too. If EX is larger
than EY and EZ, the final size of CX can surpass that of CY.
When EY is 0 (i.e. there are no intra-Y dependencies), Y
network compromises still take place because of depen-
dency links with the X network. Put differently, when EY

= 0, and EX = EZ, FX and FY nodes basically have the
same level of interaction with CX.

When EY is increased, compromise possibility within
Y also increases, and CY subsequently grows larger. On
the other hand, when EZ = 0 (i.e. there are no dependen-
cies between the X and Y tiers), no activity is observed
in Y. When EZ is increased, the number of compromises
grows at a greater rate than when EY is increased. This is
because Y is absorbing the impact of CX, and then ampli-
fying it internally via EY connections. Hence, EY appears
to be the main driver for compromises in the Y network.
This highlights the significant role of internal network de-

pendencies, in addition to inter-network dependencies.

4.1.4. Cross-Model Influence
The dynamical DDoS model is designed to output an

estimated resource consumption trajectory for some given
attack and target, as well as estimated depletion and re-
covery rates based on those inputs. To explore possible
interactions between the models, we combined them so
that attack and target parameters could be used to pro-
duce estimated values for ωA and γ in the F-C model. The
previously-defined baselines were used for the remaining
parameters.

The two models use the same observation period, so
that the impact of the ongoing attack can be observed at
the population level and on a single target node, but do not
currently run simultaneously. Full integration of the two
models is part of the planned future work for the Energy
Shield project (discussed more in Section 5).

As expected, increases in α were directly proportional
to increases in γ, meaning that at higher values, fewer
compromises are observed. As previously described, ωA

is infinite when FT = 100, and γ is infinite when FT =

0. Within this range, ωA grows and γ drops as FT is in-
creased. This causes more compromise events to happen
sooner in time. Meanwhile, increasing DDoSL, DDoSA,
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Figure 5: Diagram of the L7D AMI simulation environment structure.

BENL, or BENA results in a larger value for ωA too.
From the perspective of the F-C model, attack and be-

nign traffic are subsumed within ωA instead of being con-
sidered separately as done by the dynamical DDoS model.
The assumption is that normal activity on its own should
not lead to node failures. When compared to the corre-
sponding DDoS model outputs, faster declines in the F
populations of the F-C model align with faster depletion
of available resource units.

4.2. AMI Simulations

L7 Defense [30] is a software and cyber-defence com-
pany who provide AI tools for the protection of control
centres and critical infrastructure. They are specialists
in defence against large-scale DDoS attacks, and a fel-
low member of the Energy Shield project consortium. To
validate the proposed models, we collaborated with L7
Defense to adapt and use their AMI simulation environ-
ment. Based on their professional insights, a number of
test cases were defined and the results were then used to
assess the predictive capabilities of the dynamical DDoS
and F-C models.

The Python-based simulation environment is designed
to mimic an AMI network. This includes a client layer, an
aggregation layer, and a backend layer, as well as a bot-
net. The backend consists of a server, which receives all
incoming requests and processes them, plus an attached
SQL database. There are two types of client: smart me-
ters and generic OT endpoints. New smart meters join the

network over time, each generating a registration-update
request pair. The former contains the meter’s identity
information, whilst the latter contains its initial energy
reading. Both registration and update requests are sent
to the aggregator layer where a PLC bundles them into
batch requests, which are then forwarded to the backend
at given intervals. If successful, a meter’s registration de-
tails are added to the database. Registered meters con-
tinue to send periodic updates on their energy readings
over time. Meanwhile, generic OT endpoints in the client
layer generate intermittent fetch requests - sent directly
to the backend - to retrieve recent consumption data per
region. Figure 5 gives a depiction of the environment.

The emulated botnet consists of a churning population
of bots so that the attacking IPs change over time. To ex-
plore the non-trivial threat of an application layer DDoS
attack [8], active bots are given the ability to launch up-
date or fetch floods against the backend, mimicking PLCs,
meters, or OT endpoints. In order to test the role of in-
terdependency, the fetch attack scenario (FET-SER) was
used in this work. The server itself is directly targeted,
allowing us to observe the impact of increased server load
on the PLCs and clients. We also used a neutral scenario
(NO-ATT), without any botnet activity, as a baseline.

4.2.1. Setup
The AMI setup in this study consists of three PLCs

serving a contiguous range of regions, with 30 regions
in total and up to 30,000 meters joining the network over
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(a) AMI simulation environment. (b) Dynamical-DDoS model (single run). (c) Dynamical-DDoS model (mean).

Figure 6: Comparison of resource consumption results generated by the simulator and predicted by the dynamical-DDoS model (where consumption
is estimated per available CPU.)

50 minutes. Updates are generated by smart meters ev-
ery 300 seconds and fetch requests are generated by OT
endpoints every 120 seconds. PLCs forward aggregated
registrations and updates every 10 and 80 seconds, respec-
tively. The maximum bot count is 20,000, with 1,000 bots
active at the start time. Logs are collected on the client,
aggregation, and botnet layers for requests generated, re-
ceived, blocked, and timed-out. Logs are collected on the
server for request arrivals and CPU usage.

To explore benign traffic, the simulator was run mul-
tiple times in NO-ATT mode, and the mean interval val-
ues were calculated. From this, the mean benign message
count and mean CPU usage per interval were used to es-
timate BENL (i.e. normal load) as messages per CPU us-
age per interval (i.e. the inverse value of CPU usage per
messages received). Similarly, malicious traffic was ex-
plored by running the simulator with only the botnet and
backend. From the averaged interval values, we extracted
the mean DDoS message count and combined this with
mean CPU usage per interval to estimate DDoSL (i.e. at-
tack load). These estimates were applied to the dynamical
DDoS model to generate values for ω and γ.

We then ran the full simulation (with clients, PLCs, the
backend, and the botnet) in FET-SER mode for multiple
runs of around 5 minutes each. Using the averaged in-
terval values, the mean benign and attack message arrival
rates were used to estimate BENA and DDoSA.

Conceptually, the server-database backend combina-
tion is aligned to the target network T in the F-C model.
Based on observations of CPU usages spikes and corre-
lated timeouts, we defined a functionality threshold for the
server and determined its status (F or C) by comparing the
threshold to its CPU readings over time. The wider man-
agement network of PLCs (which depend on T) is then
aligned to network Y. A PLC’s functionality is a func-
tion of the availability of its prerequisite node, which here
is the server. Therefore, another threshold was selected
for timeouts received for forwarded batch registration re-
quests. When timeouts exceed the threshold, we classify
the dependency link as failed and subsequently, the PLC
as compromised. Finally, the client layer is aligned to the
dependent network X. Once again, clients fail when their
dependency links fail. Client population status is hence
defined by the total number of failed registration attempts
logged on all PLCs in the aggregation layer.

Some minor adjustments were made to the models to
better align with the simulator scenarios. Firstly, a birth
rate µ was added to the F-C model to account for the sim-
ulator’s steady addition of new smart meters. Where p
is the sampled number of new nodes added, network Y’s
equations are updated as follows:
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(a) AMI simulation environment. (b) F-C model (single run). (c) F-C model (mean).

Figure 7: Comparison of compromised population results generated by the simulator and predicted by the F-C model.

PY1 = µ {FY + p,CY + 0} (26)

PY2 = ωD (λYX FY CX) {FY − 1,CY + 1} (27)

PY3 = ωD (λYY FY CY) {FY − 1,CY + 1} (28)

PY4 = γCY {FY + 1,CY − 1} (29)

Meanwhile, to account for the variability observed in
CPU usage on the server, the dynamical DDoS model was
updated so that traffic loads (BENL and DDoSL) are sam-
pled from the normal distribution using the estimates de-
scribed previously. Similarly, to account for the variation
in traffic arrival rates at the server (due to possible losses
during transmission), the arrival rates (BENA and DDoSA)
are sampled in the same way. The Python scripts use the
psutil package, which logs CPU usage as a percentage
over the number of available CPU cores each time it is
called. Therefore, the value of M was kept consistent
with the numerical tests, and m(t) was converted into a
percentage of the total available M consumed, allowing
direct comparison. Lastly, α was lowered to 50 based on
log observations.

4.2.2. Results

We first note some general trends observed in the simu-
lation environment to assess the behavioural assumptions
made when developing the models. Mean resource loads

for benign (BENL) and DDoS (DDoSL) messages (un-
der our estimations) were relatively close but with DDoS
messages having slightly less load. For example, in a sin-
gle round, BENL was estimated at 11.32, whilst DDoSL

was estimated at 7.23. This makes sense as we would ex-
pect DDoS messages to aim to mimic normal behaviour
in order to stay inconspicuous for as long as possible.
Keeping message size slightly smaller can enable this,
balancing the malicious message arrival rates which are,
of course, far larger. For example, in the same round, we
estimated BENA to be 4.59, whilst DDoSA was 77.66 mes-
sages per interval.

Figure 6 shows the resource consumption, or the in-
verse m(t), recorded by the simulator (a), and generated
by the updated dynamical DDoS model for a single run
(b) and averaged over multiple runs (c). They show rela-
tively manageable consumption caused by benign traffic,
with irregular spikes and some high peaks. A steadily in-
creasing trend can be seen in the highest spikes, with the
simulation outputs portraying a more consistent pattern.
When compared against the logs, the peaks in (a) corre-
late with the periodic batch updates pushed by PLCs to
the backend. A similarly consistent pattern is therefore
not present in the randomised outputs of the generalised
DDoS model. Nevertheless, the model provides a close
approximation of the simulated activity, especially when
averaged. The increasing trend in (a) can be attributed to
the growing number of meters joining the network, which
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is captured indirectly in (c) as an accumulating load on
the targeted resources.

A rapid increase is observed in resource consumption
by DDoS traffic in the initial stages of the observation. In
(a), consumption remains consistently high, but fluctuates
around the estimated maximum (as split across multiple
CPUs), before starting to fall as the simulation ends. For
the model-generated results, we see DDoS traffic main-
tain a similarly high consumption rate, but due to our flat
approximations, without the same fluctuations. The small
changes in the simulation logs may be caused by variable
processing delays on the server, which the current model
does not consider. However, despite these simplifications,
the dynamical DDoS model still appears to capture the
key contributing factors and the correct trajectories for at-
tack impact. We have also demonstrated that fine-tuning
and adaptation is possible to fit the model to particular
scenarios, which provides a good foundation for further
development.

Figure 7 shows the compromised populations for a
sample test case as generated by the simulator (a), and as
predicted by the F-C model for a single run (b) and aver-
aged across multiple runs (c). Between the simulated and
model-generated results, we can see a comparable pattern
in CT, with initial fluctuations that eventually settle into a
constant state of compromise for the rest of the observa-
tion period. This is because in the simulator, the server
quickly begins to suffer from high CPU usage as the load
of the DDoS attack accumulates, which corresponds with
the rate of depletion on the representative T node in the
model.

The predicted population trajectories for CX are also
closely matched. In the simulated output, CX continues
to fluctuate, whereas in the model output, it becomes con-
stant. Investigations of the logs suggest that this is caused
by the variation in the requests each PLC receives per in-
terval. Since PLC status per interval depends on the num-
ber of timeouts received, periods of fewer incoming re-
quests lead to corresponding periods with fewer timeouts.
If under the defined threshold, this leads to that PLC being
recorded as functional. Meanwhile, in the F-C model, we
assume a constant level of dependency, which leads to less
fluctuation between F and C states. Otherwise, similar to
the server, the PLCs initially vacillate a little between F
and C, before at least 2 out of the 3 (on average) become
compromised and remain so for most of the observation

period.
The CY population generally shows rapid increase

caused by the gradual addition of new nodes to the client
layer. During a simulation run, newly added smart meters
will be recorded as compromised when they try to regis-
ter, such that the time to failure will be the delay between
the meter’s creation and the PLC’s failed batch forward
request attempt to the server. With a short forwarding in-
terval and an ongoing attack, this happens quickly, caus-
ing a sharp increase in CY. Hence, we found that the value
of p in relation to the birth rate µ must be sufficiently high
to match this, and variation in meters added per interval
should be accounted for. This was easily tuned by sam-
pling around an estimated mean value.

We also noted during these tests that a limitation of
the model is that for each tier, the initial starting popula-
tion must be greater than 0 to ensure some active rates of
change. We therefore initialised the model FT=1, FX=3,
and FY=2, assuming 2 existing smart meters instead of
0 as in the simulator. Nevertheless, taken alongside the
numerical results, the model appears to show good per-
formance for larger and smaller populations.

Overall, the results show the F-C model performs well
in approximating the compromise rates and patterns of
interconnected networks under a DDoS-type attack. De-
spite some minor discrepancies caused mostly by the level
of abstraction necessitated by this type of model, the sim-
ulation comparisons show that the population-based ap-
proach to exploring interdependency has validity and is a
plausible alternative to graph-based methods.

5. Discussion

As discussed in Section 2, many existing works use
graph-based percolation and/or simulation-style mod-
elling. The main advantages of this are the high-level of
detail that can be considered, including individual node
and link behaviours, and the application of graph theory
for analysis. In contrast, the F-C model follows the epi-
demiological modelling approach to observe systems at
the population level. It is designed to estimate the scale of
an incident by measuring rates of change in populations,
giving a high-level view of the situation rather than de-
tails of specific node and edge failures. This enables the
tracking of node statuses in large populations that would
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otherwise be difficult and costly to model. Given the ad-
vantages of both approaches, the intention is for the F-C
model to sit alongside graph-based methods to provide a
simpler and quicker (and perhaps in some cases an in-
terim) way to estimate network vulnerability.

The results presented in the previous section show that
this is possible, as both F-C and DDoS models were able
to closely approximate the behaviours of the AMI simu-
lator. Furthermore, the F-C model makes it easier to test
different structures, without having to model them at full-
scale, simply by adjusting the dependency parameters and
edge probabilities. The numerical analyses showed that
the intra-dependency of a network can amplify its inter-
dependency with another network, assuming that inter-
dependencies with the latter are required for the fulfilment
of intra-dependencies in the former. Hence, by exploring
different network structures, it may be possible to opti-
mise towards maximum functionality within a threshold
for interdependency. Alternatively, different structures
may be explored to add network redundancy [32]. This
is a topic for further research.

Another avenue for research is in deriving formula-
tions for ωD, which was shown to be distinct from attack-
driven depletion (ωA), and important in driving subse-
quent compromises. It should be a function of the type
of dependency that exists between two nodes or popu-
lations, considering what it delivers (e.g. data, power,
or access) and the direction. For example, Dudenhoef-
fer [33] included categories for physical, informational,
and procedural, whilst Falahati et al. [34] defined di-
rect and indirect component-to-component, and network-
to-component dependencies. Additionally, the numerical
tests showed that EX, EY, and EZ scaled the levels of com-
promise in and across networks. Therefore, the quantity
of each type of dependency must also be considered.

A disadvantage of the epidemiological approach is that
it requires a level of abstraction and generalisation of in-
dividual characteristics within a defined population. This
assumption of homogeneity can be mitigated by grouping
similar devices within the same logical or geographical
area into separate sub-populations. We posit that it can be
reasonably assumed that for a single deployment scenario
by a single organisation, devices serving similar functions
are likely to have a similar make, model, capabilities, and
constraints. These details can then be the basis for defin-
ing dependencies and failure thresholds, thereby preserv-

ing some node heterogeneity.
Another potential disadvantage is that the model re-

veals the numbers of F and C nodes, but does not re-
veal where surviving node clusters or giant components
may lie. The use of sub-populations can also help with
this, especially if multiple smaller groups are included. In
this case, a mostly-functional sub-population at the end
of the test would represent the surviving (and/or recov-
ered) nodes. Furthermore, the 3-tiered version of F-C can
be expanded by adding a new population and defining its
connectivity. This could be used to explore larger or more
complex smart grid networks, as well as external systems
with which the grid might have interdependent relation-
ships [27].

In future iterations, we aim to further integrate the F-
C and DDoS models so that they run simultaneously and
so variable depletion and recovery rates can be consid-
ered. This will allow node-specific behaviours, like the
request transmission intervals of the simulated devices,
to be included so that fluctuations in activity are better
represented. The simulations also highlighted the role of
transmission channels which may cause delays or other-
wise affect the arrival rate of messages on the target. En-
abling the use of variable depletion rates would mean ar-
rival rates can be applied stochastically per interval.

Finally, it is of course possible that the smart grid is tar-
geted with attacks other than DDoS, and may be even be
confronted with multiple types of attack simultaneously
in a single campaign [27]. The design of the F-C model
means that ωA can theoretically represent the degradation
in functionality caused by any type of attack, single or
combined. The complexity associated with the definition
of ωA will be offloaded to an attack model (like the DDoS
one presented in this work), making the F-C model flexi-
ble in this regard. Another possibility is the exploration of
different types of DDoS attack, including low-rate, with
variation of the DDoS model. The previously mentioned
integration approach should therefore be simple enough
to switch out attack models for this purpose.

6. Conclusions

Society’s growing demand for electricity has driven the
move to smart grids, which integrate IT systems with the
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existing power infrastructure. This introduces interde-
pendencies between communication and power networks,
so that disruptions at one point can propagate iteratively
throughout the entire grid. Furthermore, communication
networks introduce cyber security vulnerabilities to the
previously private power grid systems. Components and
flows are vulnerable to DDoS attacks that can deplete the
resources of a link or a device, causing it to fail in its du-
ties to its dependent nodes, triggering a cascade of disrup-
tion. It is therefore important to identify interdependency
relationships and the trajectories of such cascading fail-
ures so that better defence and contingency approaches
can be developed.

To address this, we have presented the
epidemiologically-based F-C compromise propaga-
tion model, supported by the dynamical DDoS model, to
explore DDoS attacks on a targeted (Internet-facing) por-
tion of the IT network and the subsequent impact this has
on attached dependent OT network. Through numerical
testing and multivariate analysis, we explored the impact
of the defined parameters, and validated the models using
an AMI simulation environment. The results showed
that the proposed models can satisfactorily estimate the
simulator results, and can therefore be considered in
future as an alternative to graph-based modelling for
predicting the vulnerabilities of interconnected networks,
such as those within critical infrastructure like smart
grids.
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[28] M. Janić, Modelling the Resilience of Rail Pas-
senger Transport Networks Affected by Large-Scale
Disruptive Events: The Case of HSR (High Speed
Rail), Transportation 45 (4) (2018) 1101–1137.

[29] E. B. Wilson, J. Worcester, The Law of Mass Ac-
tion in Epidemiology, Proceedings of the National
Academy of Sciences of the United States of Amer-
ica 31 (1) (1945) 24.

[30] L7 Defense, last accessed 10th February 2021
(2021).
URL https://www.l7defense.com/

[31] V. Kocabas, S. Dragicevic, Assessing Cellular Au-
tomata Model Behaviour Using a Sensitivity Anal-
ysis Approach, Computers, Environment and Urban
Systems 30 (6) (2006) 921–953.

[32] G. Fu, R. Dawson, M. Khoury, S. Bullock, Inter-
dependent Networks: Vulnerability Analysis and

19

https://www.l7defense.com/
https://www.l7defense.com/


Strategies to Limit Cascading Failure, The European
Physical Journal B 87 (7) (2014) 1–10.

[33] D. D. Dudenhoeffer, M. R. Permann, M. Manic,
CIMS: A Framework for Infrastructure Interdepen-
dency Modeling and Analysis, in: Proceedings
of the 2006 Winter Simulation Conference, IEEE,
2006, pp. 478–485.

[34] B. Falahati, Y. Fu, L. Wu, Reliability Assessment
of Smart Grid Considering Direct Cyber-Power In-
terdependencies, IEEE Transactions on Smart Grid
3 (3) (2012) 1515–1524.

Dilara Acarali is a researcher at
the Institute for Cyber Security at
City, University of London, where
she earned a PhD in Information En-
gineering. She also holds a BEng in
Internet Systems Engineering. Her

current research is focused on the predictive modelling
of cyber attacks, and her wider research interests include
data privacy, data analytics, IoT security, and sustainable
technology. She has industry experience in network engi-
neering and network security, having worked many years
within the UK technology sector for telecoms and IT ser-
vice providers.

K. Rajesh Rao received a B.E. de-
gree in Computer Science and En-
gineering and an M.Tech. degree
in Computer Science and Informa-
tion Security. His Ph.D. degree is
in the area of Information Security

from Manipal Academy of Higher Education (MAHE),
Manipal, India. Currently, he is an Assistant Professor-
Senior at Manipal Institute of Technology, MAHE, and
is also associated with City, University of London as a
Researcher in the area of cyber security. His research in-
terests include, but are not limited to, security analytics,
access control models, cloud security, internet of things,
and soft computing.

Muttukrishnan Rajarajan is
Professor of Security Engineering
at the City, University of London,
where he currently leads the Institute
for Cyber Security. He is a Visiting

Researcher with British Telecom’s Security Research and
Innovation Laboratory. His research interests include
privacy-preserving data analytics, cloud computing, IoT
security, and wireless networks. He has published well
over 300 articles and continues to be involved in the
editorial boards and technical programme committees
of several international security and privacy conferences
and journals. He is an Advisory Board Member of the
Institute of Information Security Professionals, U.K., and
an advisor to the U.K. Government’s Identity Assurance
Programme (Verify U.K.).

Doron Chema is a co-founder of
L7 Defense who has played the role
of CEO from its day of establish-
ment. Doron came up with the L7
innovative platform technology idea
in the early days, and has since man-

aged efforts in its on-going development into a full-scale
product and solution suite, side-by-side with the manage-
ment of the company. Doron has a vast amount of expe-
rience in customer-facing product development, as well
as in architecture design, bio-algorithms, and enterprise
software development. Prior to L7 Defense, he led ma-
jor R&D efforts in various positions in the Israeli hi-tech
industry. Doron holds a Ph.D. degree in Bioinformatics
from the TLV University.

Mark Ginzburg is a co-founder
of L7 Defense who has played the
role of Head of R&D and algorithms
from its day of establishment. He has
a vast amount of hands-on and man-
agement experience in various fields

of technology and algorithms, including ML/AI, cloud ar-
chitecture, cyber security, cryptography, and computer vi-
sion. Prior to L7 Defense, Mark managed algorithm re-
search and development teams in the Israeli hi-tech indus-
try and military. Mark holds an MSc degree in Computer
Science from the Technion (IIT).

20


	Introduction
	Related Work
	Model Design
	Dynamical DDoS Model
	Target Characterisation
	Traffic Activity
	Activity Impact
	Rate Estimations

	Functional-Compromised (F-C) Model
	Network Population
	Mathematical System
	Transitions
	Parameters
	Behaviour Pattern


	Testing
	Numerical Simulations
	Setup
	DDoS Model Results
	F-C Model Results
	Cross-Model Influence

	AMI Simulations
	Setup
	Results


	Discussion
	Conclusions

