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Abstract

We develop a stochastic calculus that makes it easy to capture a variety of predictable
transformations of semimartingales such as changes of variables, stochastic integrals,
and their compositions. The framework offers a unified treatment of real-valued
and complex-valued semimartingales. The proposed calculus is a blueprint for the
derivation of new relationships among stochastic processes with specific examples
provided below.
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1 Introduction

“Because in mathematics we pile inferences upon inferences, it is a good thing
whenever we can subsume as many of them as possible under one symbol. For
once we have understood the true significance of an operation, just the sensible
apprehension of its symbol will suffice to obviate the whole reasoning process
that earlier we had to engage anew each time the operation was encountered.”

— Carl Jacobi (1804–1851) [31, p. 67]

We study the following concept. A semimartingale Y is said to be represented by a
semimartingale X if, roughly speaking, there is a predictable function ξ acting on the
increments of X such that the increments of Y satisfy dYt = ξt(dXt), where ξt(dXt) is
given some “natural” meaning. Such representation of Y in terms of X, if it exists, is
measure-invariant. One hopes that common operations on Y yield processes that are
again X–representable, for example,
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Simplified stochastic calculus via semimartingale representations

(i) a stochastic integral ζtdYt “ought to” yield

ζtdYt = ζtξt(dXt); (1.1)

(ii) for a change of variables by means of some smooth function f it should be true that

df(Yt) = f(Yt− + ξt(dXt))− f(Yt−); (1.2)

(iii) for a new process Z such that dZt = ψt(dYt) one would like to obtain the composition
rule

dZt = ψt(ξt(dXt)). (1.3)

In integral form we shall write, e.g.,

Yt = Y0 + ξ ◦Xt = Y0 +

∫ t

0

ξs(dXs).

The purpose of the calculus (1.1)–(1.3) is to reduce the computational burden in a
generic modelling situation where one starts from a (multivariate) process X whose
predictable P–characteristics relative to some truncation function are given as the
primitive input to the problem. The process X, which is trivially representable with
respect to itself, is transformed by several applications of Propositions 3.14 and 3.15
and Theorem 3.18, i.e., by the rules (1.1)–(1.3) above, to another process Y which is also
X–representable. In many situations the required end product is the P–drift of Y , here
denoted BY ; e.g., when computing exponential compensators; see Duffie, Filipović, and
Schachermayer [11, Proposition 11.2]. A generic formula for the drift of a represented
process, Bξ◦X , is given in Proposition 5.6.

We begin with a brief description of some historical background of this paper. The
first seeds of measure-invariant stochastic calculus were planted by McKean [25], who
would write the classical Itô formula in the form

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2, (1.4)

and only afterwards substitute the canonical decomposition of X in the first term and
the quadratic variation of X in the second term on the right-hand side of (1.4). With the
development of general semimartingale integration it soon became clear that (1.4) is fully
rigorous, as written, for any continuous semimartingale X and any sufficiently smooth
function f on an appropriate domain; see Doléans-Dade and Meyer [10, Théorème 8].

From here it is not a big conceptual leap to want to study general transformations
of the increments dXt by means of some predictable function ξ. Precisely this was
suggested by Émery [13] together with the notation dYt = ξ(dXt) and a specific measure-
invariant formula for ξ(dXt), for time-constant deterministic ξ and matrix(!)-valued X
(because Émery’s goal at the time was to study the natural exponential of a matrix with
stochastic coefficients). As far as we know, nobody has up until now attempted to build a
coherent calculus based on Émery’s formula. See also Remark 3.10 for other connections
to the literature.

Next, let us offer a flavour of the simplifications the calculus can achieve in con-
junction with drift calculations. For example, for real-valued X and α ∈ C the calculus
permits one to write

eα(X−X0) = E ((eα id − 1) ◦X), (1.5)

where E is the Doléans-Dade stochastic exponential (see [9]). If X has independent
increments and the expectation is finite, one then obtains (see Černý and Ruf [3, Theo-
rem 4.1])

E[eα(Xt−X0)] = E (B(eαid−1)◦X)
t
. (1.6)
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Simplified stochastic calculus via semimartingale representations

Table 1: Useful identities involving the power function, stochastic exponential E , and
stochastic logarithm L.

Name Assumptions Conclusions

P4.1
α ∈ Z+; or
α ∈ Z; ∆X 6= −1; or
α ∈ C \Z; Re E (X) > 0

E (X)α = E (((1 + id)α − 1) ◦X)

P4.1 analogous E (X(1))αE (X(2))β = E
((

(1 + id1)α(1 + id2)β − 1
)
◦X

)
P4.1

α, β ∈ Z; X,X− 6= 0; or
α, β ∈ C \Z; . . .

L
(
(X(1))α(X(2))β

)
=

(
(1 + id1)α(1 + id2)β − 1

)
◦ (L(X(1)),L(X(2)))

P4.2 none (i) L(eX) = (eid − 1) ◦X; (ii) |E (X)| = E ((|1 + id| − 1) ◦X)

P4.2 ∆X 6= −1 (i) E (X) = elog(1+id)◦X ; (ii) log|E (X)| = log|1 + id| ◦X

P4.2 Re E (X) > 0 log E (X) = log(1 + id) ◦X

P4.3
α ∈ (0,∞); or
α ∈ C \R+; ∆X 6= −1

|E (X)|α = E ((|1 + id|α − 1) ◦X)

P4.3 analogous |E (X(1))|α|E (X(2))|β = E
((
|1 + id1|α|1 + id2|β − 1

)
◦X

)
P4.3 X,X− 6= 0

L
(
|X(1)|α|X(2)|β

)
=

(
|1 + id1|α|1 + id2|β − 1

)
◦ (L(X(1)),L(X(2)))

When X is a Lévy process and α is purely imaginary, the right-hand side of (1.6) is just
the Lévy-Khintchin formula; see [3, Corollary 4.2]. Useful formulae akin to (1.5) are
collected in Table 1.

The calculus can do more. Staying with X that has independent increments, suppose
that instead of the natural exponential eX−X0 in (1.5), the starting object is the stochastic
exponential E (X) > 0. The calculus now provides a formula for the Mellin transform

E[E (X)αt ] = E[E (((1 + id)α − 1) ◦X)t] = E (B((1+id)α−1)◦X)t.

When E (X) is signed, one can evaluate |E (X)|α and sgn(E (X))|E (X)|α separately to
obtain

E[|E (X)t|α] = E (B(|1+id|α−1)◦X)
t
; (1.7)

E[ sgn(E (X))|E (X)t|α] = E (B(sgn(1+id)|1+id|α−1)◦X)
t
; (1.8)

see [3, Examples 4.4 and 4.5]. We refer the reader also to the introductory paper Černý
and Ruf [5], where other concrete illustrations of the calculus are given.1

On the theoretical side, the paper introduces the class U of universal representing
functions that are well-behaved with respect to operations (1.1)–(1.3); if one uses only
locally bounded integration, change of variables, and composition, one is guaranteed
never to leave U, which makes the calculus completely straightforward. For example,
the representing functions in (1.5)–(1.8) and also those in Table 1 are all in U. The most
important results pertaining to the class U are highlighted in Table 2.

Furthermore, we develop a coherent theory for a wider class I(X) of representing
functions specific to X, in which U appears as a special case. Here the “natural”
composition rules (1.1) and (1.3) sometimes fail. We study sufficient conditions for their

1This paper is conceptually different from [5] in two important respects. First, we provide a unified treatment
of real-valued and complex-valued representations where [5] only considers two ad-hoc non-interacting subsets
of representing functions that must be applied separately to real-valued and complex-valued processes,
respectively. For example, [5] cannot handle the formulae (1.7) and (1.8). Second, [5] operates strictly inside a
special class U, introduced here.

EJP 27 (2022), paper 3.
Page 3/32

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP729
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Simplified stochastic calculus via semimartingale representations

Table 2: Summary of statements for U — the class of universal representing functions.
Here I(X) denotes the class of predictable functions for which ξ ◦X is well-defined.

Name Assumptions Conclusions

P3.6 ξ ∈ U; ξ(∆X) finite ξ ∈ I(X)

P3.13 none

id, id2 ∈ U;

X = X0 + id ◦X;

[X,X] = id2 ◦X

P3.14 ζ locally bounded predictable
ζid ∈ U;

ζ ·X = ζid ◦X

P3.15 f : R→ R smooth
f(X− + id)− f(X−) ∈ U;

f(X) = f(X0) + (f(X− + id)− f(X−)) ◦X

T3.17 ξ, ψ ∈ U; ψ(ξ(∆X)) finite

ψ(ξ) ∈ U;

ξ, ψ(ξ) ∈ I(X); ψ ∈ I(ξ ◦X);

ψ ◦ (ξ ◦X) = ψ(ξ) ◦X

Table 3: Summary of statements for I(X) — the class of predictable functions for which
ξ ◦X is well-defined.

Name Assumptions Conclusions

P3.13 ξ ∈ I(X)

ξ ∈ I(X −X0);

ξ ◦X = ξ ◦ (X −X0);

∆(ξ ◦X) = ξ(∆X)

P3.14 ζ ∈ L(X)
ζid ∈ I(X);

ζ ·X = ζid ◦X

R3.19 ζ ∈ L(X); ψ ∈ I(ζ ·X)
ψ(ζid) ∈ I(X);

ψ ◦ (ζid ◦X) = ψ(ζid) ◦X

C3.20 ξ ∈ I(X); ψ ∈ I(ξ ◦X); ψ′(0) locally bounded
ψ(ξ) ∈ I(X);

ψ ◦ (ξ ◦X) = ψ(ξ) ◦X

validity and offer counterexamples when such conditions are not met. The proposed
framework does deliver closedness under composition for general stochastic integrals
without further assumptions; this and other important properties of the class I(X) are
collected in Table 3.

We shall say more on the benefits of the calculus in the concluding Section 6 once
all notation has been introduced. The basic message is encouraging: with appropriate
care one can hide much of the required stochastic analysis (stochastic integrals, jump-
measure integrals) under the hood and treat common operations on stochastic processes
algebraically, as compositions of functions (indeed, ξ ◦X can be interpreted in some
cases as the ξ–variation of X; see Remark 3.10). The benefits of doing so are significant,
especially in the context of measure changes.

One might expect the operations (1.1)–(1.3) to always work when the representing
process X is a pure-jump process of finite variation. Using only standard techniques,
this intuition is false, however, because an integral of a finite variation semimartingale
need not itself be of finite variation. We do obtain universal validity of rules (1.1)–(1.3)
for pure-jump processes after suitably extending the standard integrals with respect
to random measures. This universality then applies to all representing processes X
that belong sigma-locally to the class of finite-variation pure-jump semimartingales; see
Subsection 2.5.
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The paper is organized as follows. Section 2 introduces notation and reviews im-
portant concepts such as integration with respect to a complex-valued semimartingale.
Section 3 defines representation of a semimartingale and derives important properties
thereof, such as (1.1)–(1.3). Here one gets to see an explicit formula for the object
ξ ◦X, which is formulated in terms of real derivatives of the complex function ξ. This
formula looks quite natural in the special case when both ξ and X are real-valued; such
simplicity is also preserved when ξ is analytic at 0 but this is much harder to see in
the original definition. Subsection 3.3 provides an alternative form of the most general
representation formula in terms of so-called Wirtinger derivatives, where the simplifica-
tion in the analytic case is plainly visible. Section 4 lists and proves a number of useful
representations, among them generalizations of the Yor formula, thereby illustrating
the strength of the proposed calculus. This section also provides counterexamples that
document tightness of the results obtained in Section 3. Section 5 summarizes the
computation of predictable characteristics of a represented semimartingale. Finally,
Section 6 discusses additional benefits of the proposed calculus and directions for future
research.

2 Setup and notation

This section provides background on complex numbers and the probabilistic setup.
It furthermore reviews stochastic integration for complex-valued semimartingales, the
notion of predictable functions, and sigma-localized integrals with respect to random
measures.

2.1 The lift from C to R2

Below, we explicitly allow quantities to be complex-valued in order to allow for a
consistent treatment of complex integrals, exponentials, etc., and in particular charac-
teristic functions. The reader interested only in real-valued calculus can easily skip this
subsection and always replace the general ‘C–valued’ by the special case ‘R–valued’
in their mind. Throughout this section, let m ∈ N denote an integer. To simplify nota-
tion later on, we write Cm = Cm ∪ {NaN} for some ‘non-number’ NaN /∈

⋃
k∈N C

k. We
introduce the function id : Cm → Cm by id(v) = v.

The definitions below now hinge on the identification map îd : C→ R2 ∪ {NaN} given
by

îd(v) =

[
Re v

Im v

]
, v ∈ C; îd(NaN) = NaN,

and its appropriate multidimensional extension, again denoted by îd : Cm → R2m∪{NaN}
given by

îd(v) = (Re v1, Im v1, . . . ,Re vm, Im vm)>, v ∈ Cm; îd(NaN) = NaN.

Observe that îd(v) ∈ R2m for v ∈ Cm contains the values of Re v and Im v, interlaced. At
times we silently use matrix-valued versions of these canonical maps, which are taken
to double the row dimension but which we do not introduce formally to avoid excessive
notation.

So as not to obscure the main ideas with notation, we will highlight the key properties

of the lift îd for m = 1. To this end, the inverse map to îd is îd
−1

: R2 ∪ {NaN} → C given
by

îd
−1 (

[x y]>
)

= x+ iy, [x y]> ∈ R2; îd
−1

(NaN) = NaN.

The following two properties of îd are of importance:
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• îd and îd
−1

are linear, when restricted to C and R2;

• for u, v ∈ C one obtains

îd(uv) =
[
îd(u) îd(iu)

]
îd(v) =

[
Reu − Imu

Imu Reu

] [
Re v

Im v

]
. (2.1)

2.2 Probabilistic quantities

We fix a probability space (Ω,F , P) with a right-continuous filtration F. We shall as-
sume, without loss of generality, that all semimartingales are right-continuous, and have
left limits almost surely. For a brief review of standard results without the assumption
that the filtration is augmented by null sets, see Perkowski and Ruf [29, Appendix A]. We
follow mostly the notation of Jacod and Shiryaev [18].

For a Cm–valued stochastic process V we shall write V̂ = îd(V ) for the corresponding
R2m–valued process.

Definition 2.1 (Complex-valued process properties). A Cm–valued stochastic process
V is said to have a certain property, for example to be a semimartingale (respectively,
martingale; local martingale; special semimartingale; process of finite variation; process
with independent increments; predictable; locally bounded; etc.) if the R2m–valued
process V̂ = îd(V ) has that same property, i.e., if V̂ is a semimartingale (respectively,
martingale, etc.).

We denote the left-limit process of a (complex-valued) semimartingale V by V− and
use the convention V0− = V0. We also set ∆V = V − V−; in particular we have ∆V0 = 0.
For complex-valued processes, the quadratic variation process is defined to be bilinear.2

That is, for C–valued semimartingales V and U we set

[V,U ] = [ReV,ReU ]− [ImV, ImU ] + i ([ReV, ImU ] + [ImV,ReU ]) .

We have again [V,U ]0 = 0. If V is Cm–valued, then [V, V ] denotes the corresponding
Cm×m–valued quadratic variation, formally given by

[V, V ] = (Im ⊗ [1 i])
[
V̂ , V̂

](
Im ⊗

[
1

i

])
,

where Im denotes the m ×m identity matrix and ⊗ the Kronecker product. Observe
that for a Cn×m–valued matrix R we have [RV,RV ] = R[V, V ]R>. Furthermore, we write
[V, V ]c for the continuous part of the quadratic variation [V, V ] (the latter being of finite
variation).

Remark 2.2 (Alternative characterisations of [V, V ]c). We might call V c(P) the continuous
local martingale part of a semimartingale V ; see [18, I.4.27]. Note that V c(P) depends
on the underlying measure P. To wit, for two equivalent measures Q ∼ P, we usually
have V c(Q) 6= V c(P) if Q 6= P. Nevertheless, we always have

[V, V ]c = [V c(P), V c(P)] = [V c(Q), V c(Q)];

see also Dellacherie and Meyer [7, Theorem VIII.27] and Protter [30, p. 70].

Let µV denote the jump measure of a semimartingale V and νV its predictable
compensator (under a fixed probability measure P). Then for a C–valued bounded
predictable function ξ (a precise definition is provided in Subsection 2.4) with ξ(0) = 0

we have
ξ ∗ µV = ξ(îd

−1
) ∗ µV̂ =

∑
t≤·

ξt(∆Vt),

2The bilinear definition is more prevalent. It is used, for example, in Doléans-Dade [9], Émery [14], Revuz
and Yor [32], and Protter [30]. The sesquilinear alternative appears in Getoor and Sharpe [15].
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provided |ξ| ∗µV <∞. Then νV is a predictable random measure such that ξ ∗µV − ξ ∗νV
is a local martingale. Observe furthermore that for an m–dimensional semimartingale V
we have

[V, V ]c = [V, V ]− id id> ∗ µV .

If V is special, we let the triplet (BV , [V̂ , V̂ ]c, νV ) denote the corresponding semi-
martingale characteristics of V under a fixed probability measure P.3 In particular, the
drift BV , i.e., the predictable finite-variation part of the Doob–Meyer decomposition
of V , is always assumed to start in zero, i.e., BV0 = 0. For a general m–dimensional
semimartingale V , we write V [1] = V − id1|id|>1 ∗ µV . We can then define the ‘clock’ (or
‘activity’) process

AV =

2m∑
i=1

TV
(
B
V̂ [1]
i

)
+ trace [V̂ , V̂ ]

c
+ (|id|2 ∧ 1) ∗ νV ,

where TV denotes total variation. Then AV is non-decreasing and locally bounded.
Thanks to [18, II.2.9], there exists an appropriate transition kernel FV such that

νV (dt, dv) = FV (dv)dAVt .

2.3 Stochastic integration

In this subsection we discuss stochastic integrals of predictable processes with
respect to complex-valued semimartingales. To begin, consider a C1×m–valued process
ζ and a Cm–valued semimartingale V . Here ζ is explicitly allowed to take the value
NaN, but needs to be C1×m–valued, (P×AV )–a.e., for the integral to be defined. If V is
real-valued, then we write ζ ∈ L(V ) if both Re ζ and Im ζ are integrable with respect to
V (in the standard sense). We then set ζ · V = (Re ζ) · V + i(Im ζ) · V .

If V is complex-valued, then we say ζ ∈ L(V ) if (ζ ⊗ [1 i]) ∈ L(V̂ ), where ⊗ represents
the Kronecker product; recall also (2.1). We then write

ζ · V = (ζ ⊗ [1 i]) · V̂ (2.2)

for the stochastic integral of ζ with respect to V . For real-valued V the class L(V ) is
defined twice but it is clear that the two definitions are consistent and ζ · V is well
defined. For m = 1 one has ζ ∈ L(V ) if and only if [ζ iζ] ∈ L(V̂ ). It is clear how to extend
this definition to a Cn×m–valued process ζ, where n ∈ N.

Remark 2.3 (Caveat of complex-valued integration). Complex-valued stochastic inte-
grals appear in the literature in a very limited context such as stochastic differential
equations (e.g., [18, I.4.60]) or the Itô formula (e.g., [32, Proposition V.2.3]). In those cir-
cumstances the integrands are locally bounded, meaning that vector-valued integration
is not required and integrability itself is not an issue. Our definition coincides with these
special cases when ζ is locally bounded but in general the (real) stochastic integrals on
the right-hand side of (2.2) cannot be computed component-wise.

Finally, for a Cn×m×m–valued process ζ and a Cm×m–valued semimartingale V (usu-
ally a quadratic variation process), let vecr(ζ) and vecc(V ) denote the row-wise and
column-wise flattening of ζ and V , respectively. Then vecr(ζ) is (n ×m2)–dimensional
and vecc(V ) is m2–dimensional. We then write ζ ∈ L(V ) if vecr(ζ) ∈ L(vecc(V )) and
ζ · V = vecr(ζ) · vecc(V ).

3We use the real-valued lift of V to describe the continuous part of the quadratic variation in the char-
acteristic triplet. This is necessary to capture the full dynamics of V . For example, let V and W denote
two independent R–valued Brownian motions and set Z =

√
2V + iW . Then [V, V ]c = [Z,Z]c but indeed

[V̂ , V̂ ]c 6= [Ẑ, Ẑ]c.
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2.4 Predictable functions

For this subsection, let m,n ∈ N. As in [18, II.1.4], we consider the notion of a
predictable function on Ω

m
= Ω× [0,∞)×Cm. For two predictable functions ξ : Ω

m → Cn

and ψ : Ω
n → C we shall write ψ(ξ) to denote the function (ω, t, x) 7→ ψ(ω, t, ξ(ω, t, x))

with the convention ψ(ω, t,NaN) = NaN. If ψ and ξ are predictable, then so is ψ(ξ).
For a predictable function ξ : Ω

m → Cn we shall write ξ̂ = îd(ξ) and ξ(k) for the k–th
component of ξ, where k ∈ {1, · · · , n}. We also write D̂ξ and D̂2ξ for the real derivatives

of ξ, i.e., D̂iξ
(k) is the composition of the i–th element of the gradient of ξ(k)(îd

−1
) and the

lift îd and D̂2
i,jξ

(k) is the composition of the (i, j)–th element of the Hessian of ξ(k)(îd
−1

)
and the lift îd, for i, j ∈ {1, · · · , 2m}. Note that D̂ξ has dimension n × (2m), D̂2ξ has
dimension n × (2m) × (2m), and the domains of D̂ξ, D̂2ξ equal Ω

m
, i.e., they coincide

with the domain of ξ.
We want to allow for predictable functions such as ξ = log(1 + id) whose effective

domain is not the entire C. For this reason, we define, for a given predictable function
ξ : Ω

m → Cn, the set of semimartingales whose jumps are compatible with ξ, i.e.,

Dom(ξ) = {semimartingale V : ξ(∆V ) is Cn–valued, P–almost surely} .

If for another predictable function ψ : Ω
n → Cm we have ψ(ξ(∆V )) = ∆V for all

V ∈ Dom(ξ), we say ξ allows for a left inverse. If ξ(ψ(∆V )) = ∆V for all V ∈ Dom(ψ) we
say that ξ allows for a right inverse. If ψ represents both left and right inverse we shall
use the notation ξ−1 = ψ.

2.5 Sigma-localized integrals with respect to random measures

We next recall from Černý and Ruf [4] relevant results about the sigma-localized
version of the ∗ integral of a predictable function with respect to νV and µV for a
semimartingale V , which we fix from now on to the end of this section. The following is
adapted from [4, Definition 3.1].

Definition 2.4 (Extended integral with respect to random measure). Denote by L(µV ) the
set of predictable functions that are absolutely integrable with respect to µV . We say that
a predictable function ξ belongs to Lσ(µV ), the sigma–localized class of L(µV ), if there
is a sequence (Ck)k∈N of predictable sets increasing to Ω× [0,∞) and a semimartingale
Y such that 1Ckξ ∈ L(µV ) for each k ∈ N and

(1Ckξ) ∗ µV = 1Ck · Y, k ∈ N.

In such case the semimartingale Y is denoted by ξ ? µV .
Similarly, we define Lσ(νV ) and ξ ? νV .

In the following, we recall useful characterizations for Lσ(νV ) and Lσ(µV ).

Proposition 2.5 (Kallsen [21], Definition 4.1, Lemma 4.1). For a predictable function ξ
the following statements are equivalent.

(i) ξ ∈ Lσ(νV ).

(ii) The following two conditions hold:

(a)
∫
|ξt(v)|FVt (dv) <∞ (P×AV )–a.e.

(b)
∫ ·

0

∣∣∫ ξt(v)FVt (dv)
∣∣dAVt <∞.

Moreover, for ξ ∈ Lσ(νV ) one has

ξ ? νV =

∫ ·
0

(∫
ξt(v)FVt (dv)

)
dAVt .
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Proposition 2.6 ([4], Proposition 3.4). For a predictable function ξ the following state-
ments are equivalent.

(i) ξ ∈ Lσ(µV ).

(ii) The following two conditions hold.

(a) |ξ|2 ∗ µV <∞.

(b) ξ1{|ξ|≤1} ∈ Lσ(νV ).

Furthermore, for ξ ∈ Lσ(µV ) one has

ξ ? µV = ξ1{|ξ|>1} ∗ µV + ξ1{|ξ|≤1} ∗ (µV − νV ) + ξ1{|ξ|≤1} ? ν
V , (2.3)

where the integral with respect to µV − νV is defined in [18, II.1.27(b)].

Remark 2.7 ([4], Remarks 3.2 and 3.5). Let Q denote a probability measure absolutely
continuous with respect to P. With the obvious notation, we then have LP

σ(µV ) ⊂ LQ
σ(µV ).

For LP
σ(νV (P)) and LQ

σ(νV (Q)), no such inclusions hold in general. However, for ξ with
ξ2 ∗ µV < ∞ Proposition 2.6 yields that if ξ1{|ξ|≤1} ∈ Lσ(νV (P)) then also ξ1{|ξ|≤1} ∈
Lσ(νV (Q)).

Next we recall a composition property for stochastic integrals. Such result does not
hold if the ? integral were to be replaced by the ∗ integral.

Proposition 2.8 ([4], Proposition 3.9). For ξ ∈ Lσ(µV ) taking values in Cn for some
n ∈ N and a C1,n–valued predictable process ζ the following statements are equivalent.

(i) ζ ∈ L(ξ ? µV ).

(ii) ζξ ∈ Lσ(µV ).

Furthermore, if either condition holds then ζ · (ξ ? µV ) = (ζξ) ? µV .

The previous three propositions and the remaining ones of this section are proved in
the corresponding references for the case when V is R–valued. The arguments for the
general case are straightforward; see also [4, Remark 2.1].

We next denote by V the set of semimartingales with finite variation on compact
time intervals and by V d the subset of finite variation pure-jump processes, i.e., those
semimartingales V ∈ V that satisfy V = V0+id∗µV . The statements in this subsection can
also be expressed in terms of a special class of semimartingales V d

σ , i.e., the σ–localized
class of finite variation pure-jump processes. The key connection is the following.

Proposition 2.9 ([4], Proposition 3.12). If ξ ∈ Lσ(µV ) then ξ ? µV is an element of V d
σ .

Conversely, if V ∈ V d
σ then id ∈ Lσ(µV ) and V = V0 + id ? µV .

We conclude this section with a natural decomposition of V into jumps at predictable
times and a quasi-left-continuous process.

Proposition 2.10 ([4], Proposition 3.15). Every semimartingale V has the unique de-
composition

V = V0 + V qc + V dp,

where V qc
0 = V dp

0 = 0, V qc is a quasi-left-continuous semimartingale, V dp jumps only at
predictable times, and V dp ∈ V d

σ . We then have [V qc, V dp] = 0.

If we define the predictable set HV =
{
νV ({·}) = 0

}
, then indeed V qc = 1HV · V and

V dp = 1HcV · V . Hence V is special if and only if both V qc and V dp are special.
Let TV denote a countable family of stopping times that exhausts the jumps of V dp.4

For each V there may be many ways to choose TV . The following statement holds for
any such TV .

4Note that P[∆Vτ = 0] > 0 is possible for τ ∈ TV .
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Proposition 2.11 (Drift of a pure-jump process jumping only at predictable times).
Assume that V dp is special. Then we have

BV
dp

=
∑
τ∈TV

Eτ−[∆Vτ ]1Jτ,∞J.

Proof. Thanks to (2.3), we have BV
dp

= id ? νV
dp

. Moreover, BV
dp

is of sigma-finite
variation and TV exhausts its jumps. Proposition 4.6 in [4] applied to BV

dp

then yields
the result.

3 Semimartingale representation

3.1 Definition and basic properties

From now on we shall fix some d, n ∈ N and consider a Cd–valued semimartingale
X. We shall then study a variety of predictable transformations of X. Of course, an
Rd–valued semimartingale can always be considered a special case.

Example 3.1 (A motivational example). Let X denote an R–valued semimartingale and
let f : R→ R denote a twice continuously differentiable function. Then it is well known
that also the process Y = f(X) is a semimartingale. More precisely, the Itô–Meyer
change of variables formula, [18, I.4.57], provides the representation

Y = f(X0)+f ′(X−)·X+
1

2
f ′′(X−)·[X,X]c+(f(X− + id)− f(X−)− f ′(X−) id)∗µX . (3.1)

Let us now introduce the predictable function ξf,X : Ω× [0,∞)×R→ R by

ξf,X(ω, t, x) = f(Xt−(ω) + x)− f(Xt−(ω)).

Note that the derivatives Dξf,X and D2ξf,X exist. The representation in (3.1) then can
be written in the more compact form

Y = Y0 +Dξf,X(0) ·X +
1

2
D2ξf,X(0) · [X,X]c +

(
ξf,X −Dξf,X(0) id

)
∗ µX . (3.2)

Observe that ∆Y = ξ(∆X) and that Y is fully determined by X and the predictable
function ξf,X .

The connection between (3.1) and (3.2) motivates the key concept of this paper,
Definition 3.8 below. Recall from Subsection 2.5 the predictable set HX , on which Xdp

has no ‘activity.’

Definition 3.2 (Representing functions for a given semimartingale X). Let In(X) denote
the set of all predictable functions ξ : Ωd → Cn such that the following properties hold.

(1) X ∈ Dom(ξ), viewed as a property of ξ for fixed X.

(2) ξ(0) = 0, (P×AX)–a.e.

(3) x 7→ 1HX ξ(x) is twice real-differentiable at zero, (P×AX)–a.e.

(4) 1HX D̂ξ(0) ∈ L(X̂).

(5) D̂2ξ(0) ∈ L([X̂, X̂]c).

(6) (ξ − 1HX D̂ξ(0) îd) ∈ Lσ(µX).

We write I(X) =
⋃
k∈N Ik(X).
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Remark 3.3 (The role of the predictable set HX ). If a predictable function ξ satisfies the
conditions of Definition 3.2 with HX replaced by a larger predictable set H ⊃ HX (e.g.,
H = Ω× [0,∞), corresponding to no indicators at all), then the conclusion ξ ∈ I(X) still
holds. To see this, we only need to argue (6). This follows from observing that we have
1H\HX D̂ξ(0) ∈ L(X̂), yielding 1H\HX D̂ξ(0) îd ∈ Lσ(µX̂) by Proposition 2.8.

Example 4.6 below provides an instance where X = Xdp, ξ ∈ I(X), ξ is twice differ-
entiable at zero, but Dξ(0) /∈ L(X). Thus, allowing for the existence of an appropriate
predictable set HX such that only 1HXDξ(0) ∈ L(X) is required, indeed allows for a
bigger class I(X).

As Propositions 3.6 and 3.15 and Theorem 3.17 below argue, the following class U

enjoys closedness with respect to common operations and universality in the sense that
a representing function ξ ∈ U satisfies ξ ∈ I(X) for any semimartingale X provided that
ξ(∆X) is finite.

Definition 3.4 (Universal representing functions). Let Un denote the set of all predictable
functions ξ : Ωd → Cn such that the following properties hold, P–almost surely.

(1) ξt(0) = 0, for all t ≥ 0.

(2) x 7→ ξt(x) is twice real-differentiable at zero, for all t ≥ 0.

(3) D̂ξ(0) and D̂2ξ(0) are locally bounded.

(4) There is a predictable locally bounded process K > 0 such that

sup
|x|≤1/K

|ξ(x)− D̂ξ(0)îd(x)|
|x|2

1x 6=0 is locally bounded.

We write U =
⋃
n∈N Un.

Remark 3.5 (A special case: real-valued semimartingales). If X is real-valued then we
may consider ξ as a predictable function with real domain. In this case, it can be easily
checked that in Definitions 3.2 and 3.4 we may omit the hats on top of D, id, and X, with
D and D2 being the standard gradient and Hessian, respectively.

Proposition 3.6 (Universality of U). Fix some ξ ∈ U such that X ∈ Dom(ξ). We then
have ξ ∈ In(X), (ξ − D̂ξ(0)îd) ∈ L(µX), and(

ξ − D̂ξ(0)îd
)
? µX =

(
ξ − D̂ξ(0)îd

)
∗ µX .

Proof. The first claim follows from Remark 3.3. For the second claim it suffices to
observe that |ξ − D̂ξ(0)îd| ∗ µX <∞ by localization.

Proposition 3.7 (Properties of I(X)). The following statements hold.

(1) If ξ, ψ ∈ In(X) for some n ∈ N and λ ∈ C then ξ + λψ ∈ In(X).

(2) If X ∈ V d
σ then I(X) ⊂ Lσ(µX). Moreover, if X = Xdp then I(X) = Lσ(µX).

(3) Let H denote a predictable set. Then I(X) = I(1H ·X) ∩ I(1Hc ·X); in particular,
I(X) = I(Xqc) ∩ I(Xdp).

(4) Let Y denote another semimartingale and let ψ ∈ I(X,Y ). If ψ is constant in the
y–argument then ξ : x 7→ ψ(x, 0) is in I(X).

Proof. Parts (1) and (4) follow directly from Definition 3.2. Parts (2) and (3) rely on an
application of Proposition 2.8.
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Definition 3.8 (Semimartingale representation). For a predictable function ξ ∈ I(X) we
use the notation

ξ ◦X = 1HX D̂ξ(0) · X̂ +
1

2
D̂2ξ(0) · [X̂, X̂]

c
+
(
ξ − 1HX D̂ξ(0) îd

)
? µX . (3.3)

If there exists ξ ∈ I(X) such that

Y = Y0 + ξ ◦X, (3.4)

we say that the semimartingale Y is represented in terms of the semimartingale X.

Remark 3.9 (Émery formula). The right-hand side of equation (3.3) appears almost
verbatim in Émery [13, eq. (13)] in the special case where X is real-valued and ξ is a
real-valued twice continuously differentiable time-constant and deterministic function;
see also Proposition 3.6. In this case the ? integral can be replaced by the standard ∗
integral.

Remark 3.10 (Interpretation of ξ ◦X as ξ–variation). The object ξ ◦X with time-constant
deterministic ξ, most often a power function, resurfaces several times in the literature
under the name ξ–variation, see Doléans [8], Monroe [27, 28], Lépingle [24], Jacod [17],
and Carr and Lee [2]. The terminology and Émery’s [13] notation

∫ ·
0
ξ(dXs) originate

from the fact that, for suitably regular time-constant deterministic ξ, the partial sums∑
n∈N ξtn−1 (Xtn −Xtn−1) converge uniformly on compact time intervals in probability

to ξ ◦ X as the time partition (tn)n∈N becomes finer; see [13, Théorème 2a] and [17,
Theorem 2.2] for a related statement. For a precise statement of such convergence for
predictable ξ, see [6].

Remark 3.11 (Generalizations of Émery formula). The conditions in Definition 3.2 ensure
that all terms in (3.4) are defined. One could extend the class I(X) further. The idea of
such generalisation would be to focus on the activity of the individual components of X.
For example, one could abstain from requesting that x 7→ 1HX ξ(x) is real-differentiable

in the i–th component for times when dAX
(i)

= 0. Moreover, one could assume that
the second real derivative of x 7→ 1HX ξ(x) only needs to exist (P × trace[X̂, X̂]c)–a.e.
However, such generalisations would come with more complicated notation and would
obscure the main results, hence we do not pursue them here.

Remark 3.12 (Measure invariance of representations). Note that I(X) is invariant under
equivalent changes of measures. More precisely, if Q is a probability measure absolutely
continuous with respect to P and if ξ ∈ I(X) under P, then also ξ ∈ I(X) under Q (recall
Remark 2.7 to see this). Moreover, if we define Y = ξ ◦X under P, then we also have
Y = ξ ◦ X under Q. Hence, ξ ◦ X is measure-invariant in the sense that (3.3) only
depends on the null sets. A similar statement holds for U. This is in contrast to the
common (and frequently also very useful) representation of Y in terms of predictable
characteristics.

We now list some immediate consequences of the definition of representability.

Proposition 3.13 (Properties of representation). The following statements hold.

(1) Let ξ ∈ I(X). Then

∆(ξ ◦X) = ξ(∆X).

(2) I(X) = I(X −X0) and for any ξ ∈ I(X) one has

ξ ◦X = ξ ◦ (X −X0).
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(3) We have idi, idiidj ∈ U1, for all i, j ∈ {1, · · · , d}, with

X(i) = X
(i)
0 + idi ◦X;

[X(i), X(j)] = (idiidj) ◦X.

(4) If ξ ∈ I(X) then ξ∗ ∈ I(X) and (ξ ◦X)∗ = ξ∗ ◦X, where the superscript ∗ denotes
the complex conjugate.

(5) If ξ ∈ I(X) then ξ ◦Xqc = (ξ ◦X)qc and ξ ◦Xdp = (ξ ◦X)dp. (Recall also Proposi-
tion 3.7(3)).

(6) Let Y be a predictable semimartingale of finite variation and ξ ∈ I(X,Y ) such that
ξ(·,∆Y ) ∈ I(X) and ξ(0, ·) ∈ I(Y ). Then we have

ξ ◦ (X,Y ) = ξ(·,∆Y ) ◦X + ξ(0, ·) ◦ Y. (3.5)

Proof. Parts (1), (2), (4), and (5) follow directly from Definitions 3.2 and 3.8. Part (3)
follows directly from Proposition 3.6 and Definition 3.8.

For (6), note that ξ(·,∆Y ) ∈ I(X) yields that 1HX,Y D̂xξ(0, 0) ∈ L(X̂) and D̂2
xxξ(0, 0) ∈

L([X,X]c) with

1HX D̂xξ(0,∆Y ) · X̂ = 1HX,Y D̂xξ(0, 0) · X̂;

D̂2
xxξ(0,∆Y ) · [X̂, X̂]

c
= D̂2

xxξ(0, 0) · [X̂, X̂]
c
.

Similarly ξ(0, ·) ∈ I(Y ) yields that 1HX,Y D̂yξ(0, 0) ∈ L(Ŷ ) with

1HY D̂yξ(0, 0) · Ŷ = 1HX,Y D̂yξ(0, 0) · Ŷ .

Now, the result follows by comparing the jumps on the left and right hand side of (3.5),
for example by using (1).

Proposition 3.14 (Representation of stochastic integrals). Let ζ be a C1×d–valued pre-
dictable process in L(X). Then ζid ∈ I1(X) and

ζ ·X = ζid ◦X.

Proof. Let Id be a d× d identity matrix. Observe that ξ = ζid verifies

D̂ξ = ζ ⊗ [1 i]; D̂2ξ = 0; ξ − D̂ξ(0) îd = ζ
(

id− (Id ⊗ [1 i]) îd
)

= 0.

Hence, ξ belongs to I(X) as per Definition 3.2, and (3.3) together with (2.2) yield the
claim.

Proposition 3.15 (Representation of a change of variables). Let U ⊂ Cd be an open set
such that X−, X ∈ U and let f : U → Cn be twice continuously real-differentiable. Then
the predictable function ξf,X : Ωd → Cn defined by

ξf,X(x) =

{
f (X− + x)− f (X−) , X− + x ∈ U
NaN, X− + x /∈ U

, x ∈ Cd,

belongs to Un, X ∈ Dom(ξf,X), and

f(X) = f(X0) + ξf,X ◦X.
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Proof. Denote by R > 0 the distance from X− to the boundary of U , by R∗ its running
infimum, and by τ > 0 the first time R∗ hits zero. The left-continuity of R now yields
τ = ∞ and R∗ > 0. Therefore, (τn)n∈N given by τn = inf{t : R∗t ≤ 1/n}, is a localizing
sequence of stopping times that makes both K = 2/R and sup|x|≤1/K|D̂2ξ(x)| locally

bounded, yielding ξf,X ∈ U.
Since X ∈ Dom(ξf,X), Proposition 3.6 now yields that

f(îd
−1

(X̂)) = f(îd
−1

(X̂0)) + ξf,X ◦X

is the Itô–Meyer change of variables formula for the real-valued function îd(f(îd
−1

))

applied to the real-valued process X̂; see [18, I.4.57]. In view of f(îd
−1

(X̂)) = f(X) the
proof is complete.

Remark 3.16 (Itô’s formula requires smoothness). It is possible to exhibit a function f :

R→ R and a semimartingaleX such that ξf,X ∈ I(X), in the notation of Proposition 3.15,
and such that f(X) is a semimartingale, but

f(X) 6= f(X0) + ξf,X ◦X.

For example, choose X equal to Brownian motion started at 0 and f = |id|. Here f is not
twice differentiable but ξf,X ∈ I(X) anyway as it is Lebesgue-a.e. twice differentiable.
Then ξf,X ◦X = sgn(X)·X is another Brownian motion while f(X)−f(X0) is the absolute
value of X.

3.2 Composition of representations

We now describe the composition of representations. It is this result along with its
consequences that makes the calculus simple.

Theorem 3.17 (Composition of universal representing functions). The class U is closed
under (dimensionally correct) composition, i.e., if ξ ∈ Un and ψ : Ωn → C is another
predictable function with ψ ∈ U, then ψ(ξ) ∈ U. Furthermore, if ψ(ξ(∆X)) is finite-valued,
then one has ψ,ψ(ξ) ∈ I(X), ψ ∈ I(ξ ◦X), and

ψ ◦ (ξ ◦X) = ψ(ξ) ◦X.

Proof. Properties (1)–(3) of Definition 3.4 follow easily by direct calculation; see also
(3.8) and (3.9) below. To show property (4), by localization we may assume that D̂ξ(0) is
bounded and that there exists a constant Kξ > 0 such that

sup
0<|x|≤1/Kξ

|ξ(x)− D̂ξ(0)îd(x)|
|x|2

<∞.

An analogous statement applies to ψ, with some constant Kψ > 0. By possibly making
Kξ larger we may also assume that sup|x|≤1/Kξ

|ξ(x)| ≤ 1/Kψ.

For η = ψ(ξ) we then have D̂η(0) = D̂ψ(0)D̂ξ̂(0) and by the triangular inequality

|η(x)− D̂η(0)îd(x)|
|x|2

1x 6=0 ≤
|ψ(ξ(x))− D̂ψ(0)îd(ξ(x))|

|ξ(x)|2
1ξ(x)6=0

|ξ(x)|2

|x|2
1x 6=0

+
|D̂ψ(0)(ξ̂(x)− D̂ξ̂(0)îd(x))|

|x|2
1x 6=0.

In view of the boundedness of D̂ψ(0) and D̂ξ(0), the supremum on the right-hand side
over |x| < 1/Kξ is finite. The statement ψ(ξ) ∈ U follows. By Proposition 3.6 we have
ξ ∈ I(X) and ψ ∈ I(ξ ◦X). As D̂ψ(0) is locally bounded, the rest of the statement follows
from Theorem 3.18 below.
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When ξ and ψ are deterministic and time-constant functions, Theorem 3.17 reduces
to the tower property in Carr and Lee [2, Proposition 2.4].

Theorem 3.18 (Composition of semimartingale representations). Let ξ ∈ I(X). More-
over, fix ψ ∈ I(ξ ◦X) such that ψ(0) = 0 and 1HXψ is twice real-differentiable at zero,
(P×AX)–a.e., and

1HX D̂ψ(0) ∈ L
(
D̂2ξ̂(0) · [X̂, X̂]

c
)
∩ L

((
ξ̂ − 1HX D̂ξ̂(0) îd

)
? µX

)
. (3.6)

Then ψ(ξ) ∈ I(X) and we have

ψ ◦ (ξ ◦X) = ψ(ξ) ◦X. (3.7)

Proof. Let Y = ξ ◦X. Without loss of generality, we may assume ψ ∈ I1(Y ). We need to
check the six properties of Definition 3.2 for η = ψ(ξ). We clearly have (1), (2), and (3).
In analogy to the chain rule for real derivatives, on HX we also have

D̂η(0) =

2n∑
k=1

D̂kψ(0)D̂ξ̂(k)(0) = D̂ψ(0)D̂ξ̂(0); (3.8)

D̂2η(0) =

2n∑
k,l=1

D̂2
k,lψ (0) D̂ξ̂(k)(0)>D̂ξ̂(l)(0) +

2n∑
k=1

D̂kψ (0) D̂2ξ̂(k)(0). (3.9)

By assumption, we have 1HY D̂ψ(0) ∈ L(Ŷ ). SinceHX ⊂ HY , this also yields 1HX D̂ψ(0) ∈
L(Ŷ ). Together with (3.6), we obtain

1HX D̂ψ(0) ∈ L
(
1HX D̂ξ̂(0) · X̂

)
,

hence also Definition 3.2(4) with ξ replaced by η = ψ(ξ). Similarly, we also get Defini-
tion 3.2(5).

Next, observe in view of identity (3.8) that

η − 1HX D̂η(0) îd =
(
ψ(ξ)− 1HY D̂ψ(0)ξ̂

)
+ 1HX D̂ψ(0)

(
ξ̂ − D̂ξ̂(0) îd

)
+ 1HY \HX D̂ψ(0)ξ̂

∈ Lσ(µX)

by Proposition 2.8, the assumptions, and 1HY \HX |ξ|∗µX = 0. This yields Definition 3.2(6)
with ξ replaced by η.

Finally, (3.7) follows from (3.6), (3.8), and (3.9) together with the computations

ψ ◦ (ξ ◦X) = 1HY D̂ψ(0) · Ŷ +
1

2
D̂2ψ(0) · [Ŷ , Ŷ ]

c
+
(
ψ − 1HY D̂ψ(0) îd

)
? µY

= 1HY D̂ψ(0) ·
(
1HX D̂ξ̂(0) · X̂ +

1

2
D̂2ξ̂(0) · [X̂, X̂]

c
+
(
ξ̂ − 1HX D̂ξ̂(0)îd

)
? µX

)
+

1

2
D̂2ψ(0) ·

(
d∑

i,j=1

D̂iξ̂(0)D̂j ξ̂(0) · [X̂(i), X̂(j)]
c

)
+
(
ψ(ξ)− 1HY D̂ψ(0)ξ̂

)
? µX

= 1HX D̂η(0) · X̂ +
1

2
D̂2η(0) · [X̂, X̂]

c
+
(
η − 1HX D̂η(0)îd

)
? µX

= ψ(ξ) ◦X.

Here, we have used the associativity of the stochastic integrals with respect to X̂ and
[X̂, X̂]c as well as the associativity of the ? jump-measure integral.
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Example 4.11 below shows that without the assumption that ψ is twice real-differ-
entiable at zero, (P × AX)–a.e., the conclusion of Theorem 3.18 does not necessarily
hold.

Remark 3.19 (The linear case). If ξ ∈ I(X) is linear, i.e., of the form ξ = ζid for some
predictable process ζ, then (3.6) is automatically satisfied.

Corollary 3.20 (Sufficient condition for composition of representations). Let ξ ∈ I(X).
Moreover, let ψ ∈ I(ξ ◦ X) such that ψ(0) = 0 and 1Hξ◦Xψ is twice real-differentiable

at zero, (P×AX)–a.e., and such that 1Hξ◦X D̂ψ(0) is locally bounded (e.g., if ψ ∈ U and
ξ ◦X ∈ Dom(ψ)). Then ψ(ξ) ∈ I(X) and (3.7) holds.

Remark 3.21 (Algebra of X–representable processes). Thanks to Proposition 3.7(1), the
space of C–valued X–representable processes is a vector space. Proposition 3.15 and
Corollary 3.20 yield that this space is also an algebra, namely closed under multiplication.
Indeed, for U = U0 + ξU ◦X and V = V0 + ξV ◦X we have

UV = U0V0 +
((
U− + ξU

) (
V− + ξV

)
− U−V−

)
◦X.

Remark 3.22 (Converse of the composition theorem). A reverse direction of Theo-
rem 3.18 holds, too. To wit, let ξ ∈ In(X). Moreover, fix some predictable function
ψ : Ω

n → C such that ψ(ξ) ∈ I1(X), 1HXψ is twice real-differentiable at zero, (P×AX)–
a.e., and (3.6) holds. Then ψ ∈ I(ξ ◦X).

To see this, first note that ψ(0) = ψ(ξ(0)) = 0, (P × AX)–a.e. We next follow the
arguments of Theorem 3.18, using (3.8) and (3.9) with η = ψ(ξ) ∈ I(X). We then directly
obtain that Definition 3.2(1), (2), (3), (4), and (5) hold with ξ replaced by ψ. Here we
used again ξ(∆X) = 0 on HX \ Hξ◦X . Next, observe that

ψ(ξ)− 1Hξ◦X D̂ψ(0)ξ̂ =
(
η − 1HX D̂η(0) îd

)
+ 1HXDψ̂(0)

(
D̂ξ̂(0) îd− ξ̂

)
∈ Lσ(µX),

yielding the claim.

Examples 4.9 and 4.10 illustrate again how essential (3.6) is for the remark to
hold.

Corollary 3.23 (Inverse functions). Let ξ ∈ Id(X) and Y = Y0 + ξ ◦X. Moreover, assume
that the smallest singular value of D̂ξ̂(0) is locally bounded away from zero and that
ξ allows for a predictable left inverse ψ (see Subsection 2.4). Then ψ ∈ Id(Y ) and
X = X0 + ψ ◦ Y .

Proof. Since ξ̂(îd
−1

) is continuously differentiable at zero on HX , ψ̂(îd
−1

) is actually

an inverse of ξ̂(îd
−1

) in a neighbourhood of zero on HX . Thus 1HXψ is twice real-
differentiable at zero with D̂ψ̂(0) = (D̂ξ̂(0))−1 on HX . If now the smallest singular value
of D̂ξ̂(0) is locally bounded away from zero, then the largest singular value of D̂ψ̂(0) is
locally bounded and by equivalence of the Schatten and maximum matrix norms each
element of D̂ψ(0) is locally bounded. The assertion follows from Remark 3.22.

If the assumption that the smallest singular value of D̂ξ̂(0) is locally bounded away
from zero is replaced by the weaker assumption that is is merely positive, then Corol-
lary 3.23 is wrong as Examples 4.9 and 4.10 below illustrate, even if ψ is an inverse of ξ
and d = 1.

Remark 3.24 (Advantages of the proposed calculus). Results like Theorem 3.18 make
this stochastic calculus simple and powerful. Consider the situation when one has to
perform a change of variables f(Y ) on an X–representable R–valued process Y . A direct
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application of the Itô–Meyer formula (3.1) to the representation of Y in (3.2) yields

f(Y ) = f(Y0) +Df(Y−) ·
(
Dξ(0) ·X +

1

2
D2ξ(0) · [X,X]c + (ξ −Dξ(0) id) ? µX

)
+

1

2
D2f(Y−) · [Y, Y ]c + (f(Y− + id)− f(Y−)−Df(Y−) id) ∗ µY .

One then has to collect all terms manually in order to simplify this expression and
eventually recast it in terms of µX .

In contrast, the notation of (3.4) gives f(Y ) = f(Y0) + ξf,Y (ξ) ◦X. Only the function
ξf,Y (ξ) needs to be computed and then the corresponding representation applies. This
is pedagogically pleasing because ξf,Y (ξ) describes the jumps of f(Y ) in terms of the
jumps of X, i.e.,

∆f(Y ) = f(Y− + ∆Y )− f(Y−) = f(Y− + ξ(∆X))− f(Y−) = ξf,Y (ξ(∆X)).

3.3 Alternative Émery formula

In the non-analytic case, which too is of practical importance, it can be helpful to
rephrase the Émery formula (3.3) in terms of the C2d–valued process (X,X∗). Here X∗

denotes the complex conjugate of X. This allows the use of Wirtinger partial derivatives
(see [35]), given by

∂

∂x
=

1

2

(
∂

∂ Rex
− i ∂

∂ Imx

)
and

∂

∂x∗
=

1

2

(
∂

∂ Rex
+ i

∂

∂ Imx

)
. (3.10)

This turns out to be convenient in some applications; see Proposition 3.26 and Exam-
ple 3.28. Observe, however, that the proposed calculus allows one to write simply ξ ◦X
and operate on the level of ξ, where the specific physical implementation of ξ ◦ X is
immaterial.

To arrive at the alternative Émery formula, we introduce the function ǐd : Cd → C2d

by

ǐd =

(
Id ⊗

[
1 i

1 −i

])
îd; ǐd(NaN) = NaN,

where ⊗ again denotes the Kronecker product. This allows us to introduce the process

X̌ = ǐd(X). (3.11)

Observe that X̂ is the R2d–valued process containing the values of ReX and ImX, inter-
laced, while X̌ is the C2d–valued process containing X and its conjugate X∗, interlaced.

Next, we denote by Ďξ the row vector of Wirtinger derivatives, given by

Ďξ =
1

2
D̂ξ

(
Id ⊗

[
1 1

−i i

])
, (3.12)

and by Ď2ξ the corresponding ‘Wirtinger Hessian,’ given by

Ď2ξ(k) = Ď(Ďξ(k))> =

(
Id ⊗

[
1 −i
1 i

])
1

4
D̂2ξ(k)

(
Id ⊗

[
1 1

−i i

])
, k = 1, . . . , n.

The following technical observation will be very useful in the subsequent proposition.

Lemma 3.25 (Invertible linear transformations in a stochastic integral). Fix m ∈ N.
Let Λ1, Λ2 be arbitrary invertible matrices in Cm×m. Let ζ denote a Cm×m–valued
predictable process and let V denote a Cm×m–valued semimartingale. Then the following
are equivalent.
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(i) ζ ∈ L(V ).

(ii) Λ1ζΛ2 ∈ L
(
Λ−1

2 V Λ−1
1

)
.

If one (hence both) of these conditions holds then

ζ · V = Λ1ζΛ2 ·
(
Λ−1

2 V Λ−1
1

)
. (3.13)

Proof. Note that it suffices to argue the implication from (i) to (ii) and to show (3.13).
Moreover, since ζ ∈ L(V ) ⇐⇒ ζ> ∈ L(V >) and ζ ·V = ζ> ·V >, it is enough to prove the
statement with Λ1 being the identity matrix. To this end, assume (i) holds. Let vecr(ζ)

(respectively, vecc(V )) denote the row-wise (column-wise) flattening of ζ (respectively,
V ), that produces a (1 ×m2)–dimensional row (m2–dimensional column) vector. Then
(i) is equivalent to vecr(ζ) ∈ L(vecc(V )) and one has ζ · V = vecr(ζ) · vecc(V ). Thanks to
Proposition 3.14 and Remark 3.22, this then yields (vecr(ζ)R) ∈ L(R−1 vecc(V )) for any
invertible m2 ×m2 matrix R, along with

ζ · V = (vecr(ζ)R) · (R−1 vecc(V )).

Choosing R = Im ⊗ Λ2 yields R−1 = Im ⊗ Λ−1
2 , vecr(ζ)R = vecr(ζΛ2), and hence the

desired statement.

Proposition 3.26 (Émery formula in terms of Wirtinger derivatives). For ξ ∈ I(X), the
following terms are well defined and we have

ξ ◦X = 1HX Ďξ(0) · X̌ +
1

2
Ď2ξ(0) ·

[
X̌, X̌

]c
+
(
ξ − 1HX Ďξ(0) ǐd

)
? µX . (3.14)

Furthermore, if 1HX ξ is analytic at 0, (P×AX)–a.e., the following terms are well defined
and we have

ξ ◦X = 1HXDξ(0) ·X +
1

2
D2ξ(0) · [X,X]

c
+ (ξ − 1HXDξ(0) id) ? µX . (3.15)

Here Dξ(0) and D2ξ(0) stand for complex derivatives.

Proof. Let us first prove (3.14). To this end, we introduce the matrix

Σ =
1

2
Id ⊗

[
1 1

−i i

]
,

satisfying Σ−1 = 2(Σ∗)>. Then Ďξ = D̂ξΣ and X̌ = Σ−1X̂. Thanks to Proposition 3.14
and Remark 3.22, we then have 1HX Ďξ(0) ∈ L(X̌) and 1HX Ďξ(0) · X̌ = 1HX D̂ξ(0) · X̂.
By the same token, we also have Ďξ(0) ǐd = D̂ξ(0) îd. Next, note that

Ď2ξ(0) = Σ>D̂2ξ(0)Σ; [X̌, X̌] = Σ−1[X̂, X̂](Σ−1)>.

An application of Lemma 3.25 now concludes the proof of (3.14).

The simplifications in the analytic case follow from the standard properties of
Wirtinger derivatives, see for example Remmert [31, Section I.4].

We now provide two examples of complex-valued representations where the rep-
resenting functions are not assumed analytic at 0. Recall the notation for Wirtinger
derivatives in (3.10).
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Example 3.27 (Quadratic covariation of represented semimartingales). Let X be a C–
valued semimartingale. Then by Proposition 3.13(3) and Corollary 3.20, for ξ, ψ ∈ I1(X),
we have [ξ ◦X,ψ ◦X] = ξψ ◦X. In the explicit form (3.14), this is written as

[ξ ◦X,ψ ◦X] = ∂xξ(0)∂xψ(0) · [X,X]c + ∂x∗ξ(0)∂x∗ψ(0) · [X∗, X∗]c

+ (∂xξ(0)∂x∗ψ(0) + ∂x∗ξ(0)∂xψ(0)) · [X,X∗]c + ξψ ? µX .

This formula seems very intuitive. The first three terms capture the continuous covari-
ation of ξ ◦X and ψ ◦X. The last term is the pure-jump component which multiplies
together the jumps in ξ ◦X and ψ ◦X.

Example 3.28 (Explicit complex-valued expression for (|1+id|α−1)◦X, α ∈ C, ∆X 6= −1).
Consider the predictable function ξ = |1 + id|α − 1, which on a sufficiently small neigh-
bourhood of zero satisfies

|1 + id|α − 1 = (1 + id)
α
2 (1 + id∗)

α
2 − 1.

On this neighbourhood, apply formal Wirtinger calculus to obtain

∂xξ =
α

2
(1 + id)

α
2−1(1 + id∗)

α
2 ; ∂x∗ξ =

α

2
(1 + id)

α
2 (1 + id∗)

α
2−1;

∂2
xxξ =

α

2

(α
2
− 1
)

(1 + id)
α
2−2(1 + id∗)

α
2 ; ∂2

x∗x∗ξ =
α

2

(α
2
− 1
)

(1 + id)
α
2 (1 + id∗)

α
2−2;

∂2
xx∗ξ =

α2

4
|1 + id|α−1

.

Next, ξ ∈ U, hence ξ ∈ I(X) for any C–valued semimartingale X with X ∈ Dom(ξ), in
particular for any X with ∆X 6= −1. Formula (3.14) now yields

(|1 + id|α − 1) ◦X =
α

2
· (X +X∗) +

α

4

(α
2
− 1
)

([X,X]c + [X∗, X∗]c) +
α2

4
[X,X∗]

+
(
|1 + id|α − 1− α

2
(id + id∗)

)
∗ µX

= α · ReX +
α

2
(α− 1)[ReX,ReX]c +

α

2
[ImX, ImX]c

+ (|1 + id|α − 1− αRe id)) ∗ µX .

We continue discussing this setup in Example 5.10 below and apply it in [3, Examples 4.3
and 4.4]. There one obtains the Mellin transform of the positive and negative parts of a
signed stochastic exponential of a process with independent increments.

4 Specific examples of the semimartingale representation

4.1 Generic applications

If X is a C–valued semimartingale, then by [9, Théorème 1] (see also [18, I.4.60])
the stochastic exponential E (X) of X is the unique solution to the stochastic differential
equation

E (X) = 1 + E (X)− ·X. (4.1)

The stochastic logarithm L(X) of a semimartingale X that can hit zero only by a jump
(but not continuously) and is absorbed in zero is given by

L(X) =
1

X−
1{X− 6=0} ·X,

where 1{Xt−6=0}/Xt− is defined to be zero on the set {Xt− = 0}, for all t ≥ 0.
All representing functions shown in this subsection belong to the universal class U

and can therefore be applied to any semimartingale whose jumps are compatible with the
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given function (Proposition 3.6). The simplified stochastic calculus yields many identities
by straightforward computations. Using only the Itô–Meyer change of variables formula,
those identities would involve convoluted arguments. As an example, we now establish a
generalization of Yor’s formula and its converse (see [18, II.8.19–20]).

Proposition 4.1 (Generalized Yor formula and its converse). Consider a C2–valued semi-
martingale X and α, β ∈ C.

(1) Assume that the following conditions hold.

• If α ∈ {0,−1,−2, . . .}, then ∆X(1) 6= −1.

• If α ∈ C \Z, then Re E (X(1)) > 0.

Assume that these two conditions also hold with α and X(1) replaced by β and X(2),
respectively. We then have

E (X(1))
α
E (X(2))

β
= E

((
(1 + id1)α(1 + id2)β − 1

)
◦X

)
, (4.2)

where complex powers with exponent in C \Z are defined via the principal value
logarithm. In particular, with α = β = 1 we have

E (X(1))E (X(2)) = E (X(1) +X(2) + [X(1), X(2)]). (4.3)

(2) Assume next the following conditions.

• If α ∈ N, then X(1) does not reach zero continuously and is absorbed in zero.

• If α ∈ {0,−1,−2, . . .}, then X(1) 6= 0 and X(1)
− 6= 0.

• If α ∈ C \Z, then ReX(1) > 0 and ReX
(1)
− > 0.

Assume that these three conditions also hold with α and X(1) replaced by β and
X(2), respectively. Finally, denote by τ the first time X(1) or X(2) hit zero. We then
have

L((X(1))
α
(X(2))

β
) =

(
(1 + id1)α(1 + id2)β − 1

)
◦ (L(X(1))

τ
,L(X(2))

τ
). (4.4)

In particular, with α = β = 1 and X(1), X(2) not hitting zero we have

L(X(1)X(2)) = L(X(1)) + L(X(2)) + [L(X(1)),L(X(2))].

Proof. To start, from (4.1) for example, recall that by Proposition 3.14

E (X(k)) = 1 + E (X(k))−idk ◦X, k ∈ {1, 2}. (4.5)

Now, the change of variables formula in Proposition 3.15 applied to the function f =

idα1 idβ2 over an appropriate domain U (obtained as the Cartesian product of appropriate
one-dimensional domains, i.e., C for α ∈ N; C \ {0} for α ∈ {0,−1, . . .}; {z ∈ C : Re z > 0}
for α ∈ C \ Z; and likewise with β in place of α) combined with Proposition 3.14 and
Theorem 3.17 yield

E (X(1))
α
E (X(2))

β
= 1 +

(
E (X(1))

α

−E (X(2))
β

−

)
·
(
(1 + id1)

α
(1 + id2)

β − 1
)
◦X.

The uniqueness of strong solutions to the stochastic differential equation (4.1) then
yields (4.2).

Next, define Y (k) = L(X(k)) for k ∈ {1, 2}. Then from (4.2) we obtain

(X(1))
α
(X(2))

β
= E (Y (1))

α
E (Y (2))

β
= E

(
((1 + id1)α(1 + id2)β − 1) ◦ Y

)
.

Taking stochastic logarithms on both sides yields (4.4).
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With α = 1 and β = −1, identity (4.2) yields a C–valued extension of Equation (1-5) in
Mémin [26]. If we additionally assume X(1) = 0 and Y = X(2), we get

L
(

1

E (Y )

)
=

(
1

1 + id
− 1

)
◦ Y = Y0 − Y + [Y, Y ]c +

id2

1 + id
∗ µY .

Here we used that the function (1 + id)−1 − 1 ∈ U is analytic at 0 in conjunction with
Propositions 3.6 and 3.26. See also Larsson and Ruf [23, Theorem 4.1] for an R–valued
version.

Parts of the following proposition, restricted to real-valued semimartingales, appear
in Jacod and Shiryaev [18, II.8.8–12].

Proposition 4.2 (Identities involving natural / stochastic exponential / logarithm). Let X
denote a C–valued semimartingale. Then

L(eX) = (eid − 1) ◦X; (4.6)

|E (X)| = E ((|1 + id| − 1) ◦X) . (4.7)

If ∆X 6= −1, then

E (X) = elog(1+id)◦X ; (4.8)

log|E (X)| = log|1 + id| ◦X,

where log denotes again the principal value logarithm. Moreover, if Re E (X) > 0 then

log E (X) = log(1 + id) ◦X.

Proof. Apply the change of variables formula in Proposition 3.15 to the function eid to
obtain

eX = eX0 + (eX−+id − eX−) ◦X.

As 1/eX− is locally bounded, Proposition 3.14 in conjunction with Theorem 3.17 yield

L(eX) = e−X− · eX = e−X−(eX−+id − eX−) ◦X,

which on simplification gives (4.6).

Next we will prove (4.7) under the additional assumption ∆X 6= −1. Since the
function |id| is twice continuously real-differentiable on U = C \ {0} and E (X)−,E (X)

take values in U , Propositions 3.14 and 3.15, representation (4.5), and Theorem 3.17
yield

|E (X)| = (|E (X)− + id| − |E (X)−|) ◦ E (X) = (|E (X)− + E (X)−id| − |E (X)−|) ◦X
= (|E (X)−| (|1 + id| − 1)) ◦X = |E (X)−| · ((|1 + id| − 1) ◦X) ,

therefore (4.7) holds in this special case.

Define next

Y (1) = id1id 6=−1 ◦X and Y (2) = −1id=−1 ◦X. (4.9)

Observe that X = Y (1) + Y (2), [Y (1), Y (2)] = 0, and |E (Y (2))| = E (Y (2)) as the latter only
takes on values 0 and 1. The Yor formula in (4.3) now yields

|E (X)| = |E (Y (1))E (Y (2))| = |E (Y (1))|E (Y (2)). (4.10)

Moreover, note that ∆Y (1) 6= −1 hence by the special case of (4.7) shown earlier we have

|E (Y (1))| = E
(

(|1 + id| − 1) ◦ Y (1)
)

= E ((|1 + id1id 6=−1| − 1) ◦X), (4.11)

where the second equality follows from (4.9) and Theorem 3.17. Equations (4.9)–(4.11)
now yield

|E (X)| = E ((|1 + id1id 6=−1| − 1) ◦X)E (−1id=−1 ◦X)
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and a second application of the Yor formula (4.3) concludes the proof of (4.7) in full
generality.

Assume from now on that ∆X 6= −1. Observe that log(1 + id) is the right-inverse of
the function eid − 1 over the domain C \ {−1} and that log(1 + id) ∈ U ∩ I(X). We may
therefore define Y = log(1 + id) ◦X. From (4.6) and the composition Theorem 3.17 one
obtains

L
(

elog(1+id)◦X
)

= L(eY ) = (eid − 1) ◦ Y = (elog(1+id) − 1) ◦X = X −X0,

which yields (4.8).
Finally, for a semimartingale Y satisfying Y > 0 and Y− > 0 one obtains by Proposi-

tion 3.15, the identity Y = Y−id ◦ L(Y ), and Theorem 3.17 that

log Y = (log(Y− + id)− log(Y−)) ◦ Y
= (log(Y− + Y−id)− log(Y−)) ◦ L(Y ) = log(1 + id) ◦ L(Y ),

hence

log|E (X)| = log E ((|1 + id| − 1) ◦X) = log(1 + id) ◦ ((|1 + id| − 1) ◦X) = log|1 + id| ◦X,

again by composition.
Consider now X such that Re E (X) > 0, hence Re E (X)− ≥ 0 and E (X)− 6= 0. As in

the previous step, by Proposition 3.15 and Theorem 3.17 one obtains

log E (X) = (log(E (X)− + id)− log E (X)−) ◦ E (X)

= (log(E (X)−(1 + id))− log E (X)−) ◦X = log(1 + id) ◦X,

where the last equality follows by comparing the respective Émery formulae.

Proposition 4.3 (Generalized Yor formula involving absolute values). Consider a C2–
valued semimartingale X and α, β ∈ C.

(1) Assume that the following condition holds.

• If α ∈ C \ (0,∞) then ∆X(1) 6= −1.

Assume that this condition also holds with α and X(1) replaced by β and X(2),
respectively. We then have

|E (X(1))|α|E (X(2))|β = E
((
|1 + id1|α|1 + id2|β − 1

)
◦X

)
. (4.12)

(2) Assume next the following conditions.

• If α ∈ (0,∞) then X(1) does not reach zero continuously and is absorbed in
zero.

• If α ∈ C \ (0,∞) then X(1) 6= 0 and X(1)
− 6= 0.

Assume that these two conditions also hold with α and X(1) replaced by β and X(2),
respectively. Finally, denote by τ the first time X(1) or X(2) hit zero. We then have

L
(
|X(1)|α|X(2)|β

)
=
(
|1 + id1|α|1 + id2|β − 1

)
◦ (L(X(1))

τ
,L(X(2))

τ
). (4.13)

Proof. First, for α ∈ C \ (0,∞) and k ∈ {1, 2} we have thanks to (4.7)

|E (X(k))| = E
(

(|1 + id| − 1) ◦X(k)
)
> 0. (4.14)

Formula (4.12) now follows via an application of Proposition 4.1(1) in conjunction with
Theorem 3.17. In the case α ∈ (0,∞), the function |id|α is well defined on C rather than
just C \ {0}, hence condition (4.14) is not needed. For α ∈ N we may appeal again to
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Proposition 4.1(1) to obtain (4.12) and the result easily carries over to all α ∈ (0,∞).
Item (1) is proved.

Representation (4.13) is now obtained by writing X(k) = E (L(X(k))) for each k ∈
{1, 2}, applying formula (4.12) to the stochastic exponentials, and finally taking stochastic
logarithms on both sides of (4.12).

Example 4.4 (Iterated composition). Let us now consider the following construction for
a C–valued semimartingale X and for a constant α ∈ C. Define inductively the processes
Y 0 = X;

Y k = L( exp (αY k−1)), k ∈ N.

Then an induction argument, (4.6), and Theorem 3.17 yield that Y k = ξk ◦ X for all
k ∈ N ∪ {0}, with ξ0 = id;

ξk = exp (αξk−1)− 1, k ∈ N.

Explicitly, for each k ∈ N, ξk is a nested function of the form

ξk = exp (α (. . . (exp (α (exp (α id)− 1))− 1) . . .))− 1︸ ︷︷ ︸
k times

.

Using the chain rule, one infers that ξk is analytic at zero for each k ∈ N with

Dξk(0) = αDξk−1(0);

D2ξk(0) = αD2ξk−1(0) + α2(Dξk−1(0))
2
,

which implies

Dξk(0) = αk; D2ξk(0) = αD2ξk−1(0) + α2k = αk+1α
k − 1

α− 1
, k ∈ N,

where for α = 1 we interpret (αk − 1)/(α− 1) as k. We conclude that, for each k ∈ N,

Y k = αk(X −X0) +
1

2
αk+1α

k − 1

α− 1
[X,X]c + (ξk − αk id) ∗ µX . (4.15)

Note that this representation of Y k is the same for any starting process X, for each
k ∈ N. For example, let Xt = µt+ σWt for all t ≥ 0, where W is Brownian motion with
W0 = 0. Here µ ∈ R denotes the drift rate and σ ∈ R the volatility. Then (4.15) yields

Y kt = αkσWt +

(
αkµ+

1

2
αk+1α

k − 1

α− 1
σ2

)
t, t ≥ 0,

for all k ∈ N. Classical calculus would yield the same result, of course. For each k ∈ N,
one would repeatedly compute

Y k = exp
(
− αY k−1

−

)
· exp

(
αY k−1

)
.

This is not too complicated but can easily become quite cumbersome, even in the case of
drifted Brownian motion.

Example 4.5 (Itô–Wentzell formula). The semimartingale representation proposed in
this paper naturally leads to a parsimonious generalization of the Itô–Wentzell formula;
see Jeanblanc, Yor, and Chesney [19, Theorem 1.5.3.2] and also Bank and Baum [1,
Proposition 1.3]. To this end, consider an Rn–valued semimartingale V and a pre-
dictable function ψ such that ψ(x, ·) ∈ I(V ) for each x ∈ Rd. Define next a family of
semimartingales (F (x))x∈Rd by setting

F (x) = ψ (x, id) ◦ V.

One can now randomize the family F by allowing x to switch values stochastically
in line with the Rd–valued semimartingale X. Assuming F is sufficiently smooth, the
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randomized process F (X) defined by

F (X)t = Ft(x)|x=Xt , t ≥ 0

will again be a semimartingale. The observation

∆F (X) = (F (X)− F−(X)) + (F−(X)− F−(X−))

then yields, under suitable technical conditions, that

F (X) = ξ ◦ (X,V ) (4.16)

with

ξ(x, v) = ψ (X− + x, v) + (ψ(θ + x, id)− ψ (θ, id)) ◦ V−|θ=X− , x ∈ Rd, v ∈ Rn.

We leave the technical details to future work. For the moment, we only note that for
R–valued continuous processes X and V and for ψ(x, v) = f(x)v, where x, v ∈ R and
f : R→ R is twice continuously differentiable, one formally obtains

D1ξ(0, 0) = f ′(X) id ◦ V = f ′(X) · V ; D2ξ(0, 0) = f(X);

D2
1,1ξ(0, 0) = f ′′(X) id ◦ V = f ′′(X) · V ; D2

1,2ξ(0, 0) = f ′(X); D2
2,2ξ(0, 0) = 0.

If one can now show that f ′(X) · V = F ′(X) and f ′′(X) · V = F ′′(X), then (4.16) yields
the statement of Jeanblanc et al. [19, Theorem 1.5.3.2].

As the examples illustrate, the stochastic calculus introduced above is powerful and
simple. Stochastic integration, Itô’s formula, and the composition rule of Theorem 3.18
allow for a wide range of applications. Within the confines of their assumptions they
show that it is enough to study jump transformations; i.e., to represent Y in terms of X
it suffices to trace how the jump ∆Xt is transformed into the jump ∆Yt at time t ≥ 0.

4.2 Counterexamples

This subsection illustrates the tightness of the results in Section 3 by providing
several counterexamples.

Example 4.6 (ξ ∈ I(X), but ξ′(0) /∈ L(X)). Here, we construct a process X ∈ V d
σ and

a predictable function ξ ∈ I(X), twice continuously differentiable at zero, such that
ξ′(0) /∈ L(X). This illustrates the role of the predictable set HX in Definition 3.2.

Let U ∈ V d
σ denote a piecewise constant martingale that jumps at times 2 − 1/n

by ±1/n2. Let (Θn)n∈N denote an independent sequence of independent {0, 1}–valued
random variables with P[Θn = 1] = 1/n4. Let (Ψn)n∈N denote a sequence, independent
of U and (Θn)n∈N, of independent standard normally distributed random variables. Let
now V ∈ V d

σ denote a piecewise constant martingale that jumps at times 2− 1/n by Ψn if
Θn = 1 and does not jump if Θn = 0.

Next, set X = U + V ∈ V d
σ and assume the filtration is the natural filtration of

X. An application of Borel–Cantelli then yields that V only has finitely many jumps,
hence ∆X = ∆U except finitely many times. Consider next the deterministic predictable
function ξ given by

ξt = 1t<2

(
id1|id|≥(2−t)2 +

1

(2− t)2
id1|id|<(2−t)2

)
, t ≥ 0.

Note that

ξ′t(0) = 1t<2(2− t)−2, t ≥ 0;

hence ξ′2−1/n(0) = n2 for all n ∈ N and |ξ′(0)id|2 ∗ µX2 = ∞. Then thanks to Proposi-

tions 2.6, 2.8, 2.9, and 3.7(2), ξ′(0) /∈ L(X) but ξ ∈ Lσ(µX) = I(X).
Moreover, if Y = ξ ◦X also satisfies Y = η ◦X for some η ∈ I(X) and η′(0) exists,

then η2−1/n = ξ2−1/n for all n ∈ N, hence also η′(0) /∈ L(X).
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Example 4.7 (ξ ∈ I(X) and ψ ∈ I(ξ ◦X), but ψ(ξ) /∈ I(X); also: ξ ∈ I(X), ζ ∈ L(ξ ◦X),
but ζξ /∈ I(X)). Consider a continuous semimartingale X given by

Xt = Wt −
∫ t

0

s−
2/3ds = Wt − 3t

1
3 , t ≥ 0,

where W denotes a standard Brownian motion. Define the predictable, indeed, deter-
ministic functions

ξt = id + id2 t−
2/31t>0; ψt = id t−

1/31t>0, t ≥ 0.

Thus, ξ ∈ I1(X); in particular, Y = ξ ◦X satisfies Y = W . Hence, also ψ ∈ I1(Y ) and
ψ ◦ Y =

∫ ·
0
s−

1/3dWs.
Now let η = ψ(ξ). Thanks to (3.8) we have η′t(0) = t−

1/3 for all t > 0; hence, η /∈ I(X)

despite ξ ∈ I(X) and ψ ∈ I(ξ ◦X). In this example, ψ′(0) is deterministic, but (3.6) does
not hold. Hence, there is no contradiction to Theorem 3.18.

Example 4.8 (Alternative construction: ξ ∈ I(X) and ψ ∈ I(ξ ◦X), but ψ(ξ) /∈ I(X); also:
ξ ∈ I(X), ζ ∈ L(ξ ◦X), but ζξ /∈ I(X)). Let (τk)k∈N be a sequence of independent random
variables with τk uniformly distributed on (1/(k + 1), 1/k). Let (Jk)k∈N be an independent
sequence of independent {2, 4}–valued random variables with P[Jk = 2] = 1/2 = P[Jk = 4].
Set now

Xt = t3 +

∞∑
k=1

τJkk 1Jτk,∞J(t), t ≥ 0,

and assume that the filtration be the right-continuous modification of the one generated
by the finite-variation process X.

Consider now deterministic ξ and ψ given by ξt = 1id≤t4 id and ψt = id/t21t>0 for all
t ≥ 0. Then ξ ∈ I(X) with

Yt = ξ ◦Xt = t3 +

∞∑
k=1

τ4
k1{Jk=4}1Jτk,∞J(t), t ≥ 0,

and ψ ∈ I(Y ) with

ψ ◦ Yt = 3t+

∞∑
k=1

τ2
k1{Jk=4}1Jτk,∞J(t), t ≥ 0.

However, it is clear that ψ(ξ) /∈ I(X). An even stronger statement holds, namely that
there exists no η ∈ I(X) such that ψ ◦ Y = η ◦X.

Example 4.9 (ξ−1 /∈ I(ξ ◦X)). Assume that X = W is standard Brownian motion. Let ξ
denote some deterministic predictable function that satisfies ξt(x) = tx+ x2/2 for all t > 0

and x in a neighbourhood of zero (which may depend on t) and allows for an inverse.
Then ξ′t(0) = t and ξ′′t (0) = 1 for all t > 0. Hence ξ ∈ I1(X) and we can define Y = ξ ◦X,
satisfying

Yt =

∫ t

0

sdWs + t, t > 0.

Moreover, with ψ = ξ−1 we have ψ(ξ) ∈ I1(X). Observe, however, that ψ′(0) /∈ L(Y ) and
ψ′′(0) /∈ L([Y, Y ]c) since ψ′t(0) = 1/t and

ψ′′t (0) =
−ξ′′t (0)

(ξ′t(0))3
= −t−3, t ≥ 0.

Thus ψ /∈ I(Y ) but there is no contradiction to Remark 3.22 as (3.6) is not met. Because
ψ′(0) = 1/ξ′(0) is not locally bounded, this example does not contradict Corollary 3.23
either. Note that there exists no η ∈ I(Y ) such that X = η ◦ Y .

Example 4.10 (Alternative construction: ξ−1 /∈ I(ξ ◦ X); additionally ξ ◦ X = X). Let
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(τk)k∈N be a sequence of independent random variables with τk uniformly distributed on
(1/(k + 1), 1/k). Let (Uk)k∈N be an independent sequence of independent and identically
distributed {−1, 1}–valued random variables with P[U1 = 1] = 1/2. Set now

X =

∞∑
k=1

Ukτk1Jτk,∞J ∈ V d
σ ,

and assume that the filtration be the right-continuous modification of the one generated
by X.

Let ξ denote some deterministic predictable function that allows for an inverse and
satisfies, for all t > 0, ξt(x) = x for all x with |x| ≥ 1/(t+ 1) and ξt(x) = tx for all x in a
neighbourhood of zero (which may depend on t). Then ξ ∈ I(X) and X = ξ ◦X. However,
since 1HX = 1 and Dξ−1(0) /∈ L(X), we have ξ−1 /∈ I(X), concluding the example.

Example 4.11 (ξ, ψ(ξ) ∈ I(X) and ψ ∈ I(ξ ◦ X) but ψ(ξ) ◦ X 6= ψ ◦ (ξ ◦ X)). Let X be
a continuous semimartingale not equal to the zero process. Consider ξ = id3 ∈ U and
ψ = ξ−1. Note that ψ(ξ) = id ∈ U and that ξ ◦X = 0, hence ψ ∈ I(ξ ◦X). However, we
have

ψ(ξ) ◦X = X 6= 0 = ψ ◦ (ξ ◦X).

Theorem 3.18 is not contradicted because ψ is not differentiable at zero, (P×AX)–a.e.

5 Predictable characteristics

Up to this point we have relied on a ‘pathwise’ perspective in the sense that the
representation of the process Y by means of ξ ◦X depends on the probability measure
only through the null sets; see also Remark 3.12. Now we will demonstrate the ability to
convert an X–representation into predictable characteristics. In this section, we shall
use generalized conditional expectation; see Shiryaev [33, pp. 475–476] and Jacod and
Shiryaev [18, I.1.1].

5.1 Truncation functions

In [18, II.2.3–4], a bounded function h : Cd → Cd is called a truncation function forX if
h(x) = x in a neighbourhood of zero. For such h the process X[h] = X−(id− h)∗µX only
has bounded jumps and is therefore special. Below, it will be useful to not only control

the jumps of X, but also those of a stochastic integral with respect to X̂[h] = îd(X[h]).
This leads to the following generalization of the classical truncation function where
the boundedness and integrability requirements are relaxed. Moreover, h is no longer
restricted to be a time-constant deterministic predictable function.

Definition 5.1 (Truncation function for X and its compatibility with ξ ∈ I(X)). We call a
predictable function h : Ωd → Cd a truncation function for X if

id− h ∈ Lσ(µX) and if X[h] = X − (id− h) ? µX is special.

Moreover, for ξ ∈ I(X), we say that a truncation function h for X is ξ–compatible if

1HX D̂ξ(0) ∈ L(X̂[h]) and 1HX D̂ξ(0) · X̂[h] is special.

Remark 5.2 (Observations on truncation functions). If h is a truncation function for X
and ξ ∈ I(X), implying 1HX D̂ξ(0) ∈ L(X̂), it does not follow that 1HX D̂ξ(0) ∈ L(X̂[h]).
Indeed, there exists an R–valued quasi-left-continuous process V ∈ V d

σ with V0 = 0

whose jumps are bounded and a predictable process ζ ∈ L(V −BV ) such that ζ /∈ L(BV )

(see [4, Example 3.11]). Let now
X = V −BV .

Then h = 0 is a truncation function for X with X[0] = −BV and HcX is empty. The
predictable function ξ = ζid satisfies ζ = 1HX ξ

′(0) ∈ L(X) but 1HX ξ
′(0) /∈ L(X[0]).
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Consider now the process Y = ζ · X. We claim that h = 0 is not a truncation
function for Y . Hence, this provides an example of a process Y such that Y [0] does not
exist. Assume it did. Then id ∈ Lσ(µY ), yielding ζid ∈ Lσ(µX) = Lσ(µV ). In view of
Proposition 2.8 and the fact that ζ /∈ L(V ) this yields a contradiction.

As a final observation for the moment, note that the process 1HX D̂ξ(0) · X̂[h] may
not be special even if it is known that h is a truncation function for X, ξ ∈ I(X), and

1HX D̂ξ(0) integrates X̂[h]. For example, letX = 1JU,∞J, where U is uniformly distributed,
let F denote the smallest right-continuous filtration that makes X adapted, let ξt = id/t for
all t > 0, and let h = id. Then h is a truncation function for X with X = X[h], ξ ∈ I(X),
and HcX empty, but 1HX ξ

′(0) ·X[h] = 1/U1JU,∞J is not special.

Lemma 5.3 (Compatible truncation). There exists a ξ–compatible truncation function h
for X, for every ξ ∈ I(X). Moreover, h can be chosen such that h ∈ I(X) with

X[h] = X0 + h ◦X. (5.1)

Furthermore, if D̂ξ(0) is locally bounded (in particular, if ξ ∈ U ∩ I(X)), then any
truncation function for X is ξ–compatible.

Proof. By assumption, ς = 1HX D̂ξ(0) is in L(X̂). We claim that

h = id1|id|≤1 and |ς îd|≤1 (5.2)

has the desired properties. Indeed, id−h ∈ L(µX) because both X and ς · X̂ have finitely
many jumps larger than one in absolute value on any compact time interval. This also

yields ς ∈ L
(
X̂ − X̂[h]

)
and consequently ς ∈ L(X̂[h]). The jumps of X[h] and ς · X̂[h] are

bounded by 1 in absolute value; therefore both processes are also special.

Observe that h(ω, t, x) = x on a (ω, t)–dependent neighbourhood of zero, (P×AX)–a.e.
This yields that h is analytic at 0, Dh(0) is an identity matrix, and D2h(0) = 0. The
representation formula (3.15) now gives

X0 + h ◦X = X + (h− id) ? µX = X[h].

The final claim follows by localization.

Remark 5.4 (Truncation at zero). The previous lemma shows that sufficiently many
truncation functions can be applied via the natural formula (5.1). We elect not to make
(5.1) the only way to truncate because (5.1) does not hold for h = 0. Truncation at zero
is convenient when X has jumps of finite variation; more generally, it can be applied
whenever id ∈ Lσ(µX).

The next proposition recognizes that the Émery formula (3.3) represents a whole
spectrum of equivalent expressions where the jumps of X can be dialled down in the first
term of (3.3) as long as they are equivalently modified in the last term of (3.3). In most
applications, it is possible to choose as truncation one of the polar cases h = 0 or h = id;
less frequently one may have to opt for an intermediate truncation such as h = id1|id|≤1;
in full generality it may be necessary to use the compatible truncation (5.2).

Proposition 5.5 (Émery formula involving truncation). Fix ξ ∈ In(X) and let g be a
truncation function for ξ ◦X. Moreover, let h be a ξ–compatible truncation function for
X. Then the following terms are well defined and we have

(ξ ◦X)[g] = 1HX D̂ξ(0) · X̂[h] +
1

2
D̂2ξ(0) · [X̂, X̂]

c
+
(
g(ξ)− 1HX D̂ξ(0)ĥ

)
? µX (5.3)

= 1HX Ďξ(0) ·~X[h] +
1

2
Ď2ξ(0) · [X̌, X̌]

c
+ (g(ξ)− 1HX Ďξ(0)ȟ) ? µX . (5.4)
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If 1HX ξ is analytic at 0, (P×AX)–a.e., the following terms are well defined and we have

(ξ ◦X)[g] = 1HXDξ(0) ·X[h] +
1

2
D2ξ(0) · [X,X]c + (g(ξ)− 1HXDξ(0)h) ? µX . (5.5)

If g satisfies g(w) = w on an (ω, t)–dependent neighbourhood of 0, (P× AX)–a.e., then
we also have g(ξ) ∈ I(X) and

(ξ ◦X)[g] = g(ξ) ◦X.

Proof. Thanks to g being a truncation function for ξ ◦X and h being ξ–compatible (in
conjunction with Proposition 2.8) we have (g(ξ)− 1HX D̂ξ(0)ĥ ∈ Lσ(µX). It is now simple
to establish (5.3). Next, (5.4) and (5.5) follow as in Proposition 3.26.

The additional hypothesis on g yields D̂ĝ(0) = I2n and D̂2g(0) = 0, hence g ∈
I(ξ ◦X). The last statement follows from the definition of I(X), the ◦–notation, and from
Corollary 3.20.

5.2 Characteristics under the measure P

Proposition 5.5 yields the next observation, which is the key step towards computing
predictable characteristics of represented semimartingales.

Proposition 5.6 (Drift of a truncated represented semimartingale). Fix ξ ∈ I(X) and let
g be a truncation function for ξ◦X. Moreover, let h be a ξ–compatible truncation function
for X. Then the following terms are well defined and the predictable compensator of
(ξ ◦X)[g] under P is given by

B(ξ◦X)[g] = 1HX D̂ξ(0) ·BX̂[h] +
1

2
D̂2ξ(0) · [X̂, X̂]

c
+
(
g(ξ)− 1HX D̂ξ(0)ĥ

)
? νX (5.6)

= 1HX Ďξ(0) ·B~X[h] +
1

2
Ď2ξ(0) · [X̌, X̌]

c
+ (g(ξ)− 1HX Ďξ(0)ȟ) ? νX . (5.7)

If 1HX ξ is analytic at 0, (P×AX)–a.e., the following terms are well defined and we have

B(ξ◦X)[g] = 1HXDξ(0) ·BX[h] +
1

2
D2ξ(0) · [X,X]c + (g(ξ)− 1HXDξ(0)h) ? νX . (5.8)

Proof. In (5.3), the last term is special since all the other terms are special. Hence (5.6)
follows from Shiryaev and Cherny [34, Lemma 4.2]. Equations (5.7) and (5.8) follow as
in Proposition 3.26.

Remark 5.7 (Discrete-time and continuous-time components of a drift). Recall the unique
decomposition in Proposition 2.10. Consider now a predictable function ξ ∈ I(X).
Proposition 3.7(3) asserts (ξ ◦ X)qc = ξ ◦ Xqc and (ξ ◦ X)dp = ξ ◦ Xdp. Next, suppose
ξ ◦X is special. By Propositions 2.11 and 3.13(1), the drift at predictable jump times
then takes a particularly simple form, namely,

Bξ◦X
dp

=
∑
τ∈TX

Eτ−[ξτ (∆Xτ )]1Jτ,∞J. (5.9)

Observe that this formula is simpler than Proposition 5.6 applied to Xdp in place of X.
Therefore, in practice, Proposition 5.6 is used with X = Xqc to obtain Bξ◦X

qc

. One then
has

Bξ◦X = Bξ◦X
qc

+Bξ◦X
dp

.

Finally, recall that Xqc is quasi-left-continuous, hence Bξ◦X
qc

is continuous, yielding

∆Bξ◦X = ∆Bξ◦X
dp

.

The literature employs the following weakening of (5.9), typically with ξ = id,

∆Bξ◦X =

∫
Cd
ξ(x)νX({·},dx);
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see, for example, [18, II.2.14].

Corollary 5.8 (Characteristics of a represented semimartingale). Let Y = Y0 + ξ ◦ X
for some ξ ∈ In(X). Then the semimartingale characteristics of Y with respect to the
truncation function g for Y are given by

BY [g] = B(ξ◦X)[g];

[Ŷ (k), Ŷ (l)]
c

=
(
D̂ξ̂(k)(0)>D̂ξ̂(l)(0)

)
· [X̂, X̂]

c
, k, l ∈ {1, · · · , 2n}; (5.10)

[Y̌ (k), Y̌ (l)]
c

=
(
Ďξ̌(k)(0)>Ďξ̌(l)(0)

)
· [X̌, X̌]

c
, k, l ∈ {1, · · · , 2n}; (5.11)

νY is the push-forward measure of νX under ξ, that is, ψ ∗ νY = ψ(ξ) ∗ νX

for all non-negative bounded predictable functions ψ with ψ(0) = 0.
(5.12)

Proof. Definition 3.8 yields (5.10) and (5.11) then follows from (3.11) and (3.12) in view
of the identity

(Ďξ(k)(0) · X̌)
∗

= (Ďξ(k)(0))
∗ · (X̌)

∗
= Ďξ∗(k)(0) · X̌, k ∈ {1, · · · , n},

where the superscript ∗ denotes again the complex conjugate. The statement in (5.12)
follows from Proposition 5.6 on observing that νY (G) = B1G◦(ξ◦X), where G = G1 ×G2

with G1 ⊂ [0,∞) predictable and G2 a closed set in Cn not containing a neighbourhood
of zero.

When ξ is of the form ξ = f(X− + id)− f(X−) for a twice continuously differentiable
real-valued function f and when X is real, then Corollary 5.8 reduces to the situation
in Goll and Kallsen [16, Corollary A.6]. When ξ = R id for some Rn×d–valued matrix R
and X is real-valued, Corollary 5.8 yields the statement of Eberlein, Papapantoleon, and
Shiryaev [12, Proposition 2.4].

Example 5.9 (Generalized Yor formula continued). We continue the discussion of Proposi-
tion 4.1. Consider α, β ∈ C and a C2–valued semimartingale X satisfying the assumptions
of Proposition 4.1(1) and additionally X is stopped when ∆X(1) = −1 or ∆X(2) = −1.
We are interested in the drift of

Y = L
(
E (X(1))

α
E (X(2))

β
)

= ((1 + id1)α(1 + id2)β − 1) ◦X,

see (4.2). Here (1 + id1)α(1 + id2)β − 1 belongs to U and is analytic at zero. Let g and h
denote truncation functions for Y and X, respectively. Thanks to Lemma 5.3 and (5.8)
we now have

BY [g] = αBX[h](1) + βBX[h](2) +
1

2
α(α− 1)[X(1), X(1)]

c
+

1

2
β(β − 1)[X(2), X(2)]

c

+ αβ[X(1), X(2)]
c

+
(
g
(
(1 + id1)α(1 + id2)β − 1

)
− [α β]h

)
∗ νX .

(5.13)

Moreover, Corollary 5.8 yields

[Y, Y ]c = α2[X(1), X(1)]
c

+ β2[X(2), X(2)]
c

+ 2αβ[X(1), X(2)]
c
.

For a direct derivation of (5.13) in the real-valued case when α = 1 and β = −1, see for
example Kallsen [20, Lemma 4.3].

Example 5.10 (Example 3.28 continued). Consider for some α ∈ C and C–valued X with
∆X 6= −1, the representation Y = (|1 + id|α − 1) ◦ X. Assume for simplicity that Y is
special. The function |1 + id|α − 1 is in U but not analytic at 0. Example 3.28, Lemma 5.3,
and (5.6) now yield

BY = α ·BReX[h] +
α

2
(α− 1)[ReX,ReX]c +

α

2
[ImX, ImX]c + (|1 + id|α − 1− αReh) ∗ νX

for any truncation function h for X.
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6 Concluding remarks

Let us review the benefits of the proposed ‘calculus of predictable variations.’ Some
of the advantages, such as universality of representations in U and the ease with which
calculations can be performed in a very general class of complex-valued functions, have
been showcased in the introduction and subsequently in the main body of the paper.
Here we want to mention several other benefits that are of a more philosophical kind or
whose detailed treatment is beyond the scope of this paper and will be pursued in other
work.

The literature has a number of fragmented and specialized results that fit into the
framework of semimartingale representations. On their own, these results are hard
to generalize and do not suggest fruitful unification, hence are also difficult to recall
and disseminate. The new calculus overcomes this barrier by providing a compact,
systematic way of recording existing (and new) results. Let us mention two classical
examples to illustrate these advantages.

• Recall that a C–valued continuous local martingale is called conformal if [X,X]c = 0.
Hence by (3.15), an analytic representation with respect to a continuous conformal
local martingale is again a conformal local martingale. This not only covers a
change of variables by means of an analytic function, as in Getoor and Sharpe [15,
Proposition 5.4], but includes arbitrary representation analytic at the origin. For
example, the stochastic logarithm of a natural exponential preserves continuous
conformal local martingales as its representing function eid − 1 is analytic at 0.

• Consider now the explicit characterization of the complex stochastic exponential
due to Doléans-Dade [9, Théorème 1]. This is captured by the representation (4.8),

E (X) = elog(1+id)◦X , provided ∆X 6= −1.

As log(1 + id) is in U and analytic at 0, the Émery formula (3.15) yields

log(1 + id) ◦X = X −X0 −
1

2
[X,X]c + (log(1 + id)− id) ∗ µX ,

hence the jump integral converges pathwise, P–almost surely. After exponentiation
this yields the aforementioned important formula

E (X) = eX−X0− 1
2 [X,X]c

∏
t≤·

e−∆Xt(1 + ∆Xt),

this time in full generality, because the jump to zero may be treated separately.

Further advantages of the new calculus emerge when one is tasked with computing
the drift of a represented process under some new probability measure Q whose density Z
with respect to P is also represented, say by L(Z) = ψ ◦X. It now suffices to observe that
by Girsanov’s theorem the Q–drift of X equals the P–drift of X+[X,L(Z)] = id(1+ψ)◦X.
We refer the reader to Černý and Ruf [3] for a detailed treatment of measure changes by
means of non-negative, represented, multiplicatively compensated semimartingales and
once again to [5] for specific applications.

The suggested calculus has one other benefit for applied stochastic modelling. In an
applied setting it is impractical to work with the raw characteristics(

BX[h], [X̂, X̂]c, νX
)
.

This issue can be addressed by decomposing the process X uniquely into a ‘discrete-time’
component Xdp involving only jumps at predictable times and a ‘continuous-time’ part
Xqc, see Proposition 2.10. When it comes to computing drifts, the jumps at predictable
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times τ can be treated separately via the natural formula

∆Bξ◦Xτ = Eτ− [ξτ (∆Xτ )].

The remaining quasi-left-continuous part Xqc is usually an Itô semimartingale in
applications, i.e., the characteristics of Xqc are assumed to be absolutely continuous with
respect to time. One may then rephrase the drift computation for this component in terms
of time rates, reverting to drift rates, quadratic variation rates (squared volatilities), and
jump intensities (Lévy measures). Thus, the calculus naturally accommodates the two
most common ways of specifying the underlying stochastic process X (discrete time
vs. an Itô semimartingale) and even allows them to be combined in intricate ways, see
[3, Example 4.5].

We shall close by mentioning possible directions for future research. As for exten-
sions of the classes U and I(X), the most immediate generalization concerns the level
of smoothness of the representing function at the origin. Lack of differentiability is
associated with the need to consider local times in the Itô–Meyer formula; see Karatzas
and Shreve [22, Theorem 3.6.22]. This suggests an appropriate modification of the
Émery formula (3.3), for which the three key operations would have to be checked again.
In Example 4.5, we have broached the subject of the Itô–Wentzell formula that we believe
merits further investigation.
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[6] A. Černý and J. Ruf, On predictable variations of a semimartingale, Working paper, 2021.

[7] C. Dellacherie and P.-A. Meyer, Probabilities and Potential. B, North-Holland Mathematics
Studies, vol. 72, North-Holland, Amsterdam, 1982. MR0745449

[8] C. Doléans, Variation quadratique des martingales continues à droite, Ann. Math. Statist. 40
(1969), 284–289. MR0236982

[9] C. Doléans-Dade, Quelques applications de la formule de changement de variables pour
les semimartingales, Z. Wahrscheinlichkeitstheorie und verw. Gebiete 16 (1970), 181–194.
MR0283883

[10] C. Doléans-Dade and P.-A. Meyer, Intégrales stochastiques par rapport aux martingales
locales, Séminaire de Probabilités IV, Strasbourg, Lecture Notes in Math., vol. 124, Springer,
Berlin, 1970, pp. 77–107. MR0270425
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