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Abstract

Contemporaneous correlations are important for portfolio optimization problems.
We propose a newly developed machine learning tool, the OWL shrinkage method,
which explicitly exploits stocks’ contemporaneous correlations by assigning similar
positions to correlated stocks (the grouping property). We find strong evidence that
OWL-based portfolio strategies outperform other benchmark strategies in the lit-
erature when stocks exhibit strong correlations. In particular, the OWL shrinkage
method bridges the gap between the naive (but well performing) 1/N portfolio strat-
egy (DeMiguel et al., 2009b) and the portfolio optimization framework: our OWL-
based portfolio strategies yield very similar portfolio weights to (yet not the same
as) the 1/N portfolio strategy, but outperform the 1/N portfolio strategy in terms of
both the Sharpe ratio and turnovers. We also show that the superior performance in
Sharpe ratio against the 1/N portfolio is significant.
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1 Introduction

Despite the theoretical elegance of the mean variance efficient (MVE) portfolio theory,

put forward by Markowitz (1952), its empirical performance is often criticized due to the

difficulties in precisely estimating two important ingredients in its formula: the expected

asset returns and the variance-covariance matrix. Since then, continuous attempts and

contributions have been made to improve the empirical performance of the MVE portfolio.

Michaud (1989), Jagannathan and Ma (2003) and DeMiguel et al. (2009b) argue that the

estimation error in the expected returns is so large that nothing much is lost in ignoring

the mean altogether when no further information about the population mean. Ledoit

and Wolf (2003, 2017), DeMiguel et al. (2009a) and Jagannathan and Ma (2003) find

that constraining portfolio weight in the optimization framework and/or shrinking the

variance-covariance matrix improve portfolio performance. Although many efforts have

been made to improve the performance of optimized portfolio strategies, DeMiguel et al.

(2009b) demonstrate that the simple 1/N (equally weighted) portfolio strategy outperforms

14 other optimized portfolio strategies, making this non-optimized naive diversification

strategy a competitive benchmark in comparing portfolio selection strategies.

This paper builds upon and extends the norm constrained optimization framework by

DeMiguel et al. (2009a). However, our method differs in an important way: we introduce

a newly developed machine learning tool, the Ordered-Weighted-LASSO (OWL) shrink-

age method, which admits two important properties. First, it achieves sparsity, that is, it

shrinks unimportant stocks’ positions to zero. This means that the OWL shrinkage method

encompasses the LASSO shrinkage method considered in DeMiguel et al. (2009a). Second,

the OWL shrinkage method admits the grouping property which distinguishes itself from

the LASSO shrinkage method: it identifies correlated stocks and assigns similar portfolio

weights to them. Note that although the MVE optimization framework takes into account

the stock correlations through the variance-covariance matrix, large estimation errors in

the sample analog of the variance-covariance matrix erode all gains from optimization if

no further regularization considered. Therefore, the OWL shrinkage method exploits stock

correlations from a different channel compared to the standard MVE optimization frame-

work. Empirically, we find that exploiting contemporaneous stock correlations substantially
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improves the performance of the MVE portfolio. This point becomes clear when we con-

sider transaction costs in measuring the performance of portfolio strategies. The grouping

property achieves low turnovers while the LASSO shrinkage method may result in high

turnovers due to unstable stock selections from highly correlated stocks.

To better understand the grouping property, we theoretically show that three elements

determine the degree of grouping (Theorems 3.1 and 3.2). 1) The correlation between

stocks. Highly correlated stocks encourage stock grouping. 2) There is a hyper parameter

in the design of the OWL shrinkage component that determines the grouping intensity.

While we determine the value of this hyper parameter by cross-validation, investors can

conveniently determine an ideal level of the grouping intensity depending on their prior

information. It is worth noting that the OWL shrinkage component collapses to the LASSO

method when this hyper parameter is set to zero.1 3) For the MVE portfolio construction,

differences in the mean returns also play a role. Holding everything else the same, stocks

with similar mean returns are likely to be assigned with similar positions for the MVE

portfolio.

This paper also relates to DeMiguel et al. (2014), which implement a VAR(1) model

to exploit time-series correlations between stocks and find that lagged stock returns can

be utilized to improve portfolio performance. In contrast, our paper focuses on utilizing

contemporaneous stock correlations to improve portfolio performance. This paper also con-

tribute to the algorithmic method for solving portfolio optimization problems with multiple

constraints. We devise an efficient algorithm to solve the OWL regularized optimization

problem with multiple constraints on portfolio weights.2 For example, investors can in-

corporate upper and/or lower bound constraints for each individual stock. This bound

constraint can be obtained based on their prior beliefs or other existing portfolio strategies.

Therefore, our optimization framework can be used to improve any existing portfolio strat-

egy, where the existing portfolio strategy provides information on the additional bound

constraints.

Empirically, we test candidate portfolio strategies in five asset classes. First, we consider

1See Lemma 1 for details.
2A tailored ADMM algorithm will be introduced which achieves fast convergence. More details see

Section 3.3.
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the Fama-French 25 (FF25) portfolios because of their popularity as test assets in the

finance literature. It is worth noting that, because they are sorted portfolios, they are less

prone to large variations in returns compared to individual stocks. Second, we consider the

S&P 500 (SP500) stocks with daily return frequency and we rebalance our hedge portfolio

either weekly or monthly. Third, we also consider the S&P 100 (SP100) stocks with monthly

return frequency and we rebalance our hedge portfolio monthly.3 S&P 500 and S&P 100

stocks are usually the largest stocks in the market. To test candidate portfolio strategies

on small and medium stocks, we follow Jagannathan and Ma (2003) and DeMiguel et al.

(2009b) and adopt the randomly selected stocks approach: in April each year, we randomly

select 500 stocks with daily return series from the CRSP dataset (and 100 stocks for monthly

return series) which have no missing data in the past three years (10 years for monthly

return series) and in the next one year. The randomly selected 500 stocks with daily returns

and 100 stocks with monthly returns consist of our fourth and fifth test assets classes.

We adopt an out-of-sample procedure to compare candidate portfolio strategies. At

each point of time, we use a rolling window to estimate each stock’s weight (portfolio’s

weight for the FF25 case) to invest for the next period, then we roll the training sample

forward until the next rebalancing point. In the end, we obtain a sequence of out-of-sample

returns and portfolio weights, from which we can compute the out-of-sample Sharpe ratio

and turnovers.4 Notably, transaction cost, which is a monotonically increasing function of

turnovers, is an important consideration for investors. Therefore, we also consider a trans-

action cost adjusted Sharpe ratio (TCadjSR), which will be one of our main comparison

criteria. On the other hand, Sharpe ratio, formulated as the ratio between portfolio re-

turn and portfolio risk, is often dominated by the portfolio risk component. Therefore, we

also introduce the model confidence set (MCS) method of Hansen et al. (2011) to answer

the following question: which candidate strategies offer statistically the best out-of-sample

returns, while portfolio risk determines the confidence band?

Our empirical findings complement some stands of existing literature and shed light

on new perspectives of portfolio selection strategies. First and foremost, DeMiguel et al.

3We require an invertible sample covariance matrix as an input in our optimization problem, thus we
need the time-series dimension larger than the cross-sectional dimension to obtain a non-singular covariance
matrix.

4Turnover is the change in portfolio weights right before and after rebalancing.

4



(2009b) show that the naive 1/N strategy outperforms 14 optimization-based strategies.

Our method bridges the gap between the naive diversification strategy and a well-defined

optimization framework. We show that the OWL-based portfolio strategies yield very

similar positions to (but not the same as) the 1/N strategy. However, they outperform the

1/N strategy in terms of both the Sharpe ratio and turnovers. It is a remarkable discovery,

as in the existing literature, it is difficult to find a portfolio strategy that can outperform the

1/N strategy by both the Sharpe ratio and the turnover criteria, see DeMiguel et al. (2009b)

for example. Second, OWL-based strategies perform better in large stocks than small stocks

and in monthly returns than daily returns. Generally, the OWL-based portfolio strategies

score higher than other portfolio strategies when using Fama-French 25 portfolios and the

SP100 stocks with monthly returns. A stylized fact is that large stocks with monthly

returns exhibit higher cross-sectional correlation than smaller stocks and daily returns.

However, this superior performance against other portfolio strategies is less obvious while

using randomly selected 500 stocks from the CRSP dataset. Nonetheless, the superior

performance of the OWL-based strategies against the 1/N strategy is prevalent across all

asset classes. This finding offers a guidance of effectiveness and suitability of OWL-based

strategies. Third, the MVE portfolio performs poorly due to excessive estimation errors

in expected returns and the variance-covariance matrix. However, the OWL embedded

MVE (MVE-OWL) strategies together with weight constraints produce sizable Sharpe

ratio and low turnovers. The MCS test confirms that the MVE-OWL strategies yield

significantly larger out-of-sample returns than all other portfolio strategies using FF25 as

test assets. This finding challenges some common stances in the existing literature. Because

of the excessive estimation error in the expected stock returns, it is better off to ignore the

expected return component altogether in the MVE framework, see Jagannathan and Ma

(2003). Therefore, the majority of the empirical portfolio selection literature is focusing on

optimizing the minimum-variance portfolio. Our finding suggests that it is still beneficial to

consider the MVE portfolio while using the OWL shrinkage method and additional weight

constraints.

The rest of this paper is organized as follows. Section 2 reviews related literature.

Section 3.1 outlines some popular portfolio optimization strategies in the related literature.
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They are also used as benchmarks in our empirical analysis. Sections 3.2 - 3.3 introduce

the OWL shrinkage method and discuss its statistical properties before devising an ADMM

algorithm to solve the OWL optimization problem with multiple constraints. Section 4

applies OWL-based portfolio strategies using five different asset classes and compares them

with other benchmarks.

2 Literature review

This paper naturally builds on a strand of literature devoted to exploring the portfolio

optimization theory. Since the groundbreaking work of Markowitz (1952), modern port-

folio theory has evolved rapidly. However, Markowitz’s portfolio theory has long been

criticized for working poorly empirically, because one needs to obtain the ex-ante returns

and variance-covariances matrix of stock returns, which are difficult to be estimated with

precision. Michaud (1989) looks into the “Markowitz optimization enigma” and finds that

the mean variance optimization is in fact “error maximization”. DeMiguel et al. (2009b)

study the simple equal weighted strategy and find it outperforms 14 other optimization

based strategies. They argue that estimation error in the expected asset return and the

variance-covariance matrix erodes any gains from optimization. Kan and Zhou (2007) show

that using the sample analogs of the expected returns and the variance-covariance matrix

can lead to very poor out-of-sample performance due to parameter uncertainty. They find

that holding the tangent portfolio and the risk free asset is no longer optimal, though

holding some other risky portfolios will help reduce the portfolio risk caused by parame-

ter uncertainty. Ledoit and Wolf (2003) propose a shrinkage-based estimation method for

the variance-covariance matrix. They suggest that shrinking the sample covariance matrix

linearly towards a target matrix (for example the identity matrix) will improve the out-of-

sample performance of the minimum variance portfolio. Ledoit and Wolf (2017) propose

a non-linear version of shrinkage estimator for the covariance matrix which shows better

performance than the linear version. Jagannathan and Ma (2003) suggest no-short-sale

constraint on all stocks and find significant gains in out-of-sample Sharpe ratio for the

minimum variance portfolio. They argue that such constraint helps reduce the upward

biased estimation errors in the variance-covariance matrix. DeMiguel et al. (2014) imple-
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ment a VAR(1) model to exploit time-series correlations between stocks and demonstrate

substantial gains in portfolio performance. DeMiguel et al. (2020) consider a portfolio op-

timization problem by selecting a large number of firm characteristics while embedding the

transaction cost in the object function.

This paper is also related to a new and fast growing field which uses machine learn-

ing techniques for portfolio optimization problems. DeMiguel et al. (2009a) propose norm

constraints on portfolio weights for the minimum variance portfolio. In particular, they

consider separately the LASSO and Ridge penalties on portfolio weights and find signif-

icant improvement on the out-of-sample Sharpe ratio of the minimum variance portfolio.

Our paper paper is closely related to DeMiguel et al. (2009a) in the sense that the OWL

shrinkage method is an extension of the LASSO shrinkage method (i.e. both 1-norm pe-

nalized optimization problems) employed in DeMiguel et al. (2009a). However, our OWL

method admits the grouping property which is absent from the LASSO shrinkage method.

Empirical analysis shows that the grouping property dominates our OWL-based portfolio

strategies, whereas the shrinkage effect is minimal in comparison5. Therefore, our OWL-

optimized portfolio weights would differ substantially from the LASSO shrinkage method

as in DeMiguel et al. (2009a). Ao et al. (2018) combine the unconstrained regression

with LASSO penalty and achieve superior portfolio performance. Inspired by the adaptive

LASSO in Zou (2006), Fastrich et al. (2015) incorporate the financial information into the

adaptive weights to determine the portfolio composition. Figueiredo and Nowak (2016)

study the ordered and weighted LASSO estimator and show that it has appealing property

of clustering correlated variables by assigning them with similar coefficients.

This paper is closely related to DeMiguel et al. (2014) and DeMiguel et al. (2009a).

However, our portfolio optimization method differs in several ways. First, we endeavor to

exploit the contemporaneous correlation between stocks instead of time-series correlations

considered in DeMiguel et al. (2014). Therefore, our strategies are more relevant to “stock-

picking” investors. Second, our OWL shrinkage method not only encompasses the LASSO

norm constraint in DeMiguel et al. (2009a), it also exploits contemporaneous stock corre-

lations. Third, we devise an optimization framework that enables investors to incorporate

5Note that this result is entirely data-driven. The OWL shrinkage method is not always dominated by
the grouping property and it depends on the data structure.

7



their prior beliefs into the optimization problem (i.e., investors can set upper/lower bounds

on portfolio weights for each individual asset).

3 Methodology

We first consider a simple case of the OWL shrinkage method in the portfolio optimization

problem, where no constraints are imposed on the portfolio weights. Then we move on to

impose additional constraints on portfolio weights for the optimization framework.

3.1 Setup

Consider N assets in the investment universe. Denote by Rt the returns of N assets in

the excess of risk-free rate at time t. Denote by µ (N × 1) and Σ (N ×N) the population

mean and population variance-covariance matrix of N asset returns, while µ̂ and Σ̂ are

their sample estimates. An investor, according to Markowitz (1952)’s classical portfolio

theory, aims to maximize the risk-adjusted portfolio returns, or equivalently:

min
w

(γ
2
w′Σw − µ′w

)
s.t. w′e = 1

(1)

where γ is a scalar that represents the investor’s absolute risk aversion, w is the N × 1

weighting vector of N assets, also referred to as positions, and e is a column vector of ones.

The closed-form solution of the above optimization problem is w =
1

γ
Σ−1µ. However,

Σ and µ are unobservable. Typically, we use the sample analogs µ̂ and Σ̂ in the above

equation, which gives

wMVE =
1

γ
Σ̂−1µ̂. (2)

Michaud (1989), DeMiguel et al. (2009b) and Jagannathan and Ma (2003) have pointed

out that the sample analogs of µ and Σ are subject to large estimation errors. In particular,

the estimation of the expected asset returns (µ) proves to be extra challenging. In fact, the

estimation error (of µ) is so large that it offsets all gains from optimization (Jagannathan
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and Ma, 2003). So in practice, focusing on the minimum variance (minVar) portfolio proves

to have better out-of-sample results than the mean-variance efficient (MVE) portfolio. In

this regard, the optimal weights for the minVar portfolio are obtained by optimizing (1)

while setting µ = 0, that is

wminV ar =
Σ̂−1e

e′Σ̂−1e
, (3)

where we use the sample analog for Σ. For the estimation error in the sample covariance

matrix, shrinkage estimator proves to be a useful remedy. For instance, Ledoit and Wolf

(2003) propose to shrink the sample covariance matrix towards a target matrix. They

suggest the following estimator

Σ̂LW03 = δΣ̂ + (1− δ)Σ̂target, (4)

where δ ∈ (0, 1) is a shrinkage intensity parameter and Σ̂target is a target estimator, which

can be, for example, the identity matrix.

DeMiguel et al. (2009a) show that imposing norm constraints on portfolio weights to

shrink them towards zeros substantially improves the out-of-sample Sharpe ratio of the

hedged portfolios.6 They suggest the following norm shrinkage methods

min
w

(γ
2
w′Σw − µ′w + λ||w||1

)
, (5)

or

min
w

(γ
2
w′Σw − µ′w + λ||w||22

)
, (6)

where

||w||1 =
N∑
i=1

|wi|, ||w||22 =
N∑
i=1

w2
i ,

and λ is a shrinkage intensity parameter. Shrinkage method in (5) is broadly known as

LASSO shrinkage, which produces sparse estimator for w, while (6) is referred to as Ridge

shrinkage, which shrinks all elements in w towards zero.

6We set µ = 0 for the minimum variance portfolio. Otherwise, we are optimizing the mean-variance
efficient portfolio.
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Jagannathan and Ma (2003) find that imposing no-short-sale constraints on portfolio

weights helps to improve out-of-sample Sharpe ratio. They propose the following constraint

in addition to (1):

wi ≥ 0, for all i ∈ {1, ..., N}. (7)

They argue that imposing this constraint leads to substantial reduction of extreme negative

positions of stocks which are caused by upward biased estimation of variances.

In addition, DeMiguel et al. (2014) reveal that stock correlations matter for portfolio

construction. They propose a vector-autoregressive (VAR) model to capture stocks’ se-

rial correlations and find that VAR-based portfolios outperform traditional unconditional

portfolios. To fix ideas, let us assume that the vector of asset return Rt follows a VAR(1)

process,

Rt+1 = a+BRt + εt+1, (8)

where a is a N × 1 vector of intercepts, B is a N ×N matrix of parameters, and εt is the

i.i.d. error term. Equation (8) is a reduced model, which suggests that tomorrow’s expected

stock returns depend linearly on today’s return. The linear dependence is characterized by

the coefficient matrix B, which describes the lagged cross-sectional and serial dependence.

On the other hand, contemporaneous correlations between stocks are left unexplained.

This paper builds on and extends DeMiguel et al. (2009a) and DeMiguel et al. (2014).

We introduce a newly developed machine learning tool, the ordered and weighted LASSO

(OWL), which (1) encompasses the LASSO shrinkage method in DeMiguel et al. (2009a);

(2) exploits contemporaneous correlations between stocks, drawing a distinctive line be-

tween our portfolio optimization approach and that in DeMiguel et al. (2014); (3) enables

adopting bespoke constraints on portfolio weights if investors have prior beliefs.7 We de-

vise efficient algorithms to solve the OWL optimization problem with/without additional

constraints on portfolio weights.

7Prior beliefs could come from investors’ exclusive information, or an existing trading strategy. In that
respect, it can be used as an improvement/refinement of any existing strategies.
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3.2 The OWL shrinkage method

We follow the idea of DeMiguel et al. (2009a) to add a penalty term in the object function

f(w), which measures the loss given portfolio weight w. The optimization problem can be

written as

ŵ = arg min
w

f(w) + Ωω(w), Ωω(w) = ω′|w|↓, (9)

where ω is a pre-specified weighting vector which will be specified in (11) below. w is a

vector of stock weights (positions) and |w|↓ is the vector that stores the absolute value of

stock weights, decreasingly ordered by its magnitude. Both ω and |w|↓ take values in a

monotone non-negative cone κ, which is defined as κ := {x ∈ RN : x1 ≥ x2 ≥ ... ≥ xN ≥ 0}.

f(w) can be any continuously differentiable function of w. However, in this paper we focus

on the mean-variance efficient portfolio (or the minimum variance portfolio if we set µ = 0),

which corresponds to

f(w) =
γ

2
w′Σw − µ′w, (10)

where γ is agent’s risk aversion level. We further specify ω to have a linear weighting

structure

ωi = λ1 + (N − i)λ2, (11)

where λ1 and λ2 are two hyper parameters which pin down ω, and the values of λ1 and λ2

are determined through cross validation.8 In order to solve the optimization problem in

(9) - (11), we use the proximal descent algorithm, more details about this algorithm can

be found in Sun (2019).

Next, we discuss some econometric properties of the OWL shrinkage method.

Lemma 1. Suppose that the pre-specified weighting vector ω of the OWL shrinkage method

is defined in (11). If λ2 is set to be zero, then the OWL shrinkage method is equivalent to

8In particular, we set a grid value of λ1 and λ2. Then, at each point on the grid, we split the sample
into 5 folds, using 4 folds to evaluate the model and obtain the estimated parameters. Then we use the
other 1 fold as out-of-sample to evaluate the Mean Square Forecast Errors (MSE). We rotate each fold
as the out-of-sample fold, and compute the average MSE. We repeat these procedures on each grid, and
compare the average MSE for each point on the grid. The one receiving the smallest average MSE will
determine the hyper parameter values.

11



the LASSO shrinkage as in (5), or equivalently

λ‖w‖1 = Ωω(w).

Proof: see Appendix B.1.2.

Lemma 1 shows that the OWL shrinkage method encompasses the LASSO shrinkage

method used by DeMiguel et al. (2009a). Furthermore, once we adopt a linear weighting

scheme for ω as in (11), the OWL shrinkage method is linked to the OSCAR regulariza-

tion introduced in Bondell and Reich (2008), which has appealing properties of clustering

correlated features. The OSCAR regularization unit is defined as

ΩOSCAR(w) = λ1||w||1 + λ2

∑
i<j

max{|wi|, |wj|}, (12)

which is a combination of the LASSO regularization (`1 norm) unit and a pair-wise `∞

norm unit.

Lemma 2. Suppose that the pre-specified weighting vector ω of the OWL shrinkage method

is defined in (11). Then the OWL shrinkage method is equivalent to the OSCAR shrinkage

method as in (12), or equivalently

ΩOSCAR(w) = Ωω(w).

Proof: see Appendix B.1.3.

Lemma 2 shows that by adopting a linear decreasing weighting scheme for ω as in (11),

the OWL shrinkage method is equivalent to the OSCAR regularization, which has property

of clustering correlated variables. However, the OWL shrinkage is a more general method

than the OSCAR regularization. For instance, by adopting a non-linear (for instance,

the inverse of the normal cumulative distribution function) weighting scheme for ω, the

OWL shrinkage method is equivalent to the SLOPE estimator proposed by Bogdan et al.

(2015), which is widely used in multiple testing. In the scope of this paper, we restrict

the weighting vector ω as defined in (11) because of the clustering property offered by the

12



LASSO

OWL

grouping

sparsity

Figure 1. Geometric interpretation of the atomic norm of LASSO and OWL regularization

OSCAR regularization and our objective of exploiting the contemporaneous correlations

between stocks. To gain some impression of how the OWL shrinkage method achieves

sparse selection and correlation identification simultaneously, we first look at the geometric

interpretation of the atomic norm of Ωω(w) in Figure 1.

Figure 1 depicts the atomic norm of OWL and LASSO regularization in a two-dimensional

space. We can see that the atomic norm of LASSO has all vertices on axes, which encourages

sparse selection of variables. On the other hand, the atomic norm of the OWL regulariza-

tion is octagonally shaped, having vertices on both axes and the ±45 degree lines. The

former (vertices on axes) encourages sparse selection and the latter (vertices on the ±45

degree lines) encourages variable grouping.9

The geometric interpretation offers a ballpark explanation of how the OWL shrink-

age achieves both sparse selection and correlation identification (grouping) simultaneously.

Next, we formally investigate some econometric properties for the OWL shrinkage method.

There is a rich literature in finance focusing on the sparse selection property offered by

LASSO type of estimators, see DeMiguel et al. (2020, 2009a), Fastrich et al. (2015) and

9Sparse selection means the vertices on axes will assign one variable zero coefficient and another non-zero
(in this 2-dimensional space), thus performing sparse selection. The variable assigned with zero coefficient
is shrunk off. Variable grouping means variables exhibiting high correlations will be assigned with the same
or similar coefficients. The vertices on the ±45 degree lines will dictate the tangent point with the contour
from the un-regularized solutions, which give the same or similar coefficients to both variables.

13



Chinco et al. (2019) for example. The OWL shrinkage method encompasses and shares

similar sparse-selection-properties of the LASSO estimator, and see Sun (2019) for a for-

mal investigation of the asymptotic property of the OWL estimator. For this reason we

focus on investigating the grouping property in this paper. Theorems 3.1 and 3.2 below

state the factors and condition that affect the grouping property.

Theorem 3.1. Let Σi. and Σj. denote the ith and jth columns of the variance-covariance

matrix and λ2 be the parameter defined as in (11). Suppose the loss function is defined as

in (10) while setting µ = 0 (i.e. minimum variance portfolio). If

‖Σi. − Σj.‖2 < λ2,

then ŵi = ŵj, where ŵi and ŵj are obtained by optimizing (9).

Proof: see Appendix B.1.

Theorem 3.1 shows that in the minimum variance portfolio optimization problem, if

two assets are highly correlated, i.e. ‖Σi. − Σj.‖2 is small, then they will receive the same

positions ŵi = ŵj. We regard this as the grouping property.10 The tuning parameter λ2

plays an active role in influencing the grouping property: a larger λ2 makes the condition

in Theorem 3.1 more likely to be satisfied and, therefore, contributes positively to portfolio

weights grouping.

Theorem 3.2. Let Σi. and Σj. be defined as in Theorem 3.1. Denote by µi, µj the expected

returns of the ith and jth asset. Let γ represent investor’s risk aversion level. Suppose the

loss function is defined as in (10) (i.e. mean-variance efficient portfolio). If

γ‖Σi. − Σj.‖2 + |µi − µj| < λ2,

then ŵi = ŵj, where ŵi and ŵj are obtained by optimizing (9).

Proof: see Appendix B.1.1

10Note that the grouping property also includes the case in which assets are assigned with similar weights.
For the ease of mathematical proof, Theorem 3.1 and 3.2 give the condition of exact equality for two assets’
weights and, they shed light on factors that influence the grouping property. From Figure 1 we can see
that the grouping property entails assigning similar weights to assets, if conditions in Theorem 3.1 and 3.2
are nearly satisfied.
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Theorem 3.2 extends Theorem 3.1 into a mean-variance efficient portfolio optimiza-

tion problem where investors care about both risks and expected returns. We find that,

compared to the minimum variance portfolio, both the difference in the expected returns

|µi − µj| and correlation with other assets ‖Σi. − Σj.‖2 influence the grouping property:

if two assets have similar expected returns and are similarly correlated with other assets

(i.e. |µi − µj| and ‖Σi. − Σj.‖2 are small), then they are likely to be grouped together (i.e.

ŵi ≈ ŵj). The risk aversion parameter γ can be viewed as a scaling parameter adjusting

weights between the risk component and the expected return component. Also, large λ2

encourages grouping.

It is worth stressing that we derive the grouping property using the population values of

the variance-covariance matrix Σ and the expected returns µ, which are unobservable and

difficult to estimate with precision. However, the proof of Theorem 3.1 and 3.2 does not

depend on the asymptotic properties of Σ or µ. In other words, we arrive at those results

only using properties of the OWL regularization, and those results are also applicable to Σ̂

and µ̂, which are sample analogs of Σ and µ. It is well known that large estimation errors

in those sample analogs erode any gains in optimization. In the next subsection, we set

out to constrain portfolio weights while using these sample analogs µ̂ and Σ̂ to mitigate

estimation errors.

3.3 The OWL optimization problem and the ADMM algorithm

Let us consider a more common problem, where investors have some prior information on

stocks. For instance, an investor may hold positive opinions on some specific stocks while

negative on others, thus she may want to impose some bounds constraints on the weight

of those stocks. To generalize those constraints, we impose the following inequality

lb � w � ub, (13)

where lb (ub) is a lower (upper) bound for the vector of portfolio weights w. For any

x, y ∈ RN , x � y implies xi ≤ yi, for all i ∈ {1, ..., N}. However, the optimization problem

of (9) with constraint (13) is challenging to solve with gradient descent algorithm, which
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is commonly used in machine learning algorithms. Hence, we introduce a newly developed

ADMM (Alternating Direction Method of Multiplier, Boyd et al. (2010)) algorithm to

solve this constrained optimization problem. The outline of the algorithm is the following:

equation (9) consists of two components, one is f(w) which is differentiable with respect

to w, another is Ωω(w) which is not differentiable with respect to w. In order to make

computation easier and tangible, we introduce a new variable v, and replace it with w in

the undifferentiable component Ωω(w), so that we can optimize each component separately.

In addition, we impose an extra constraint that these two random variables are equal w =

v. For this reason, this algorithm is named “alternating direction method of multiplier”.

Therefore, the constrained OWL optimization problem can be written as

min
w,v∈RN

[γ
2
w′Σ̂w − µ̂′w + Ωω(v)

]
, (14)

s.t. w = v, (15)

w′e = 1, (16)

w � lb, (17)

w � ub, (18)

where Ωω(v) = ω′|v|↓ defined similarly as in (9), Σ̂ and µ̂ are sample analogs of Σ and µ,

and e is a column vector of ones. For the technical details of the ADMM algorithm, see

Appendix A.

4 Empirical Analysis

In this section, we apply the OWL shrinkage method with or without additional constraints

on portfolio weights and compare them with other portfolio strategies in the literature. We

consider five different asset classes with daily and/or monthly returns. The variety in

characteristics of these asset classes summarizes the pros and cons of each strategy which

we will discuss in details later.

In Section 4.1, we first introduce the data (five asset classes) and all candidate strategies.

Section 4.2 explains the empirical method we employ to compare strategies and Section
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4.3 outlines the comparison criteria we use for ranking strategies. Section 4.4 argues the

performance of the candidate strategies mainly by their Sharpe ratio criterion. To test the

significance of difference in Sharpe ratios, we employ a bootstrap based Sharpe ratio test by

Ledoit and Wolf (2008). In Section 4.5, we compare the performance of candidate strategies

based on their transaction costs adjusted returns because the Sharpe ratio criterion tends

to be dominated by the variance component. To test which strategies statistically produce

higher returns, we use the model confidence set (MCS) test by Hansen et al. (2011).

4.1 Data

We first consider the Fama French 25 portfolios (FF25) from July 1927 to December 2017.11

FF25 is obtained by sorting stocks into five by five tranches according to their size and

book-to-market ratio. The return of each tranche is the average returns of a large number

of stocks allocated to the tranche sharing similar characteristics (size and book-to-market

ratio in this case). Since returns of these tranches are averaged returns of many stocks,

they are less prone to large variations caused by idiosyncratic shocks.

We then consider the S&P 500 stocks with daily returns (SP500d), from 1st January

1978 to 31st December 2017 and the S&P 100 stocks with monthly returns (SP100m) from

January 1978 to December 2017. Stock return data are obtained from the CRSP stock

return files from Wharton Research Data Services.

While S&P 500 and S&P 100 stocks are typically the largest stocks in the market,

to investigate stocks with medium or small sizes, we follow DeMiguel et al. (2009a) and

Jagannathan and Ma (2003) to consider the randomly selected 500 stocks from the CRSP

daily return file (CRSP500d). We also conduct a similar procedure to randomly select 100

stocks from the CRSP monthly return file (CRSP100m).

Figure 2 shows the correlation coefficient matrices of SP500d, SP100m, CRSP500d and

CRSP100m stocks, respectively. We observe that SP500d returns exhibit higher correla-

tions than the randomly selected CRSP500d returns. Similarly, we observe that the SP100m

exhibit higher correlations than CRSP100m returns. These patterns may reflect the fact

that large stocks are less prone to idiosyncratic noises and more affected by market-wide

11Data is downloaded from Kenneth French’s website at http://mba.tuck.dartmouth.edu/pages/

faculty/ken.french/data_library.html
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(a) SP500d (b) SP100m

(c) CRSP500d (d) CRSP100m

Figure 2. Correlation coefficient matrices of four asset classes
Note: yellow and deep blue indicate high correlation, while green indicating low correlation.

common factors than small stocks, so large stocks exhibit higher correlations than small

stocks. Meanwhile, we also observe that, by comparing the left panels and right panels

in Figure 2, monthly returns shows higher correlations than daily returns. This can be

characterized as the Epps effect (Epps, 1979): the sample correlation tends to be biased

towards zero when the sampling frequency progressively shrinks.

Table 1. Candidate strategies

Abbreviation Strategies Source

EW (1/N) equal weighted DeMiguel et al. (2009b)
minVar minimum variance portfolio N/A
minVar-JM minVar with no-short-sale constraint Jagannathan and Ma (2003)
minVar-LW minVar with Ledoit-Wolf shrinkage Ledoit and Wolf (2003)
minVa-OWL OWL shrinkage on minVar New Proposal
minVar-OWL-Pos OWL shrinkage with no-short-sale constraint New Proposal
minVar-OWL-bounds OWL shrinkage with bounds constraints New Proposal
minVar-LW-OWL OWL with LW shrinkage on Cov matrix New Proposal
minVar-hard-OWL OWL with hard-thresholding for Cov matrix New Proposal
MVE-OWL-Pos OWL shrinkage with no-short-sale constraint on MVE New Proposal
MVE-OWL-bounds OWL shrinkage with bounds constraints on MVE New Proposal
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Next, Table 1 lists all considered candidate strategies. First, we consider the equal

weighted (EW, also known as 1/N) strategy which has attracted great attention after

DeMiguel et al. (2009b) showing that this non-optimized naive diversification strategy

achieves superior out-of-sample performance against other optimized ones. We also con-

sider the no-short-sale constraint on the minimum variance portfolio by Jagannathan and

Ma (2003) and the linear shrinkage method by Ledoit and Wolf (2003) in our candidate

strategies. In the newly proposed OWL shrinkage methods, we focus on the “minVar-

OWL” method which implements the OWL shrinkage method on the minimum variance

portfolio without additional constraints. The rest are some enhanced OWL strategies.

For instance, “Pos” indicates that we further impose a no-short-sale constraint on stock

weights. “Bounds” indicates that we impose upper and lower bounds for each stock. In this

case, since we do not hold any additional information about each stock in our exercise, we

blindly impose a bound constraint between -5% and 30% for all stocks. “Hard” indicates

a hard-thresholding method for estimating the covariance matrix as in Bickel and Levina

(2008) and Dendramis et al. (2019).

Next, we set out to conduct out-of-sample based empirical methods to implement each

strategy and compare their performances using various criteria.

4.2 Empirical methods

For the FF25 asset class, since returns are sorted portfolio returns, we have balanced panel

data, which is convenient for our analysis. We choose a rolling window size, say five years

(60 months). At time t, we use the recent 60 months (from t − 59 to t) data to estimate

the model with each strategy and obtain the weighting vector for the next period. At the

beginning of t + 1 we invest in each 25 portfolios according to the weighting vector we

obtained at time t. Then, at the end of t + 1, returns will be realized, so we can compute

the returns for the hedge portfolio. Next, we roll the window one month forward (from

t− 58 to t+ 1) to estimate the weight for next month’s investment.

For SP500d, we first find all stocks that have been in SP500 index at least once between

January 1978 and December 2017, total 1439 stocks. Then we implement a rolling window

scheme, with rolling window size equal to 750 working days, approximately 3 years. In each
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rolling window, we remove stocks having missing data, which typically leaves 500 to 700

stocks in the investment universe in each rolling window. We then perform various portfolio

selection strategies, and get weights for stocks which constitute next period’s investment

amount. We consider two rebalance frequencies, weekly or monthly. When the rebalance

period is met, we compute the portfolio’s return and turnover. Then we move forward to

the next rolling window and repeat these steps until the end of out-of-sample period. We

follow a similar procedure for the SP100m dataset except we rebalance only monthly and

use a rolling window size of 10 years (120 months).

For CRSP500d, we follow DeMiguel et al. (2009a)’s procedure. In April each year, we

randomly choose 500 stocks that have no missing data for the past 10 years as well as the

following one year. Then in each rolling window, with window size equal to 750 working

days, we estimate weights using various strategies. We also consider rebalancing portfolios

weekly or monthly. At each rebalance point, we compute out-of-sample portfolio returns

and turnovers. At the end of the out-of-sample period we can compute out-of-sample

returns, standard deviation, Sharpe ratio and turnovers. We follow a similar procedure

for CRSP100m, except the rolling window size is 10 years (120 months), and rebalance

monthly only.

4.3 Out-of-sample comparison

To compare our OWL-based strategies with other existing ones in the literature, we consider

the following criteria: (1) the out-of-sample Sharpe ratio (SR), (2) portfolio turnovers

(transaction cost), (3) transaction cost adjusted Sharpe ratios (TCadjSR), (4) transaction

cost adjusted out-of-sample returns (TCadjR). We follow the methodology of DeMiguel

et al. (2009a) to construct the first two criteria. We add the third criterion because the

first two criteria look at Sharpe ratio and turnover separately, which leads to (on many

occasions) contradictory preferences: one strategy that delivers higher SR usually entails

higher turnover (transaction cost), and vice verse. TCadjSR allows one to look into and

compare strategies in a complete fashion. Nonetheless, Sharpe ratio comparison is usually

dominated by its variance component and, by definition, the minVar portfolio typically

delivers much lower portfolio risk than the MVE portfolio. Hence, in addition to the
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above mentioned criteria, we want to find that which portfolio strategies yield the best

(transaction cost adjusted) out-of-sample returns. To answer that question, we employ

the model confidence set (MCS) of Hansen et al. (2011). MCS compares TCadjR and

puts all strategies that significantly produce the highest returns in a set while portfolio

risk determines the confidence band. More details about the MCS method are included

in Section 4.5. We argue that looking at the criteria three and four together gives a more

completed profile of portfolio performance.

To fix ideas, let rt = (r1,t, r2,t, · · · , rN,t)′ denote the vector of N asset returns in excess

of the risk-free rate rf,t at time t and wt denote the vector storing portfolio weights of N

assets at time t. For the monthly dataset, we choose a rolling window size τ = 120 months,

where τ � T and T is the total number of time-series observations. We set the rebalancing

frequency as monthly (q = 1 month). For the daily data set, we choose a rolling window size

of three calendar years ( about 756 time-series observations) and rebalance either weekly

(q = 5 days) or monthly (q = 21 days). At time t, we estimate portfolio weights wt using

data from t−τ+1 to t for each strategy. wt will be the investment amount at the beginning

of time t+ 1 and we hold this position until the next rebalancing point t+ q. At time t+ q,

before rebalancing we need to compute the weight before rebalance. The weight of each

asset changes between the beginning and the end of time t due to the price fluctuation. We

re-calculate the weight at the end of time t using new stock prices and call it the “weight

before rebalance” (wt+). Then at the beginning of time t+1 we invest according to the new

weight (wt+1) obtained at the end of time t. The difference between them (|wt+1 − wt+|)

is the turnover. More specifically, we compute the summation of absolute value of this

difference at each point of time, then take the average across time. Then, we consider the

following comparison criteria. For strategy i, the standard deviation of the out-of-sample

return is

σ̂i =

√
1

|Υ|
∑
t∈Υ

(
wit
′
rt+q − µ̂i

)2
, (19)

where µ̂i =
1

|Υ|
∑
t∈Υ

wit
′
rt+q is the mean of OOS returns and t ∈ Υ := {x | {x = τ, τ + q, τ +

2q, · · · } ∩ {x ≤ T − q}}. |Υ| denotes the cardinality of the set Υ which represents the
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number of times rebalancing portfolio. The Sharpe ratio of portfolio strategy i is

SRi =
µ̂i

σ̂i
, (20)

and the turnover of portfolio strategy i is defined as

TOi =
1

|Υ|
∑
t∈Υ

N∑
j=1

(
|wij,t+q − wij,t+|

)
, (21)

where wt+ indicates the weight before rebalancing due to price fluctuation between two

consecutive rebalancing points, and wij,t+ is the jth element in wit+ for portfolio strategy i,

where j ∈ {1, 2, · · · , N}. Hence, |wij,t+q−wij,t+| measures the change in portfolio weight for

asset j at rebalancing point t+q, and TO measures the average weight change for all t ∈ Υ.

Therefore, the transaction cost adjusted Sharpe ratio for portfolio strategy i is defined as

TCadjSRi =
µ̂i − TCi

σ̂i
, (22)

where

TCi = TOi ∗ |Υ| ∗ cost per transaction (23)

denotes the transaction cost. Recall that |Υ| is the cardinality of the set Υ, measuring the

total number of times investors rebalance their portfolios. Rebalancing frequency q directly

affects |Υ|: higher frequency of rebalancing (i.e. smaller q) will result in larger |Υ|, thus

greater transaction cost. cost per transaction can be interpreted as per US dollar transac-

tion cost to trade stocks. In line with DeMiguel et al. (2013), we set cost per transaction =

50 basis points. Finally, the transaction cost adjusted returns for portfolio strategy i are

defined as

TCadjRi
t = wit

′
rt+q − TCi. (24)

Note that t ∈ Υ is a subscript indicating each rebalancing point. For Sharpe ratio com-

parison, we further utilize a Sharpe ratio test devised by Ledoit and Wolf (2008) to reveal

whether Sharpe ratios are statistically different between portfolio strategies by pair-wise

comparison. Specifically, we implement a circular block bootstrap method, which is robust
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to correlated returns.12 Let µi (µj) denote the mean (excess) return and σi (σj) denote the

standard deviation for strategy i (j). The null hypothesis is

H0 :
µi

σi
− µj

σj
= 0. (25)

4.4 Empirical results

In this subsection, we compare the criteria described above for all strategies listed in Table

1 and discuss their implications. We also provide robustness check for the OWL-ADMM

algorithm and we illustrate detailed weight distributions for each asset class using various

portfolio strategies in Appendix D.

4.4.1 Fama-French 25 portfolios

Figure 3 displays the weight distributions of the FF25 portfolios in three-dimensional

graphs, using three OWL-based portfolio selection strategies.13 It is worth noting that the

full sample period for FF25 portfolios is from July 1926 to December 2017. Since we are

using a rolling window scheme with a 120-month rolling window size to evaluate portfolio

performance, the beginning of the out-of-sample is July 1936, where the portfolio positions

are evaluated using the first rolling window from July 1926 to June 1936. Considering the

“great depression” happened between the end of 1920s and the early 1930s, we argue that

this is the main contributor to the volatile portfolio positions in the first 150 months, or

thereabouts, of the out-of-sample period. After that, portfolio positions are much closer

to the equal-weighted positions due to the grouping property as discussed before. It is

worth noting that each panel in this figure has different color scales.14 Note that Figure

3 panel (a) implements the OWL shrinkage method on the minimum variance portfolio.

Panel (b) implements the OWL shrinkage method as well as the no-short-sale constraint,

12We download the code from https://www.econ.uzh.ch/en/people/faculty/wolf/publications

and we compute the two-sides p-values with 1000 (B=1000) bootstrap random draws and block size sets
to be 5 (b=5).

13Note that the distribution of the 25 portfolios at each point of time during the out-of-sample period is
reordered in an ascending order to enable clear three-dimensional display.

14 For example, in Figure 3 panel (a), the scale is from -0.15 to 0.25, whereas in panel (b) the scale is
from 0.03 to 0.048. Therefore, although panel (a) appears to have flatter distribution of portfolio weights
than does panel (b), it is panel (b) actually having much more similar distribution to the equal-weighted
portfolio positions.
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(a) minVar-OWL

(b) minVar-OWL-Pos

(c) minVar-OWL-bounds

Figure 3. Weight distribution of various strategies using FF25
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while panel (c) implements the OWL shrinkage method as well as a bound constraint (i.e.,

each asset’s position is constrained between -5% and 30%). We find that the constrained

and unconstrained OWL shrinkage methods display similar patterns for the weight distri-

bution across the out-of-sample period and the FF25 portfolios. The near-equal-weighted

portfolio positions are influenced by the grouping property of the OWL shrinkage compo-

nent. Furthermore, once we consider the constrained OWL shrinkage method, we obtain

a similar pattern to the unconstrained version but in a controlled manner, for example, all

asset positions are non-negative (with respect to the no-short-sale constraint) or restricted

between a specified range (with respect to the bound constraint).

Figure 4 is similar to Figure 3 except that it considers three alternative portfolio selec-

tion strategies: panel (a) displays the weight distribution for the equal-weighted portfolio

strategy, while panel (b) and (c) display the weight distribution for the no-short-sale con-

strained portfolio strategy by Jagannathan and Ma (2003) (minVar-JM) and the shrinkage

method by Ledoit and Wolf (2003) (minVar-LW), respectively. We find largely dispersed

portfolio distributions in the last two strategies. minVar-JM strategy exhibits portfolio

weights between zero and 90%, where the majority of the 25 portfolios take the zero po-

sitions. On the other hand, the minVar-LW strategy exhibits portfolio weights between

-40% and 80%. This figure also explains why the latter two portfolio strategies occur high

transaction cost due to excessive position changes at rebalancing.

Because of limited display space, we provide more detailed insights in Appendix D.3

regarding each portfolio strategy’s performance on sparse selection, out-of-sample returns

and turnovers.

Next, we move on to evaluate the performance scores and compare each candidate strate-

gies. Table 2 reports the out-of-sample performance scores using various criteria including

the Sharpe ratio, standard deviation, turnover, (annualized) mean returns, transaction cost

and transaction cost adjusted Sharpe ratios for each trading strategy. We find that the

plain minVar strategy achieves highest OOS Sharpe ratio and lowest standard deviation.

This may be because the FF25 portfolios are less prone to idiosyncratic noises and hence

less prone to estimation errors in the sample covariance matrix compared to other asset

classes. Moreover, the FF25 portfolios have relatively small cross-sectional dimension but
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Figure 4. Weight distribution of various strategies using FF25
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Table 2. OOS scores using FF25

SR σ̂ TO µ̂(annualized) TC TCadjSR

EW 0.7271 0.0549 0.0172 0.1384 0.0010 0.7216
minVar 0.9785 0.0401 0.7558 0.1358 0.0453 0.6518
minVar-JM 0.8020 0.0425 0.0678 0.1182 0.0041 0.7744
minVar-LW 0.8613 0.0425 0.2952 0.1268 0.0177 0.7410
minVar-OWL 0.7727 0.0484 0.0278 0.1295 0.0017 0.7627
minVar-OWL-Pos 0.7323 0.0544 0.0172 0.1379 0.0010 0.7268
minVar-OWL-bounds 0.7299 0.0549 0.0178 0.1389 0.0011 0.7243
minVar-hard-OWL 0.0141 0.4128 9.8011 0.0202 0.5881 -0.3971
minVar-LW-OWL 0.7739 0.0483 0.0295 0.1295 0.0018 0.7633
MVE-OWL-Pos 0.7344 0.0547 0.0147 0.1391 0.0009 0.7298
MVE-OWL-bounds 0.7311 0.0551 0.0163 0.1395 0.0010 0.7260

Note: this table reports performance scores for various strategies using Fam-French 25 portfolios. The

transaction cost is calibrated to be 50 base points for trading 1 US dollar.

have large time-series dimension. This helps to obtain a relatively precise estimate of the

covariance matrix, which is crucial in our optimization problems. Meanwhile, the minVar-

JM and minVar-LW also do well in achieving high Sharpe ratios. On the other hand,

the minVar strategy, although it produces high Sharpe ratio, suffers from high turnovers.

The EW strategy produces the smallest turnovers, closely followed by some OWL related

strategies. Note that we calibrate the cost of trading stocks worth one US dollar to be

50 basis points, and this can be viewed as a scaling parameter to tilting weights between

Sharpe ratio and the transaction cost; a higher value on this parameter will favor strategies

with low transaction cost. By looking at the transaction cost adjusted Sharpe ratio, we

find that the plain minVar strategy is outperformed by many other competitors. Notably,

the mean-variance efficient (MVE) portfolio typically performs poorly, but once regularized

by OWL and further imposing (no-short-sale or bounds) constraints, the MVE portfolio

achieves sizeable Sharpe ratio and low transaction cost. It is worth stressing that some of

those transaction cost adjusted Sharpe ratios are very similar. To see the significance in

their performance, we run a bootstrap based test outlined in Section 4.3.

Table 3 reports the p-values of the pair-wise comparison of Sharpe ratios between

any two strategies using the Fama-French 25 portfolios. First of all, we find that the

minVar-OWL strategy is not statistically different from the Equal weighted, minVar-JM,

and minVar-LW strategies which exhibit high Sharpe ratios in Table 2. Similarly, this

insignificance also appears after comparing minVar-JM, minVar-LW, and equal weighted
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Table 3. Pairwise Sharpe ratio test using FF25

1 2 3 4 5 6 7 8 9 10 11

EW 1 N/A
minVar 2 0.0190 N/A
minVar-JM 3 0.1089 0.0470 N/A
minVar-LW 4 0.2537 0.1029 0.5135 N/A
minVar-OWL 5 0.2298 0.0470 0.5554 0.4306 N/A
minVar-OWL-Pos 6 0.0150 0.0220 0.1399 0.2957 0.2498 N/A
minVar-OWL-bounds 7 0.0160 0.0190 0.1239 0.2488 0.2358 0.0140 N/A
minVar-hard-OWL 8 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 N/A
minVar-LW-OWL 9 0.2398 0.0490 0.5704 0.4605 0.8641 0.2787 0.2627 0.0010 N/A
MVE-OWL-Pos 10 0.0010 0.0300 0.1518 0.2567 0.2907 0.2368 0.0050 0.0010 0.3227 N/A
MVE-OWL-bounds 11 0.0010 0.0230 0.1129 0.2587 0.2687 0.4346 0.2777 0.0010 0.2767 0.0010 N/A

Note: this table reports the p-values of the pairwise Sharpe ratio tests in Ledoit and Wolf (2008) using the

Fama-French 25 portfolios. If p-value is great than 5%, then we do not reject the hypothesis that these

two strategies yield the same (TC adjusted) Sharpe ratio.

strategies, indicating these strategies are not significantly different in producing Sharpe

ratios.

4.4.2 SP500 daily returns

Table 4 reports performance scores for various strategies using the S&P 500 daily returns

with weekly or monthly rebalancing frequency.15 The transaction cost is calibrated to

be 50 basis points for trading one US dollar of stocks. First of all, we find when using

individual stocks as test assets, particularly if using daily return series, estimation errors

in the sample covariance matrix become more evident: by looking into SR and σ̂, the plain

minVar strategy becomes inferior to many competitors, resulting from elevated estimation

error in the sample covariance matrix. Then, by looking into turnovers, we find that the

equal weighted strategy and some OWL related strategies (particularly for the MVE-OWL-

bounds strategy) produce the smallest turnovers. It is worth stressing that we find that

the “minVar-OWL” outperforms the equal weighted strategy in both Sharpe ratio and

turnovers, with either weekly or monthly rebalancing frequency, which is a remarkable

finding as it is difficult to find a strategy that outperforms the equal weighted strategy

in both Sharpe ratio and turnovers. Next, we compare Sharpe ratios between strategies

pairwisely and test for significance.

15Due to limited display space, we only include the out-of-sample comparison scores from this subsection
onward. All details regarding the estimation results are available upon request.
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Table 4. OOS scores using SP500

Panel A: SP500 daily returns with weekly rebalancing

SR σ̂ TO µ̂(annualized) TC TCadjSR
EW 1.0046 0.0244 0.0314 0.1771 0.0082 0.9584
minVar 0.5338 0.0540 12.9184 0.2079 3.3588 -8.0889
minVar-JM 1.5831 0.0143 0.0849 0.1629 0.0221 1.3684
minVar-LW 1.3914 0.0130 0.6057 0.1306 0.1575 -0.2866
minVar-OWL 1.0568 0.0227 0.0306 0.1728 0.0080 1.0082
minVar-OWL-Pos 1.0216 0.0238 0.0310 0.1756 0.0080 0.9748
minVar-OWL-bounds 1.0128 0.0240 0.0319 0.1751 0.0083 0.9649
minVar-hard-OWL 1.0656 0.0223 0.0309 0.1717 0.0080 1.0158
minVar-LW-OWL 1.0513 0.0227 0.0305 0.1722 0.0079 1.0030
MVE-OWL-Pos 0.9811 0.0257 0.0561 0.1815 0.0146 0.9023
MVE-OWL-bounds 0.9913 0.0244 0.0266 0.1742 0.0069 0.9520

Panel B: SP500 daily returns with monthly rebalancing

SR σ̂ TO µ̂(annualized) TC TCadjSR
EW 1.0399 0.0484 0.0684 0.1745 0.0041 1.0154
minVar 0.6107 0.0831 22.3297 0.1758 1.3398 -4.0433
minVar-JM 1.5013 0.0318 0.2021 0.1654 0.0121 1.3912
minVar-LW 1.3267 0.0288 1.3261 0.1326 0.0796 0.5306
minVar-OWL 1.0850 0.0455 0.0673 0.1711 0.0040 1.0594
minVar-OWL-Pos 1.0552 0.0474 0.0676 0.1732 0.0041 1.0305
minVar-OWL-bounds 1.0472 0.0476 0.0681 0.1726 0.0041 1.0223
minVar-hard-OWL 1.0888 0.0450 0.0684 0.1699 0.0041 1.0624
minVar-LW-OWL 1.0798 0.0456 0.0669 0.1705 0.0040 1.0544
MVE-OWL-Pos 1.0694 0.0494 0.1138 0.1829 0.0068 1.0294
MVE-OWL-bounds 1.0568 0.0473 0.0560 0.1733 0.0034 1.0363

Note: this table reports performance scores for various strategies using the Standard & Poor 500 stocks

daily returns with weekly or monthly rebalancing frequency. The transaction cost is calibrated to be 50

base points for trading 1 US dollar.

Table 5 reports the p-values of the Sharpe ratio test outlined in Section 4.3 using

SP500 stocks with daily returns. The pairwise comparison suggests that the minVar-OWL

strategy is statistically outperforming the equal weighted strategy with weekly rebalancing

frequency, while insignificant for the monthly rebalancing frequency. Meanwhile, we find

that for the SP500d returns, the best performing strategies in terms of Sharpe ratios are

minVar-JM and minVar-LW and their superior performance against other strategies is

significant suggested by the Sharpe ratio test. Next, we set out to test the SP100 stocks

with monthly returns, which exhibit higher correlations between stock returns compared

to SP500d stocks.
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Table 5. Sharpe ratio test using SP500d

Panel A: SP500 daily returns with weekly rebalancing

1 2 3 4 5 6 7 8 9 10 11
EW 1 N/A
minVar 2 0.0330 N/A
minVar-JM 3 0.0010 0.0010 N/A
minVar-LW 4 0.0709 0.0010 0.2308 N/A
minVar-OWL 5 0.0150 0.0250 0.0010 0.1059 N/A
minVar-OWL-Pos 6 0.0030 0.0320 0.0010 0.0899 0.0160 N/A
minVar-OWL-bounds 7 0.0100 0.0230 0.0020 0.0729 0.0110 0.0030 N/A
minVar-hard-OWL 8 0.0110 0.0140 0.0010 0.1079 0.0989 0.0150 0.0140 N/A
minVar-LW-OWL 9 0.0160 0.0180 0.0030 0.0929 0.0010 0.0340 0.0230 0.0290 N/A
MVE-OWL-Pos 10 0.6174 0.0500 0.0010 0.0679 0.1678 0.3956 0.5095 0.1049 0.1848 N/A
MVE-OWL-bounds 11 0.5884 0.0370 0.0010 0.0559 0.0340 0.2118 0.3556 0.0240 0.0440 0.7193 N/A

Panel B: SP500 daily reurns with monthly rebalancing

1 2 3 4 5 6 7 8 9 10 11
EW 1 N/A
minVar 2 0.1059 N/A
minVar-JM 3 0.0080 0.0070 N/A
minVar-LW 4 0.2757 0.0030 0.2977 N/A
minVar-OWL 5 0.0899 0.0939 0.0110 0.3387 N/A
minVar-OWL-Pos 6 0.0829 0.0989 0.0090 0.2977 0.1119 N/A
minVar-OWL-bounds 7 0.0999 0.0909 0.0090 0.2817 0.1009 0.0669 N/A
minVar-hard-OWL 8 0.1149 0.0929 0.0160 0.3107 0.4835 0.1439 0.1059 N/A
minVar-LW-OWL 9 0.1189 0.0839 0.0060 0.3347 0.0020 0.1578 0.1149 0.1159 N/A
MVE-OWL-Pos 10 0.7033 0.0919 0.0180 0.3427 0.8861 0.8771 0.7612 0.8332 0.8881 N/A
MVE-OWL-bounds 11 0.6484 0.1089 0.0080 0.3057 0.5604 0.9700 0.7972 0.5235 0.6374 0.7722 N/A

Note: this table reports p-values of pair-wise Sharpe ratio test according to Ledoit and Wolf (2008) using

SP500d returns. The rebalancing frequency in Panel A is weekly, and in Panel B is monthly.

4.4.3 SP100 monthly returns

Table 6 reports performance scores using SP100 stocks with monthly returns, and we

rebalance the portfolio monthly. First of all, we find that minVar-OWL and some other

OWL related strategies consistently outperform the equal weighted strategy in terms of the

Sharpe ratio and turnovers. The MVE-OWL-bounds strategy yields the smallest turnover

while the turnover of the minVar-JM strategy doubles that of OWL related strategies. Sec-

ond, the raw Sharpe ratio (i.e. not adjusted by transaction cost) of the minVar-JM strategy

tops the ranking, and it is closely followed by OWL related strategies. However, after be-

ing adjusted by transaction cost, the minVar-OWL and minVar-hard-OWL strategies top

the ranking. Third, by comparing Table 6 and Table 4, we find that the performance of

OWL related strategies has improved, and we reckon that is because SP100 stocks with

monthly returns exhibit higher correlation between stocks which is a desirable property for

the OWL shrinkage method to work well. Next, we apply the Sharpe ratio test in Section
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Table 6. OOS scores using SP100m

SR σ̂ TO µ̂(annualized) TC TCadjSR

EW 0.9233 0.0460 0.0571 0.1472 0.0034 0.9018
minVar 0.0624 0.0851 4.4201 0.0184 0.2652 -0.8371
minVar-JM 1.0065 0.0345 0.1140 0.1203 0.0068 0.9493
minVar-LW 0.8537 0.0359 0.2974 0.1061 0.0178 0.7102
minVar-OWL 0.9811 0.0420 0.0555 0.1426 0.0033 0.9582
minVar-OWL-Pos 0.9418 0.0444 0.0566 0.1448 0.0034 0.9197
minVar-OWL-bounds 0.9257 0.0461 0.0572 0.1477 0.0034 0.9042
minVar-hard-OWL 0.9862 0.0415 0.0565 0.1419 0.0034 0.9626
minVar-LW-OWL 0.9633 0.0425 0.0546 0.1417 0.0033 0.9411
MVE-OWL-Pos 0.9302 0.0451 0.0581 0.1452 0.0035 0.9079
MVE-OWL-bounds 0.9293 0.0458 0.0516 0.1475 0.0031 0.9098

Note: this table reports performance scores for various strategies using the Standard & Poor 100 stocks

with monthly returns and rebalanced monthly. The transaction cost is calibrated to be 50 base points for

trading 1 US dollar.

4.3 to check the significance between strategies.

Table 7. Sharpe ratio test using SP100m

1 2 3 4 5 6 7 8 9 10 11

EW 1 N/A
minVar 2 0.0020 N/A
minVar-JM 3 0.5195 0.0010 N/A
minVar-LW 4 0.7982 0.0010 0.3526 N/A
minVar-OWL 5 0.0030 0.0010 0.8202 0.6074 N/A
minVar-OWL-Pos 6 0.0050 0.0020 0.6084 0.7123 0.0010 N/A
minVar-OWL-bounds 7 0.0040 0.0030 0.5105 0.7822 0.0040 0.0060 N/A
minVar-hard-OWL 8 0.0040 0.0010 0.8551 0.5844 0.2577 0.0090 0.0060 N/A
minVar-LW-OWL 9 0.0320 0.0020 0.7233 0.6454 0.0010 0.1019 0.0280 0.0020 N/A
MVE-OWL-Pos 10 0.8911 0.0030 0.5634 0.7802 0.2997 0.8062 0.9141 0.2687 0.0030 N/A
MVE-OWL-bounds 11 0.4575 0.0050 0.5205 0.7862 0.0110 0.1998 0.6204 0.0170 0.1099 0.9740 N/A

Note: this table reports the p-values of the Sharpe ratio test according to Ledoit and Wolf (2008) using

the SP100 monthly returns.

Table 7 reveals that the performance between the minVar-OWL strategy and the

minVar-JM, minVar-LW strategies is not significantly different. However, it has statis-

tically higher Sharpe ratios than that of the equal weighted strategy.

It is worth stressing that our main target is to draw attention to the comparison be-

tween the minVar-OWL strategy and the equal weighted strategy. They receive very sim-

ilar weight distributions, but we show that the minVar-OWL strategy outperforms the

equal weighted strategy in both Sharpe ratio and turnover. In appendix D.3, we show (3-

dimensional) graphs that illustrate the weight distribution for some strategies and find that
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the minVar-OWL strategy has a very similar distribution to the equal weighted strategy.

This near-equal-weighted weight distribution is caused by the grouping property as dis-

cussed in Section 3.2. We further find the superior performance in Sharpe ratio against the

equal weighted strategy is indeed statistically significant after applying a bootstrap based

test outlined in Section 4.3. Similar exercises are applied and tested on the CRSP500d

stock returns and CRSP100m stock returns. We put those empirical results in Appendix

D.2.

So far, we have focused our comparison criteria on Sharpe ratios and turnovers (trans-

action cost). We find that the minVar-JM strategy delivers impressive Sharpe ratios, al-

though in the SP100m and FF25 asset classes its Sharpe ratio is not significantly different

from the minVar-OWL strategy after running a Sharpe ratio test. On the other hand, the

minVar-OWL strategy and other OWL related strategies consistently yield the smallest

turnovers.

In addition, we stress that we developed a flexible algorithm that can incorporate be-

spoke weight constraints on individual stocks in the optimization problem. However, in

our empirical analysis, we applied (blindly) a -5% to 30% bound for all stocks, since we do

not hold any further information on individual stocks. Thus, the bound-constrained OWL

strategies can potentially do better if more information about individual stocks becomes

available.

Although the Sharpe ratio incorporates both the mean portfolio returns and portfolio

risk in its formula, it is often dominated by the portfolio risk component when portfolio

returns are small. Alternatively, we use the model confidence set (MCS) method to compare

strategies: it includes all the best performing strategies in a set where the average portfolio

returns are the highest, while using the portfolio risk to control the confidence band of this

set.

4.5 Model confidence set for comparing transaction cost adjusted

returns

Hansen et al. (2011) propose the model confidence set (MCS) to compare loss sequences of

candidate models and put the best candidates in a “confidence set”. MCS avoids comparing
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models pairwisely, which often leads to inconclusive decisions. Instead, MCS enables us to

compare multiple models while returning a set that includes all (single or multiple) best

performing models. In our application, we want to compare out-of-sample portfolio returns.

We want to answer the following question: which strategies produce the highest returns

while taking account of transaction cost, where portfolio risk determines the confidence

band for including the best candidates in a set?

To fix ideas, let M0 denote a set of finite candidate models (i.e. M0 collects all candidate

models) and M be the active model confidence set with size m.16 Denote by Li,t the loss

function of model i at time t.17 Then,

dij,t = Li,t − Lj,t, ∀i, j ∈M0, (26)

is the loss difference function between model i and j at time t. Then, we denote

µij = E(dij,t),

d̄ij = n−1

n∑
t=1

dij,t,
(27)

where µij is the expected value of the loss difference between model i and j, and d̄ij is the

sample analogy of µij. Denote

d̄i· ≡ m−1
∑
j∈M

d̄ij, (28)

where m is the cardinality of set M , and M is the active set which collects models that

need to be tested. d̄i· is the average loss difference sequence of model i with all models left

in the active set M . Then, the model confidence set is defined as

M∗ ≡ {i ∈M0 : µij ≤ 0 ∀j ∈M0}. (29)

A detailed testing procedure of MCS is included in Appendix C.

Table 8 reports the p-values of the MCS test. It compares transaction cost adjusted

16We set M = M0 at the beginning, then run a series of tests to remove inferior models from the active
set M . In the end, what are left in the active set M will be the final model confidence set.

17The MCS compares models using a loss function of each model. Since returns are “gains” rather than
“losses”, we use the negative values of returns to measure each strategy’s “loss”.
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Table 8. MCS test for transaction cost adjusted returns

FF25 SP500d, w SP500d, m SP100m CRSP500d, w CRSP500d, m CRSP100m

EW 0.0020 0.4210 0.4650 0.0040 0.0000 0.8620 0.4170
minVar 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
minVar-JM 0.0000 0.0050 0.0010 0.0040 0.0000 0.0000 0.4070
minVar-hard-OWL 0.0000 0.0130 0.0080 0.0040 0.0000 0.0070 1.0000
minVar-LW 0.0000 0.0000 0.0000 0.0040 0.8270 1.0000 0.4070
minVar-LW-OWL 0.0000 1.0000 1.0000 0.8930 0.0000 0.0040 0.3430
minVar-OWL 0.0000 0.0130 0.0080 0.0040 0.0000 0.0000 0.4070
minVar-OWL-bounds 0.0000 0.0050 0.0010 0.0040 0.0000 0.0000 0.4170
minVar-OWL-Pos 0.0000 0.4210 0.4650 0.0040 1.0000 0.8860 0.4170
MVE-OWL-bounds 1.0000 0.0000 0.5520 1.0000 0.0000 0.0000 0.0000
MVE-OWL-Pos 0.0840 0.0050 0.0000 0.0040 0.0000 0.0000 0.4070

Note: this table reports the p-values of the MCS test. It compares transaction cost adjusted returns using

various strategies and using different asset classes. We consider both weekly (‘w’) and monthly (‘m’)

rebalancing frequencies for daily returns. If p-value is greater than 5%, then the corresponding strategy

will be included in the MCS.

returns of various strategies within each asset class. We consider both weekly and monthly

rebalancing frequencies for daily returns. If p-value is greater than 5%, then the corre-

sponding strategy will be included in the MCS.

First of all, we notice that the equal weighted strategy has been included in the MCS

four times, confirming that the naive 1/N strategy performs well in terms of producing

sizeable returns. On the other hand, we find that the minVar-OWL-Pos strategy (OWL

regularized minimum variance portfolio with no-short-sale constraint) has been included in

the MCS fives times, which makes it the only strategy that has been included in the MCS

more often than the equal weighted strategy.

We also notice that the MVE-OWL-bound and MVE-OWL-Pos strategies performs

particularly well with the Fama-French portfolios. The OWL shrinkage method with further

constraints on portfolio weights helps to utilize the optimization gains from the mean

variance efficient portfolio. We reckon this is because sorted portfolio returns are less

prone to idiosyncratic noises and thus the sample estimate of expected asset return and

asset covariances are less biased compared to individual stock returns. Also, for the FF25

asset class, large T and small N (i.e. large in time-series dimension and small in cross

sectional dimension compared to other asset classes) help to improve the precision of the

sample estimate of the covariance matrix.

Meanwhile, the minVar-JM strategy, which performs well when using Sharpe ratio as
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comparison criterion, performs poorly if we use MCS to compare portfolio returns: the

minVar-JM strategy has been included in MCS only once, indicating that the minVar-JM

strategy produces significantly lower returns than other strategies using various test assets.

We find that the MCS for CRSP100m asset class (which consists of 100 randomly selected

(usually small) stocks from the CRSP dataset ) includes many (9 out of 11) candidate

strategies, which is caused by large variations in out-of-sample returns for each strategy

using this asset class.

5 Conclusion

In this paper, we introduce the OWL shrinkage method for efficient portfolio construc-

tion problems. The OWL shrinkage method encompasses the LASSO shrinkage setup

and exploits contemporaneous correlations between stocks, thereby extending the LASSO

shrinkage method in DeMiguel et al. (2009a) and the VAR(1) model in DeMiguel et al.

(2014). We develop an efficient algorithm that incorporates the OWL shrinkage method

together with bespoke constraints on individual stocks if prior information is available. We

apply our OWL portfolio strategies on five asset classes and find that the OWL shrinkage

method outperforms other benchmarks when stocks exhibit high correlations. DeMiguel

et al. (2009b) compare the naive 1/N portfolio strategy with the other 14 optimization-

based strategies, finding superb out-of-sample performance in the naive 1/N portfolio. In

this paper, we bridge the gap between the naive 1/N portfolio strategy and an optimization

based method: our OWL optimization problem yields similar portfolio weights to the 1/N

portfolio strategy due to the grouping property, yet our OWL-based portfolio strategies

outperform the 1/N strategy in terms of Sharpe ratios and turnovers. A bootstrap based

Sharpe ratio test by Ledoit and Wolf (2008) also confirms that this difference in Sharpe

ratio is significant.
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Appendix

A ADMM algorithm to solve the constrained OWL

optimization problem

Boyd et al. (2010) proposed a general optimization algorithm which utilizes the augmented

Lagrangian function and can decompose a complex optimization problem into two parts

which share different characteristics in computational complexity. This algorithm optimizes

these two parts separately and in an orderly fashion, hence gains the name of “alternating

directions”.

A.1 Augmented Lagrangian

First, define the augmented Lagrangian of the optimization problem (14) - (18) as

`ρ(w, v, α, β, θ, ξ) =
γ

2
w′Σ̂w − µ̂′w + Ωω(v) + α′(w − v) + β(w′e− 1)

+ θ′(lb− w) + ξ′(w − ub) +
ρ

2
(||w − v||22 + (w′e− 1)2

+ ||lb− w||22 + ||w − ub||22),

(A.1)
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where α, β, θ and ξ are Lagrangian multipliers, ρ is a parameter to control penalty and e

is a column vector of ones. The ADMM algorithm consists of these updates for each step:

wk+1 = arg min
w

`ρ(w, v
k, αk, βk, θk, ξk), (A.2)

wk+1
i = lbi; if wk+1

i < lbi ∀ i = 1, 2, ..., N, (A.3)

wk+1
i = ubi; if wk+1

i > ubi ∀ i = 1, 2, ..., N, (A.4)

vk+1 = arg min
v

`ρ(w
k+1, v, αk, βk, θk, ξk), (A.5)

αk+1 = αk + ρ(wk+1 − vk+1), (A.6)

βk+1 = βk + ρ(e′wk+1 − 1), (A.7)

θk+1 = θk + ρ(lb− wk+1), (A.8)

θk+1
i = 0; if lbi − wk+1

i < 0 ∀ i = 1, 2, ..., N, (A.9)

ξk+1 = ξk + ρ(wk+1 − ub), (A.10)

ξk+1
i = 0; if wk+1

i − ubi < 0 ∀ i = 1, 2, ..., N, (A.11)

where k is a superscript indicating the step number. We refer to equations (A.3) and

(A.4) as primal feasibility conditions, and equations (A.9) and (A.11) as complementary

slackness conditions. Moreover, (A.2) can be simplified as

wk+1 = arg min
w

`ρ(w, v
k, αk, βk, θk, ξk)

= arg min
w

[γ
2
w′Σ̂w − µ̂′w + αk

′
(w − vk) + βk(e′w − 1) + θk

′
(lb− w) + ξk

′
(w − ub)

+
ρ

2
(||w − vk||22 + (w′e− 1)2 + ||lb− w||22 + ||w − ub||22)

]
= arg min

w

[γ
2
w′Σ̂w − (µ̂− αk − βke+ θk − ξk)′w

+
ρ

2
(||w − vk||22 + (w′e− 1)2 + ||lb− w||22 + ||w − ub||22))

]
= arg min

w

[
1

2
w′(γΣ̂ + ρ(3I + ee′))w − (µ̂− αk − βke+ θk − ξk

+ ρ(vk + e− lb− ub))′w
]

= (γΣ̂ + ρ(3I + ee′))−1(µ̂− αk − βke+ θk − ξk + ρ(vk + e− lb− ub)).
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Meanwhile, equation (A.5) can be simplified as

vk+1 = arg min
v

[
ρ

2
||v − wk+1 − 1

ρ
αk||22 + Ωω(v)

]
= proxΩ(wk+1 +

1

ρ
αk),

where proxΩ(.) is a proximal function for the OWL shrinkage method. Discussion of how

to find a minimizer of the proximal function proxΩ(.) can be found in Sun (2019).

A.1.1 Optimality conditions

Suppose w∗ and v∗ are optimizers of the optimization problem (14) - (18). Then, the opti-

mality conditions of (A.1) consist of the primal feasibility and the dual feasibility conditions.

The primal feasibility concerns the following conditions

w∗ − v∗ = 0, (A.12)

w∗′e− 1 = 0, (A.13)

w∗ � lb, (A.14)

w∗ � ub. (A.15)

Equations (A.2) and (A.5) command the dual feasibility condition, which requires

5f(w∗) + α∗ + β∗e− θ∗ + ξ∗ = 0, (A.16)

5Ω(v∗)− α∗ = 0, (A.17)

where f(w) = γ
2
w′Σ̂w−µ̂′w. By equation (A.5), vk+1 minimizes the function `ρ(w

k+1, v, αk, βk, θk, ξk)

w.r.t v, so we have

0 = 5`ρ(vk+1) = 5Ω(vk+1)− αk − ρ(wk+1 − vk+1) = 5Ω(vk+1)− αk+1,
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which makes (A.17) hold automatically. Similarly, by (A.2), wk+1 minimizes the function

`ρ(w, v
k, αk, βk, θk, ξk) w.r.t w, so we obtain

0 = 5f(wk+1) + αk + βke− θk + ξk + ρ(wk+1 − vk)

+ ρ(wk+1′e− 1)e− ρ(lb− wk+1) + ρ(wk+1 − ub)

= 5f(wk+1) + αk+1 + βk+1e− θk+1 + ξk+1 + ρ(vk+1 − vk).

Rearranging the above equation gives

5f(wk+1) + αk+1 + βk+1e− θk+1 + ξk+1 = −ρ(vk+1 − vk) := sk+1,

where we denote sk+1 := −ρ(vk+1 − vk) as the dual residual at step k + 1, because sk+1 is

the deviation from a dual feasibility condition in (A.16). Similarly, the primal residual at

step k w.r.t the primal feasibility conditions in (A.12) and (A.13) is defined as

||rk||2 =

√
||wk − vk||2 + (wk ′e− 1)2.

A.1.2 Stopping criterion and the penalty parameter ρ

The stopping criterion for k suggested by Boyd et al. (2010) is such that k satisfies

||rk||2 ≤ εpri and ||sk||2 ≤ εdual,

εpri =
√
Nεabs + εrel max{||wk||2, ||vk||2},

εdual =
√
Tεabs + εrel||αk + βke||2,

where εrel and εabs are calibrated to be 0.001.

Boyd et al. (2010) also argues that allowing ρ to change along steps makes computation

more efficient and suggests the following scheme for the values of ρ:

ρk+1 =


τρk if ||rk||2 > η||sk||2 ,

ρk/τ if ||sk||2 > η||rk||2 ,

ρk otherwise ,
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where η, τ > 1 are two tuning parameters, which are calibrated such that η = 10, τ = 2 in

our exercise.

B Technical proofs

B.1 Proof of Theorem 3.1

Proof. The proof of Theorem 3.1 relies on the Pigou-Dalton transfer principle and the

directional derivative lemma at the minimum of a convex function. It follows using a

similar argument as in Figueiredo and Nowak (2016), except that we are dealing with

different loss functions.

Lemma 3 (Pigou-Dalton transfer principle). Let be given vector x ∈ Rp
+, and its two

components xi, xj are such that xi > xj. Let ε ∈ (0, (xi − xj)/2), zi = xi − ε, zj = xj + ε,

and zk = xk, for k 6= i, j. Set Ωω(x) = ω′x, where ω ∈ Rp
+, and ω1 ≥ ω2 ≥ · · · ≥ ωp. Then

it holds

Ωω(x)− Ωω(z) ≥ ∆ωε, ∆ω := min
i=1,··· ,p−1

(ωi+1 − ωi).

Lemma 4 (Directional derivative). The directional derivative of function f : RK → R at

x ∈ dom(f), in the direction ξ ∈ RK is given by

f ′(x, ξ) = lim
α→0+

[f(x+ αξ)− f(x)]/α, α > 0.

If f is a convex function, then x∗ ∈ arg min(f) if and only if f ′(x∗, ξ) ≥ 0 for any direction

ξ ∈ RK.

Denote the objective function as Q(w) = 1
2
w′Σw + Ωω(w). By definition, if ŵ is the

minimizer, then Q(ŵ) ≤ Q(w) for all w. Thus by Lemma 4, for any ξ ∈ RN ,

Q′(ŵ, ξ) ≥ 0. (B.18)

Recall that Σi. and Σj. denote the ith and jth columns of the N × N variance-covariance

matrix Σ. Suppose

‖Σi. − Σj.‖2 < λ2, (B.19)
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and assume ŵi 6= ŵj. We will show contradiction between assumption ŵi 6= ŵj and (B.18).

Without loss of generality, assume ŵi > ŵj, i < j. First we define a special directional

vector ξ = (ξ1, ξ2, · · · , ξN)′. Set ξi = 1, ξj = −1 and ξk = 0 for all k 6= i, j. The directional

derivative of Q at ŵ with such ξ is

Q′(ŵ, ξ) = lim
α→0+

(QLα(ŵ, ξ) +RPα(ŵ, ξ)) , (B.20)

where

QLα(ŵ, ξ) =
(ŵ + αξ)′Σ(ŵ + αξ)− ŵΣŵ

2α

=
αŵ′Σξ + αξ′Σŵ + α2ξ′Σξ

2α
,

(B.21)

and

RPα(ŵ, ξ) =
Ωω(ŵ + αξ)− Ωω(ŵ)

α
. (B.22)

Note that Σ′ = Σ and ŵ′Σξ is a scaler, so we have ŵ′Σξ = ξ′Σŵ. Then it follows

lim
α→0+

QLα(ŵ, ξ) = ŵ′Σξ = trace(ŵ′Σξ) = trace(ξŵ′Σ). (B.23)

Observe that ξŵ′ is a N ×N matrix with ith row as ŵ′, jth row as −ŵ′ and the remaining

rows are filled with zeros. Then we have

lim
α→0+

QLα(ŵ, ξ) = trace(ξŵ′Σ) = ŵ′(Σi. − Σj.), (B.24)

where Σi. and Σj. are the ith and jth columns of Σ.

Applying the Pigou-Dalton transfer principle on RPα(ŵ, ξ) with ε = α, we obtain

−RPα(ŵ, ξ)α = Ωω(ŵ)− Ωω(ŵ + αξ) ≥ ∆ωα. (B.25)

So for any α and ξ,

RPα(ŵ, ξ) ≤ −∆ωα

α
= −∆ω.

By the definition of ω in (11), ∆ω = λ2. Therefore, applying the above bound in (B.20),

41



we obtain

Q′(ŵ, ξ) ≤ ŵ′(Σi. − Σj.)−∆ω

= ŵ′(Σi. − Σj.)− λ2.
(B.26)

Using Cauchy-Schwarz inequality, we have

ŵ′(Σi. − Σj.) ≤ ‖ŵ‖2‖Σi. − Σj.‖2 ≤ ‖ŵ‖1‖Σi. − Σj.‖2 = ‖Σi. − Σj.‖2,

so (B.26) becomes

Q′(ŵ, ξ) ≤ ‖Σi. − Σj.‖2 − λ2. (B.27)

Then, (B.27) together with (B.19) implies

Q′(ŵ, ξ) < 0,

which violates (B.18). Hence, there is a contradiction between ŵi 6= ŵj and (B.19). So we

must have

ŵi = ŵj,

which completes the proof. 2

B.1.1 Proof of Theorem 3.2

Proof. The proof of Theorem 3.2 is similar to Theorem 3.1, except we have a different

objective function, that is

Q(w) =
γ

2
w′Σw − µ′w + Ωω(w),

where γ is investors’ risk aversion level and µ is the vector of expected returns. Following

similar procedures as in the proof of Theorem 3.1 and by Lemma 4, we have that for any

ξ ∈ RN ,

Q′(ŵ, ξ) ≥ 0. (B.28)
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Suppose

γ‖Σi. − Σj.‖2 + |µi − µj| < λ2 (B.29)

and assume ŵi 6= ŵj. Without loss of generality, assume ŵi > ŵj, i < j. Define a special

directional vector ξ = (ξ1, ξ2, · · · , ξN)′. Set ξi = 1, ξj = −1 and ξk = 0 for all k 6= i, j. The

directional derivative of Q at ŵ with such ξ is

Q′(ŵ, ξ) = lim
α→0+

(QLα(ŵ, ξ) +RPα(ŵ, ξ)) , (B.30)

where

QLα(ŵ, ξ) =
γ
2
[(ŵ + αξ)′Σ(ŵ + αξ)− ŵΣŵ]− µ′(ŵ + αξ) + µ′ŵ

α

=
γ
2
(αŵ′Σξ + αξ′Σŵ + α2ξ′Σξ)− αµ′ξ

α
,

(B.31)

and

RPα(ŵ, ξ) =
Ωω(ŵ + αξ)− Ωω(ŵ)

α
. (B.32)

Note that Σ′ = Σ and ŵ′Σξ is a scalar, so we have ŵ′Σξ = ξ′Σŵ. Then it follows

lim
α→0+

QLα(ŵ, ξ) = γŵ′Σξ − µ′ξ, (B.33)

where γŵ′Σξ = trace(γŵ′Σξ) = γ trace(ξŵ′Σ). Observe that ξŵ′ is a N × N matrix with

ith row as ŵ, jth row as −ŵ′ and the remaining rows are filled with zeros. Then we have

lim
α→0+

QLα(ŵ, ξ) = γ trace(ξŵ′Σ)− µ′ξ = γŵ′(Σi. − Σj.)− µ′ξ, (B.34)

where Σi. and Σj. are the ith and jth columns of Σ.

Similarly to the procedures we used to handle RPα(ŵ, ξ) in the proof of Theorem 3.1,

we can obtain

RPα(ŵ, ξ) ≤ −λ2.

Therefore,

Q′(ŵ, ξ) ≤ γŵ′(Σi. − Σj.)− µ′ξ − λ2. (B.35)
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Using Cauchy-Schwarz inequality, we have

ŵ′(Σi. − Σj.) ≤ ‖ŵ‖2‖Σi. − Σj.‖2 ≤ ‖ŵ‖1‖Σi. − Σj.‖2 = ‖Σi. − Σj.‖2,

Observe that µ′ξ = µi − µj ≥ −|µi − µj|, so (B.35) becomes

Q′(ŵ, ξ) ≤ γ‖Σi. − Σj.‖2 + |µi − µj| − λ2. (B.36)

Then (B.36) together with (B.29) implies

Q′(ŵ, ξ) < 0,

which violates (B.28). Hence, there is a contradiction between ŵi 6= ŵj and (B.29). So we

must have

ŵi = ŵj,

which completes the proof. 2

B.1.2 Proof of Lemma 1

Proof. If λ2 = 0, then ω = (λ1, λ1, ..., λ1)′ ∈ RN . So we have

Ωω(w) = ω′|w|↓ = λ1e
′|w|↓ = λ1‖w‖1,

where e is a column vector of ones. If we set λ1 = λ, then Ωω(w) = λ‖w‖1 which completes

the proof. 2

B.1.3 Proof of Lemma 2

Proof. Note that |w|↓ = (|w|[1], |w|[2], · · · , |w|[N ])
′ reorders the elements in vector |w| =

(|w1|, |w2|, · · · , |wN |)′ decreasingly according to the absolute value of each element. Denote

by |wj| and |w|[j] the jth element of |w| and |w|↓, respectively. So we have |w|[1] > |w|[2] >
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· · · > |w|[N ]. Then by the definition of the OSCAR penalty term, we obtain

ΩOSCAR(w) = λ1||w||1 + λ2

∑
1≤i<j≤N

max{|wi|, |wj|}

=
N∑
i=1

[λ1 + λ2(N − i)] |w|[i]

= ω′|w|↓ = Ωω(w),

which completes the proof. 2

C MCS testing procedure

The MCS (model confidence set, Hansen et al. (2011)) testing procedure consists of the

following steps:

1. Initialize the active model confidence set M ←M0, where M0 contains all candidate

models.

2. Compute the t-statistics for any pairwise loss difference sequences and the average

t-statistics for each model:

tij =
d̄ij√

V̂ar(d̄ij)
and ti· =

d̄i·√
V̂ar(d̄i·)

, for all i, j ∈M. (C.37)

3. Find the model with the largest t-statistic

Tmax,M = max
i∈M

ti· (C.38)

and test whether Tmax,M is significantly different from zero.

4. If Tmax,M is statistically different (greater) than zero, eliminate this model from the

model confidence set, and go back to step 1 while removing this model from set M .

Repeat this procedure until Tmax,M is not significantly different from zero. What

remains in M will be the model confidence set.
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D Robustness check

D.1 Convergence of OWL-ADMM algorithm

Figure 5. Convergence check for ADMM algorithm using SP500 stocks

Figure 5 shows the convergence diagram for the OWL-ADMM algorithm used to solve

the optimization problem in (14) - (18) using SP500 daily returns. Left panel shows the

distance (i.e. the `2 norm of two vectors) of the estimated portfolio weights at each step to

the final optimizer. Compared to other algorithms, such as gradient descent, ADMM offers

a much faster convergence speed. The right panel shows the individual stock’s weights

at each step until convergence. Each colored line represents one stock, and note that we

initialize the portfolio weights as equal weighted at the beginning. We find that the ADMM

algorithm is fast to find the optimizer, typically requiring less than 10 steps.

D.2 Empirical application using randomly selected stocks from

CRSP dataset

Panels A and B in Table 9 report the OOS performance scores using 500 randomly selected

stocks with daily returns from the CRSP dataset and Panels A and B in Table 10 report

the p-values of the Sharpe ratio test by comparing portfolio strategies pair-wisely. We find
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Table 9. OOS score using CRSP500d and CRSP100m

Panel A: CRSP500 daily returns with weekly rebalancing

SR σ̂ TO µ̂(annualized) TC TCadjSR
EW 1.0491 0.0244 0.0000 0.1844 0.0000 1.0491
minVar 1.4801 0.0125 0.6168 0.1337 0.1604 -0.2954
minVar-JM 1.8328 0.0114 0.0699 0.1512 0.0182 1.6124
minVar-LW 1.5108 0.0108 0.2054 0.1182 0.0534 0.8280
minVar-OWL 1.1281 0.0229 0.0027 0.1860 0.0007 1.1239
minVar-OWL-Pos 1.0687 0.0238 0.0018 0.1838 0.0005 1.0661
minVar-OWL-bounds 1.0588 0.0239 0.0107 0.1822 0.0028 1.0425
minVar-hard-OWL 1.1203 0.0228 0.0026 0.1843 0.0007 1.1161
minVar-LW-OWL 1.1049 0.0230 0.0023 0.1830 0.0006 1.1013
MVE-OWL-Pos 0.9150 0.0256 0.0644 0.1690 0.0167 0.8244
MVE-OWL-bounds 0.9797 0.0241 0.0280 0.1706 0.0073 0.9379

Panel B: CRSP500 daily return with monthly rebalancing

SR σ̂ TO µ̂(annualized) TC TCadjSR
EW 0.8525 0.0547 0.0000 0.1616 0.0000 0.8525
minVar 1.3888 0.0295 1.2631 0.1417 0.0758 0.6463
minVar-JM 1.4227 0.0302 0.1576 0.1488 0.0095 1.3322
minVar-LW 1.4136 0.0270 0.4481 0.1323 0.0269 1.1262
minVar-OWL 0.8887 0.0528 0.0071 0.1627 0.0004 0.8864
minVar-OWL-Pos 0.8664 0.0538 0.0026 0.1615 0.0002 0.8655
minVar-OWL-bounds 0.8591 0.0537 0.0108 0.1599 0.0006 0.8556
minVar-hard-OWL 0.8857 0.0527 0.0070 0.1616 0.0004 0.8834
minVar-LW-OWL 0.8778 0.0528 0.0061 0.1605 0.0004 0.8757
MVE-OWL-Pos 0.7724 0.0586 0.1240 0.1569 0.0074 0.7358
MVE-OWL-bounds 0.8136 0.0549 0.0529 0.1548 0.0032 0.7969

Panel C: CRSP100 monthly return with monthly rebalancing

SR σ̂ TO µ̂(annualized) TC TCadjSR
EW 0.8533 0.0505 0.0794 0.1492 0.0048 0.8261
minVar 0.4439 0.0640 1.6118 0.0985 0.0967 0.0079
minVar-JM 1.2616 0.0334 0.1102 0.1458 0.0066 1.2044
minVar-LW 1.0283 0.0346 0.1623 0.1232 0.0097 0.9470
minVar-OWL 0.8954 0.0435 0.0801 0.1348 0.0048 0.8634
minVar-OWL-Pos 0.8819 0.0480 0.0769 0.1467 0.0046 0.8542
minVar-OWL-bounds 0.8698 0.0490 0.0778 0.1476 0.0047 0.8423
minVar-hard-OWL 0.9094 0.0429 0.0861 0.1350 0.0052 0.8746
minVar-LW-OWL 0.8808 0.0444 0.0793 0.1354 0.0048 0.8499
MVE-OWL-Pos 0.7168 0.0542 0.0814 0.1346 0.0049 0.6908
MVE-OWL-bounds 0.7720 0.0513 0.0661 0.1371 0.0040 0.7497

Note: this table reports performance scores for various strategies using randomly selected 500 stocks (Panel

A and B, daily returns) and 100 stocks (Panel C, monthly returns) from CRSP and rebalanced weekly or

monthly. The transaction cost is calibrated to be 50 base points for trading 1 US dollar.
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Table 10. Sharpe ratio test using CRSP500d and CRSP100m

Panel A: CRSP 500 daily returns, weekly rebalancing

1 2 3 4 5 6 7 8 9 10 11
EW 1 N/A
minVar 2 0.0240 N/A
minVar-JM 3 0.0010 0.0370 N/A
minVar-LW 4 0.0400 0.8192 0.0559 N/A
minVar-OWL 5 0.0150 0.0699 0.0010 0.0859 N/A
minVar-OWL-Pos 6 0.0010 0.0310 0.0010 0.0519 0.0300 N/A
minVar-OWL-bounds 7 0.0010 0.0280 0.0010 0.0400 0.0160 0.0010 N/A
minVar-hard-OWL 8 0.0240 0.0450 0.0010 0.0959 0.0010 0.0619 0.0230 N/A
minVar-LW-OWL 9 0.0509 0.0559 0.0010 0.0719 0.0010 0.1868 0.1049 0.0010 N/A
MVE-OWL-Pos 10 0.0020 0.0070 0.0010 0.0120 0.0010 0.0010 0.0030 0.0020 0.0020 N/A
MVE-OWL-bounds 11 0.0030 0.0080 0.0010 0.0250 0.0010 0.0010 0.0010 0.0010 0.0010 0.0090 N/A

Panel B: CRSP 500 daily returns, monthly rebalancing

1 2 3 4 5 6 7 8 9 10 11
EW 1 N/A
minVar 2 0.0160 N/A
minVar-JM 3 0.0140 0.7782 N/A
minVar-LW 4 0.0549 0.8352 0.9590 N/A
minVar-OWL 5 0.2488 0.0320 0.0120 0.0819 N/A
minVar-OWL-Pos 6 0.0100 0.0210 0.0120 0.0679 0.4266 N/A
minVar-OWL-bounds 7 0.0210 0.0180 0.0090 0.0679 0.2957 0.0040 N/A
minVar-hard-OWL 8 0.2488 0.0310 0.0070 0.0679 0.0330 0.4745 0.3467 N/A
minVar-LW-OWL 9 0.3906 0.0220 0.0140 0.0689 0.0030 0.6623 0.4745 0.0050 N/A
MVE-OWL-Pos 10 0.1259 0.0110 0.0050 0.0390 0.0779 0.0929 0.0959 0.1069 0.1099 N/A
MVE-OWL-bounds 11 0.1309 0.0210 0.0040 0.0629 0.0849 0.0719 0.0999 0.1009 0.1259 0.1459 N/A

Panel C: CRSP 100 monthly returns, monthly rebalancing

1 2 3 4 5 6 7 8 9 10 11
EW 1 N/A
minVar 2 0.0689 N/A
minVar-JM 3 0.0030 0.0010 N/A
minVar-LW 4 0.4226 0.0060 0.0889 N/A
minVar-OWL 5 0.4915 0.0519 0.0090 0.5345 N/A
minVar-OWL-Pos 6 0.0260 0.0719 0.0030 0.4955 0.8012 N/A
minVar-OWL-bounds 7 0.0140 0.0829 0.0070 0.4675 0.7023 0.0210 N/A
minVar-hard-OWL 8 0.4226 0.0420 0.0110 0.5534 0.2567 0.6683 0.5834 N/A
minVar-LW-OWL 9 0.6583 0.0569 0.0030 0.4655 0.4266 0.9910 0.8611 0.1429 N/A
MVE-OWL-Pos 10 0.0060 0.2098 0.0010 0.1768 0.0440 0.0070 0.0030 0.0350 0.0500 N/A
MVE-OWL-bounds 11 0.0160 0.1648 0.0020 0.2498 0.0859 0.0050 0.0080 0.0599 0.1189 0.0110 N/A

Note: this table reports the p-values of Sharpe ratio test according to Ledoit and Wolf (2008) using

randomly selected 500 stocks (with daily returns) and 100 stocks (with monthly returns) from CRSP

data-set.
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that the OWL related strategies consistently offer smaller turnovers (transaction costs)

than minVar-JM and minVar-LW strategies, and the minVar-OWL strategy consistently

and significantly outperforms the equal weighted strategy in terms of Sharpe ratio. Panel

C in Table 9 and 10 report the OOS scores and p-values of Sharpe ratio tests using 100

randomly selected stocks with monthly returns from the CRSP data-set. These results

confirm the previous findings that OWL related strategies consistently and significantly

outperform equal weighted strategy.

D.3 Plot of out-of-sample portfolio performance

We provide extra details on each portfolio strategy, including the sparsity and turnovers of

a portfolio selection strategy.

Figure 6. Sparsity, OOS returns, turnovers and weight distribution of the minVar-OWL
strategy using FF25

Figures 6 to 9 provide out-of-sample portfolio performance using four portfolio selection

strategies.18 In each figure, the top-left panel displays, at each point in the OOS period,

18Restricted to the limited display space here, we only present 4 strategies using the FF25 portfolios as
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Figure 7. Sparsity, OOS returns, turnovers and weight distribution of the minVar-OWL
strategy with no-short-sale constraint using FF25

the total number of assets (red) and in which, how many of them receives zero position

(blue). Top-right panel displays the portfolio returns for each OOS period. Bottom-left

panel displays the weight change at each rebalancing point (in the case of FF25 portfolios,

we rebalance at each month during the OOS period). Bottom-right panel displays the

portfolio weight distribution in a three-dimensional graph.

It is worth noting that sub-figures have different scales when comparing different figures.

OWL-based portfolio strategies have much smaller turnovers than the minVar-JM and

minVar-LW portfolio strategies. The unconstrained minVar-OWL portfolio strategy has

relatively high turnovers in the first 160 months (1936-1949) before becoming less volatile

(from the bottom-right panel, we can see the weight distribution is close to the equal-

weighted portfolio strategy after 160 months). However, its magnitude of portfolio change

still dwarfed by the minVar-JM and minVar-LW portfolio strategies. If further impose the

test assets. More graphs regarding out-of-sample performance using different portfolio strategies on various
test assets are available upon request.
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no-short-sale constraint on the OWL portfolio strategy, we can find substantial decline in

turnovers, leaving it as one of the most attractive strategies of yielding minimal transaction

cost.
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Figure 8. Sparsity, OOS returns, turnovers and weight distribution of the minVar-JM
strategy using FF25

Figure 9. Sparsity, OOS returns, turnovers and weight distribution of the minVar-LW
strategy using FF25
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