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1. Introduction  

Many publications showed commonalities and differences in the manifestation of COVID-19 
and common pneumonia (CP) in chest CT scans. Both conditions give rise to lesions like Ground 
Glass Opacity (GGO) and Consolidation (C), but they manifest differently. In COVID-19 patients, 
GGO is present more often (number of lesions/scan slice) and tends to be bilateral. 
Subsegmental C areas are also present more often than the patients with CP [1], [2]. The 
absolute majority of patients with COVID-19 display either GGO, or Consolidation, or a mix of 
both [3], and GGO lesions are more diffused, larger in size, and spread over larger areas [2]. The 
problem with these findings is that many of them are not statistically significant, e.g., the 
difference in the location of lesions in [2] and sample sizes are relatively small (e.g., n=34 in [4]). 
As a result, several machine learning methods were recently developed to help experts 
determine the diagnosis using chest CT scans. 
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 This paper compares the models for the detection and segmentation 
of Ground Glass Opacity and Consolidation in chest CT scans. These 
lesion areas are often associated both with common pneumonia and 
COVID-19. We train a Mask R-CNN model to segment these areas 
with high accuracy using three approaches: merging masks for these 
lesions into one, deleting the mask for Consolidation, and using both 
masks separately. The best model achieves the mean average 
precision of 44.68% using MS COCO criterion on the segmentation 
across all accuracy thresholds. The classification model, COVID-CT-
Mask-Net, learns to predict the presence of COVID-19 vs. common 
pneumonia vs. control. The model achieves the 93.88% COVID-19 
sensitivity, 95.64% overall accuracy, 95.06% common pneumonia 
sensitivity, and 96.91% true-negative rate on the COVIDx-CT test 
split (21192 CT scans) using a small fraction of the training data. We 
also analyze the effect of the Non-Maximum Suppression of 
overlapping object predictions, both on the segmentation and 
classification accuracy. The full source code, models, and pre-trained 
weights are available on https://github.com/AlexTS1980/COVID-
CT-Mask-Net. 
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The two-class problems (COVID-19 vs. CP, COVID-19 vs. Control) are inherently easier to 
solve due to fewer false positives than the three-class problem (COVID-19 vs. CP vs. Control). 
Some of the best solutions for the two-class problems presented in [5], [6] include DenseNet169, 
ResNet50, and DRE-Net [7]. Solutions for the three-class problem using chest CT scans include 
ResNet18 [8], ResNet50 [9], COVIDNet-CT [10] and multiscale spatial pyramid [1] as feature 
extractors. The disadvantage of most COVID-19 detectors is either evaluating the model on a 
small amount of data [8], [9], implying weak capacity for generalization, or dependence on a 
large dataset and data balancing tricks [1], [10] for training models. 

Semantic segmentation predicts the object's masks from images by predicting the class at a 
pixel level. Semantic segmentation models like FCN and U-Net are widely used to segment GGO, 
C, and other lesions. These predicted masks are often used in combination with the extracted 
features to predict the image's class [6], [11], improving the final prediction over the baseline 
feature extractor. Models like Mask R-CNN [12] solve the combined problem of object detection 
(localization) using bounding boxes and predicting the object's mask, known as instance 
segmentation. In this paper, we compare three ways to predict instances of lesions' masks. First, 
we use only masks for GGO areas, merging C with the background. Secondly, we merge GGO and 
C masks in a single 'lesion' mask. Finally, we keep separate masks for GGO and C instances (this 
approach was first presented in [13]). The first two are 1+1 class problem (1 object class + 
background, the latter is a 2+1 problem (2 object classes + background). The observations 
explain our choices that areas with GGO have larger sizes and are observed more frequently 
than areas with C in COVID-19 patients, hence GGO class alone may be sufficient for COVID-19 
prediction. 

 We implement the following novelties in our solution and achieve the following results: 
1. Merge of GGO and C masks into a single "Lesion" class; both improve the segmentation 

precision and the accuracy of the classification model built on top of the segmentation model 
compared to using only the GGO mask. 

2. Mask R-CNN segmentation achieves a precision of 61.92%@0.5IoU, 45.22%@0.75IoU, and 
mean average precision of 44.68% (across all IoU thresholds). 

3. The classifier built on top of the model with separate masks achieves a COVID sensitivity of 
93.88% and overall accuracy of 95.64% on the COVIDx-CT test split of the CNCB CT scans 
dataset. 

4. Compared to other solutions for a 3-class problem, we use only a small fraction of the dataset 
to get these results: 5% of the COVIDx-CT training split and 3% of the total data. 

2. Method 

2.1 Datasets 

The segmentation problems solved in the paper are shown in Fig. 1. The 2-class problem, Fig. 
1. (b), was first solved in [13]. We compare this problem to two 1-class problems: For the first 
one, Fig.  1. (c), we only consider GGO as the positive class and train the model to detect its 
instances (predict the bounding box coordinates and segment the positive area within it). 
Consolidation (C) masks are discarded (merged with the background). For the second problem, 
Fig. 1. (d), we merge the masks for GGO and C into one class ('lesion'), thus increasing the 
positive class's prevalence in the error space, compared to only GGO. 

 

Fig. 1. Segmentation masks for the same CT scan slice. (a) input raw image. (b) 2-class problem, red: 
GGO masks, blue: C masks. (c): 1-class problem (only GGO). (d) 1-class problem (merged masks for 

GGO and C). White masks are the lungs areas. Best viewed in color. 
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We use the same dataset split of 600 training + 150 validation images with the varying 
representation of either class in each image as in [13]. Many images are purely negative (only 
background mask). To train the Mask R-CNN model to solve these problems, we extract 
bounding box coordinates of each lesion object from the masks and either use 3 (2 positives + 1 
background label) or 2 (1 positive+1 background) labels for objects.  

We define each object as isolated from other areas of the same class, either by background 
or different class areas. The lung mask is merged with the background for all problems. Except 
for the usual normalization using global mean and standard deviation, no other data 
augmentations or balancing (resampling, class balancing, image rotations, etc.) were applied to 
the data at any stage, unlike in many other solutions, e.g. [10]. For the classification problem us 
re-use the train/validation/test splits in [10], [13]. 

We sample 3000 images from the COVIDx-CT [10] train split (1000 images/class) and use 
their full validation (21036 CT scans) and test (21191 CT scans) splits. As a result of our 
approach, we use less than 5% of the COVIDx-CT training data split and 3% of the total CNCB 
CT scans data [6]. Each image is the same size as in the segmentation data, 512x512x3 pixels, all 
alpha-channels removed. The training split used in this paper is the same as in [13], to have a 
fair comparison. As with the segmentation problem, no other data normalization techniques 
were used apart from the global image normalization. 

2.2 Model 

We study in-depth the effect of the non-maximum suppression (NMS) threshold, a criterion 
for discarding overlapping bounding box predictions in the Region Proposal Network (RPN) at 
train and test stages and Region of Interest (RoI) at the test stage. High threshold values mean 
that a larger number of overlapping predictions is kept in the model. At the training stage of the 
segmentation model, low NMS in the RPN implies that a lower number of high-scoring 
predictions will be passed to RoI, and a lower number of high-scoring predictions will be 
processed by RoI, both at train and test stages. It is because of RoI. After passing the region of 
interest through the classification' head' (two fully connected layers and a class+bounding box 
layer), we can still classify this region as background, even if the prediction was derived from 
the 'positive' anchor [12]. The hyperparameters of the segmentation model are set in Table 1.  

Table 1.  Key hyperparameters of the segmentation models. RPN output is the number of predictions 
after the NMS step, RoI output is the maximum number of predictions at test stage after the NMS 

stage, RPN scoreθ is the threshold for positive predictions at train time, RoI scoreq is the threshold 
for object confidence at test time. In RoI, NMS threshold is used only in testing. 

Backbone 
Anchor 

Sizes 
Anchor 
Scales 

RPN 
NMS 

RoI NMS  RPN 
Sample 

RoI 
Sample 

RPN 
Output 

RoI 
Output 

RPN 
Score 

RoI 
Score 

ResNet50 
+FPN 

22:5 0.1, 0.25, 
0.5, 1, 1.5, 2 

0.25/0.75 
- 

0.25/0.75 
 256 

- 
256 

- 
1000 

 
128 

0.75 
- 

- 
0.75 

 

The model computes 4 loss functions: two by RPN (objectness and bounding box 
coordinates) and two by RoI (class and bounding box coordinates). For our training and 
evaluation, we use the torchvision v0.3.0. In COVID-CT-Mask-Net, see Fig. 2 and Fig. 3, Mask R-
CNN layers, including RPN and RoI, are set to test mode: they do not compute any losses. 
Therefore, RoI uses the NMS threshold to filter predictions. A larger number of overlapping 
positive predictions can prompt the model to learn to associate them with a particular class, e.g., 
more prevalent in COVID-19 than common pneumonia. If the NMS threshold is low, the model 
will have to learn to associate a small number of distant predictions with the particular 
condition, which is likely to be a more challenging problem because of the similarities between 
COVID-19 and common pneumonia. RoI score q is set to -0.01 to accept all predictions 
regardless of confidence score, to keep the input size in the classification module S of fixed size. 
The classification model S architecture details (including the batch to feature conversion) are 
presented in Fig. 2 and Fig. 3 and [13], and its hyperparameters in Table 2. 
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Fig. 2. Architecture of the COVID-CT-Mask-Net classification model. 

 

Fig. 3. Architecture of the Image Classification Module S. 

Table 2.  Key hyperparameters of COVID-CT-Mask-Net. Backbone network, anchor scales and sizes are 
the same as in Table 1. Both RPN and RoI modules are set to the test mode. RoI scoreθ is set to -

0.01 to accept all predictions, even with low scores, to maintain the fixed batch size that is passed 
to the classification module S. The value of S is the total number of trainable parameters in it. 

Backbone 
Anchor 

Sizes 
Anchor 
Scales 

RPN 
NMS 

RoI NMS RPN 
Output 

RoI Output/ 
Batch Size 

RPN 
Score 

RoI 
Score 

Classifier 
Module S 

ResNet50 
+FPN 

22:5 
0.1, 0.25, 

0.5, 1, 1.5, 2 
0.25/0.75 0.25/0.75 1000 256 - - 0.01 2.26M 

Table 3.  Average precision of segmentation models. Best results in bold. 

Model AP@0.5 AP@0.75 AP@[0.5:0.95] 
Only GGO mask + NMS@0.25 0.4575 0.3777 0.3542 
Only GGO mask + NMS@0.75 0.4588 0.3982 0.3610 
Merged mask + NMS@0.25 0.5682 0.4134 0.4310 
Merged mask + NMS@0.75 0.6192 0.4522 0.4468 

Separate mask + NMS@0.25 [13] 0.4741 0.3895 0.3641 
Merged mask + NMS@0.75 [13] 0.5020 0.4198 0.3871 

3. Results and Discussion 

Each segmentation model was trained using Adam optimizer with the same learning rate of 
1e-5 and weight regularization coefficient 1e-3 for 100 epochs. The best models for each 
configuration are reported in Table 3. Training of each model took about 3h on a GPU with 8 Gb 
VRAM. All classifiers were trained with the same configuration for 50 epochs, which took about 
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8 hours on the same GPU. The sizes of the models are presented in Table 4. The difference in 
size between all segmentation models presented here is minuscule (< 1000 parameters). The 
architecture and the training of models with separate masks are the same as in [13]. The only 
difference that explains better results in Table 3, Table 5 dan Table 6 is due to the removal of 
tiny objects (less than 10  10 pixels) and reduction of unnecessary large sample sizes during the 
training of RPN and RoI, from 1024/1024 in [13] to 256/256 in this paper. 

Table 4.  Comparison of the models’ sizes and data splits used to training, validation and testing. The 
number of the trainable parameters in COVID-CT-Mask-Net is due to the fact that we only train the 

module S and batch normalization layers in the backbone. 

Model 
Total 

#parameters 
#Trainable 
parameters 

Training Validation Test 
Ratio 

Test/Train 
Mask R-CNN 31.78M 31.78M 600 150 - - 

COVID-CT-Mask-Net 34.14M 2.36M 3K 20.6K 21.1K 7.06 
COVIDNet-CT (best) [10] 1.8M 1.8M 60K 20.6K 21.1K 0.353 

COVNet [9] 25.61M 25.61M 3K 370 438 0.129 
ResNet18 [8] 11.69M 11.69M 528 90 0.17 

Table 5.  Sensitivity (specificity) and overall accuracy results on COVIDx-CT test data (21192 images). 
Best results in bold. 

Model COVID-19 Pneumonia Normal Overall 
Only GGO mask + NMS@0.25 93.39% (95.73%) 95.27% (93.08%) 97.30% (97.95% 95.77% 
Only GGO mask + NMS@0.75 86.98% (92.26%) 94.27% (69.70%) 71.12% (94.75%) 82.45% 
Merged mask + NMS@0.25 93.56% (97.92%) 97.20% (90.99%) 95.12% (98.34%) 95.52% 
Merged mask + NMS@0.75 92.68% (96.29%) 96.69% (93.63%) 97.74% (98.54%) 96.33% 

Separate mask + NMS@0.25 92.22% (95.51%) 93.06% (90.11%) 95.15% (96.08%) 93.82% 
Merged mask + NMS@0.75 93.88% (95.88%) 95.06% (93.00%) 96.91% (97.66%) 95.66% 

COVID-CT_Mask-Net (best) [13] 90.80% (94.75%) 91.62% (87.07%) 91.10% (94.33%) 91.66% 

Table 6.  Comparison to other models. The results for COVIDNet-CT were obtained by running the 
publicly available model (https://github.com/haydengunraj/COVIDNet-CT) on the same test split 
using inference method and differs from the one reported in the publication, results for the other 
two models are taken from the publication. Last column is the share of COVID observations in the 

test split. Test split for COVNet has 438 images, ResNet18 90 images. 

Model COVID-19 Sensitivity Overall Accuracy COVID Prevalence 
Ours( best COVID-19 Sensitivity) 93.88% 95.64% 20% 
Ours (best Overall Accuracy) 92.68% 96.33% 20% 
COVID-CT_Mask-Net [13] 90.80% 91.66% 20% 
COVIDNet_CT (best) [10] 92.48% 97.57% 20% 
COVIDNet [9] 90.00% 89.04% 30% 
ResNet18 [8] 81.30% 86.70% 35.79% 

 

To measure the accuracy of the segmentation models, we use the average precision (AP), a 
benchmark tool for datasets labeled at an instance level like MS COCO [14] and Pascal VOC [15]. 
We adapt the MS COCO convention and report values for three thresholds: AP@0.5, AP@0.75, 
and AP (primary challenge metric). The first two use Intersect over Union (IoU) between 
predicted and ground-truth bounding boxes with thresholds equal to 0.5 and 0.75. The latter 
averages over thresholds between 0.5 and 0.95 with a 0.05 step (a total of 10 thresholds). For 
details, see [14]. We adapt the implementation of average precision computation from 
https://github.com/matterport/Mask_RCNN. The confidence threshold for considering the 
object (RoIθ hyperparameter) is 0.75 across all models. Only predictions with confidence scores 
>RoIθ are considered for computing (m)AP. The rest are discarded. RoI NMSθ is always the 
same as the RPN. 

Images in Fig. 4 illustrate the difference between the two NMS thresholds across all mask 
types. Each column corresponds to a particular CT scan slice. The bottom row is the ground 
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truth masks with both segmented lesion regions. Rows 1,3,5 are models that use an NMS 
threshold of 0.25, rows 2,4,6 use an NMS threshold of 0.75. Rows 1,2 are models that were 
trained only with the GGO mask. Models in rows 3,4 were trained with merged masks. Models 
in rows 5,6 were trained using both masks. Models with a higher NMS threshold produce a 
larger number of predictions overall (except, for example, in Fig. 4. (e), the models with the 
merged GGO and C masks, row 3 with low NMS, and row 4 with high NMS), many of them 
overlapping. It is a consequence because a particular predicted region can have a high enough 
RPN confidence score to be passed on to RoI. However, then RoI classification ‘head’ outputs a 
confidence score lower than the RoI score. Hence that region will be classified as background. 
In a low NMS, an overlapping prediction with a slightly lower score would be discarded at the 
RPN stage. The high NMS would be added to the pool of predictions, and RoI could extract a 
confidence score exceeding the RoI score from this second prediction. Therefore, models with 
high NMS produce more predictions overall, both true and false positives. 

 

Fig. 4. Predicted masks for a number of CT scans. Row 7: ground truth masks, red: GGO, blue: C. Rows 
1,3,5: models with NMS=0.25. Rows 2,4,6: models with NMS=0.75. Rows 1,2: models trained only 

with the GGO mask, Rows 3,4: models trained with the merged GGO and C masks. Rows 5,6: 
models trained with separate masks for both classes. All mask predictions are overlaid with 

bounding boxes and RoI confidence scores. Best viewed in color. 
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Evaluation results of the segmentation model are summarized in Table 3. Models using a high 
NMS threshold of 0.75 outperform the ones with a low NMS threshold of 0.25 across all mask 
types. The model that learns from merged GGO and C masks with high NMS confidently 
outperforms GGO-only at every IoU threshold level. Apart from the NMS effect described above, 
GGO and C areas in CT scans have many commonalities, so if the model learns to segment GGO 
only, then Consolidation and background have the same label. As a result, the model associates 
some important patterns with the background rather than the object class. Results for separate 
GGO and C masks are mostly better than for GGO but worse than for the merged masks. We 
explain this because overall, C is not very well represented in the dataset (see [13] for details of 
the data analysis). Therefore the model often confuses it with GGO features or fails to learn 
certain essential features because of their under-representation in the data. 

The COVID-CT-Mask-Net evaluation results are presented in Table 5, and the comparison of 
the best models we trained (highest COVID sensitivity and highest overall accuracy) in Table 6. 
All results are a significant improvement over the baseline COVID-CT-Mask-Net model in [13], 
which we beat by 3.08% (COVID sensitivity) and 5.10% (overall accuracy). Comparing the 
segmentation and classification results, though, the advantage of the segmentation models 
learning from merged masks does not immediately translate into the advantage for solving the 
classification problem. Overall, the classifiers derived from these models are slightly better than 
the classifiers derived from the segmentation models for two classes and noticeably better than 
GGO-only models. This advantage is much smaller than the gap in the AP and mAP metrics for 
the corresponding segmentation problems. 

4. Conclusion 

This paper compared some Mask R-CNN models that detect and segment instances of two 
types of lesions in chest CT scans. We established that merging lesion masks for Ground Glass 
Opacity and Consolidation into a single lesion mask dramatically improves the predictive power 
and the precision of the instance segmentation model compared to other approaches. We 
extended these models to predict COVID-19, common pneumonia, and control classes using 
COVID-CT-Mask-Net architecture. On a sizeable COVIDx-CT dataset (21192 chest CT scan 
slices), the classification model derived from the best segmentation model achieved the COVID-
19 sensitivity of 92.68% and overall accuracy of 96.33%, and the model derived from the 
segmentation model using both masks achieved a COVID-19 sensitivity of 93.88% and an overall 
accuracy of 95.64%. The source code and the pre-trained models are available on 
https://github.com/AlexTS1980/COVID-CT-Mask-Net. 
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