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 ABSTRACT In recent decades, active vibration control of buildings for earthquake-induced damage 

mitigation has been widely considered in the scientific literature. Fuzzy logic control (FLC) has been 

shown to be an effective approach to regulate control forces exerted by actuators to building structures to 

reduce earthquake-borne oscillations. In many cases, FLC definition relying solely on expert knowledge 

does not result in optimal control responses for structures under strong ground motions. Thus, FLC 

optimal design becomes critical. In this regard, this paper puts forth an enhanced version of the 

metaheuristic Grey Wolf Optimizer (UGWO) to optimally design membership functions and rule base of 

FLC to minimize seismic structural damage defined in terms of maximum curvature ductility ratio at the 

end of structural members. The potential of UGWO for the purpose is demonstrated by considering a FLC 

implemented to control the seismic response of a 20-story steel structure with nonlinear behavior through 

active actuators. The performance of the UGWO is gauged by examining nine different structural 

performance metrics and compared to results from 5 different widely used state-of-art metaheuristic 

optimization algorithms including the original Grey Wolf Optimizer. Comparisons demonstrate the 

capability of UGWO in providing better solutions in most of cases, resulting in reduced structural 

response and damage of the considered building. 

 INDEX TERMS Ground motion; Fuzzy logic controller; Optimization; Upgraded Grey Wolf Optimizer; 

Metaheuristic. 

 

I. INTRODUCTION 

High-rise slender buildings are increasingly dominating 

the skyline of modern cities, making efficient use of the 

evermore scarce and high-premium urban land [1]. 

However, these structures may be susceptible to wide-band 

earthquake-induced lateral loads, especially in high 

seismicity regions [2]. To this end, active vibration control 

approaches have been widely pursued in the scientific 

literature for suppressing earthquake-borne lateral 

oscillations in high-rise buildings [3], aiming to increase 

community resilience to the seismic hazard. Such 

approaches employ large-scale actuators to exert time-

varying control forces to buildings such that seismic 

structural demands, namely lateral relative inter-storey 

displacements (storey drifts) and floor accelerations, are 

minimized. The required control forces are determined by 

closed-loop optimal feedback control algorithms, informed 

by real-time measurements of structural responses and 

ground motion excitation. Despite promising theoretical 

studies, active control technology found little practical 

application, compared to passive control solutions, for the 

seismic protection of buildings. This is mostly due to the 

large external energy typically required to generate the 

desired control forces, the cost of equipment (i.e. sensors 
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and actuators), and the complexity and efficiency of active 

controllers [4]. Nevertheless, the additive cost of active 

seismic control is expected to reduce in the foreseeable 

future with the increased availability of seismic ground 

motion and structural response data collected in real-time 

by early warning systems [5] and structural health 

monitoring sensor networks [6], deployed for seismic risk 

mitigation in smart cities [7]. Further, the efficacy and 

adaptiveness of active motion control over passive control 

solutions has been successfully demonstrated in mitigating 

wind-borne oscillations in real-life tall slender buildings [8]. 

Given that wind excitations are most critical to the design of 

typical tall slender buildings [9], the catalyst for extending 

the applicability of active control to address seismic loads in 

such structures is the development of more efficient active 

controllers tailored to minimize seismic structural demands.  

To this end, this paper focuses on the development of an 

improved metaheuristic optimization algorithm to design a 

fuzzy logic controller (FLC) for efficient seismic protection 

of tall buildings via active control. Note that FLCs have 

been widely considered in the literature for active vibration 

control of civil structures for several years and proved their 

effectiveness over alternative controllers [3,10-13]. Further, 

there is rich literature on the use of metaheuristic 

optimization algorithms for FLC design in various 

engineering applications, some of which are reviewed here. 

Reddy et al. [14] utilized genetic algorithms for optimal 

design of a nonlinear knowledge-based FLC for active 

control of magnetic bearings. Hein et al. [15] developed an 

interpretable fuzzy controller based on the Particle Swarm 

Optimization for automatically adjusting all controller 

parameters in vibration control of industrial facilities. 

Vanishree and Ramesh [16] utilized the Dragonfly 

Algorithm for optimal configuration of the Static VAR 

compensator developed for power transmission systems 

with improved voltage profile. Azizipanah-Abarghooee et 

al. [17] developed a fuzzy logic-based load frequency 

control technique utilizing the Jaya Algorithm to reduce the 

oscillation of system frequency. Hasanipanah et al. [18] 

proposed a new hybrid methodology for the optimal design 

of the fuzzy systems by the Imperialist Competitive 

Algorithm for ground vibration from blasting at mines. 

Boubertakh [19] proposed a method based on Ant Colony 

Optimization algorithm for optimal design of Fuzzy PID 

(FPID) controllers for single-input single-output and 

multiple-input multiple-output systems. Caraveo et al. [20] 

investigated a modification process for a bio-inspired 

algorithm formulated based on the bee behavior, called Bee 

Colony Optimization for optimal design of fuzzy 

controllers. Sahoo et al. [21] utilized Differential Evolution 

algorithm for optimization of FPID controller for load 

frequency nonlinear control of interconnected power 

systems. Debnath et al. [22] discussed the optimal 

parameter configuration of the FPID controllers utilizing the 

Firefly Algorithm with application to the derivative filter 

for the frequency control with thermal non-reheat type 

turbine of a unified power system. Gheisarnejad [23] 

designed a secondary controller based on fuzzy logic for 

two practical models implemented in load frequency control 

design problem and optimized by Cuckoo Search 

Algorithm. Sahoo and Panda [24] utilized Grey Wolf 

Optimization (GWO) algorithm for optimal control and 

frequency regulation in power systems based on the 

parameter configuration of a FPID controller. Zadeh and 

Bathaee [25] discussed load frequency control procedures 

for interconnected power systems considering uncertainty 

considerations and nonlinear term based on FLC using 

Harmony Search algorithm. Olivas et al. [26] utilized 

Gravitational Search Algorithm for parameter adjusting of 

type-2 FLC.  

Meanwhile, the authors developed several metaheuristic 

optimization algorithms and demonstrated their enhanced 

efficiency over alternative algorithms in solving various 

engineering design optimization problems including the 

Tribe–Charged System Search for parameter identification 

of nonlinear systems with large search domains [27], the 

Quantum‐behaved Developed Swarm Optimizer for optimal 

design of tall buildings [28]; the Fuzzy Adaptive Charged 

System Search for global optimization [29]; the Chaos 

Game Optimization algorithm for constrained engineering 

design problems [30] and the Atomic Orbital Search for 

global optimization [31] and constraint engineering design 

problems [32]. 

Herein, the GWO introduced by Mirjalili et al. [33] is 

utilized for FLC optimal design for smart active motion 

control of slender high-rise buildings subject to severe 

earthquake excitations. The GWO is a metaheuristic 

algorithm in which the behavior of the search agents 

seeking the global optimal solution mimics the hunting 

behavior of a typical pack of grey wolfs gradually 

encircling their prey and ultimately attacking it. The 

consideration of GWO for the task is prompted by its 

simplicity to tackle challenging engineering optimization 

problems and its capability of seeking the global optimal 

solution in a systematic manner. Further, an improved 

version of GWO, termed Upgraded GWO (UGWO), is 

proposed in this paper to achieve enhanced seismic 

structural performance through improved FLC optimal 

design. In the UGWO an estimate of the optimal solution in 

the search domain is re-evaluated after the position of a 

single agent has been updated within each iteration of the 

algorithm, as opposed to re-evaluating the optimal solution 

location after the position of all the agents have been 

updated (ie, at the end of each iteration) used in the standard 

GWO. The proposed UGWO is utilized for optimal FLC 

design implemented in a 20-story nonlinear steel benchmark 
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building [34] subject to several recorded earthquake strong 

ground motions. The capability and performance of the 

UGWO for FLC optimum design process is compared with 

the standard GWO alongside latest versions of popular 

advanced metaheuristic and classical optimization 

algorithms.  

 

II. Fuzzy Logic Controller 

Conventional closed-loop motion control algorithms 

employ a pre-specified parametric mathematical model of 

the dynamically excited structure we seek to control [3]. 

Thus, the potential of these algorithms for effective motion 

control relies on the accuracy of the mathematical model to 

represent the structure. This accuracy is naturally reduced 

for complex structures with uncertain properties and/or with 

unforeseen nonlinear response. Such is the case of building 

structures whose mass and stiffness properties are uncertain 

at the time of an earthquake and whose response to severe 

seismic ground excitation may become nonlinear [7]. A 

viable way to address this problem is to use model-free 

intelligent controllers such as a FLC. The latter has been 

shown to be quite advantageous for active seismic control 

of buildings as it can handle efficiently complex 

phenomena such as nonlinear structural seismic response 

due to material yielding [12,13]. 

In particular, a typical FLC undertakes three distinct 

operations. First, the FLC transcripts the input crisp data 

into a number of predefined linguistic arguments (fuzzy 

variables). This transcription operation, termed 

fuzzification, is based on membership functions which map 

input crisp data onto the fuzzy variables following fuzzy set 

theory. Second, inference is conducted to determine the 

control action in the fuzzy domain. This inference operation 

uses a rule base of “if-then” fuzzy logic operators, 

commonly specified through human expert knowledge. 

Third, transcription of the control action from fuzzy 

variables to crisp control force values takes place, termed 

defuzzification. The latter operation is based on 

membership functions, different from those used in the 

fuzzification operation, mapping the fuzzy control action 

variables onto output crisp values. A schematic view of a 

FLC implemented in a closed-loop control system is 

presented in Fig. 1 showing the sequence of the three above 

described operations: fuzzification, inference and 

defuzzification. 

In the numerical part of this work, a particular FLC is 

adopted to regulate output active control forces for 

earthquake response mitigation of a building based on 

structural acceleration input measurements. The considered 

FLC is a modified version of the one proposed by Al-

Dawod et al. [12]. The latter was strictly knowledge-based, 

relying on human expertise/intuition to define the support 

of membership functions and the rule base. For this reason, 

the FLC was sub-optimal and its effectiveness for structural 

seismic response mitigation was reported to be quite 

limited. Here, the FLC in [12] is modified to allow for 

variability to the membership function support and to the 

rule base, through a set of different (design) variables. 

Then, optimization of the design variables based on seismic 

structural response data allows for defining an enhanced 

FLC which is driven by structure-specific data rather than 

relying solely on human knowledge. 

 
FIGURE. 1. Fuzzy logic controller implemented in a closed-loop control system. 

In detail, the adopted FLC considers two input data 

streams (building response accelerations) and one output 

data stream (control force). Eleven linguistic fuzzy 

variables are utilized to define the fuzzy domain, presented 

in Table 1. Eight different membership functions are used 

for the fuzzification of each of the input data stream and 

eleven membership functions for the defuzzification of the 

output data. Membership functions are triangularly shaped 

with parametrically defined support through eleven 

variables ( 𝑎1, 𝑎2, … , 𝑎11 ) for each input and fifteen 

variables (𝑏1, 𝑏2, … , 𝑏15) for the output, as shown in Fig.2. 

 
TABLE 1. Fuzzy linguistic variables. 

Variables Definition 

PVL Positive and very Large 

PL Positive and Large 

PM Positive and Medium 

PS Positive and Small 

PVS Positive and very Small 

ZR Zero 

NVS Negative and very Small 

NS Negative and Small 

NM Negative and Medium 

NL Negative and Large 

NVL Negative and very Large 

 

The rule base of the considered FLC comprises 64 “if-

then” fuzzy rules reported in Table 2.  Each rule is assigned 

a weight 𝑐i (i=1,2,…,64) taking values within [0,1] interval, 

and treated as design variable. The value of the weight 

𝑐i signifies the importance of the ith rule in the fuzzy rule 

base. For 𝑐i = 1, the ith rule has maximum importance in 
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the fuzzy inference operation, while for 𝑐i = 0, the ith rule 

does not participate in the inference. For 0 < 𝑐i < 1, the ith 

rule  has a partial participation/effect in the inference 

operation depending on the 𝑐i value. 

In the following section metaheuristic algorithms are 

reviewed that will be used to optimally design the three sets 

of parameters defining the adopted FLC. 

 

  

 
FIGURE. 2. Membership functions for the input fuzzification (a) and the output defuzzification (b) with parametrically defined supports. 

TABLE 2. The rule base of the FLC. 

Output Control Force 

 First acceleration input 

Second acceleration 

input 
NL NM NS NVS PVS PS PM PL 

NL PVL/c1 PL/c9 PM/c17 PS/c25 PVS/c33 ZR/c41 NVS/c49 NS/c57 

NM PL/c2 PM/c10 PS/c18 PS/c26 PVS/c34 ZR/c42 NVS/c50 NS/c58 

NS PM/c3 PS/c11 PS/c19 PVS/c27 PVS/c35 ZR/c43 NVS/c51 NS/c59 

NVS PM/c4 PS/c12 PVS/c20 PVS/c28 ZR/c36 NVS/c44 NS/c52 NM/c60 

PVS PM/c5 PS/c13 PVS/c21 ZR/c29 NVS/c37 NVS/c45 NS/c53 NM/c61 

PS PS/c6 PVS/c14 ZR/c22 NVS/c30 NVS/c38 NS/c46 NS/c54 NM/c62 

PM PS/c7 PVS/c15 ZR/c23 NVS/c31 NS/c39 NS/c47 NM/c55 NL/c63 

PL PS/c8 PVS/c16 ZR/c24 NVS/c32 NS/c40 NM/c48 NL/c56 NVL/c64 

 

 

III. Grey wolf Optimizer (GWO) 

A. The Standard GWO 

The GWO is an iterative metaheuristic algorithm 

drawing inspiration from the hunting behavior and social 

hierarchy of grey wolfs to solve optimization problems 

[33]. In nature, grey wolves live and hunt in a pack. During 

hunting, the pack first identifies some moving prey, then it 

encircles the prey to trap it, and ultimately attacks the prey. 

The GWO utilizes a predefined number of search agents 

whose position in the search space is iteratively updated 
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with respect to the (unknown) position of the global 

optimum by mimicking the encircling behavior of 

individual grey wolves in a hunting pack around an 

identified moving pray. This behavior is mathematically 

modelled by firstly defining the distance between the 

position vector of a wolf (search agent), 𝑋⃗(𝑘) , and the 

position vector of pray, 𝑋𝑝⃗⃗ ⃗⃗ ⃗
(𝑘)
, at the kth iteration, by [33] 

 

𝐷⃗⃗⃗ = |𝐶. 𝑋𝑝⃗⃗ ⃗⃗ ⃗
(𝑘)
− 𝑋⃗(𝑘)|                                              (1) 

where 

𝐶 = 2𝑟1                                                                      (2) 

with 𝑟1  being a vector of random numbers uniformly 

distributed within [0,1]; and secondly updating the position 

of the wolf in the next iteration using  

 

𝑋⃗(𝑘+1) = 𝑋𝑝⃗⃗ ⃗⃗ ⃗
(𝑘)
− 𝐴. 𝐷⃗⃗⃗                                         (3) 

 

where 

 

𝐴 = 2𝑎⃗. 𝑟2 − 𝑎⃗                                                          (4) 

 

with 𝑟2  being a vector of random numbers uniformly 

distributed within [0,1] and 𝑎⃗  being a deterministically 

defined vector with equal and linearly decreasing elements 

over the course of iterations from 2 to zero. 

To facilitate a geometric interpretation of Eqs.(1-4), 

Fig.3 depicts a grey wolf with current position 𝑋⃗(𝑘) =
(𝑥, 𝑦)  in a two dimensional space and several possible 

updated positions around some prey located at 𝑋𝑝⃗⃗ ⃗⃗ ⃗
(𝑘)
=

(𝑥𝑝 , 𝑦𝑝) . Vectors 𝑟1  and 𝑟2 allow the wolf to update its 

position at any point around the prey for a given vector 𝑎⃗. 

For example, the updated position 𝑋⃗(𝑘+1) = (𝑥𝑝, 𝑦𝑝 − 𝑦)   

can be reached for 𝑎⃗ = (1,1)  by setting 𝑟1 = (1,1)  and  

𝑟2 = (0.5,1). Moreover, the randomness of vectors 𝑟1  and 

𝑟2  whose values are different at each iteration and the 

monotonically reducing norm of vector 𝑎⃗  with every 

iteration achieve efficient coupling of and smooth transition 

between exploration (ie, searching away from a local 

optimal solution, or prey, to find an improved solution, or 

better pray, elsewhere) and exploitation (ie, converging 

swiftly to the optimal solution once it is singled out, or 

attacking pray once it has been encircled) [33]. This can be 

appreciated by noting that for |𝐴| < 1 the updated position 

of the wolf will be closer to the pray and will eventually 

coincide for |𝐴| = 0 , while for |𝐴| > 1  the wolf moves 

away from the pray which increases the chance of 

identifying alternative, potentially better, pray. Due to the 

randomness of 𝑟2, the value of |𝐴| may increase or decrease 

in the next iteration, meaning that the search agent may 

“explore” moving away from a local optimal thus avoiding 

potential stagnation in a local solution or may “exploit” 

moving towards the identified solution. Importantly, the 

monotonic reduction of |𝑎⃗| in the course of iterations 

ensures that the probability that an agent exploits (|𝐴| < 1) 

in the next iteration rather than explores (|𝐴| > 1)   

increases as more iterations take place and that exploitation 

intensifies as |𝐴| is more likely to take smaller values with 

|𝑎⃗|  reducing in each iteration, ultimately reaching zero. 

Still, some level of exploration in the GWO is maintained 

even after several iterations through the random vector 𝑟1 

or, equivalently, 𝐶  which models random hurdles that a 

wolf may face in approaching pray. This is manifested 

through a stochastic increase of the distance 𝐷⃗⃗⃗ if |𝐶| > 1 in 

a subsequent iteration even though exploitation occurred 

(ie, (|𝐴| < 1)  ) in the current iteration. Thus, vector 𝐶 

safeguards GWO from local optimal stagnation in the final 

iterations. 

 
FIGURE. 3. Position vectors of grey wolfs and preys in two-dimensional space. 

Further to the above considerations of randomness, 

exploitation, and exploration, which are important elements 

in all metaheuristic optimizers, the GWO benefits from a 

purposely unequal treatment of search agents in each 

iteration, reflecting the strict social ranking within any pack 

of grey wolves [33]. Specifically, every pack has a leader, 

the alpha (α) wolf who manages the pack and makes 

decisions, supported by a second in hierarchy deputy 

leader, the beta (β) wolf. Next in the hierarchy are the delta 

(δ) wolves who are delegated sensitive and important tasks 

for the pack including scouting and caretaking, and finally 
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the lowest ranked wolves are the omega (ω) who submit to 

all the other dominant wolves. The GWO assumes that 

there is one wolf from each of the three first rankings, α, β, 

and δ in the hunting pack who have better knowledge of the 

potential location of prey and the rest are all ω wolves who 

update their position following the three superior wolves. 

Thus, at the start of the kth iteration the three best solutions 

obtained thus far, 𝑋𝑎⃗⃗ ⃗⃗ ⃗
(𝑘)
, 𝑋𝛽⃗⃗ ⃗⃗ ⃗

(𝑘)
 and 𝑋𝛿⃗⃗ ⃗⃗ ⃗

(𝑘)
 are selected based 

on the values of the objective function (fitness of solution) 

at the current location of all the agents and the position of 

all the agents are updated according to the location of the 

three best search agents, equally weighted. This is 

mathematically expressed, for the case of an arbitrary agent 

with position  𝑋⃗(𝑘), by the set of equations [33] 

 

{
 
 

 
 𝐷𝛼⃗⃗⃗⃗⃗⃗ = |𝐶1⃗⃗⃗⃗⃗. 𝑋𝑎⃗⃗ ⃗⃗ ⃗

(𝑘)
− 𝑋⃗(𝑘)|

𝐷𝛽⃗⃗ ⃗⃗ ⃗ = |𝐶2⃗⃗⃗⃗⃗. 𝑋𝛽⃗⃗ ⃗⃗ ⃗
(𝑘)
− 𝑋⃗(𝑘)|

𝐷𝛿⃗⃗ ⃗⃗ ⃗ = |𝐶3⃗⃗⃗⃗⃗. 𝑋𝛿⃗⃗ ⃗⃗ ⃗
(𝑘)
− 𝑋⃗(𝑘)|

                                        (5) 

 

{
 
 

 
 𝑋1⃗⃗⃗⃗⃗ = 𝑋𝑎⃗⃗ ⃗⃗ ⃗

(𝑘)
− 𝐴1⃗⃗⃗⃗⃗. (𝐷𝛼⃗⃗⃗⃗⃗⃗ )

𝑋2⃗⃗⃗⃗⃗ = 𝑋𝛽⃗⃗ ⃗⃗ ⃗
(𝑘)
− 𝐴2⃗⃗ ⃗⃗⃗. (𝐷𝛽⃗⃗ ⃗⃗ ⃗)

𝑋3⃗⃗⃗⃗⃗ = 𝑋𝛿⃗⃗ ⃗⃗ ⃗
(𝑘)
− 𝐴3⃗⃗ ⃗⃗⃗. (𝐷𝛿⃗⃗ ⃗⃗ ⃗)

                                         (6) 

 

𝑋⃗(𝑘+1) =
𝑋1⃗⃗⃗⃗⃗ + 𝑋2⃗⃗⃗⃗⃗ + 𝑋3⃗⃗⃗⃗⃗

3
                                           (7) 

 

and graphically illustrated in Fig.4.  

 

 
FIGURE. 4. Illustration of updating the position of an ω wolf, based on the 

positions of the three best agents (α, β, δ wolves) with respect to the estimated 

position of prey in a two-dimensional space. 

The pseudo code of the GWO is provided in Fig. 5 [33]. It 

is important to note that the use of the position of the three 

best agents by-passes the fact that the prey position (optimal 

global solution) is unknown, resulting in a feasible 

algorithm. It is further noted that the three best agents 

(dominant wolfs) may not be the same in each iteration. The 

latter observation motivates a proposed improvement to the 

GWO algorithm detailed next.  

 

 
FIGURE. 5. Pseudo code of the GWO [33]. 

B. The Upgraded Grey Wolf Optimizer (UGWO) 

The standard GWO presented above takes a “discrete-

time” or “iteration-time” approach in which the positions of 

the best three search agents are updated after the completion 

of each iteration. That is, after the position of all agents 

have been updated once. Whilst the discrete-time approach 

for evaluating the fitness of the achieved solution is 

followed by most of the standard metaheuristic algorithms, 

the evaluation of the fitness solution within each iteration 

may significantly benefit the quality of final best solution in 

problems with large population size. To this end, a 

“continuous-time” approached is herein proposed in which 

the fitness of solution is evaluated after each agent position 

is updated within an iteration. When applied to the GWO, 

the continuous-time approach allows for a potential change 

of the three best solutions within an iteration since an ω 

wolf may have moved closer to pray compared to the three 

dominant wolves. In this setting, the UGWO is reached 

which enables substitution of any one of three current best 

solutions within an iteration once (and if) it is surpassed by 

an agent who just updated its position. Then, the new set of 

best solutions is used to update the position of the 

remaining agents. The modified pseudo code of the UGWO 

based on the continuous-time approach is shown in Fig. 6. 
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FIGURE. 6. Pseudo code of the proposed UGWO. 

IV. Benchmark Problem Description 

A. Building Structure and Numerical Modelling 

The proposed metaheuristic optimal FLC design 

approach is illustrated by application to a planar (two-

dimensional) nonlinear computational model of a 

seismically excited 20-storey steel building equipped with 

an active control system. The structure is one of those 

considered in the third generation of seismic structural 

control benchmark problems [34]. The considered building, 

shown schematically in Fig.7, has been designed using a 

nominal design seismic action for the Los Angeles, CA, 

area with peak ground acceleration of 0.4g, g=9.81m/s2 

being the gravitational constant. It is 80.77m in height and 

36.58m by 30.48m in plan. It includes two underground 

stories with 3.65m floor-to-floor height, while the ground 

floor is 5.49m in height and the rest of the floors are 3.96m 

in height. The seismic mass of the ground and the first 

levels are 5.32×105 kg and 5.63×105, respectively, while for 

the second to 19th level, the seismic mass is 5.52×105 kg 

and for the 20th level is 5.84×105 kg. 

  

FIGURE. 7. Twenty-story steel building (Left) and perimetric moment resisting 

frame along the weak direction (Right). 

The lateral load resisting structural system of the building 

comprises four perimetric steel moment resisting frames 

(MRFs). The purpose of the seismic active control system is 

to protect the MRFs along the shorter (weak) direction of 

the building which has 5 bays spanning 6.10m each. Thus, a 

planar computational finite element model of one perimetric 

MRF, shown in Fig. 7, is considered in the numerical work. 

Details on material and section properties for all beams and 

columns of the considered MRF are presented in [34]. 

Under severe ground shaking, the considered steel MRF 

is expected to behave in a nonlinear fashion [34]. This is 

because modern seismic design codes for ordinary 

buildings, such as the one used to design the structure in 

Fig.7, allow for resisting seismic actions equal or above the 

nominal design seismic action through ductile inelastic 

behavior, which reduces upfront building construction costs 

[35]. For steel MRF buildings, this is achieved by ensuring 

material yielding at the ends of beams and columns with 

highest stress concentration resulting in the formation of 

flexural plastic hinges. These plastic hinges can dissipate 

significant input seismic (kinetic) energy without 

detrimental strength and stiffness degradation, thus without 

compromising the global structural stability. Herein, the 

anticipated inelastic material behavior under severe seismic 

action is mathematically represented by the bilinear 

hysteretic model in Fig.8, utilized in subsequent nonlinear 

time-domain analyses. The nonlinear model properties are 

defined in Table 3. The standard Newmark-β implicit direct 

time-integration method [36] is used for nonlinear structural 

analysis purposes, as detailed in [37] and hard-coded in 

MATLAB® as detailed in [38]. 

TABLE 3. Parameter specification of the nonlinear hysteresis model. 

Properties Value 

Modulus of Elasticity 200,000 MPa 

Yield Stress (σy) 345 MPa 

Ultimate Stress (σu) 450 MPa 

Yield Strain (εy) 0.001725 

Ultimate Stain (εu) 0.018 
 

 

FIGURE. 8. Bilinear material hysteresis model. 
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FIGURE. 9. Active control system placement to the benchmark structure. 

B. Active Control System 

Whilst reducing upfront building costs, the main 

shortcoming of resisting severe earthquakes through 

nonlinear ductile material behavior is that it may incur 

significant monetary loss and reduced resilience in the 

event of major earthquakes [7]. This is because plastic 

hinges involve local structural damage which need to be 

repaired after an earthquake, alongside damage to non-

structural elements, oftentimes at disproportionally high 

costs and downtime. To this end, the benchmark MRF is 

herein retrofitted by an active control system aiming to 

mitigate structural response to high intensity earthquakes, 

thus reducing the extend of nonlinear material behavior 

(plastic hinge formation). Following the benchmark active 

control problem in [34], active actuators are utilized to exert 

lateral control forces at different floors of the MRF. The 

maximum force capacity of each actuator is limited to 

1000kN and a total of 25 actuators are provided to the 

MRF, with locations as seen in Fig. 9. A rigid chevron 

brace is used to support each actuator as shown in Fig. 9, 

such that an actuator placed at the n-th floor produces equal 

and opposite forces exerted to the n and the n+1 floors. Five 

sensors acquiring lateral floor accelerations are 

implemented in the fourth, eighth, twelfth, sixteenth, and 

twentieth stories as seen in Fig.9. Four different FLCs 

defined in Section II are considered to provide the required 

control signals to the actuators, based on data streams from 

the sensors. Sensors in the 4th and 8th stories provide input 

to the first FLC which governs the control forces of the 

actuators in the first 8 stories. Sensors in 8th and 12th stories 

provide input to a second FLC which governs the control 

forces of the actuators located at 9th to 12th stories. Sensors 

in 12th and 16th stories provide input to a third FLC which 

governs the control forces of the actuators located at 13th to 

16th stories. Lastly, sensors in 16th and 20th stories provide 

input to a fourth FLC which governs control forces of the 

actuators located at 17th to 20th stories. For numerical 

simulation, the considered benchmark seismic active 

control problem is implemented in SIMULINK® as 

illustrated in Fig. 10. 

 

FIGURE. 10. SIMULINK block diagram of the FLC-based active vibration control 

simulator of the 20-Story MRF building. 

C. Seismic Input Action 

In this paper, the efficacy of the benchmark active 

control problem in Fig. 9 to reduce earthquake-induced 

structural response and damage is numerically evaluated by 

considering 7 acceleration ground motion signals recorded 

during different major historic earthquake events with 

moment magnitude in the range of 6.6 to 7.6. Purposely, 

high-intensity near-fault ground motion records are chosen 

with epicentral distance in the range of 0.96km to 5.35km, 

to incur yielding (nonlinear response) to the benchmark 

structure. The number of records (7) is consistent with 

mandates of current building codes of practice for seismic 

design of structures [32]. Table 4 provides details of the 

events along with seismological characteristics and the 

absolute peak ground acceleration (PGA). The latter is the 

most used seismic intensity measure in earthquake 

engineering to characterize the damage potential of strong 

ground motions. It is seen that the considered records have 

PGA≥0.65g, which is significantly higher from the nominal 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3134202, IEEE Access

 

VOLUME 9, 2021 102505 

M. Azizi et al. : Active Vibration Control of Building Structures by Upgraded Grey Wolf Optimizer 

design PGA=0.4g used in designing the 20-storey 

benchmark structure building [34]. It is therefore expected 

that the structure will behave nonlinearly (ie, some plastic 

hinges will form at the ends of beams and columns) under 

the considered seismic records. The time histories of the 

chosen records are plotted in Fig. 11. 

TABLE 4. Characteristics of the selected earthquake records. 

Abbr. 
Earthquake - 

Date 

Moment 

magnitude 

Epicentral 

distance 

(km) 

Fault 

Mechanism 
Station Component 

PGA 

(g) 

EQ1 Tabas-1978 7.4 2.05 Reverse TABAS TABL1 0.854 

EQ2 
Imperial 

Valley-1979 
6.6 2.66 Strike Slip 

Bonds 

Corner 
BCR230 0.777 

EQ3 
Loma Prieta-

1989 
6.9 3.85 

Reverse 

Oblique 
Corralitos CLS000 0.645 

EQ4 Landers-1992 7.3 2.19 Strike Slip Lucerne LCN345 0.789 

EQ5 
Northridge-

1994 
6.7 5.35 Reverse Sylmar SCS142 0.923 

EQ6 Kobe-1995 6.9 0.96 Strike Slip KJMA KJM000 0.834 

EQ7 Chi Chi-1999 7.6 3.12 
Reverse 
Oblique 

CHY028 CHY028N 0.760 

 

FIGURE. 11. Acceleration time histories of the recorded seismic ground motion components in Table 4. 
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D. Performance Criteria 

To assess the performance of the proposed 

metaheuristic optimal FLC design approach different 

performance criteria (PCs) for the actively controlled 

benchmark 20-storey structure are utilized. Following 

common practices [34], performance of the control system 

is gauged by comparing the response of the controlled 

structure to the response of the uncontrolled structure for 

the same earthquake excitation. In this regard, all PCs 

considered in this paper are ratios of some quantity of 

interest of the 20-storey MRF protected by the active 

control system with optimal FLC shown in Fig. 9 over the 

same or similar quantity for the 20-storey MRF with no 

control system in Figure 8. Thus, lower PC values 

correspond to better performance of the active control 

system. 

The adopted PCs are divided into three categories, 

examining maximum in time structural response, level of 

peak structural damage (ie material yielding), and 

maximum in time requirements of the control system. The 

first category of PCs includes the maximum inter-story drift 

ratio (ie. relative peak displacement of two consecutive 

floors normalized by the floor height) of all stories, PC1, 

the maximum floor acceleration of all stories, PC2, and the 

maximum base shear (ie. sum of horizontal structural forces 

resisting lateral sway), PC3, developed from all 7 ground 

motions (EQs) of Table 4. Mathematically, these PCs are 

expressed as  

𝑃𝐶1 = 𝑚𝑎𝑥
7𝐸𝑄𝑠

{
𝑚𝑎𝑥
𝑡,𝑖

|𝑑𝑖(𝑡)|
ℎ𝑖

𝛿𝑚𝑎𝑥
}                            (8) 

𝑃𝐶2 = 𝑚𝑎𝑥
7𝐸𝑄𝑠

{
𝑚𝑎𝑥
𝑡,𝑖

|𝑥̈𝑎𝑖(𝑡)|

𝑥̈𝑎
𝑚𝑎𝑥 }                              (9) 

𝑃𝐶3 = 𝑚𝑎𝑥
7𝐸𝑄𝑠

{
𝑚𝑎𝑥
𝑡,𝑖

|∑ 𝑚𝑖𝑥̈𝑎𝑖𝑖 (𝑡)|

𝐹𝑏
𝑚𝑎𝑥 }                   (10) 

where 𝑑𝑖(𝑡) is the time-history of the inter-story drift ratio 

of the ith storey of the controlled structure, ℎ𝑖  is the ith 

storey height, 𝛿𝑚𝑎𝑥  is the peak inter-story drift ratio from 

all the stories of the uncontrolled structure, 𝑥̈𝑎𝑖(𝑡)  is the 

acceleration time-history of the ith floor of the controlled 

structure, 𝑥̈𝑎
𝑚𝑎𝑥  is the peak floor acceleration from all the 

floors of the uncontrolled structure, 𝑚𝑖 is the seismic mass 

of the ith floor and 𝐹𝑏
𝑚𝑎𝑥  is the peak base shear of the 

uncontrolled structure. 

The second category of PCs looks at the maximum 

ductility ratio (ie ratio of peak inelastic deformation over 

yielding deformation), PC4, the maximum seismic energy 

dissipation at plastic hinges, PC5, and the number of plastic 

hinges, PC6. In the definition of PC4 and the PC5, the sum 

of the maximum curvature (ie, second derivative of the 

deflection) at both ends of structural members are taken. 

The mathematical expressions of PCs quantifying structural 

damage level are given as 

 

𝑃𝐶4 = 𝑚𝑎𝑥
7𝐸𝑄𝑠

{
 
 

 
 𝑚𝑎𝑥

𝑡,𝑗

|𝜑𝑗(𝑡)|
𝜑𝑦𝑗

𝜑𝑚𝑎𝑥

}
 
 

 
 

                                     (11) 

𝑃𝐶5 = 𝑚𝑎𝑥
7𝐸𝑄𝑠

{
 
 

 
 𝑚𝑎𝑥

𝑡,𝑗

∫𝑑𝐸𝑗
𝑀𝑦𝑗 . 𝜑𝑦𝑗

𝐸𝑚𝑎𝑥

}
 
 

 
 

                                   (12) 

𝑃𝐶6 = 𝑚𝑎𝑥
7𝐸𝑄𝑠

{
𝑁𝑑
𝑐

𝑁𝑑
}                                                       (13) 

where 𝜑𝑗(𝑡) is the time-history of the curvature at the ends 

of the jth structural element in the controlled structure, 𝜑𝑦𝑗 

is the yield curvature at the ends of the jth structural 

element, 𝜑𝑚𝑎𝑥  is the maximum curvature over time across 

all the ends of structural members in the uncontrolled 

structure, ∫𝑑𝐸𝑗  is the dissipated energy (ie, area of the 

bending moment versus curvature graphs) at the ends of the 

jth structural member in controlled structure, 𝑀𝑦𝑗  is the 

yield moment at the ends of the jth structural element, 𝐸𝑚𝑎𝑥 

is the maximum energy dissipated over time across all the 

ends of structural members in the uncontrolled structure, 

and 𝑁𝑑
𝐶 and 𝑁𝑑 are the numbers of plastic hinges (damaged 

ends of structural members) in the controlled and in the 

uncontrolled structure, respectively. 

The third category of PCs includes the maximum 

control force, PC7, the maximum stroke of the actuators (ie, 

relative displacement of the two device ends), PC8, and the 

maximum control power, PC9. The mathematical 

expressions of the last three PCs are given 

𝑃𝐶7 = 𝑚𝑎𝑥
7𝐸𝑄𝑠

{
𝑚𝑎𝑥
𝑡,𝑘

|𝑓𝑘(𝑡)|

𝑊
}                                    (14) 

𝑃𝐶8 = 𝑚𝑎𝑥
7𝐸𝑄𝑠

{
𝑚𝑎𝑥
𝑡,𝑘

|𝑦𝑘
𝑎(𝑡)|

𝑥𝑚𝑎𝑥
}                                   (15) 

𝑃𝐶9 = 𝑚𝑎𝑥
7𝐸𝑄𝑠

{
𝑚𝑎𝑥
𝑡
|∑ 𝑃𝑙(𝑡)|

𝑊𝑥̇𝑚𝑎𝑥
}                                 (16) 
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where 𝑓𝑘 , 𝑦𝑘
𝑎 , and 𝑃𝑘  are the time-histories of the control 

force, stroke, and required power of the kth actuator, 

respectively, 𝑊  is the MRF total weight, and 𝑥𝑚𝑎𝑥  and 

𝑥̇𝑚𝑎𝑥  are the maximum over time floor displacement and 

velocity relative to the ground of all floors of the  

uncontrolled structure. 

V. Statement of the FLC Optimization Problem 

For the purposes of this work, the parametrically 

defined FLC in section II is optimized to minimize 

structural damage of the controlled benchmark structure due 

to the seismic records in Table 4. To this end, the peak 

ductility ratio in terms of sum of the curvature at the end of 

structural members is taken as a most representative 

quantity of structural damage. This is closely related to 

PC4. However, for design purposes, PC4 is not used 

directly as the objective function to minimize as it does not 

account for the fact that records in Table 4 have different 

intensity and thus design would be dominated by the most 

severe record. Instead, a weighted sum approach is utilized 

in the definition of the objective function to minimize using 

the PGA of the records as weighting factors. This definition 

ensures that all records are accounted for in the FLC design 

independently of their intensity quantified by PGA. 

Mathematically, the objective function is written as 

J =

∑

[
 
 
 
 

𝑃𝐺𝐴𝑖 ×𝑚𝑎𝑥
i

{
 
 

 
 𝑚𝑎𝑥

𝑡,𝑗

|𝜑𝑗(𝑡)|
𝜑𝑦𝑗

𝜑𝑚𝑎𝑥

}
 
 

 
 

]
 
 
 
 

7
𝑖=1

∑ 𝑃𝐺𝐴𝑖
7
𝑖=1

                       (17) 

Thus, the FLC optimal design is formulated as follows: 

find the set of parameters defining the input fuzzification 

membership functions (𝑎1, 𝑎2, … , 𝑎11, in Fig. 2) for each of 

the two input streams, the output defuzzification 

membership functions ( 𝑏1, 𝑏2, … , 𝑏15,  in Fig.2), and the 

fuzzy rule base (𝑐1, 𝑐2, … , 𝑐64, in Table 2), for the four FLCs 

of the benchmark problem such that the objective function 

in Eq.(17) is minimized. In this regime, there are 101 design 

variables for each FLC, thus a total of 404 design variables. 

VI. Numerical Application 

The fuzzy optimization problem detailed in the 

previous section is solved using the proposed UGWO, the 

standard GWO, as well as four other well-established in the 

literature metaheuristic optimization algorithms which have 

been used for FLC design applications as reviewed in the 

introduction, namely genetic algorithms (GA), particle 

swarm optimization (PSO), ant colony optimization (ACO), 

and imperialistic competitive algorithm (ICA). The same 

stopping criteria are applied for all the algorithms, that is, 

3000 objective function evaluations and 100 iterations. The 

efficacy of the algorithms to reach a meritorious FLC 

design for seismic active control in tall buildings is gauged 

by utilizing the PCs of the benchmark problem detailed in 

section IV. 

The convergence history of the objective function in 

Eq.(17) for the six different algorithms under testing are 

presented in Fig. 12. It is seen that the UGWO finds the 

best solution from all considered algorithms. Specifically, it 

achieves a value of J=0.8827 for the objective function in 

Eq.(17), while the next best one is achieved by PSO 

(J=0.9004), followed by ICA (J=0.9010), GA (J=0.9019), 

GWO (J=0.9042), and ACO (J=0.9124). It is also seen that 

the UGWO converges in fewer iterations from all other 

algorithms except for ACO, which however yields the 

worst solution from all the considered algorithms and about 

3.5% worse than the proposed UGWO. Through application 

of nonlinear time-domain analyses for the uncontrolled and 

the optimally FLC-based actively controlled benchmark 

structure, PCs in Eqs. (8-16) are derived for all six 

metaheuristic optimization algorithms considered.  

Table 5 reports PCs obtained for each of the 7 ground 

motions in Table 4 for the proposed UGWO and the 

standard GWO. It also reports the difference of PC values 

achieved between the two algorithms with positive 

difference denoting improved performance of the proposed 

UGWO over the standard GWO. Besides the significant 

performance variability across different earthquake records, 

which is well-anticipated in structural earthquake 

engineering, it is seen that UGWO achieves better 

performance from the uncontrolled structure for all records 

for all PCs looking at peak structural responses (PC1-PC3) 

and level of inelastic response (PC4-PC6) indicative of 

structural damage, with only two exceptions highlighted in 

bold. Meanwhile, there are many more instances (13) for 

which the actively controlled structures using the standard 

GWO for FLC optimization performs worse than the 

uncontrolled structure. Moreover, with the exception of 

base shear PC3 for two records, the controlled structure 

with UGWO optimized FLC achieves improved 

performance than the GWO optimized FLC. The maximum 

improvements are up to 10.9% for PC1, 9.9% for PC2, 

5.8% for PC3, 7.2% for PC4, 51.1% for PC5, and 11.8% for 

PC6, which are quite significant. Importantly, these 

improvements by using reduced peak control forces and 

actuator strokes by up 4.3% and 7.1%, respectively. At the 

same time, higher peak control power is required for 3 out 

of the 7 records for UGWO to achieve the improved 

performances compared to GWO. Overall, the reported data 

suggest an overall considerable improvement in seismic 

structural performance in using the UGWO over the GWO 

for the optimal FLC design. 
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FIGURE. 12. The convergence history of J objective function in Eq.(17) for the UGWO, GWO and four other metaheuristic optimization algorithms. 

TABLE 5. Optimized evaluation criteria for the 20-story building utilizing UGWO. 

Performance 

criteria 

Optimization 

algorithm 

Earthquake ground motions 

EQ1 EQ2 EQ3 EQ4 EQ5 EQ6 EQ7 

PC1 

drift ratio 

UGWO 0.967 0.879 0.937 0.993 0.891 0.871 0.997 

GWO 0.969 0.925 0.963 1.008 0.899 0.934 1.105 

difference 0.23% 5.23% 2.72% 1.60% 0.90% 7.14% 10.89% 

PC2 

Story 

Acceleration 

UGWO 0.938 0.953 0.945 0.936 1.001 0.937 0.975 

GWO 0.951 0.972 0.956 1.029 1.006 0.960 1.034 

difference 1.39% 1.92% 1.16% 9.88% 0.44% 2.50% 6.05% 

PC3 

Base Shear 

UGWO 1.045 0.773 0.801 0.954 0.937 0.880 0.771 

GWO 0.985 0.818 0.779 0.958 0.937 0.890 0.793 

difference -5.70% 5.81% -2.76% 0.36% 0.03% 1.23% 2.79% 

PC4 

Ductility 

UGWO 0.927 0.827 0.919 0.996 0.858 0.800 0.862 

GWO 0.934 0.830 0.963 1.017 0.860 0.858 0.884 

difference 0.68% 0.25% 4.77% 2.19% 0.27% 7.21% 2.61% 

PC5 

Dissipated 

Energy 

UGWO 0.904 0.302 0.430 0.992 0.969 0.924 0.998 

GWO 1.034 0.457 0.518 1.054 1.013 0.975 1.048 

difference 14.38% 51.14% 20.40% 6.23% 4.52% 5.51% 4.93% 

PC6 

Plastic 

Hinges 

UGWO 0.920 0.708 0.606 1.000 0.985 1.000 0.949 

GWO 0.960 0.792 0.636 1.030 1.015 1.024 0.974 

difference 4.35% 11.77% 5.00% 3.03% 3.09% 2.38% 2.71% 

PC7 

Control 

Force 

UGWO 0.0071 0.0071 0.0070 0.0071 0.0071 0.0071 0.0070 

GWO 0.0074 0.0073 0.0074 0.0071 0.0074 0.0074 0.0073 

difference 4.23% 2.82% 5.71% 0.00% 4.23% 4.23% 4.29% 

PC8 

Device 

Stroke 

UGWO 0.090 0.180 0.167 0.096 0.180 0.137 0.122 

GWO 0.091 0.187 0.171 0.098 0.181 0.146 0.125 

difference 0.22% 3.44% 2.76% 1.56% 0.89% 7.10% 2.37% 

PC9 

Control 

Power 

UGWO 0.008 0.012 0.010 0.007 0.010 0.011 0.012 

GWO 0.009 0.013 0.011 0.004 0.009 0.009 0.013 

difference 3.57% 12.17% 6.93% -32.31% -3.13% -13.33% 8.94% 
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TABLE 6. Maximum PC from seven earthquake records obtained by different metaheuristic algorithms and difference with respect to the proposed UGWO. 

Performance 

criteria 

Metaheuristic algorithms 

GA PSO ACO ICA GWO UGWO 

PC1 

difference 

1.046 1.064 1.045 1.039 1.105 0.997 

4.98% 6.80% 4.87% 4.29% 10.89% - 

PC2 

difference 

1.018 1.010 1.014 1.019 1.034 1.001 

1.61% 0.89% 1.27% 1.80% 3.30% - 

PC3 

difference 

1.050 1.039 1.046 1.044 0.985 1.045 

0.46% -0.52% 0.15% -0.04% -5.70% - 

PC4 

difference 

0.991 1.002 0.998 0.998 1.017 0.996 

-0.48% 0.69% 0.20% 0.21% 2.19% - 

PC5 

difference 

1.033 1.069 1.058 1.076 1.054 0.998 

3.44% 7.07% 6.00% 7.74% 5.53% - 

PC6 

difference 

1.061 1.030 1.030 1.031 1.030 1.000 

6.06% 3.03% 3.03% 3.05% 3.03% - 

PC7 

difference 

0.0075 0.0073 0.0072 0.0078 0.0074 0.0071 

5.63% 2.82% 1.41% 9.86% 4.23% - 

PC8 

difference 

0.198 0.197 0.200 0.198 0.187 0.180 

9.71% 9.04% 11.09% 9.93% 3.44% - 

PC9 

difference 

0.008 0.013 0.008 0.008 0.013 0.012 

-39.02% 3.25% -37.40% -36.59% 8.94% - 

 

Further numerical data are provided in Table 6 to 

enable a comparison of the performance of UGWO vis-à-

vis all 5 alternative metaheuristic optimization algorithms 

considered in this work. Here, the peak PC value is reported 

from all seven records obtained by each algorithm together 

with percentage differences with respect to UGWO. With 

very few exceptions concerning mostly the base shear 

related performance (PC3) which is most relevant to 

strength issues rather than seismically induced damage, the 

UGWO achieves better seismic performance of the 

controlled benchmark structure than any other metaheuristic 

algorithm. Improvements are in the range of 4.3% to 10.9% 

and 3% to 6% for the all-important drift ratio (PC1) and 

number of plastic hinges (PC6), respectively, achieved by 

exerting reduced peak control forces by 1.41% up to 9.86% 

and exhibiting reduced peak actuator stroke by 3.44% up to 

11.1%. This data establishes the superiority of the proposed 

UGWO over several previously used metaheuristic 

algorithms for optimal FLC design in the rather challenging 

problem of seismic active control of tall buildings.  

To gain further insights on the significance of the 

improved structural performance endowed by UGWO over 

GWO and over the uncontrolled structure, Figs. 13-15 

present non-normalized data for the peak ductility ratio in 

terms of curvature and the peak energy dissipation ratio 

across all structural members of the benchmark structure, as 

well as the number of plastic hinges formed in the structure. 

Focusing first on the peak ductility ratio in Fig. 13, which is 

the most representative quantity of the level of highest 

damage in the structure, it is seen that UGWO achieves 

always improvement compared to the uncontrolled 

structure, even in cases where GWO does not improve 

performance. The maximum difference of the UGWO and 

GWO in comparison to the uncontrolled structure are for 

the Kobe earthquake record of about 20% and 17%, 

respectively.  
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FIGURE. 13. Comparison of the curvature ratio for different earthquakes. 

Next, the attention is turned to the seismic energy 

dissipation ratio in Fig.14 whose reduced value is good 

indicator of the potentially positive effect of active control 

to resist earthquake shaking with reduced structural damage 

and thus reduced repair costs and downtime after a major 

seismic event. It is found that for all earthquakes the 

controlled benchmark structure optimized using the UGWO 

performs better from the uncontrolled, while this is not 

always the case with the GWO. Remarkably, for the 

imperial valley event, UGWO achieves 70% reduced 

energy dissipation through plastic deformation compared to 

only 54% achieved by the GWO.  

Lastly, looking at Fig. 15, similar observations can be 

made for the number of plastic hinges (ie, locations of local 

structural damage), for which UGWO reduces the number 

of plastic hinges compared to the uncontrolled structures 

with the exception of Kobe and Landers seismic records for 

which the number of plastic hinges remain the same, though 

they slightly increase when using the GWO to optimize the 

FLC. Overall, despite record-to-record variability, the 

UGWO achieves always better performance than GWO 

which establishes the superiority of the best agent updating 

within each iteration of the GWO algorithm proposed in 

this paper.     



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3134202, IEEE Access

 

VOLUME 9, 2021 102511 

M. Azizi et al. : Active Vibration Control of Building Structures by Upgraded Grey Wolf Optimizer 

 

FIGURE. 14. Comparison of the energy dissipation ratio for different earthquakes. 

 

FIGURE. 15. Comparison of the number of plastic hinges for different earthquakes. 
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VII. CONCLUDING REMARKS 

In this paper, an enhanced version of the GWO 

algorithm has been proposed for the optimal design of FLCs 

aiming for seismic damage mitigation of tall buildings via 

active control. The efficacy of the proposed metaheuristic 

algorithm, UGWO, has been demonstrated by considering a 

benchmark 20-storey steel frame building actively 

controlled using 25 actuators. To this aim, a fuzzy optimal 

design problem has been considered involving 404 design 

variables tuned to minimize the inelastic response of the 

actively controlled benchmark structure for 7 high-intensity 

near fault recorded ground motions. It was found that FLC 

optimization using the proposed UGWO achieves reduced 

seismic demands for most of the ground motions compared 

to the uncontrolled structure, as well as compared to FLC-

based actively controlled structure using GWO and four 

other metaheuristic optimization algorithms previously used 

in the literature for FLC optimal design. Seismic demands 

have been quantified in terms of six different performance 

indices including peak inter-storey drift, peak floor 

acceleration, peak ductility ratio, peak energy dissipation 

and number of plastic hinges developing. Further, the 

achieved higher reductions by the UGWO were 

accomplished using lower peak controlling force and peak 

actuator stroke. Overall, the reported numerical data 

establish the proposed UGWO as superior metaheuristic 

optimization algorithm for optimal FLC design and as a 

bona fide tool for reducing earthquake-induced damage to 

tall buildings under severe seismic events. 
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