
              

City, University of London Institutional Repository

Citation: Meira, E., Cyrino Oliveira, F. L. & de Menezes, L. M. (2022). Forecasting natural 

gas consumption using Bagging and modified regularization techniques. Energy Economics,
106, 105760. doi: 10.1016/j.eneco.2021.105760 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/27268/

Link to published version: https://doi.org/10.1016/j.eneco.2021.105760

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Forecasting natural gas consumption using Bagging and modified regularization
techniques

Erick Meira∗

Department of Industrial Engineering, Pontifical Catholic University of Rio de Janeiro
Rua Marquês de São Vicente, 225, Ed. Cardeal Leme, 9o andar, Rio de Janeiro 22451-900, BR

Energy, Information Technology and Services Division, Brazilian Agency for Research and Innovation (Finep)
Praia do Flamengo, 200, 9o andar, Rio de Janeiro 22210-030, BR

Fernando Luiz Cyrino Oliveira
Department of Industrial Engineering, Pontifical Catholic University of Rio de Janeiro

Rua Marquês de São Vicente, 225, Ed. Cardeal Leme, 9o andar, Rio de Janeiro 22451-900, BR

Lilian M. de Menezes
Bayes Business School (formerly Cass), City, University of London

106 Bunhill Row, London EC1Y 8TZ, UK

Abstract

This paper develops a new approach to forecast natural gas consumption via ensembles. It com-

bines Bootstrap Aggregation (Bagging), univariate time series forecasting methods and modified

regularization routines. A new variant of Bagging is introduced, which uses Maximum Entropy

Bootstrap (MEB) and a modified regularization routine that ensures that the data generating process

is kept in the ensemble. Monthly natural gas consumption time series from 18 European countries

are considered. A comparative, out-of-sample evaluation is conducted up to 12 steps (a year)

ahead, using a comprehensive set of competing forecasting approaches. These range from statistical

benchmarks to machine learning methods and state-of-the-art ensembles. Several performance

(accuracy) metrics are used, and a sensitivity analysis is undertaken. Overall, the new variant

of Bagging is flexible, reliable, and outperforms well-established approaches. Consequently, it is

suitable to support decision making in the energy and other sectors.
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1. Introduction

Natural gas is a strategic energy source in most European countries. Given recent decarbonization

initiatives and commitments to phase out electricity generation from coal, natural gas is expected to

remain as an important source of energy (IEA, 2021). In absolute terms, the greatest contribution

to future global energy demand is expected to come from natural gas, as it is the only fossil fuel

whose demand is forecast to globally increase by almost 3 mboe/d from 2019 to 2045 (OPEC, 2020).

Although most of this increase is expected to come from developing countries, which have been

expanding industrial sectors and electricity consumption, natural gas still plays a major role in

Europe. Bastianin et al. (2019) argues, for instance, that the consumption of natural gas in Europe

is likely to grow more than that of any other energy source over the period 2015–2050. On the one

hand, gross inland consumption of natural gas has considerably increased, following the European

Union (EU) Second Strategic Energy Review, which emphasized sustainability, competitiveness and

security of supply (CEU, 2008). On the other hand, indigenous natural gas production in Europe is

declining because of dwindling reserves (Chen et al., 2019). The International Energy Agency (IEA)

estimates that, given the limited reserves of natural gas in the EU and a shift to gas-fired power

generation, the EU‘s dependence on gas imports may reach over 85% by 2030 (IEA, 2020).

As this dependence increases, natural gas markets are becoming increasingly volatile, thus highlighting

the risks faced by gas utilities and consumers in Europe. Wood (2016) describes inherent sources of

uncertainty, e.g., gas on gas competition (short-term hub prices versus long-term contracts indexed

to oil products); third-party access to key infrastructure that increases competition; concerns over

carbon pricing and emissions taxes discouraging investment in gas infrastructure; political unrest

around the “Southern Corridor” potential pipeline routes, across Turkey and the Balkans; and

uncertainties related to technology, decreasing levelized costs of renewables, public pressure and

regulation that hinder the future exploitation of gas resources within the EU. In this context, the

importance of accurate natural gas demand forecasts for medium term planning can not be overstated.

Not only reliable estimates allow businesses to position themselves competitively in markets, but also

aid power system operators in balancing electricity supply and demand. Consequently, forecasts of

natural consumption are important to maintain gas and electricity reserve margins, and ultimately,

to secure energy supply in Europe.

1.1. On forecasting natural gas demand

Several studies have addressed how to forecast natural gas demand. Yet, there is no consensus

as to which approaches are more suitable, and little evidence of how methods perform in a wide

range of data. Furthermore, the majority of studies are narrow in their geographical coverage.
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Sánchez-Úbeda & Berzosa (2007) consider a set of daily industrial end-use natural gas demand

series from Spain. Vondráček et al. (2008) use a nonlinear regression model to estimate natural gas

consumption of residential and small commercial customers from May 2005 to April 2006 in West

Bohemia, Czech Republic. Azadeh et al. (2011) make annual projections of natural gas demand in

four Middle Eastern countries from 2008-2015. Taşpınar et al. (2013) consider daily natural gas

consumption in the Turkish Sakarya province and test the performance of three methods – Seasonal

ARIMA with regressors (SARIMAX), Artificial Neural Networks (ANN) with Multilayer Perceptrons

(ANN-MLP) and with a Radial Basis Function layer (ANN-RBF). Potočnik et al. (2014) investigate

static and adaptive models when forecasting day-ahead natural gas demand from a local distributor

in Croatia. Bai & Li (2016) consider a Support Vector Regression (SVR) approach to forecast daily

natural gas consumption in Anqing, China. Panapakidis & Dagoumas (2017) combined Wavelet

Transform (WT), Genetic Algorithm (GA), Adaptive Neuro-Fuzzy Inference System (ANFIS) and

Feed-Forward Neural Networks (FFNN) to forecast day-ahead natural gas demand in selected Greek

distribution points. Özmen et al. (2018), in turn, use Multivariate and Conic Multivariate Adaptive

Regression Splines (MARS & CMARS) to forecast day-ahead residential gas consumption in Ankara,

Turkey. Beyca et al. (2019) focus on machine learning tools to forecast 12 months-ahead natural gas

consumption in the province of Istanbul.

Besides the limited scope in terms of covered regions, a considerable share of previous studies do

not provide metrics for out-of-sample forecasting evaluation: most are concerned with scenario

projections, rather than providing comparable point forecasts. Error metrics such as the Mean

Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE) are sometimes present,

but mainly used for in-sample fit asssessments or model optimization. Out-of-sample evaluation,

when present, tend to rely on simple performance metrics in each predicted step, such as the Relative

Error (RE). In short, the limited number of competitive benchmarks hinders a clear evaluation of

the current state of the literature.

Another point worth noting is that studies that forecast monthly natural gas demand are scarce.

Two exceptions are Vondráček et al. (2008) and Beyca et al. (2019), which focus on specific regions:

West Bohemia, in the former, and Istanbul, in the latter. However, monthly time spans are of

particular relevance, for any strategic decisions in the gas and in the energy sector as a whole, are

within this frequency.

Finally, notwithstanding the merits of previous studies, the energy transition towards more flexible

and cost effective power systems (Babatunde et al., 2020; Liebensteiner & Wrienz, 2020) and changes

in residential consumption patterns (BBC, 2019) calls for adaptive forecasting, i.e., models which
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can easily adapt to changes in stylized facts of the time series.

1.2. The growing relevance of ensemble forecasting in the energy sector

Among adaptive forecasting tools, there are hybrid ensemble approaches, which incorporate tra-

ditional statistical methods and machine learning techniques, and can deal with different stylized

facts and improve forecasting. Zhang et al. (2015) combines Ensemble Empirical Mode Decomposi-

tion (EEMD), Least Square Support Vector Machines coupled with Particle Swarm Optimization

(LSSVM–PSO) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models to

forecast West Texas Intermediate (WTI) crude oil prices. Wang & Wang (2020) put forth a hybrid

forecasting model that considers EMD and Gated Recurrent Unit coupled with Stochastic time

effective Weights (SW-GRU) to forecast daily futures and spots prices of the WTI and Brent crudes

and the Reformulated Blendstock for Oxygenate Blending (RBOB) gasoline. De Oliveira & Cyrino

Oliveira (2018) consider a Bootstrap Aggregation (Bagging) ensemble to forecast monthly electricity

consumption in several economies. Agrawal et al. (2019) propose an ensemble of Relevance Vector

Machines (RVM) and boosted trees for hour-ahead electricity price forecasting in New England.

Eensembles have also been successful in univariate time series forecasting competitions. For instance,

Petropoulos et al. (2018) demonstrate that their Bootstrap Model Combination (BMC) outperforms

several benchmarks in the M and M3 Competitions (Makridakis et al., 1982; Makridakis & Hibon,

2000), which respectively comprise 1001 and 3003 time series of different frequencies. Meira et al.

(2021b) propose a Pruned BaggedETS algorithm, an ensemble combining Bagging with a novel

feature selection technique, and obtain promising results on all 98,830 series from the M, M3 and

M4 (Makridakis et al., 2019) competitions.

In this context, this paper proposes an approach to ensembles that combines Bagging – a class

of ensembles approaches –, univariate time series methods and modified regularization to forecast

monthly natural gas consumption across 18 European economies. The proposal addresses different

stylized facts that may be present in natural gas consumption and related time series, such as

nonlinearities, stochastic components (trend, seasonality), heteroscedasticity, and structural breaks.

In order to assess forecasting performance, a comparative, out-of-sample analysis is conducted using

forecast error metrics and alternative forecasting methods, including traditional benchmarks and

state-of-the-art ensembles. Several robustness checks and sensitivity analyses are undertaken. In all,

the results are promising.

The next section addresses univariate time series forecasting with ensembles. Section 3 describes the

proposed methodology, highlighting its main differences in relation to recently developed ensemble

methods for forecasting. Section 4 describes the data and the evaluation setup, and Section 5
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summarizes the results and assesses their implications. Finally, Section 6 concludes and suggests

directions for future research.

2. A framework for ensemble forecasting methods

Ensembles are supervised learning techniques that follow the concept of Decision Committee Learning

(Nock & Gascuel, 1995): committee-members (models) are applied to either a classification or a

forecasting task, and their outputs are then combined to create a single forecast. Forecasting with

ensembles has 4 main stages: (i) an (optional) data treatment and decomposition, in which the time

series is transformed (if necessary) and decomposed into its key components; (ii) the resampling of

one or more components multiple times, with subsequent inversion of the initial transformation; (iii)

forecasting each series in the resulting ensemble (the original time series and its replicas); and the

(iv) combination and pruning stage, in which the forecasts are averaged and some may be removed,

when they are unlikely to improve the final result. The flowchart presented in Figure 1 summarizes

how these steps are taken for univariate time series forecasting. By considering multiple predictors

that are built on replicas of the original data, a random pool (ensemble) of forecasts is formed,

and then combined into a single forecast. Hence, the approach allows for the inclusion of different

types of uncertainty that may arise when building predictions from data, i.e., data uncertainty,

model uncertainty, and parameter uncertainty (Petropoulos et al., 2018). As described in the next

subsections, each stage contributes to the performance of an ensemble.

Among ensembles, those which selectively resample from the original data to generate replicas to

which a base model is applied have consistently reduced forecasting error. Bagging (Breiman, 1996)

and Boosting (Freund, 1995) algorithms have attracted considerable attention in the forecasting

literature. The former generates replicas in parallel, whilst the latter generates them sequentially.

Overall, Bagging is thought to be more consistent, as it increases the forecasting error less frequently

than Boosting, whilst the latter may have greater average effect, thus leading to better goodness-of-fit

(Webb, 2000). However, much of the gains from Boosting seems to be due to overfitting (Quinlan,

1996), which explains its poor forecasting performance on volatile time series. Bagging algorithms

are particularly useful in forecasting, given their capability to select predictors originated from the

forecasting ensemble by means of user-defined techniques, i.e., the practitioner is not restricted to

the pre-defined weights of Boosting. Hence, Bagging is the point of reference to our study.
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Figure 1: Univariate time series forecasting with ensembles. J stands for the desired number of replicas of
the original series – usually 99 in empirical experiments.

2.1. Treatment and decomposition of the time series

In most forecasting ensembles, the time series is initially filtered or smoothed. A common procedure

for treating time series data is the Box–Cox (BC) transformation (Box & Cox, 1964), which can

simultaneously stabilize the variance, reduce the skewness of the distribution, and ensure that the

components of the time series are additive (Petropoulos et al., 2018). Unsurprisingly, several recent

studies in forecasting have applied this transformation (Bergmeir et al., 2016; Dantas et al., 2017; De

Oliveira & Cyrino Oliveira, 2018; Petropoulos et al., 2018; Dantas & Cyrino Oliveira, 2018; Meira

et al., 2021b,a).

After an initial treatment, time series decomposition can be considered, since the estimation error

obtained from further aggregating the extrapolated sub-series is expected to be lower than the

estimation error for the whole series (Theodosiou, 2011). Two types of decomposition are common

in the literature: Seasonal-Trend decomposition using Loess (STL) (Cleveland et al., 1990), and

Empirical Mode Decomposition (EMD) (Huang et al., 1998). The former consists of six sequential
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smoothing operations employing Locally-Weighted Regression (Loess) that decompose the series

into three additive components: trend, seasonal and remainder (Petropoulos et al., 2020). When

compared to other decomposition methods, STL is robust to outliers, can deal with any type

of seasonality regardless of the data-frequency, and allows for controlling trend-cycle smoothness

(Hyndman & Athanasopoulos, 2021). By contrast, EMD decomposes the time series into a sum of

oscillatory Intrinsic Mode Functions (IMFs) that are symmetric with respect to their local zero-mean.

The number of extrema and zero-crossings for each IMF are, by definition, equal or allowed to differ

at most by one in the whole data. IMFs are more regular and thus easier to forecast.

Most ensembles adopt STL, prior to resampling the time series. STL has also been integrated

to hybrid forecasting methods, such as the Bagged.BLD.MBB.ETS by Bergmeir et al. (2016)

and the Bootstrap Model Combination of Petropoulos et al. (2018). However, EMD has shown

encouraging performance. Recent examples include: the EMD-Holt-Winters Bagging approach

of Awajan et al. (2018); the Interval Decomposition Ensemble (IDE) of Sun et al. (2018), which

combined Bivariate Empirical Mode Decomposition (BEMD), Interval Multilayer Perceptron and

Interval Holt’s exponential smoothing method (HoltI); and the hybrid EMDHR-SVR-BPNN model

of Fan et al. (2020), which integrated empirical mode decomposition, support vector regression and

back-propagation neural networks for mid-short-term load forecasting in New South Wales (NSW,

Australia).

2.2. Resampling

The rationale behind resampling in ensembles is to generate predictors that share properties of the

original data. Resampling can be achieved in many ways (e.g. Monte Carlo simulation, resampling

with or without replacement). Two major properties of the time series, however, must be considered

while resampling: stationarity and time-dependency. While stationarity may not always be achieved

with a single transformation, it is often fulfilled by the remainder from a decomposition method.

Concerning the time series structure, variants of the bootstrap algorithm (Efron, 1979) have been

used.

In this context, Cordeiro & Neves (2009) proposed a variant of the Sieve Bootstrap (Bühlmann,

1998), which generates replicas of the original series that are independently predicted via exponential

smoothing methods, whose forecasts are then combined using the mean or the median. This approach

is known as Boot.EXPOS, and has outperformed traditional benchmarks from the M3 Forecasting

Competition (Makridakis & Hibon, 2000), when forecasting time series with marked seasonal and

trend components (mainly quarterly and monthly series, which are common to natural gas and

electricity demand data).
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Encouraged by the performance of Boot.EXPOS, Bergmeir et al. (2016) proposed an alternative in

which data are initially treated via a BC transformation, followed by STL decomposition. Replicas

for the remainder are then generated via a modified Moving Blocks Bootstrap (MBB) algorithm

(Künsch, 1989). Once the desired number of replicas is generated, the time series are reconstructed

from its structural components and the Box-Cox transformation inverted. Exponential smoothing

models are estimated on the original data and each replica, and their point forecasts are then

combined using the median. Their approach, which became known as Bagged.BLD.MBB.ETS,

outperformed Boot.EXPOS and other simple benchmarks, particularly for monthly time series data.

2.3. Forecasting

Following resampling, forecasting models are estimated using the original data and each of its

replicas separately. Three families of models are frequently considered at this stage, namely: Neural

Networks (NNs), Exponential Smoothing formulations and ARIMA models.

Ensembles of NNs have been used for over 30 years, especially within artificial intelligence, and may

include a variety of methods (Adeodato et al., 2011; Barrow & Crone, 2016; Barak & Sadegh, 2016;

Khwaja et al., 2017; Szafranek, 2019). They are generally a means to make the most of computing

power to address the uncertainty in individual point forecasts. As Rendon-Sanchez & de Menezes

(2019) noted, ensembles of NNs have been particularly successful in forecasting short-term electricity

demand and were inspirational in the development of combinations of different types of artificial

intelligence approaches (Ma et al., 2019) with those obtained from statistical models (Matijaš et al.,

2013).

Exponential smoothing, in turn, are methods that attribute exponentially decreasing weights for

past data, i.e., recent observations are given greater weight in forecasting than older ones. Although

the basic specifications date from the seminal works of Holt (1957, reprinted 2004) and Winters

(1960), exponential smoothing methods remain widely applied, mainly due to their simplicity and

transparency, but also due to their adaptability to changes in the time series (Goodwin, 2010). In

addition, exponential smoothing has a theoretical foundation in state space modelling, which allows

for straightforward implementations in statistical packages (Hyndman et al., 2002, 2008; Hyndman

& Athanasopoulos, 2021). Exponential smoothing models defined within this state-space framework

are often referred to as ETS, an acronym to ‘ExponenTial Smoothing’ or ‘Error, Trend and Seasonal’,

the components of the time series which vary across formulations, i.e., additive, additive damped,

multiplicative, or multiplicative damped.

ARIMA (Autoregressive, Integrated, Moving Average) formulations, in turn, stems from the Box-

Jenkins (1970) family of models. They are similar to exponential smoothing, as they can model
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trends and seasonal patterns and be automated, but are based on autocorrelation and partial

autocorrelation functions of the time series rather than a structural view of the time series (level,

trend and seasonality).

2.4. Combining

The final stage in ensemble consists of combining (aggregating) forecasts. Two combinations are

predominant: the mean (or equal weights combination) – the simplest, yet, a robust approach (Stock

& Watson, 2004) – and the median, which may dilute the effects of occasional poor forecasts. While

Cordeiro & Neves (2009) in their ensemble, Boot.EXPOS, use both, Bergmeir et al. (2016) adopt

the median in their Bagged.BLD.MBB.ETS. By contrast, Petropoulos et al. (2018) propose a more

sophisticated combination: Bootstrap Model Combination (BMC). As in Bagged.BLD.MBB.ETS,

replicas are originated by resampling the remainder from a STL decomposition and are predicted

using exponential smoothing specifications. However, replicas in BMC drive the selection of the

best-fit model, since forecasts are combined using weights reflecting the frequency that the selected

model specifications were identified as best-fit on the pool of replicas. Considering all series from

two forecast competitions, M (Makridakis et al., 1982) and M3 (Makridakis & Hibon, 2000), the

BMC outperformed the Bagged.BLD.MBB.ETS.

Dantas & Cyrino Oliveira (2018) combine Bagging with clustering. Their Bagged.Cluster.ETS

aims at reducing covariance in the ensemble. Partitioning Around the Medoids (PAM) (Kaufman

& Rousseeuw, 1987) is used to identify clusters of similar forecasts, and then forecasts from each

cluster are selected in order to create a smaller subset of forecasts with reduced error-variance to

be combined using the median. This method was evaluated on series from the M3 and CIF 2016

competitions, and outperformed several benchmarks, including other Bagging approaches.

2.5. Limitations in ensembles for time series forecasting

Table 1 summarizes the main features of established Bagging algorithms for forecasting, highlighting

their strategies in each step of algorithm and indicating their main limitations. Overall, criticisms

of Bagging ensembles concern the resampling and combining stages. Resampling has been mostly

conducted via the modified Moving Blocks Bootstrap (MBB) algorithm proposed by Bergmeir et al.

(2016) – see, for instance, Dantas et al. (2017); De Oliveira & Cyrino Oliveira (2018); Petropoulos

et al. (2018); Dantas & Cyrino Oliveira (2018) and Meira et al. (2021b). However, MBB is very

sensitive to the choice of the block size, for which there is no consensus on what would be optimal.

In addition, MBB, like most bootstrapping approaches, repeats some original values and does not

use many others, and thus values in the neighborhood of observed points in the time series may not
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be included in a replica. It also restricts values to lie in the closed interval [min(xt),max(xt)], where

xt is the original series. Hence, alternatives to the MBB have been proposed. As previously outlined,

Cordeiro & Neves (2009) consider a variant of the sieve bootstrap of Bühlmann (1998) where

Autoregressive (AR) models are applied to the residuals of an exponential smoothing formulation

on the original series. The new residuals, after AR fitting, are then considered for resampling with

replacement. Although the authors ensure that characteristics of the original time series are kept,

the quality of the resampling is depends on the quality of the selected exponential smoothing model.

Petropoulos et al. (2018) consider the Circular Blocks Bootstrap (CBB) and the Linear Process

Bootstrap (LPB). The former has the same restrictions as the MBB, although it is theoretically

superior since the time series are ‘wrapped’ in a circle before resampling takes place, ensuring that

the first and last observations are not subsampled. LPB involves estimating the autocovariance

matrix of the original series and pre-whitening the noise with the estimated matrix; after which, it

generates replicas from the pre-whitened noise and postcolors the noise with the autocovariance

matrix. The findings of Petropoulos et al. (2018) suggest similar results from the three resampling

algorithms. De Oliveira & Cyrino Oliveira (2018) proposed a resampling scheme, named after

Remainder Sieve Bootstrap (RSB), which fits Autoregressive, Moving Average (ARMA) models first

and resamples from the residuals. Just as the LPB, RSB allows for greater coverage in replicas.

Nonetheless, some theoretical limitations remain, such as not satisfying the ergodic theorem (see

the next section for further details).

Concerning limitations in the combining/aggregation stage, most Bagging approaches consider the

mean or the median for forecast aggregation – see, for instance, Cordeiro & Neves (2009), Bergmeir

et al. (2016) and De Oliveira & Cyrino Oliveira (2018). When more sophisticated approaches are

adopted, only feature selection is achieved. Bagged.Cluster.ETS (Dantas & Cyrino Oliveira, 2018),

for instance, considers PAM clustering to drive feature selection of the forecasts, but the aggregation

of the remaining forecasts in the ensemble remains via the median. The same holds for the Pruned

BaggedETS approaches of Meira et al. (2021b) and Meira et al. (2021a): pruning can effectively

conduct feature selection via outlier detection in the prediction intervals of the forecasts; but these

methods still rely on traditional averaging. The BMC of Petropoulos et al. (2018) can imply variable

weights, but it is restricted to exponential smoothing and may generate considerably large forecasts

when applied to series with structural breaks or outliers, as depicted in Meira et al. (2021b).
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Method(s)
& Source

Treatment &
Decomposition

Resampling
algorithm(s)

Forecasting
method(s)

Combining
strategies

Limitations

Boot.EXPOS
(Cordeiro &
Neves, 2009)

Four selected
exponential
smoothing
models1
plus AR
model fit
to residuals

Sieve
Bootstrap
on the
residuals

Four selected
exponential
smoothing
models1

Mean,
Median

Resampling
dependent on the
selected exponential
smoothing model;
Limited selection
of methods for
forecasting;
No feature
selection nor
combination

Bagged.BLD.-
MBB.ETS
(Bergmeir
et al., 2016)

BC
transformation
& STL
Decomposition

MBB ETS Median MBB sensitive
to block size;
Replicas must lie
in the interval
[min(xt),max(xt)];
No feature
selection nor
combination

RSB & MBB
BaggedETS &
BaggedARIMA
(De Oliveira &
Cyrino Oliveira,
2018)

BC
transformation
& STL
Decomposition

MBB,
RSB

ETS,
ARIMA

Mean,
Median

No feature
selection nor
combination

Bootstrap
Model
Combination
(BMC)
(Petropoulos
et al., 2018)

BC
transformation
& STL
Decomposition

CBB,
LPB,
MBB

ETS,
ARIMA

Weighted
average,
weights
reflect the
frequency of
model forms
during
estimation

May generate
large forecasts
when applied
to series
with notable
structural breaks
or outliers

Bagged.-
Cluster.ETS
(Dantas &
Cyrino Oliveira,
2018)

BC
transformation
& STL
Decomposition

MBB ETS Partitioning
Around
Medoids
(PAM)
for feature
selection,
followed by
median
aggregation

MBB-related
(block size &
closed interval);
Only feature
selection is
achieved
(no variable
weighting);
Computing
intensive

Pruned
BaggedETS &
Pruned
Bagged-
TreatedETS
(Meira et al.,
2021b; 2021a)

BC
transformation
& STL
Decomposition

MBB (both),
CBB and
LPB in
Meira et
al. (2021a)

ETS (both),
TreatedETS in
Meira et
al. (2021b)

Pruning
for feature
selection,
followed by
median
aggregation

Only feature
selection is
achieved
(no variable
weighting);

Table 1: Main features and limitations of established Bagging ensembles for time series forecasting. Notes:
1The four methods considered by Cordeiro & Neves (2009) are: Single exponential smoothing, Holt’s linear
trend, Additive Holt–Winters and Multiplicative Holt–Winters.
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3. Proposed ensemble

Our proposal covers the same core ideas of Bagging for forecasting, but significantly differs from

previous proposals in two ways. First, replicas are generated via the Maximum Entropy Bootstrap

(MEB), using a seven-step algorithm that satisfies the ergodic theorem by ensuring that the grand

mean of all ensembles is close to the original sample mean (Vinod, 2004). Secondly, modified

regularization (M-Ridge and M-LASSO) is used to aggregate (combine) the forecasts. The modified

regularization procedures differ from traditional Ridge and LASSO routines because they ensure

that the data generating process of the forecasts in the ensemble is kept. In the next subsections,

each stage is described.

3.1. Data treatment and resampling

The first part of our approach is akin to established Bagging forecasting approaches, since it involves

generating replicas for the remainder component of an STL decomposition applied to a Box–Cox

(BC) transformed time series (Bergmeir et al., 2016; Dantas et al., 2017; De Oliveira & Cyrino

Oliveira, 2018; Petropoulos et al., 2018; Dantas & Cyrino Oliveira, 2018; Meira et al., 2021b,a).

However, instead of using the MBB algorithm to replicate the remainder, a Maximum Entropy

Bootstrap (MEB) routine is adopted, so that ensembles are created from a density distribution

that satisfies the maximum entropy principle (Vinod & López-de-Lacalle, 2009). To the best of our

knowledge, this method has not been adopted within Bagging.

Maximum Entropy Bootstrap (MEB) was devised by Vinod (2004) as a resampling procedure for

non-stationary time series or when stationarity is difficult to ascertain. Replicas of a time series are

generated according to an algorithm designed to ensure that the grand mean of all ensembles is

close to the original sample mean. That is, for a time series xt of size T , the following steps are

performed:

1. Sort the data in increasing order to create order statistics x(t) and store the ordering index

vector;

2. Compute the intermediate points from the order statistics: z(t) =
[
x(t) − x(t−1)

]
/2, t =

2, 3, · · · , T − 1;

3. Calculate the trimmed mean (mtrm) of the deviations x(t) − x(t−1) among all consecutive

observations. In addition, compute the lower and upper limits of the density distribution

function, z0 = x(1) −mtrm and zT = x(T ) +mtrm, respectively;

4. Construct the maximum entropy density function with the z values as limiting points. The

density is built by joining uniform distribution intervals of equal probability. The uniform
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densities are also designed to satisfy the mean-preserving constraint. To that end, the interval

means for the uniform density, mt, must satisfy the following relations:

m1 = 0.75x(1) + 0.25x(2)

mk = 0.25x(k − 1) + 0.50x(k) + 0.25x(k+1), k = 2, · · · , T − 1

mT = 0.25x(T−1) + 0.75x(T )

(1)

5. Inverse transform sampling: generate T random numbers from the [0, 1] uniform interval,

compute sample quantiles of the ME density at those points and sort in ascending order;

6. Reorder the the sorted sample quantiles by using the ordering index of step 1. This recovers

the time dependence relationships of the originally observed data;

7. Repeat 1–6 until the desired number of replications (J) is achieved.

MEB is attractive because it retains the basic shape and time-dependence structure of the Autocorre-

lation Function (ACF) and the Partial Autocorrelation Function (PACF) of the original time series in

its replicas, without resorting to shape-destroying transformations such as detrending or differencing

to achieve stationarity (Vinod & López-de-Lacalle, 2009). Besides avoiding transformations to

achieve stationarity, according to Vinod (2006), MEB procedure avoids other limitations of standard

bootstrapping, which are:

(i) Replicas obtained from shuffling with replacement repeat some original values while excludes

many others. They never admit nearby data values in a resample. A priori, there is no reason

to believe that values near the observed xt are impossible;

(ii) Replicas must lie in the closed interval [min(xt),max(xt)]. Since the observed range is

random, we cannot rule out somewhat smaller or larger xt.1;

(iii) Traditional bootstrap involve shuffling xt in a way that serial correlation can be lost. Hence, it

is impossible to generate a large number of sensibly distinct replicas in a traditional bootstrap.

In addition, MEB is of straightforward implementation and is available in different statistical

packages2. Hence, the procedure has been effectively applied while investigating associations

between energy consumption and economic health in Turkey (Yalta, 2011) and as an auxiliary

technique when estimating air temperature quantiles in Central Europe (Barbosa et al., 2011).

1Note that the third step of the MEB algorithm implies a less restrictive/wider range [z0, zT ]
2In R, MEB can be implemented using the meboot() function of the meboot package (Vinod & López-de-Lacalle,

2009). Following previous studies (Vinod, 2004, 2006), we set the trimming proportion to 10% by adding trim = 0.10.
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Notwithstanding these observations, we are unaware of previous applications of MEB in time series

forecasting.

3.2. Forecast generation

After obtaining the desired number of replicas, a forecasting model is estimated for the original data

and each of its replicas separately. The models are then used to generate forecasts for the desired

forecast horizon. Hence, an ensemble of forecasts is formed, with the number of forecasts equal to

the number of replicas generated in the previous step plus one, since one forecasting model is also

selected for the original time series. Two widely used families of univariate forecasting models, ETS

and SARIMA, are considered.

ETS stands for a finite set of state space based exponential smoothing models, which can be obtained

through variations in the combination of the components of a time series. The possible combinations

for the trend and seasonal components are depicted in Table 2. In addition, since the error term can

be either additive or multiplicative, a total of 30 different ETS models can be achieved (Hyndman

et al., 2002). The ETS algorithm fits all variants to the time series. The input is a vector formed by

the original data values in a time series format. The output is a model (together with the optimal

parameters) consisting of three terms: error, trend, and seasonality. Depending on the formulation,

the number of smoothing hyperparameters may include one or more constants (e.g. α , β, γ and ϕ).

Each model consists of a measurement equation that describes the observed data, and some state

equations that describe how the unobserved components or states (level, trend, seasonal) change

over time.

Components Seasonal

Trend None (N) Additive (A) Multiplicative (M)

None (N) N, N N, A N, M
Additive (A) A, N A, A A, M
Additive Damped (Ad) Ad, N Ad, A Ad, M
Multiplicative (M) M, N M, A M, M
Multiplicative Damped (Md) Md, N Md, A Md, M

Table 2: Possible combinations of seasonal and trend components under the ETS state space framework.

After fitting all the formulations to the time series, model selection is performed by choosing the

ETS combination that leads to the lowest value of the Akaike Information Criterion with corrections

(AICc) (Sugiura, 1978), as commonly adopted in the literature. Finally, the model is used to generate

the forecasts for the forecast horizon.

14



Concerning the practical implementation of the ETS, the optimal model (and its respective hyper-

parameters) is identified for each time series using the ets() function from the forecast package

(Hyndman et al., 2021). Forecasts for each selected model are then computed for the desired forecast

horizon using the forecast() function, in the forecast package.

SARIMA models (Box & Jenkins, 1970) are an alternative and complementary approach to exponen-

tial smoothing methods. While the latter are based on a structural view of the data (the level, trend,

and seasonal components of a time series), SARIMA models focus on serial correlations. In practice,

SARIMA tends to outperform exponential smoothing methods for longer, more stable data (De

Oliveira & Cyrino Oliveira, 2018). SARIMA models are denoted by SARIMA(p, d, q)× (P,D,Q)S

and can be written as follows:

∇D
S ∇dϕ (B) Φ

(
BS

)
yt = c+ θ (B)Θ

(
BS

)
εt (2)

where:

• εt is a white noise process with mean zero and variance σ2;

• B is the backward shift operator (eg. Byt = yt−1);

• c is a drift parameter. If c ≠ 0, there is an implied polynomial of order d in the forecast

function;

• p, d, and q are non-negative integers respectively referring to the order of the autoregressive

model, the degree of differencing, and the order of the moving-average model;

• S refers to the number of periods in each season;

• the uppercase P , D and Q refer to the autoregressive, differencing, and moving average terms

for the seasonal part of the ARIMA model;

• ϕ (B) and Φ
(
BS

)
are the non-seasonal and seasonal autoregressive polynomials;

• θ (B) and Θ
(
BS

)
are the non-seasonal and seasonal moving-average polynomials;

• ∇d and ∇D
S are the non-seasonal and seasonal differencing operators, respectively.

The SARIMA model selection and forecasting routine employed in the manuscript follows a variation

of the Hyndman-Khandakar algorithm (Hyndman et al., 2021). As in ETS, the approach first selects

the best fit SARIMA model and then uses this model to generate the forecasts for the desired

forecast horizon (number of steps ahead). Model selection uses unit root tests to infer the order

of integration of the time series and Maximum Likelihood Estimation (MLE) coupled with the

minimization of the AICc (Sugiura, 1978) for lag selection on the stationary part of the model (the
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autoregressive-moving average process). The stepwise search process for the non-seasonal ARIMA is

detailed below:

Algorithm 1 Hyndman-Khandakar algorithm for ARIMA model selection

Step 1 Differencing and stationarity (I(d) order selection)
Start with d = 0 (original time series)
Test for stationarity using unit root tests (KPSS as default)
For KPSS, if p < 0.05, differencing is required (d = 1). Else, d = 0

If d = 1, test once again for stationarity using KPSS
If p < 0.05, differencing is once again required (d = 2)
Else d = 1

Step 2 AR(p) and MA(q) lag order selection
The values of p and q are chosen by minimising the AICc
Rather than considering every possible combination of p and q,
the algorithm uses a stepwise search to traverse the model space

Step 2a Fit four initial models
ARIMA(0, d, 0)
ARIMA(2, d, 2)
ARIMA(1, d, 0)
ARIMA(0, d, 1)
A drift constant (c) is included unless d = 2

If d ≤ 1, an additional model is also fitted: ARIMA(0, d, 0) without drift
Step 2b The model with the lowest AICc in 2a is set as the ‘current model’
Step 2c Variations of the current model are considered

Vary p and q from the current model by ±1

Step 2d Include/exclude c from the current model
The best model considered so far becomes the new ‘current model’

Repeat Step 2c until no lower AICc can be found

Notes: KPSS stands for the Kwiatkowski et al. (1992) unit root test.

The modelling procedure (lag/order selection) for Seasonal ARIMA (SARIMA) models is similar to

the described above, except that seasonal AR and MA terms also need to be selected.

In practice, the best SARIMA model for each series is obtained using the auto.arima() function

from the forecast package in R. After identifying the best-fit SARIMA model, forecasts are computed

for a desired number of steps-ahead using the forecast() function.

3.3. Combining forecasts via traditional and modified regularization

In contrast to most Bagging approaches, rather than taking the mean or median of forecasts,

regularization routines assign weights for each forecast in the ensemble via multiple regression.

The aim is to significantly reduce the variance of the final forecasting error, though at the cost of

introducing some bias. This is an approach which can improve the predictive performance of the
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model when: (i) there are many predictors; and/or (ii) the predictors are highly correlated with

each other. Hence, regularization should improve ensembles.

Regularization can be viewed as an infinite set of techniques, for which two extreme cases are

frequently used in multiple regressions: Ridge Regression (Hoerl & Kennard, 1970) and Least

Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996). In both cases, the traditional

ordinary least squares loss function is augmented, so that the sum of squared residuals is minimized

and large parameter estimates are penalized3. Let n be the number of observations of the response

variable, Y , represented by a linear combination of m predictor variables, X; and a normally

distributed error with σ2 variance. Under Ridge, the loss function is:

LRidge(β̂) =

n∑
i=1

(yi − x
′
i β̂)

2 + λ

m∑
j=1

β̂2
j (3)

where λ is the regularization penalty parameter. Minimizing the above formula gives the Ridge

regression estimates β̂Ridge = (X
′
X + λI)−1(X ′Y ), where I stands for the identity matrix. By

incorporating the regularization coefficient in the formulas for bias and variance, we obtain:

Bias(β̂Ridge) = [(X ′X + λI)−1 − (X ′X)−1]X ′Xβ

V ar(β̂Ridge) = σ2(X ′X + λI)−1X ′X(X ′X + λI)−1
(4)

From eq. 4, we observe that as λ becomes larger, the variance decreases, and the bias increases.

Hence, there is a trade-off to be considered, for which there are basically two strategies. A traditional

approach would be to choose the λ that minimizes an information criterion. An alternative is to

perform cross-validation and select the value of λ that minimizes the cross-validated sum of squared

residuals (or some other measure). The former emphasizes goodness-of-fit and the relative impact of

exogenous inputs in the variable of interest, while the latter is focused on predictive performance.

Here, this second strategy is adopted, by choosing a set of P values of λ to test, splitting the dataset

into K folds, and selecting the optimal λ according to Algorithm 2.

Our implementation uses the cv.glmnet() function from the glmnet package in R (Friedman et al.,

2010) and considers K = 10 cross-validation folds and P = 1000 possible lambda values, whose

sequence is defined by the own function. The value λopt, which minimizes the average sum of squared

residuals, is obtained using a validation set of the same size of the test set.

In the case of LASSO regularization, the loss function is:

3There are also the elastic-net models, which are half-way house between the Ridge and the LASSO formulations,
obtained by varying the α, the elastic-net penalty parameter over the range of 0 (Ridge) – 1 (LASSO) – see
Friedman et al. (2010) for further details. We have considered several versions of these models, but they did not offer
improvements over Ridge or LASSO.
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LLASSO(β̂) =
n∑

i=1

(yi − x
′
i β̂)

2 + λ
m∑
j=1

∣∣∣β̂j∣∣∣ (5)

LASSO adds a penalty for non-zero coefficients but, unlike Ridge, which penalizes the sum of

squared coefficients (L2 penalty), LASSO penalizes the sum of their absolute values (L1 penalty).

Consequently, for high values of λ, many coefficients become zero under LASSO, which is never the

case when using Ridge.

Algorithm 2 Choice of lambda

1: procedure cross-validation(P = nlambda, K = nfolds)
2: for p in 1 to P do
3: for k in 1 to K do
4: keep fold k as hold-out data
5: use the remaining folds and λ=λp to estimate β̂Ridge

6: predict hold-out data: ytest,k = Xtest,k β̂Ridge

7: compute the sum of squared residuals: SSRk = ∥y − ytest,k∥2

8: end for k

9: average SSR over the folds: SSRp = 1/k
∑K

k=1 SSRk

10: end for p

11: choose optimal λ value: λopt = argmin
p

SSRp

12: end procedure

where ∥ ∥2 is the quadratic norm.

3.3.1. Modified regularization

Besides traditional Ridge and LASSO regressions, we consider a Modified Regularization, that

generates forecasts once, for the period comprising both the validation and combination (test) phases.

The rationale behind is that, by conducting validation and combination in the same set of forecasts,

the data generating process of the forecasts is kept. This is a subtle difference that can significantly

improve accuracy, as can be seen in Section 5.

Figure 2 illustrates the differences between the traditional regularization and our approach. In the

former, a training set is used to generate a set of K steps ahead forecasts for the period comprising

the validation set, which is first used to compute the optimal regularization parameters for the set

of the forecasts and then added to the train set before estimating the final models. This implies

that the models that are used to generate the set of forecasts for the validation set are not the same

models that are used to generate the final set of forecasts for the test set period, which are combined

via regularization to produce the final forecast. In our Modified regularization, forecasts for each

replica are computed up to 2K steps-ahead: the first K steps relate to the validation set, and are
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used to optimize the weights of the regularized model; the last K half and the optimal weights

obtained in the validation set (first half) are then used for combining forecasts.

Figure 2: Comparing Traditional and Modified Regularization.
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4. Data, comparators and evaluation setup

Monthly data of Gross Inland Natural Gas Consumption (in terajoules, TJ) across several European

economies were collected from the Statistical Office of the European Union database (EUROSTAT,

2020). The data span 18 countries4 from January 2008 to December 2019 (the last official date

available for all involved European countries). Observations from January 2008 to December 2018

comprise the training set for benchmark forecasting methods and ensemble approaches using the

median for aggregation. When employing regularization, a validation set is included between January

2018 and December 2018, in which weights are assigned to each forecast in the selected ensemble.

The test set comprises the last 12 observations: January 2019 – December 2019. Figure 3 depicts

the training set of the original series, and descriptive statistics are provided in Appendix A. As can

be noted, the selected time series differ considerably in their time-series behavior and shapes, thus

highlighting the challenge faced by forecasters in the energy sector.

Forecasts of our proposed ensembles are compared with those from several univariate forecasting

methods, which are summarized in Table 3. The first set of comparators are traditional, statistical

time series forecasting methods, i.e.:

• The auto, state space exponential smoothing approach (Hyndman et al., 2002), as outlined in

Section 3.2, applied to the original time series. More specifically, the ets() function from the

forecast package in R is automatically used for model selection and the forecast() function is

used to generate the point forecasts for the desired forecast lead time;

• The ARIMA formulation selection algorithm (Hyndman & Khandakar, 2008) and the forecast()

function are adopted as described in Section 3.2;

• A three parameter Additive Holt-Winters model (Holt, 1957, reprinted 2004; Winters, 1960),

applied to the original series via the hw() function from the forecast package in R;

• A three parameter Multiplicative Holt-Winters model. This model uses the same function of

its additive version (hw() function), with the seasonal argument set to ‘’multiplicative”;

• The Theta method (Assimakopoulos & Nikolopoulos, 2000), which is akin to a simple expo-

nential smoothing with drift, but with a particular restriction for this last component. This

method is known for its predictive performance on monthly series and microeconomic data

(Makridakis & Hibon, 2000).

4The following countries are included: Austria (AT); Belgium (BE); Czech Republic (CZ); Denmark (DK); Finland
(FI); France (FR); Germany (DE); Ireland (IE); Italy (IT); Latvia (LV); Luxembourg (LU); Netherlands (NL); Poland
(PL); Portugal (PT); Slovakia (SK); Slovenia (SI); Spain (ES); and United Kingdom (UK).
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Figure 3: Gross inland natural gas consumption in terajoules (TJ). Train set observations. Source: EURO-
STAT (2020).
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Method Implementation / Source Short description

Univariate time series forecasting benchmarks
ETS R forecast package

ets() function
Automatic Error, Trend and
Seasonality specification

ARIMA R forecast package
auto.arima() function

Automatically-selected
(S)ARIMA model

Additive HW R forecast package
hw() function1

Three parameter Additive
Holt-Winters method

Multiplicative HW R forecast package
hw() function2

Three parameter Multiplicative
Holt-Winters method

Theta R forecast package
theta() function

Simple exponential smoothing
with drift, with a particular
drift restriction

Machine learning methods
ANN R forecast package

nnetar() function
Single hidden layer, feed-forward
neural network with lagged
inputs of the time series

BC-ANN R forecast package BoxCox() &
nnetar() functions

The above ANN model with
prior Box-Cox transformation

SVR R FSelector package cfs() &
R e1071 package svm()
functions

Support Vector Regression with
the set of lagged values selected
using the CFS algorithm

RSSA R Rssa package ssa() &
rforecast() functions

Recurrent Singular
Spectrum Analysis

VSSA R Rssa package ssa() &
vforecast() functions

Vector Singular
Spectrum Analysis

Alternative Bagging approaches
Bagged.BLD.MBB.ETS
(BaggedETS)

Bergmeir et al. (2016) Median aggregation of ETS
forecasts built on bootstraps of
the original series.3

Bagged.Cluster.ETS Dantas &
Cyrino Oliveira (2018)

Median aggregation of specific
BaggedETS forecasts, selected via
a Partitioning Around Medoids
(PAM) algorithm.

BMC Petropoulos et al. (2018) Bootstrap model combination of
specific BaggedETS forecasts3.

Table 3: Comparators. Notes: ets() and auto.arima() are used for model selection. The forecast()
function must be used on the output to generate the forecasts. 1Set seasonal argument to “additive”; 2Set
seasonal argument to “multiplicative”. 3See Section 2.4 for details.
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The second set of competing approaches concerns univariate machine learning methods:

• A single hidden layer, feed-forward Artificial Neural Networks (ANN) model (Rumelhart et al.,

1985). This model uses as inputs lagged values of the original time series and is capable of

addressing complex nonlinear behavior;

• A feed-forward Artificial Neural Network model with prior Box-Cox (Box & Cox, 1964)

transformation (BC-ANN);

• A univariate Support Vector Regression (Vapnik, 1995) backed by the Correlation-based feature

selection (CFS) algorithm (Hall, 1999) to select the best subset of lags for prediction. SVR

learns from the training data and forms complex non-linear decision boundaries. CFS ranks

identified attributes according to a heuristic evaluation function, and assumes that irrelevant

features should be ignored;

• The Recurrent variation of the univariate Singular Spectrum Analysis (SSA) for forecasting

(RSSA). In brief, SSA is a decomposition-reconstruction method that filters the noise and

forecast the signal of an underlying time series according to multiple steps (Embedding, Singular

Value Decomposition, Grouping and Diagonal Averaging) (Golyandina et al., 2001);

• The Vector variation of the univariate SSA for forecasting (VSSA).

The third set of comparators are Bagging algorithms that demonstrated promising results when

forecasting monthly time series from international forecasting competitions (Makridakis & Hibon,

2000; Makridakis et al., 2019). Particularly, we consider: the Bagged.BLD.MBB.ETS by Bergmeir

et al. (2016) (henceforth referred to as ‘BaggedETS’, for simplicity); the Bagged.Cluster.ETS method

of Dantas & Cyrino Oliveira (2018); and the Bootstrap Model Combination (BMC) of Petropoulos

et al. (2018). For details on these methods, see Section 2.4.

Implementation is conducted using the R programming language (R Core Team, 2021) and related

packages. We used R version 4.0.2 (2020-06-22) and forecast package version 8.12 for ETS and

ARIMA modelling. MEB resampling and traditional regularization were conducted using packages

meboot (1.4-8) and glmnet (4.0-2), respectively. Furthermore, a parallel implementation is adopted,

using the following packages: doSNOW (1.0.18), foreach (1.5.0) and snow (0.4–3). 99 replicas

are generated for each ensemble. To facilitate eplication of our results, all resampling procedures

use the same random seed, set to 123 using the set.seed() function in R. Block size for MBB

resampling in these cases comprised 24 observations, following the same guidelines as established

Bagging approaches. Pretreatment for all ensemble methods involved using BC transformation and

STL decomposition prior to resampling.
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To gauge the overall accuracy of the forecasts, the results are summarized according to the mean

across all time series of each metric in Table 4. Forecasting performance is also assessed by considering

the distribution (boxplots) of each metric obtained when methods were individually applied to each

time series. These plots enable an assessment of which time series are more difficult to forecast, as

well as which methods vary their performance considerably across time series.

Metric Formula Unit of measurement

Root Mean

Squared Error (RMSE)

√∑h
t=1(Yt−Ŷt)2

h Same as the original series

Mean Absolute

Percentage Error (MAPE)
100
h

∑h
t=1

|Yt−Ŷt|
|Ŷt| Percentage points (%)

Symmetric Mean Absolute

Percentage Error (sMAPE)
200
h

∑h
t=1

|Yt−Ŷt|
|Yt|+|Ŷt| Percentage points (%)

Mean Absolute

Scaled Error (MASE)
1
h

∑h
t=1|Yt−Ŷt|

1
n−m

∑n
t=m+1|Yt−Yt−m| Dimensionless

Table 4: Evaluation metrics. Notes: Yt e Ŷt are the real (actual) and forecasted values of the time series,
respectively; h is the forecasting horizon (number of forecasting steps ahead); m is the seasonal period.

The choice of metrics (specially MAPE and sMAPE) was mainly to allow comparability with

published results. In addition, sMAPE and MASE are the official evaluation metrics for point

forecasts in the M4 Competition (Makridakis et al., 2018). MASE is a scale-free metric devised by

Hyndman & Koehler (2006). As for RMSE, although averaging its values across multiple series is

unusual, it provides an estimate of how much energy (in TJ) might have been “saved” by opting for

a more accurate forecasting approach, and is therefore relevant in the context of this study.

Multiple Comparisons with the Best (MCB) approach is also adopted. Essentially, MCB tests

whether the average (across time series) rank of each method is significantly different, from the

statistical viewpoint, from those of other methods. If the intervals of two methods do not overlap,

performances are judged to be statistically different. MCB has been used extensively in the

forecasting literature (e.g. Koning et al. (2005); Petropoulos et al. (2019); Spiliotis et al. (2019);

Meira et al. (2021b)).

5. Results and Discussion

5.1. Aggregate results and distribution of evaluation metrics

The results are summarized in Table 5, where best performances are highlighted in bold. Averages

of performance metrics across all series are provided. MBB and MEB in the table stand for Moving
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Blocks Bootstrap and Maximum Entropy Bootstrap, respectively.

Overall, the most accurate forecasts follow from combining the MEB algorithm for resampling and

the Modified Ridge regularization routine as aggregation method. Using MEB for resampling and

Modified LASSO regularization for aggregation is also competitive, as forecasts are more accurate

than those from traditional benchmarks and the other Bagging approaches.

As anticipated, traditional regularization approaches are inferior, thus implying that the data

generation processes of the forecasts should not be modified during validation and test. This is

important, since regularization frameworks for forecasting have followed the traditional approach.

Concerning the choice of forecasting method, regularized ensembles seem to benefit from ARIMA for-

mulations. However, considering ensembles aggregated using the median, results from MEB.ARIMA

are less competitive than those from MEB.ETS. Hence, forecasting replicas with ARIMA models

may initially bring more variance to the ensemble, but this variance seems to be handled well by

regularization.

Boxplots that summarize the performance of each method on each natural gas consumption time

series are depicted in Figures 4 to 7. Overall, they are consistent with Table 5, with our Modified

Regularization approaches (particularly Modified Ridge) generally outperforming comparators. Not

only did Modified Regularization approaches presented considerably lower medians, but they were

also less sensitive to outliers.

Figure 8 presents, for all countries, the differences between the natural gas consumption forecasts

obtained through the MEB BaggedARIMA M-Ridge approach and the observed values throughout

the test set period. The largest absolute differences between the forecasts and the real values occurs

in Germany (DE). This can be largely attributed to variance in consumption, ranging from less

than 200,000 TJ during the summer months to almost 500,000 TJ during the winter. Given this

large variation, the RMSE for Germany is usually considered as outlier in the boxplots of Figure 4.

In terms of MAPE, sMAPE and MASE (Figures 5, 6 and 7), the only country in which Modified

Regularization approaches underperformed was Spain (ES). This country is an outlier for most

methods. As illustrated in Figure 8, total consumption in Spain was considerably higher than

expected, mainly due to a combination of two factors: the increasing use of natural gas, as opposed

to coal, for electricity generation; and the growing industrial demand, which accounts for more than

half of the country’s total natural gas consumption (ENAGAS, 2020).
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Resampling
Algorithm

Forecast
Approach

Combining
Method

Average
RMSE

(TJ)

Average
MAPE

(%)

Average
sMAPE

(%)

Average
MASE

Modified regularization approaches

MEB ETS M-Ridge 8179.48 9.42 9.35 0.66
MEB ETS M-LASSO 8377.59 10.44 10.24 0.71
MEB ARIMA M-Ridge 7568.67 9.48 9.32 0.62
MEB ARIMA M-LASSO 8008.75 10.68 10.39 0.69

Traditional regularization approaches

MEB ETS Ridge 10932.66 13.44 13.07 0.95
MEB ETS LASSO 11598.72 16.38 15.58 1.10
MEB ARIMA Ridge 10485.24 11.77 11.42 0.83
MEB ARIMA LASSO 10821.99 12.26 11.88 0.87

Traditional median aggregation

MEB ETS Median 8597.17 12.92 11.61 0.74
MEB ARIMA Median 9318.01 14.12 12.86 0.79

Alternative Bagging approaches

MBB ETS Mediana 8702.57 11.31 10.87 0.73
MBB ETS BaggedClusterb 8608.12 11.24 10.75 0.73
MBB ETS BMCc 8717.61 11.41 11.01 0.73

Univariate time series forecasting benchmarks

None ETS Single 8947.38 13.34 12.01 0.76
None ARIMA Single 9393.26 14.19 12.91 0.79
None Additive HW Single 9822.73 16.69 14.82 0.86
None Multip. HW Single 9363.76 11.03 10.97 0.75
None Theta Single 8876.91 11.64 11.10 0.74

Machine learning methods

None ANN Single 12629.07 13.56 13.42 0.97
None BC-ANN Single 12894.53 14.02 13.11 0.93
None SVR Single 23755.28 20.16 22.10 1.68
None RSSA Single 55562.27 22.98 26.12 12.73
None VSSA Single 25160.11 22.15 24.11 4.73

Table 5: Forecast evaluation: Natural gas consumption over the months from January 2019 to
December 2019, considering 12 steps ahead forecasts for all countries. Best methods in bold). Notes:
a, b, c stand for the methods proposed in Bergmeir et al. (2016), Dantas & Cyrino Oliveira (2018)
and Petropoulos et al. (2018), respectively. HW is the Holt-Winters Method.
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Figure 4: Boxplots – RMSE values (TJ) for each forecasting method considered. BE and BA stand for
BaggedETS and BaggedARIMA.
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Figure 5: Boxplots – MAPE values (%) for each forecasting method considered.
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Figure 6: Boxplots – sMAPE values (%) for each forecasting method considered.
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Figure 7: Boxplots – MASE values for each forecasting method considered.
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Figure 8: Out-of-sample forecasting: actual values in gray, MEB BaggedARIMA M-Ridge forecasts in blue.
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5.2. Multiple comparisons with the best

MCB is a post-hoc, multiple comparison procedure that compares the average (across time series)

rank of each method: statistically different performances are observed if the intervals of two methods

do not overlap. The test is conducted using two set of methods: first, the average ranks of the

four proposed approaches (MEB BaggedETS M-Ridge and M-LASSO and MEB BaggedARIMA

M-Ridge and M-LASSO) are compared with those of competing Bagging approaches; then, the

proposed approaches are compared with the statistical (time series forecasting) and machine learning

benchmarks. This is done because the large number of approaches herein compared could lead to

spurious interpretations.

The results from the MCB tests are depicted in Figures 9 and 10. They are in line with Table 5 and

Figures 4 to 7, as the proposed approaches are shown to be very competitive. MEB BaggedARIMA

M-Ridge and MEB BaggedETS M-Ridge stand out as the best methods in every comparison, with

average ranks considerably lower than the comparators. Furthermore, the Modified Regularization

ensembles (M-Ridge and M-LASSO) are the only methods that are statistically different than the

worst method in every case. This can be observed, for instance, in the first chart of Figure 9,

where all other competing Bagging algorithms, except for M-Ridge and M-LASSO, have average

rank RMSEs similar to the average rank RMSE of the MEB BaggedETS LASSO (traditional

regularization ensemble), which is the least competitive Bagging approach.

Among the statistical and machine learning benchmarks, the univariate Support Vector Regression

(SVR) is the least competitive, followed by the Recurrent Singular Spectrum Analysis (RSSA). The

Theta method, in turn, is the most accurate, although its average ranks are considerably higher

than those from MEB BaggedARIMA M-Ridge and MEB BaggedETS M-Ridge.
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Figure 9: Multiple comparisons with the best for average rank RMSEs and MAPEs. Confidence bands at
the 95% confidence level.
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Figure 10: Multiple comparisons with the best for average rank sMAPEs and MASEs. Confidence bands at
the 95% confidence level.

5.3. Sensitivity analysis and robustness checks

In this section, forecasting performance under alternative settings are considered. We begin by

examining performance in a different forecasting period: June 2018 – May 2019. The results are

summarized in Table 6. The relative performance across methods does not change much, with

MEB.ARIMA.Modif.Ridge still providing the most accurate forecasts in terms of RMSE and MASE.

Based on MAPE and sMAPE, however, the most accurate forecasts for this period result from using

regularized ETS forecasts, with modified LASSO performing slightly better than modified Ridge.
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Resampling
Algorithm

Forecast
Approach

Combining
Method

Average
RMSE

(TJ)

Average
MAPE

(%)

Average
sMAPE

(%)

Average
MASE

Modified regularization approaches

MEB ETS M-Ridge 7598.44 8.27 8.23 0.57
MEB ETS M-LASSO 7627.39 8.12 8.03 0.56
MEB ARIMA M-Ridge 6702.16 9.30 8.91 0.55
MEB ARIMA M-LASSO 7148.78 9.62 9.12 0.57

Traditional regularization approaches

MEB ETS Ridge 8875.20 12.12 11.09 0.74
MEB ETS LASSO 9170.33 13.60 11.97 0.79
MEB ARIMA Ridge 10000.05 13.33 12.52 0.84
MEB ARIMA LASSO 9905.76 11.86 12.01 0.84

Median aggregation

MEB ETS Median 7845.66 11.53 10.21 0.63
MEB ARIMA Median 7273.48 13.81 10.99 0.63

Alternative Bagging approaches

MBB ETS Mediana 8090.62 9.85 9.30 0.61
MBB ETS BaggedClusterb 8132.64 9.56 9.11 0.61
MBB ETS BMCc 7941.03 10.43 9.69 0.62

Univariate time series forecasting benchmarks

None ETS Single 8098.54 11.83 10.48 0.65
None ARIMA Single 7293.58 13.93 10.97 0.62
None Additive HW Single 8053.46 12.49 11.10 0.65
None Multip. HW Single 7946.58 9.94 9.51 0.62
None Theta Single 8146.22 12.29 10.96 0.68

Machine learning methods

None ANN Single 10278.90 12.16 11.84 0.82
None BC-ANN Single 10363.49 12.44 11.88 0.84
None SVR Single 31811.02 47.62 33.90 2.30
None RSSA Single 10251.44 22.43 14.81 0.90
None VSSA Single 160202.18 27.23 24.04 6.69

Table 6: Forecast evaluation for the period between June 2018 and May 2019. Overall results (average
of the evaluation metrics across all countries) considering 12 steps ahead forecasts (best in bold).
Notes: See Table 5.

Different forecasting horizons are also considered: short run (steps 1–4), mid run (steps 5–8) and

long run (steps 9–12). Forecasting performance is depicted in terms of average MASEs over each
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selected horizon in Table 7. Overall, performance remains consistent, with modified regularized

ensembles providing more accurate results across horizons.

Resampling
Algorithm

Forecast
Approach

Combining
Method

Average
MASE

(steps 1–4)

Average
MASE

(steps 5–8)

Average
MASE

(steps 9–12)

Modified regularization approaches

MEB ETS M-Ridge 0.73 0.60 0.65
MEB ETS M-LASSO 0.79 0.68 0.65
MEB ARIMA M-Ridge 0.68 0.57 0.61
MEB ARIMA M-LASSO 0.73 0.69 0.64

Traditional regularization approaches

MEB ETS Ridge 1.04 0.84 0.96
MEB ETS LASSO 1.17 1.04 1.08
MEB ARIMA Ridge 0.93 0.80 0.77
MEB ARIMA LASSO 0.98 0.82 0.81

Median aggregation

MEB ETS Median 0.79 0.78 0.65
MEB ARIMA Median 0.75 0.87 0.74

Alternative Bagging approaches

MBB ETS Mediana 0.79 0.76 0.65
MBB ETS BaggedClusterb 0.79 0.75 0.65
MBB ETS BMCc 0.78 0.76 0.64

Univariate time series forecasting benchmarks

None ETS Single 0.83 0.80 0.65
None ARIMA Single 0.76 0.88 0.74
None Additive HW Single 0.80 1.01 0.76
None Multip. HW Single 0.82 0.71 0.71
None Theta Single 0.79 0.77 0.66

Machine learning methods

None ANN Single 1.32 0.81 0.77
None BC-ANN Single 1.19 0.80 0.81
None SVR Single 1.58 2.10 1.35
None RSSA Single 2.47 7.10 28.61
None VSSA Single 1.42 2.96 9.81

Table 7: Average MASEs (best in bold) computed at different forecasting horizons (January 2019 –
April 2019, May 2019 – August 2019, September 2019 – December 2019). Notes: See Table 5.

Potential differences between MEB and MBB in ensemble generation are also assessed, and results
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are summarized in Table 8. It can be observed that modified regularization ensembles with MEB

for resampling provide more accurate forecasts than those based on MBB. A possible explanation

stems from how ensembles are created according to these two algorithms: MEB-generated ensembles

are more diversified as MEB admits values near the original time series observations. This is an

improvement over previous Bagging methods, especially as the MBB approach has been a standard

benchmark for resampling monthly data (Petropoulos et al., 2018; Dantas & Cyrino Oliveira, 2018).

Resampling
Algorithm

Forecast
Approach

Combining
Method

Average
RMSE

(TJ)

Average
MAPE

(%)

Average
sMAPE

(%)

Average
MASE

Modified regularization approaches

MEB ETS M-Ridge 8179.48 9.42 9.35 0.66
MEB ETS M-LASSO 8377.59 10.44 10.24 0.71
MEB ARIMA M-Ridge 7568.67 9.48 9.32 0.62
MEB ARIMA M-LASSO 8008.75 10.68 10.39 0.69

Traditional regularization approaches

MEB ETS Ridge 10932.66 13.44 13.07 0.95
MEB ETS LASSO 11598.72 16.38 15.58 1.10
MEB ARIMA Ridge 10485.24 11.77 11.42 0.83
MEB ARIMA LASSO 10821.99 12.26 11.88 0.87

Modified regularization approaches using MBB for resampling

MBB ETS M-Ridge 8304.18 9.45 9.34 0.66
MBB ETS M-LASSO 9174.36 11.26 11.00 0.76
MBB ARIMA M-Ridge 8242.21 9.92 9.74 0.66
MBB ARIMA M-LASSO 9648.41 11.64 11.31 0.77

Traditional regularization approaches using MBB for resampling

MBB ETS Ridge 9677.88 11.26 11.01 0.77
MBB ETS LASSO 10720.74 14.37 13.80 0.94
MBB ARIMA Ridge 9472.95 11.23 11.42 0.87
MBB ARIMA LASSO 10719.51 13.05 12.52 0.89

Table 8: Comparisons with an alternative resampling algorithm (MBB). Overall results
(average of the evaluation metrics across all countries) considering 12 steps ahead forecasts
(best in bold). Block size for MBB comprises 24 observations.

5.4. Discussion and implications

The results outlined in Sections 5.1 to 5.3 endorse the strength of our proposed approaches. The

study demonstrates the value of performing cross-validation and combination on the same set of

forecasts (modified regularization approach), as the data generation process is kept, and predictions
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are considerably better than when traditional regularization strategies are used. The performance

gains are noteworthy since accurate forecasts are critical for profit/cost optimization and investment

strategies, as well as for energy policies, whether in a regional or national scale. It should be noted

that, for several countries, considerable variation in natural gas demand may be due to external

factors, which cannot be captured by univariate forecasting methods, as for example gas on gas

competition, markets expansions in access to key infrastructure, uncertainties over medium-term and

long-term carbon pricing and emissions taxes inhibiting investment in gas infrastructure. Predictions

could benefit from judgmental forecasts, possibly combining with quantitative methods, and thus

leaving a question for future research: how to include experts’ judgements into the ensemble?

An extension to a multivariate setting may be an alternative, particularly in short forecast horizons.

For natural gas consumption forecasts, temperature is important when the forecast horizon is of

a few days ahead. Carbon prices, in turn, are likely to become more important in the medium

term, if used as a means to address climate change. The same holds for storage availability, as

storage levels may influence prices, which in turn affect demand in mid term horizons. However,

these are local variables for which data are more difficult to gain access. We hasten to add, however,

that multivariate formulations usually fail to perform well when forecasting several steps ahead.

This is because in most multivariate settings, the independent variables need to be previously or

simultaneously forecasted so that their estimates are used to forecast the dependent variable. In a

study like ours, variable selection would need to be conducted separately for each country involved,

given variations in energy mix, local policies, and interactions between the different energy markets

(e.g. various electricity and gas markets). A multivariate approach would add complexity, and may

not lead to reliable forecasts or significant gains given the average errors obtained by the proposed

ensembles for most time series. In this context, the combination of ensemble methods and univariate

forecasting techniques is a promising alternative. In addition, such combination can be applied to a

wide range of time series in different industries/sectors.

Another possibility for short-term predictions is the inclusion of different families of forecasting

models in the forecast generation stage. For instance, hourly time series may exhibit three types

of seasonality: a daily pattern, a weekly pattern, and an annual pattern. In such cases, the

Trigonometric Exponential Smoothing State Space Model with Box-Cox Transformation, ARMA

Errors, Trend and Seasonal Components (TBATS) approach by De Livera et al. (2011) is a promising

alternative to be considered in the forecasting stage of the ensemble, given its consistent results

when forecasting time series with multiple seasonal patterns. However, the TBATS approach is very

computing intensive. Therefore, depending on the size of the ensemble (number of replicas), the
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time availability and the computational power of the practitioner, using TBATS may be unfeasible.

If this is the case, dynamic harmonic regressions with multiple seasonal periods (Hyndman &

Athanasopoulos, 2021) may become attractive and can also be easily integrated in Bagging.

6. Summary and conclusions

This study proposed a novel, ensemble-based forecasting approach combining Bagging algorithms,

time series methods and modified regularization techniques. In doing so, it integrates research from

combining forecasts, statistics and committee learning machines. A Maximum Entropy Bootstrap

(MEB) routine is adopted and a modified regularization approach allows for variable weighting

schemes in the final stage of the ensemble.

As observed throughout the paper, the selected natural gas consumption time series differed

considerably, thus highlighting the challenge of proposing a generalized method that provides reliable

forecasts in every case considered. On these grounds, our proposal was confirmed to be a promising

forecasting methodology: results and robustness checks demonstrated that the proposed ensemble

offers accurate forecasts, whilst addressing different complex structures that are inherent to real

world time series. Furthermore, the methodology is flexible and can be used to forecast time series

of multiple frequencies and varying forecast horizons. Finally, we note that the use of the MEB

procedure was shown to outperform the frequently used Moving Block Bootstrap (MBB) approach,

which is common in forecasting ensembles. This is a contribution to the forecasting literature, as

MBB has been the main benchmark for resampling monthly data under Bagging.

Further studies of energy consumption may benefit from a hierarchical disaggregation approach.

For the natural gas sector, this would imply using the Decomposition and Bagging methods for

each subsystem of the total consumption (Industrial, Electric Power, Residential, Transportation

and Commercial). Such sector-tailored analysis may provide a more in-depth understanding of the

demand for natural gas across different countries, potentially contributing to improve the forecasts.

Acknowledgements

This work was supported by the Brazilian Coordination for the Improvement of Higher Level

Personnel (CAPES) under Grant [number 001]; the Brazilian National Council for Scientific and

Technological Development (CNPq) under Grants [numbers 307403/2019-0 and 151079/2021-8]; and

the Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ)

under Grants [numbers 202.673/2018 and 211.086/2019].

39



References

Adeodato, P. J., Arnaud, A. L., Vasconcelos, G. C., Cunha, R. C., & Monteiro, D. S. (2011). MLP ensembles

improve long term prediction accuracy over single networks. International Journal of Forecasting , 27 , 661–671.

doi:10.1016/j.ijforecast.2009.05.029.

Agrawal, R. K., Muchahary, F., & Tripathi, M. M. (2019). Ensemble of relevance vector machines and boosted trees

for electricity price forecasting. Applied Energy , 250 , 540–548. doi:10.1016/j.apenergy.2019.05.062.

Assimakopoulos, V., & Nikolopoulos, K. (2000). The theta model: a decomposition approach to forecasting.

International Journal of Forecasting , 16 , 521–530. doi:10.1016/s0169-2070(00)00066-2.

Awajan, A. M., Ismail, M. T., & Wadi, S. A. (2018). Improving forecasting accuracy for stock market data using

EMD-HW bagging. PLOS ONE , 13 , e0199582. doi:10.1371/journal.pone.0199582.

Azadeh, A., Asadzadeh, S., Saberi, M., Nadimi, V., Tajvidi, A., & Sheikalishahi, M. (2011). A neuro-fuzzy-stochastic

frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: The cases of

bahrain, saudi arabia, syria, and UAE. Applied Energy , 88 , 3850–3859. doi:10.1016/j.apenergy.2011.04.027.

Babatunde, O., Munda, J., & Hamam, Y. (2020). Power system flexibility: A review. Energy Reports, 6 , 101–106.

doi:10.1016/j.egyr.2019.11.048.

Bai, Y., & Li, C. (2016). Daily natural gas consumption forecasting based on a structure-calibrated support vector

regression approach. Energy and Buildings, 127 , 571–579. doi:10.1016/j.enbuild.2016.06.020.

Barak, S., & Sadegh, S. S. (2016). Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid algorithm.

International Journal of Electrical Power & Energy Systems, 82 , 92–104. doi:10.1016/j.ijepes.2016.03.012.

Barbosa, S. M., Scotto, M. G., & Alonso, A. M. (2011). Summarising changes in air temperature over central

europe by quantile regression and clustering. Natural Hazards and Earth System Sciences, 11 , 3227–3233.

doi:10.5194/nhess-11-3227-2011.

Barrow, D. K., & Crone, S. F. (2016). Cross-validation aggregation for combining autoregressive neural network

forecasts. International Journal of Forecasting , 32 , 1120–1137. doi:10.1016/j.ijforecast.2015.12.011.

Bastianin, A., Galeotti, M., & Polo, M. (2019). Convergence of european natural gas prices. Energy Economics, 81 ,

793–811. doi:10.1016/j.eneco.2019.05.017.

BBC (2019). Gas heating ban for new homes from 2025. https://www.bbc.com/news/

science-environment-47559920. Accessed: 2020-06-15.

Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016). Bagging exponential smoothing methods using STL

decomposition and box–cox transformation. International Journal of Forecasting , 32 , 303–312. doi:10.1016/j.

ijforecast.2015.07.002.

Beyca, O. F., Ervural, B. C., Tatoglu, E., Ozuyar, P. G., & Zaim, S. (2019). Using machine learning tools for

forecasting natural gas consumption in the province of istanbul. Energy Economics, 80 , 937–949. doi:10.1016/j.

eneco.2019.03.006.

Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B

(Methodological), 26 , 211–252.

Box, G. E. P., & Jenkins, G. (1970). Time Series Analysis: Forecasting and Control . San Francisco, CA, USA:

Holden-Day, Inc.

Breiman, L. (1996). Bagging predictors. Machine Learning , 24 , 123–140. doi:10.1007/bf00058655.

Bühlmann, P. (1998). Sieve bootstrap for smoothing in nonstationary time series. The Annals of Statistics, 26 , 48–83.

doi:10.1214/aos/1030563978.

40

http://dx.doi.org/10.1016/j.ijforecast.2009.05.029
http://dx.doi.org/10.1016/j.apenergy.2019.05.062
http://dx.doi.org/10.1016/s0169-2070(00)00066-2
http://dx.doi.org/10.1371/journal.pone.0199582
http://dx.doi.org/10.1016/j.apenergy.2011.04.027
http://dx.doi.org/10.1016/j.egyr.2019.11.048
http://dx.doi.org/10.1016/j.enbuild.2016.06.020
http://dx.doi.org/10.1016/j.ijepes.2016.03.012
http://dx.doi.org/10.5194/nhess-11-3227-2011
http://dx.doi.org/10.1016/j.ijforecast.2015.12.011
http://dx.doi.org/10.1016/j.eneco.2019.05.017
https://www.bbc.com/news/science-environment-47559920
https://www.bbc.com/news/science-environment-47559920
http://dx.doi.org/10.1016/j.ijforecast.2015.07.002
http://dx.doi.org/10.1016/j.ijforecast.2015.07.002
http://dx.doi.org/10.1016/j.eneco.2019.03.006
http://dx.doi.org/10.1016/j.eneco.2019.03.006
http://dx.doi.org/10.1007/bf00058655
http://dx.doi.org/10.1214/aos/1030563978


CEU (2008). Council of the european union second strategic energy review: An eu energy security and solidarity

action plan. http://aei.pitt.edu/39567/. Accessed: 2020-01-30.

Chen, J., Yu, J., Ai, B., Song, M., & Hou, W. (2019). Determinants of global natural gas consumption and

import–export flows. Energy Economics, 83 , 588–602. doi:10.1016/j.eneco.2018.06.025.

Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A Seasonal-Trend Decomposition

Procedure Based on Loess. Journal of Official Statistics, 6 , 3–73.

Cordeiro, C., & Neves, M. M. (2009). Forecasting time series with BOOT.EXPOS procedure. REVSTAT – Statistical

Journal , 7 , 135–149.

Dantas, T. M., & Cyrino Oliveira, F. L. (2018). Improving time series forecasting: An approach combining

bootstrap aggregation, clusters and exponential smoothing. International Journal of Forecasting , 34 , 748–761.

doi:10.1016/j.ijforecast.2018.05.006.

Dantas, T. M., Oliveira, F. L. C., & Repolho, H. M. V. (2017). Air transportation demand forecast through bagging holt

winters methods. Journal of Air Transport Management , 59 , 116–123. doi:10.1016/j.jairtraman.2016.12.006.

De Livera, A. M., Hyndman, R. J., & Snyder, R. D. (2011). Forecasting time series with complex seasonal patterns

using exponential smoothing. Journal of the American Statistical Association, 106 , 1513–1527. doi:10.1198/jasa.

2011.tm09771.

De Oliveira, E. M., & Cyrino Oliveira, F. L. (2018). Forecasting mid-long term electric energy consumption through

bagging ARIMA and exponential smoothing methods. Energy , 144 , 776–788. doi:10.1016/j.energy.2017.12.049.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7 , 1–26. doi:10.1214/

aos/1176344552.

ENAGAS (2020). Enagas annual report 2019. https://www.enagas.es/WEBCORP-static/Informe_Anual_2019/.

Accessed: 2020-07-15.

EUROSTAT (2020). European Statistics supply of gas – gross inland consumption – monthly data. https:

//ec.europa.eu/eurostat/web/energy/data/database. Accessed: 2020-06-02.

Fan, G.-F., Guo, Y.-H., Zheng, J.-M., & Hong, W.-C. (2020). A generalized regression model based on hybrid empirical

mode decomposition and support vector regression with back-propagation neural network for mid-short-term load

forecasting. Journal of Forecasting , 39 , 737–756. doi:10.1002/for.2655.

Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation, 121 , 256–285.

doi:10.1006/inco.1995.1136.

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate

descent. Journal of Statistical Software, 33 . doi:10.18637/jss.v033.i01.

Golyandina, N., Nekrutkin, V., & Zhigljavsky, A. (2001). Analysis of time series structure: SSA and related techniques.

(1st ed.). Boca Raton: Chapman & Hall/CRC.

Goodwin, P. (2010). The Holt-Winters Approach to Exponential Smoothing: 50 Years Old and Going Strong.

Foresight: The International Journal of Applied Forecasting , (pp. 30–33).

Hall, M. A. (1999). Correlation-based feature selection for machine learning. https://www.cs.waikato.ac.nz/~mhall/.

Accessed: 2021-06-21.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics,

12 , 55–67. doi:10.1080/00401706.1970.10488634.

Holt, C. C. (1957). Forecasting seasonals and trends by exponentially weighted moving averages. ONR Memorandum,

vol. 52. Pittsburgh: PA7 Carnegie Institute of Technology.

41

http://aei.pitt.edu/39567/
http://dx.doi.org/10.1016/j.eneco.2018.06.025
http://dx.doi.org/10.1016/j.ijforecast.2018.05.006
http://dx.doi.org/10.1016/j.jairtraman.2016.12.006
http://dx.doi.org/10.1198/jasa.2011.tm09771
http://dx.doi.org/10.1198/jasa.2011.tm09771
http://dx.doi.org/10.1016/j.energy.2017.12.049
http://dx.doi.org/10.1214/aos/1176344552
http://dx.doi.org/10.1214/aos/1176344552
https://www.enagas.es/WEBCORP-static/Informe_Anual_2019/
https://ec.europa.eu/eurostat/web/energy/data/database
https://ec.europa.eu/eurostat/web/energy/data/database
http://dx.doi.org/10.1002/for.2655
http://dx.doi.org/10.1006/inco.1995.1136
http://dx.doi.org/10.18637/jss.v033.i01
https://www.cs.waikato.ac.nz/~mhall/
http://dx.doi.org/10.1080/00401706.1970.10488634


Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International

Journal of Forecasting , 20 , 5–10. doi:10.1016/j.ijforecast.2003.09.015.

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H.

(1998). The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series

analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,

454 , 903–995. doi:10.1098/rspa.1998.0193.

Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-Wild, M., Petropoulos, F., Razbash,

S., Wang, E., & Yasmeen, F. (2021). forecast: Forecasting functions for time series and linear models. URL:

http://pkg.robjhyndman.com/forecast R package version 8.15.

Hyndman, R., Koehler, A., Ord, K., & Snyder, R. (2008). Forecasting with exponential smoothing: The state

space approach. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-540-71918-2. doi:10.1007/

978-3-540-71918-2.

Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: principles and practice. (3rd ed.). OTexts: Melbourne,

Australia. URL: OTexts.com/fpp3.

Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast Package for R. Journal of

Statistical Software, 27 . doi:10.18637/jss.v027.i03.

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of

Forecasting , 22 , 679–688. doi:10.1016/j.ijforecast.2006.03.001.

Hyndman, R. J., Koehler, A. B., Snyder, R. D., & Grose, S. (2002). A state space framework for automatic

forecasting using exponential smoothing methods. International Journal of Forecasting , 18 , 439–454. doi:10.1016/

s0169-2070(01)00110-8.

IEA (2020). World energy outlook 2020. https://www.iea.org/reports/world-energy-outlook-2020. Accessed:

2021-07-18.

IEA (2021). Global energy review 2021. https://www.iea.org/reports/global-energy-review-2021/natural-gas.

Accessed: 2021-07-19.

Kaufman, L., & Rousseeuw, P. J. (1987). Clustering by means of medoids. In Y. Dodge, & editor (Eds.), Reports of

the Faculty of Mathematics and Informatics. Delft University of Technology (p. 405–416). North Holland / Elsevier.

Khwaja, A., Zhang, X., Anpalagan, A., & Venkatesh, B. (2017). Boosted neural networks for improved short-term

electric load forecasting. Electric Power Systems Research, 143 , 431–437. doi:10.1016/j.epsr.2016.10.067.

Koning, A. J., Franses, P. H., Hibon, M., & Stekler, H. (2005). The m3 competition: Statistical tests of the results.

International Journal of Forecasting , 21 , 397–409. doi:10.1016/j.ijforecast.2004.10.003.

Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. The Annals of Statistics,

17 , 1217–1241. doi:10.1214/aos/1176347265.

Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the

alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics,

54 , 159–178. doi:10.1016/0304-4076(92)90104-Y.

Liebensteiner, M., & Wrienz, M. (2020). Do intermittent renewables threaten the electricity supply security? Energy

Economics, 87 , 104499. doi:10.1016/j.eneco.2019.104499.

Ma, T., Wang, C., Wang, J., Cheng, J., & Chen, X. (2019). Particle-swarm optimization of ensemble neural networks

with negative correlation learning for forecasting short-term wind speed of wind farms in western china. Information

Sciences, 505 , 157–182. doi:10.1016/j.ins.2019.07.074.

42

http://dx.doi.org/10.1016/j.ijforecast.2003.09.015
http://dx.doi.org/10.1098/rspa.1998.0193
http://pkg.robjhyndman.com/forecast
https://doi.org/10.1007/978-3-540-71918-2
http://dx.doi.org/10.1007/978-3-540-71918-2
http://dx.doi.org/10.1007/978-3-540-71918-2
OTexts.com/fpp3
http://dx.doi.org/10.18637/jss.v027.i03
http://dx.doi.org/10.1016/j.ijforecast.2006.03.001
http://dx.doi.org/10.1016/s0169-2070(01)00110-8
http://dx.doi.org/10.1016/s0169-2070(01)00110-8
https://www.iea.org/reports/world-energy-outlook-2020
https://www.iea.org/reports/global-energy-review-2021/natural-gas
http://dx.doi.org/10.1016/j.epsr.2016.10.067
http://dx.doi.org/10.1016/j.ijforecast.2004.10.003
http://dx.doi.org/10.1214/aos/1176347265
http://dx.doi.org/10.1016/0304-4076(92)90104-Y
http://dx.doi.org/10.1016/j.eneco.2019.104499
http://dx.doi.org/10.1016/j.ins.2019.07.074


Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, J., Parzen, E., &

Winkler, R. (1982). The accuracy of extrapolation (time series) methods: Results of a forecasting competition.

Journal of Forecasting , 1 , 111–153. doi:10.1002/for.3980010202.

Makridakis, S., & Hibon, M. (2000). The m3-competition: results, conclusions and implications. International Journal

of Forecasting , 16 , 451–476. doi:10.1016/s0169-2070(00)00057-1.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). The M4 competition: Results, findings, conclusion and

way forward. International Journal of Forecasting , 34 , 802–808. doi:10.1016/j.ijforecast.2018.06.001.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2019). The M4 competition: 100,000 time series and 61 forecasting

methods. International Journal of Forecasting , . doi:10.1016/j.ijforecast.2019.04.014.

Matijaš, M., Suykens, J. A. K., & Krajcar, S. (2013). Load forecasting using a multivariate meta-learning system.

Expert Systems with Applications, 40 , 4427–4437. doi:10.1016/j.eswa.2013.01.047.

Meira, E., Cyrino Oliveira, F. L., & De Menezes, L. M. (2021a). Point and interval forecasting of electricity supply

via pruned ensembles. Energy , 232 , 121009. doi:10.1016/j.energy.2021.121009.

Meira, E., Oliveira, F. L. C., & Jeon, J. (2021b). Treating and pruning: New approaches to forecasting model selection

and combination using prediction intervals. International Journal of Forecasting , 37 , 547–568. doi:10.1016/j.

ijforecast.2020.07.005.

Nock, R., & Gascuel, O. (1995). On learning decision committees. In Machine Learning Proceedings 1995 (pp.

413–420). Elsevier. doi:10.1016/b978-1-55860-377-6.50058-x.

OPEC (2020). World oil outlook 2020. https://woo.opec.org/index.php. Accessed: 2021-07-19.

Panapakidis, I. P., & Dagoumas, A. S. (2017). Day-ahead natural gas demand forecasting based on the combination

of wavelet transform and ANFIS/genetic algorithm/neural network model. Energy , 118 , 231–245. doi:10.1016/j.

energy.2016.12.033.

Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., & et al. (2020). Forecasting: theory and practice.

arXiv:2012.03854.

Petropoulos, F., Hyndman, R. J., & Bergmeir, C. (2018). Exploring the sources of uncertainty: Why does bagging for

time series forecasting work? European Journal of Operational Research, 268 , 545–554. doi:10.1016/j.ejor.2018.

01.045.

Petropoulos, F., Wang, X., & Disney, S. M. (2019). The inventory performance of forecasting methods: Evidence

from the m3 competition data. International Journal of Forecasting , 35 , 251–265. doi:10.1016/j.ijforecast.

2018.01.004.

Potočnik, P., Soldo, B., Šimunović, G., Šarić, T., Jeromen, A., & Govekar, E. (2014). Comparison of static and

adaptive models for short-term residential natural gas forecasting in croatia. Applied Energy , 129 , 94–103.

doi:10.1016/j.apenergy.2014.04.102.

Quinlan, J. R. (1996). Bagging, boosting, and c4.s. In Proceedings of the Thirteenth National Conference on Artificial

Intelligence - Volume 1 AAAI’96 (pp. 725–730). AAAI Press. URL: http://dl.acm.org/citation.cfm?id=

1892875.1892983.

R Core Team (2021). R: A Language and Environment for Statistical Computing . R Foundation for Statistical

Computing Vienna, Austria. URL: https://www.R-project.org/.

Rendon-Sanchez, J. F., & de Menezes, L. M. (2019). Structural combination of seasonal exponential smoothing

forecasts applied to load forecasting. European Journal of Operational Research, 275 , 916 – 924. doi:10.1016/j.

ejor.2018.12.013.

43

http://dx.doi.org/10.1002/for.3980010202
http://dx.doi.org/10.1016/s0169-2070(00)00057-1
http://dx.doi.org/10.1016/j.ijforecast.2018.06.001
http://dx.doi.org/10.1016/j.ijforecast.2019.04.014
http://dx.doi.org/10.1016/j.eswa.2013.01.047
http://dx.doi.org/10.1016/j.energy.2021.121009
http://dx.doi.org/10.1016/j.ijforecast.2020.07.005
http://dx.doi.org/10.1016/j.ijforecast.2020.07.005
http://dx.doi.org/10.1016/b978-1-55860-377-6.50058-x
https://woo.opec.org/index.php
http://dx.doi.org/10.1016/j.energy.2016.12.033
http://dx.doi.org/10.1016/j.energy.2016.12.033
http://arxiv.org/abs/2012.03854
http://dx.doi.org/10.1016/j.ejor.2018.01.045
http://dx.doi.org/10.1016/j.ejor.2018.01.045
http://dx.doi.org/10.1016/j.ijforecast.2018.01.004
http://dx.doi.org/10.1016/j.ijforecast.2018.01.004
http://dx.doi.org/10.1016/j.apenergy.2014.04.102
http://dl.acm.org/citation.cfm?id=1892875.1892983
http://dl.acm.org/citation.cfm?id=1892875.1892983
https://www.R-project.org/
http://dx.doi.org/10.1016/j.ejor.2018.12.013
http://dx.doi.org/10.1016/j.ejor.2018.12.013


Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation.

https://apps.dtic.mil/sti/pdfs/ADA164453.pdf. Accessed: 2021-06-22.

Sánchez-Úbeda, E. F., & Berzosa, A. (2007). Modeling and forecasting industrial end-use natural gas consumption.

Energy Economics, 29 , 710–742. doi:10.1016/j.eneco.2007.01.015.

Spiliotis, E., Petropoulos, F., & Assimakopoulos, V. (2019). Improving the forecasting performance of temporal

hierarchies. PLOS ONE , 14 , e0223422. doi:10.1371/journal.pone.0223422.

Stock, J. H., & Watson, M. W. (2004). Combination forecasts of output growth in a seven-country data set. Journal

of Forecasting , 23 , 405–430. doi:10.1002/for.928.

Sugiura, N. (1978). Further analysts of the data by akaike’ s information criterion and the finite corrections.

Communications in Statistics - Theory and Methods, 7 , 13–26. doi:10.1080/03610927808827599.

Sun, S., Sun, Y., Wang, S., & Wei, Y. (2018). Interval decomposition ensemble approach for crude oil price forecasting.

Energy Economics, 76 , 274–287. doi:10.1016/j.eneco.2018.10.015.

Szafranek, K. (2019). Bagged neural networks for forecasting polish (low) inflation. International Journal of

Forecasting , 35 , 1042–1059. doi:10.1016/j.ijforecast.2019.04.007.

Taşpınar, F., Çelebi, N., & Tutkun, N. (2013). Forecasting of daily natural gas consumption on regional basis in turkey

using various computational methods. Energy and Buildings, 56 , 23–31. doi:10.1016/j.enbuild.2012.10.023.

Theodosiou, M. (2011). Forecasting monthly and quarterly time series using STL decomposition. International

Journal of Forecasting , 27 , 1178–1195. doi:10.1016/j.ijforecast.2010.11.002.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series

B (Methodological), 58 , 267–288. doi:10.1111/j.2517-6161.1996.tb02080.x.

Vapnik, V. (1995). The Nature of Statistical Learning Theory . (1st ed.). New York: Springer.

Vinod, H. (2004). Ranking mutual funds using unconventional utility theory and stochastic dominance. Journal of

Empirical Finance, 11 , 353–377. doi:10.1016/j.jempfin.2003.06.002.

Vinod, H. D. (2006). Maximum entropy ensembles for time series inference in economics. Journal of Asian Economics,

17 , 955–978. doi:10.1016/j.asieco.2006.09.001.

Vinod, H. D., & López-de-Lacalle, J. (2009). Maximum entropy bootstrap for time series: The meboot R Package.

Journal of Statistical Software, 29 . doi:10.18637/jss.v029.i05.

Vondráček, J., Pelikán, E., Konár, O., Čermáková, J., Eben, K., Malý, M., & Brabec, M. (2008). A statistical model for

the estimation of natural gas consumption. Applied Energy , 85 , 362–370. doi:10.1016/j.apenergy.2007.07.004.

Wang, B., & Wang, J. (2020). Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error

evaluation. Energy Economics, 90 , 104827. doi:10.1016/j.eneco.2020.104827.

Webb, G. I. (2000). Multiboosting: A technique for combining boosting and wagging. Machine Learning , 40 , 159–196.

doi:10.1023/A:1007659514849.

Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6 , 324–342.

doi:10.1287/mnsc.6.3.324.

Wood, D. A. (2016). Natural gas imports to europe: The frontline of competition between LNG and pipeline supplies.

Journal of Natural Gas Science and Engineering , 36 , A1–A4. doi:10.1016/j.jngse.2016.09.065.

Yalta, A. T. (2011). Analyzing energy consumption and GDP nexus using maximum entropy bootstrap: The case of

Turkey. Energy Economics, 33 , 453–460. doi:10.1016/j.eneco.2010.12.005.

Zhang, J.-L., Zhang, Y.-J., & Zhang, L. (2015). A novel hybrid method for crude oil price forecasting. Energy

Economics, 49 , 649–659. doi:10.1016/j.eneco.2015.02.018.

44

https://apps.dtic.mil/sti/pdfs/ADA164453.pdf
http://dx.doi.org/10.1016/j.eneco.2007.01.015
http://dx.doi.org/10.1371/journal.pone.0223422
http://dx.doi.org/10.1002/for.928
http://dx.doi.org/10.1080/03610927808827599
http://dx.doi.org/10.1016/j.eneco.2018.10.015
http://dx.doi.org/10.1016/j.ijforecast.2019.04.007
http://dx.doi.org/10.1016/j.enbuild.2012.10.023
http://dx.doi.org/10.1016/j.ijforecast.2010.11.002
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1016/j.jempfin.2003.06.002
http://dx.doi.org/10.1016/j.asieco.2006.09.001
http://dx.doi.org/10.18637/jss.v029.i05
http://dx.doi.org/10.1016/j.apenergy.2007.07.004
http://dx.doi.org/10.1016/j.eneco.2020.104827
http://dx.doi.org/10.1023/A:1007659514849
http://dx.doi.org/10.1287/mnsc.6.3.324
http://dx.doi.org/10.1016/j.jngse.2016.09.065
http://dx.doi.org/10.1016/j.eneco.2010.12.005
http://dx.doi.org/10.1016/j.eneco.2015.02.018


Özmen, A., Yılmaz, Y., & Weber, G.-W. (2018). Natural gas consumption forecast with MARS and CMARS models

for residential users. Energy Economics, 70 , 357–381. doi:10.1016/j.eneco.2018.01.022.

45

http://dx.doi.org/10.1016/j.eneco.2018.01.022

	Introduction
	On forecasting natural gas demand
	The growing relevance of ensemble forecasting in the energy sector

	A framework for ensemble forecasting methods
	Treatment and decomposition of the time series
	Resampling
	Forecasting
	Combining
	Limitations in ensembles for time series forecasting

	Proposed ensemble
	Data treatment and resampling
	Forecast generation
	Combining forecasts via traditional and modified regularization
	Modified regularization


	Data, comparators and evaluation setup
	Results and Discussion
	Aggregate results and distribution of evaluation metrics
	Multiple comparisons with the best
	Sensitivity analysis and robustness checks
	Discussion and implications

	Summary and conclusions

