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Abstract 

The incompressible Smoothed Particle Hydrodynamics (ISPH) is one of the most 

popular Lagrangian particle methods for modelling wave-structure interactions. It 

solves the unsteady Navier-Stokes and continuity equations using the projection 

method, in which solving the pressure Poisson’s equation (PPE) plays a critical role. 

To discretise the PPE, the quadric semi-analytical finite difference interpolation scheme 

(QSFDI) has been developed recently and the relevant patch test has demonstrated its 

superiority over existing schemes at a similar accuracy level in terms of the 

convergence and robustness. In this paper, the QSFDI is adopted by the ISPH for 

discretising the Laplacian operator in the PPE. The developed scheme (ISPH_QSFDI) 

is then applied to various cases with wave propagations and their interaction with 

structures.  For the purpose of comparison, other Laplacian discretisation schemes, 

including the classic scheme widely adopted by the ISPH, the CSPM and the CSPH2Γ, 

have also been considered. Except the Laplacian discretisation, other numerical 

implementations of the ISPH, e.g. the gradient/divergence estimation and the treatment 

of the boundary conditions, are kept the same. The convergence, accuracy and 

robustness of these schemes are analysed with reference to either analytical solutions 

or experimental data. The results demonstrate that the present ISPH_QSFDI results in 

more accurate results with the same number of particles and costs less computational 

time to achieve a specific accuracy, compared other schemes, although the convergence 

rate of the ISPH_QSFDI seems to be one-order lower than the theoretical patch test 

due. 

 

Keywords: ISPH; QSFDI; Laplacian Operator; PPE; wave-structure interaction 

1. Introduction 

The wave-structure interaction is one of the fundamental problems for many coastal 

and offshore practical applications such as the design of breakwaters and sea walls. The 

Smoothed Particle Hydrodynamics (SPH)（Lucy, 1977; Gingold and Monaghan, 1977) 

is a Lagrangian meshless method and has been successfully applied in wide range of 

problems involving waves and their interaction with structures in recent years. The SPH 
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discretizes the the computational domain by particles, which carry field variables such 

as the pressure, density and velocity, and move in a Lagrangian way.  

 

There are mainly two streams of SPH methods when being applied to modelling water 

waves and wave-structure interactions. One is the weakly compressible SPH (WCSPH), 

in which the fluid is considered to be weakly compressible and the pressure is evaluated 

by the equation of state related to the fluid density. The other one is the incompressible 

SPH (ISPH) proposed by Shao and Lo (2003) using the projection method (Cummins 

and Rudman, 1999). In the ISPH, the fluid is incompressible and the pressure is 

evaluated by solving a Poisson equation of pressure (PPE). The WCSPH does not need 

to solve the PPE and thus is relatively easier to be implemented compared with the 

ISPH. However, the WCSPH shows some weaknesses during its applications to the 

wave-structure interactions (Rafiee et al., 2012; Zhang et al., 2019), e.g. the significant 

spurious pressure fluctuations, although certain numerical techniques have been 

proposed to improve its performance (Inutsuka 2002; Antuono et al, 2010). The ISPH 

has also been widely applied for modelling the wave propagation and interaction with 

structures (Lind et al., 2012; Zheng et al., 2014; Gui et al., 2015; Liang et al., 2017; 

Khayyer et al., 2017b; Khayyer et al., 2018; Khayyer et al., 2021). Compared with the 

conventional WCSPH, the ISPH has shown several superiorities. According to Lee et 

al. (2008), the ISPH may lead to more accurate results than the WCSPH for a given 

particle resolution. Violeau and Leroy (2015) have shown that the time step used by the 

ISPH can be five times larger than the WCSPH. In addition, the ISPH has better volume 

conservation properties (Gotoh and Khayyer, 2016). Such superiorities may be limited 

by the range of the applications and considerable developments have been done to 

improve the computational performance of ISPH. Typical examples include the Higher 

order Source term (HS), Higher order Laplacian (HL), Error Compensating Source 

(ECS), Dynamic Stabilizer (DS) and pressure Gradient Correction (GC) (Khayyer et 

al., 2017a), the corrected Taylor series consistent pressure gradient models Eulerian-

Lagrangian ISPH  (Fourtakas et al., 2018), background mesh scheme (Wang et al., 

2019), symmetric SPH (SSPH) method  (Zhang and Batra, 2009), pseudo-spectral 

incompressible smoothed particle hydrodynamics (FFT-ISPH) (Rogers et al., 2021) and 

the implicit consistency correction scheme (Sibilla, 2015). It is also widely recognized 

that numerical schemes to discretize the PPE, including the Laplacian operator, are 

critical for securing a satisfactory accuracy, convergence and robustness of the ISPH. 

The main challenges of development and application of such schemes is largely caused 
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by the irregular particle distribution (Quinlan et al., 2006). When modelling the wave-

structure interactions, the particles move following the material velocity and 

consequently are distributed irregularly even they are distributed evenly and regularly 

at the start of the simulation. This limits the applications of high-order finite difference 

schemes which require regular and even particle distribution. Detailed review on the 

such schemes can be found in Ma et al. (2016) and Yan et al. (2020) and will not be 

repeated here.   

 

However, discussions on some Laplacian discretisation schemes, which have shown 

their satisfactory convergence and accuracy for irregular particle distributions, are 

included here for completeness.  These include the CSPM proposed by Chen et al. 

(1999), a scheme proposed by Fatehi and Manzari (2011) and developed from the 

Brookshaw’s scheme (Brookshaw, 1985), in which an error compensation is introduced, 

the LSMPS method developed by Tamai and Koshizuka (2014) by using the moving 

least squares (MLS) algorithm, LP-MPS proposed by Tamai et al. (2017) based on the 

weighted least squares (WLS) algorithm. Although the CSPM, LP-MPS and quadric 

LSMPS have a higher convergent rate compared with some schemes (Cummins and 

Rudman, 1999; Lo and Shao, 2002; Hu and Adams, 2007; Khayyer and Gotoh, 2012) 

that converge at a rate less than first order for estimating the Laplacian of a given 

function (Schwaiger, 2008; Zheng et al., 2014), these schemes require the high 

computational cost on inversing matrices at all particles. To overcome this limitation, 

Schwaiger (2008) proposed a CSPH2Γ scheme, which is based on the CSPM but 

reduces the sizes of inversed matrices. However, the CSPH2Γ scheme downgrades the 

accuracy because of ignoring the cross-derivative terms of the 2nd derivatives. By 

adopting the principle of the linear semi-analytical finite difference interpolation 

(SFDI), we developed a quadric version, which is referred to as the QSFDI, for 

Laplacian discretization (Yan et al, 2020). The QSFDI can achieve the same degree of 

the convergent rate as the best schemes available to date, e.g., the CSPM, LP-MPS and 

quadric LSMPS, but requires inversion of significant lower order matrices, i.e., 3×3 for 

3D cases, compared with 6×6 or 10×10 in the schemes with the best convergent rate. 

Systematic patch tests have been carried out for either estimating the Laplacian of given 

functions or solving Poisson’s equations using disordered particles (Yan et al, 2020). 

The results suggested that the QSFDI requires considerably less computational time to 

achieve the same accuracy, particularly for estimating the Laplacian of given functions, 

compared with other schemes used in the patch tests. However, its performance on 
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modelling practical problems needs to be further evaluated.  

 

In this paper, the QSFDI is first implemented in the ISPH for discretising the Laplacian 

operator in the PPE. The performance of the present ISPH with QSFDI (ISPH_QSFDI) 

in terms of accuracy, convergence and robustness is assessed by using various practical 

problems. For the purpose of comparison, other schemes developed for SPH 

applications, including the classic ISPH scheme, the CSPM and CSPH2Γ, have been 

considered in the present comparative study. It shall be noted that the QSFDI (Yan et 

al, 2020) includes consistent schemes for numerical interpolation and gradient (spatial 

derivative) estimations, which can be implemented in the ISPH procedures, e.g., the 

treatment of the boundary condition, the calculation of pressure gradient. However, 

these are not implemented in this paper in order to focus our evaluation on discretizing 

the Laplacian operator.  

2. Brief of ISPH Algorithms 

For completeness, a brief introduction of the ISPH algorithms, spatial derivative 

approximations and boundary treatments is given here. More details can be found in 

Zheng et al. (2014). The governing equations are the mass and momentum conservation 

equations given below, 

𝐷𝐮

𝐷𝑡
= −

𝟏

𝝆
∇𝑃 + 𝐠 + 𝜈∇2𝐮                (1) 

 ∇ ∙ 𝐮 = 0                (2) 

where ∇ is the spatial differential operator; 𝜌is the fluid density; u is the fluid velocity;
 

P is the pressure;
 
g is the gravitational acceleration; 𝜈

 
is the kinematic viscosity; t is the 

time and D/Dt is material derivative following the motion of the fluid particle.  Eqs. (1) 

and (2) are discretised by Lagrangian particles and solved by the projection method, 

briefed below. 

 

Assuming the position (𝐫𝑡) and the velocity (𝐮𝑡) of fluid particles are known at time t,  

the intermediate fluid velocity 𝐮∗ is predicted by considering the acceleration terms in 

the right-hand side of Eq. (1) except the pressure gradient term, i.e. 𝐮∗ = 𝐮𝑡 +

(𝐠 + 𝜈∇2𝐮𝑡)∆𝑡 , where ∆𝑡  is the time step size and is determined dynamically by 

satisfying the CFL (Courant-Friedrichs-Lewy) condition (Shao and Lo, 2003). The 

intermediate position vector of the particle 𝐫∗  is obtained by use of the 𝐫𝑡 + 𝐮∗∆𝑡. 

Then, the pressure at the new time step, 𝑃𝑡+∆𝑡 , can be estimated using the intermediate 
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density and velocity,   

 ∇2𝑃𝑡+∆𝑡 = 𝛼
𝜌−𝜌∗

∆𝑡2 + (1 − 𝛼)
𝜌∇∙𝐮∗

∆𝑡
           (3) 

in which 𝛼 is the blending coefficient and taken as 0.01 in this paper; the intermediate 

fluid density  𝜌∗ at any fluid particle i can be calculated by ∑ 𝑚𝑗𝑊(𝐫𝑖𝑗)𝑁
𝑗=1   where j 

indicates one of N neighbouring particle of i, and 𝑊(𝐫𝑖𝑗)  is a kernel function 

corresponding to the position vector 𝐫𝑖𝑗 = 𝐫𝑖 − 𝐫𝑗 . Similar to Lo and Shao (2002), the 

solid boundaries are also simulated by particles and mirror particles are placed outside 

the solid walls. For the particles on the solid boundary, the following conditions (Ma 

and Zhou, 2009) should be satisfied 

 𝐮 ∙ 𝐧 = 𝐔 ∙ 𝐧                (4) 

𝐧 ∙ ∇𝑃 = 𝜌(𝐧 ∙ 𝐠 − 𝐧 ∙ 𝐔̇)              (5) 

where n is the unit normal vector of the solid boundary; U and 𝐔̇
 
are the velocity and 

acceleration of the solid boundary.  The dynamic boundary condition on the free surface 

is,  

P = 0
 
                                                                (6) 

In order to apply Eq. (6), particles on the free surface should be identified firstly. This 

paper adopts the method proposed by Zheng et al. (2014), which introduces auxiliary 

functions related to the particle distribution in the influence domain of each fluid 

particle and the corresponding particle density. More details can be found in Zheng et 

al. (2014). After Eq. (3) is solved, the velocity and density at 𝑡 + ∆𝑡 is corrected by 

considering the fraction of the acceleration due to the gradient of 𝑃𝑡+∆𝑡.  

 

Within each time step, the velocity divergence and viscous term need to be estimated, 

respectively, by classic SPH formulations (Cleary and Monaghan, 1999; Monaghan, 

2005; Shao and Lo, 2003), and the pressure gradient by the SFDI (Ma, 2008; Zheng et 

al., 2014), 

∇ ∙ 𝐮𝑖 = −
1

𝜌𝑖
∑ 𝑚𝑗(𝐮𝑖 − 𝐮𝐣) ∙ ∇𝑖𝑊(𝐫𝑖𝑗)𝑁

𝑗=1          (7) 

∇ ∙ (𝜈𝑖∇𝐮𝑖) = ∑ 8𝑚𝑗 (
𝜈𝑖+𝜈𝑗

𝜌𝑖+𝜌𝑗

𝐮𝑖𝑗∙𝐫𝑖𝑗

𝑟𝑖𝑗
2 +𝜂2) ∙ ∇𝑖𝑊(𝐫𝑖𝑗)𝑁

𝑗=1       (8) 

∇𝑃𝑖 = ∑
𝑛

𝑖

𝑥𝑘𝐵𝑖𝑗
𝑥𝑚−𝑛𝑖

𝑥𝑦
𝐵

𝑖𝑗

𝑥𝑘

𝑛𝑖
𝑥𝑛𝑖

𝑦
−𝑛𝑖

𝑥𝑦
𝑛𝑖

𝑥𝑦 (𝑃𝑗 − 𝑃𝑖)𝑁
𝑗=1,𝑗≠𝑖         (9) 

where m is the particle mass; 𝜂 is the small number to prevent singularity;  𝐮𝑖𝑗 = 𝐮𝑖 −

𝐮𝑗 and the kernel function 𝑊(𝐫𝑖𝑗) is taken as the cubic B-spline kernel proposed by 
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Monaghan and Lattanzio (1985) in this paper. In Eq. (9), 

𝑛𝑖
𝑥𝑦

= ∑
(𝐫𝑗

𝑥𝑚−𝐫𝑖
𝑥𝑚)(𝐫

𝑗

𝑥𝑘−𝐫
𝑖

𝑥𝑘)

|𝐫𝑖𝑗|
2 𝑊(𝐫𝑖𝑗)𝑁

𝑗=1,𝑗≠𝑖 , 

 𝑛𝑖
𝑥𝑚 = ∑

(𝐫𝑗
𝑥𝑚−𝐫𝑖

𝑥𝑚)
2

|𝐫𝑖𝑗|
2 𝑊(𝐫𝑖𝑗)𝑁

𝑗=1,𝑗≠𝑖  and 

 𝐵𝑖
𝑥𝑚 = ∑

(𝐫𝑗
𝑥𝑚−𝐫𝑖

𝑥𝑚)

|𝐫𝑖𝑗|
2 𝑊(𝐫𝑖𝑗)𝑁

𝑗=1,𝑗≠𝑖 ,  

in which 𝑥𝑚 = 𝑥 when 𝑥𝑘 = 𝑦 or 𝑥𝑚 = 𝑦 when 𝑥𝑘 = 𝑥, and 𝐫
𝑥𝑚is the component of 

the position vector in 𝑥𝑚 direction.  

 

For solving the PPE (Eq. (3)), different schemes have been developed to discretise the 

Laplacian operator and the following classic scheme is commonly used, 

∇ ∙ (
1

𝜌
∇𝑃𝑖) = ∑

8𝑚𝑗

(𝜌𝑖+𝜌𝑗)
2

(𝑃𝑖−𝑃𝑗)𝐫𝑖𝑗

𝑟𝑖𝑗
2 +𝜂2 ∙ ∇𝑖𝑊(𝐫𝑖𝑗)𝑁

𝑗=1        (10) 

However, the accuracy of the ISPH may be improved by replacing Eq. (10) with other 

schemes, in particular when the particles suffer from distortion and clustering in violent 

water wave problems (Zheng et al., 2014). For this purpose, some schemes for the 

Laplace discretisation have been proposed, as indicated in the Introduction. One is the 

CSPM scheme developed by Chen et al. (1999) and reads  

∇𝟐𝑃𝑖 = 2𝑰CSPM
T 𝑴2,CSPM

−1 (∑
𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑃𝑗 − 𝑃𝐼)∇(𝟐)𝑊(𝐫𝑗𝑖) −

∑
𝑚𝑗

𝜌𝑗
∇(𝟐)𝑊(𝐫𝑗𝑖)𝐫𝑗𝑖

T𝑴1,CSPM
−1 ∑

𝑚𝑘

𝜌𝑘

𝑁
𝑘=1 (𝑝𝑘 − 𝑝𝐼)∇𝑊(𝐫𝑗𝑖)

𝑁
𝑗=1 )     (11) 

in which 𝐼CSPM = [1 0 0 1 0 1]T ; 𝑴1,CSPM = ∑
𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 ∇𝑊(𝐫𝑗𝑖)𝐫𝑗𝑖

T  is a 3×3 

matrix for 3D problems or 2×2 matrix for 2D problems; 𝑴2,CSPM =

∑
𝑚𝑗

𝜌𝑗
∇(𝟐)𝑊(𝐫𝑗𝑖)𝑁

𝑗=1 (𝒓𝑗𝐼
(2)

)
T

 is the matrix with size of 6×6 for 3D problems or 3×3 for 

2D problems and 𝒓𝑗𝑖
(2)

= [𝑥𝑗𝑖
2  2𝑥𝑗𝑖𝑦𝑗𝑖 2𝑥𝑗𝑖𝑧𝑗𝑖 𝑦𝑗𝑖

2  2𝑦𝑗𝑖𝑧𝑗𝑖  𝑧𝑗𝑖
2  ]

T
, 𝛁(𝟐) =

[
𝜕2

𝜕𝑥2

𝜕2

𝜕𝑥𝜕𝑦

𝜕2

𝜕𝑥𝜕𝑧

𝜕2

𝜕𝑦2

𝜕2

𝜕𝑦𝜕𝑧

𝜕2

𝜕𝑧2]
T

. The other one is the CSPH2Γ scheme developed 

by Schwaiger (2008), 

∇𝟐𝑃𝑖 = 2𝑰T𝑴2,CSPH
−1 (∑

𝑚𝑗

𝜌𝑗
(𝑃𝑗 − 𝑃𝐼)𝛁̆𝑊(𝐫𝑗𝑖)𝑁

𝑗=1 − ∑
𝑚𝑗

𝜌𝑗
𝒓𝑗𝐼

T 𝛁̆𝑊(𝐫𝑗𝑖)∇𝑃𝑖
𝑁
𝑗=1 ) (12) 

where 𝑴2,CSPH = ∑
𝑚𝑗

𝜌𝑗
𝛁̆𝑊(𝐫𝑗𝑖)(𝐫𝑗𝑖

(2𝑠)
)

T
𝑁
𝑗=1  is a matrix with size of 3×3 for 3D 

problems or 2×2 for 2D problems, in which 𝐫𝑗𝑖
(2𝑠)

= [𝑥𝑗𝑖
2 𝑦𝑗𝑖

2 𝑧𝑗𝑖
2

]
T
 and 𝛁̆𝑊(𝐫𝑗𝑖) =
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1

𝑑𝑗𝑖
2 [𝑥𝑗𝑖

𝜕𝑊𝑗𝑖

𝜕𝑥
𝑦𝑗𝑖

𝜕𝑊𝑗𝑖

𝜕𝑦
𝑧𝑗𝑖

𝜕𝑊𝑗𝑖

𝜕𝑧
]

T

with 𝑑𝑗𝑖 = |𝐫𝑗𝑖|. The pressure gradient in Eq. (12) is 

estimated using, 

∇𝑃𝑖 = 𝑴1,CSPM
−1 ∑

𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑃𝑗 − 𝑃𝐼)∇𝑊(𝐫𝑗𝑖)       (13) 

A detailed error analysis of these two schemes has been given in Yan et al. (2020), 

which shows the leading truncation errors of the CSPM (Eq. (11)) and CSPH2Γ (Eq. 

(12)) for irregular particle distributions are termed by 2nd derivatives of the pressure 

and mainly sourced from the truncation error of the gradient estimation using Eq. (13).  

3. Mathematical Formulation of QSFDI 

The QSFDI is developed based on the principle of the SFDI to derive the interpolation, 

gradient estimation and Laplacian discretisation schemes with a quadric accuracy. It is 

derived by using Taylor’s expansion. For each particle j at the location xj, which is 

inside the support domain of the particle i at ri, a function P can be expressed as the 

Taylor’s expansion, 

𝑝𝑗 − 𝑝𝑖 = 𝐫𝑗𝑖
T∇𝑃𝑖 +

1

2
(𝐫𝑗𝑖

(2𝑠)
)

T
∇(𝟐𝒔)𝑃𝑖 + (𝒓𝑗𝑖

(2𝑐)
)

T
∇(𝟐𝒄)𝑃𝑖 +  

1

6
(𝐫𝑗𝑖

𝑇∇)
3

𝑃𝑖 + ⋯  (14) 

In Eq. (14), the 2nd-derivative term  
1

2
(𝐫𝑗𝑖

𝑇∇)
2

𝑃𝑖 in the conventional Taylor’s expansion 

(e.g., Chen et al., 1999; Tamai, et al., 2017) is split into two, i.e.,  
1

2
(𝐫𝑗𝑖

(2𝑠)
)

T
∇(𝟐𝒔)𝑃𝑖  and 

(𝐫𝑗𝑖
(2𝑐)

)
T

∇(𝟐𝒄)𝑃𝑖  where 𝒓𝑗𝐼
(2𝑐)

= [𝑥𝑗𝐼𝑦𝑗𝐼 𝑥𝑗𝐼𝑧𝑗𝐼 𝑦𝑗𝐼𝑧𝑗𝐼]T , 𝛁(𝟐𝒔) = [
𝜕2

𝜕𝑥2

𝜕2

𝜕𝑦2

𝜕2

𝜕𝑧2]
T

 

and 𝛁(𝟐𝒄) = [
𝜕2

𝜕𝑥𝜕𝑦

𝜕2

𝜕𝑥𝜕𝑧

𝜕2

𝜕𝑦𝜕𝑧
]

T

. 

 

Following Ma (2008), the weighted summation of Eq. (14) for all particles in the 

support domain of the particle i are used to derive the schemes for approximating the 

gradient∇𝑃𝑖, 2
nd derivatives and Laplacian∇𝟐𝑃𝑖, as well as the interpolation function for 

approximation 𝑃𝑖 .  Only the final formulas are summarised here and more details of the 

derivation can be found in Yan et al. (2020). 

∇𝑃𝑖 = ∑ 𝚽𝑗𝑖
𝑔

(𝑝𝑗 − 𝑝𝑖)
𝑁
𝑗=1             (15) 

∇𝟐𝑃𝑖 = 𝑰T ∑ 𝚽𝑗𝑖
𝑠 (𝑝𝑗 − 𝑝𝑖)𝑁

𝑗=1            (16) 

where 𝑰 = [1 1 1]T and  

𝚽𝑗𝐼
𝑔

= 𝑴1𝑞,𝑖
−1 (

𝑊(𝐫𝑗𝑖)

𝑑𝑗𝑖
2 𝒒𝑗𝑖 − ∑

𝑊(𝐫𝑘𝑖)

𝑑𝑘𝑖
2 𝒒𝑘𝑖

𝑁
𝑘=1 (𝐫𝑘𝑖

(2𝑐)
)

T

𝑴2𝑐,𝑖
−1 𝑊(𝐫𝑗𝑖)

𝑑𝑗𝑖
4 𝐫𝑗𝐼

(2𝑐) −

∑
𝑤𝑘𝐼

𝑑𝑘𝑖
2 𝒒𝑘𝑖𝚷𝑘𝑖

T 𝑴2𝑠,𝑖
−1 𝚪𝑗𝑖

𝑁
𝑘=1 )             (17) 
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𝚽𝑗𝑖
𝑠 = 2𝑴2𝑠,𝑖

−1 (𝚪𝑗𝑖 − ∑
𝑤𝑘𝐼

𝑑𝑘𝑖
4 𝚷𝑘𝑖𝑮𝑘𝑖

T 𝚽𝑘𝑖
𝑔𝑁

𝑘=1 )        (18) 

Definitions of matrices in Eq. (17) and (18) are as follows    

 𝑴2𝑐,𝑖 = ∑
𝑊(𝐫𝑗𝑖)

𝑑𝑗𝑖
4 𝐫𝑗𝑖

(2𝑐)
(𝐫𝑗𝑖

(2𝑐)
)

T
𝑁
𝑗=1 , 

𝚷𝑗𝑖 = {(𝐫𝑗𝑖
(2𝑠)

)
T

− (𝐫𝑗𝑖
(2𝑐)

)
T

𝑴2𝑐,𝑖
−1 ∑

𝑊(𝐫𝑘𝑖)

𝑑𝑘𝑖
4

𝑁
𝑘=1 𝐫𝑘𝑖

(2𝑐)
(𝐫𝑗𝑖

(2𝑠)
)

T

}
T

,  

 𝑴2𝑠,𝑖 = ∑
𝑊(𝐫𝑗𝑖)

𝑑𝑗𝑖
4 𝚷𝑗𝐼𝚷𝑗𝐼

T𝑁
𝑗=1  

𝑮𝑗𝑖 = {𝐫𝑗𝑖
T − (𝐫𝑗𝑖

(2𝑐)
)

T
𝑴2𝑐,𝑖

−1 ∑
𝑊(𝐫𝑘𝑖)

𝑑𝑘𝑖
4 𝐫𝑘𝑖

(2𝑐)
𝐫𝑘𝑖

𝑇𝑁
𝑘=1 }

T

, 

𝑭𝑗𝑖 = {(𝐫𝑗𝑖
(3)

)
T

− (𝐫𝑗𝑖
(2𝑐)

)
T

𝑴2𝑐,𝐼
−1 ∑

𝑊(𝐫𝑘𝑖)

𝑑𝑘𝑖
4

𝑁
𝑘=1 𝐫𝑘𝑖

(2𝑐)
(𝐫𝑘𝑖

(3)
)

T

}
T

 , 

𝒒𝑗𝑖 = (𝑮𝑗𝑖
𝑻 − 𝚷𝑗𝑖

T𝑴2𝑠,𝐼
−1 ∑

𝑊(𝐫𝑘𝑖)

𝑑𝑘𝑖
4

𝑁
𝑘=1 𝚷𝑘𝑖𝑮𝑘𝑖

T )
T

, 

𝚪𝑗𝑖 = (
𝑊(𝐫𝑗𝑖)

𝑑𝑗𝑖
4 𝚷𝑗𝑖 − 𝚷𝑗𝑖(𝐫𝑗𝑖

(2𝑐)
)

T

𝑴2𝑐,𝐼
−1 ∑

𝑤𝑘𝑖

𝑑𝑘𝑖
4

𝑁
𝑘=1 𝐫𝑘𝑖

(2𝑐)
) , 

𝑴1𝑞,𝑖 = ∑
𝑊(𝐫𝑗𝑖)

𝑑𝑗𝑖
2 𝒒𝑗𝑖𝒒𝑗𝑖

T𝑁
𝑗=1 , 

where 𝐫𝑗𝑖
3 =[𝑥𝑗𝑖

3    3𝑥𝑗𝑖
2𝑦𝑗𝑖  3𝑥𝑗𝑖

2𝑧𝑗𝑖  3𝑥𝑗𝑖𝑦𝑗𝑖
2    6𝑥𝑗𝑖𝑦𝑗𝑖𝑧𝑗𝑖  3𝑥𝑗𝑖𝑧𝑗𝑖

2    𝑦𝑗𝑖
3    3𝑦𝑗𝑖

2 𝑧𝑗𝑖  3𝑦𝑗𝑖𝑧𝑗𝑖
2    𝑧𝑗𝑖

3]T. 

Error analysis of the QSFDI by Yan et al. (2020) shows that the leading truncation 

errors of Eq. (15) and Eq. (16) are termed by the third derivative of P.  Theoratically, 

the QSFDI has better accuracy and convergence properties than the CSPM and the 

CSPH2Γ.  This has been confirmed by the patch test conducted by Yan et al. (2020), in 

which various mathematical functions, including exponential and trigonometric 

functions, have been considered; QSFDI, CSPM, CSPH2Γ and other schemes have 

been used to directly estimate the Laplacian of these functions or to solve the Poisson 

equations formulated by these functions in a truncated domain discretised by randomly 

distributed particles (reflecting the feature of the particle distribution in ISPH 

application).   The results suggested that the QSFDI requires considerably less 

computational time to achieve the same accuracy compared with other schemes used in 

the patch tests; and it results in a quadric convergent rate for solving Poisson equations, 

which is one-order higher than the CSPM and CSPH2Γ. Nevertheless, whether the 

QSFDI would deliver promising feature during the real applications as the patch tests 

remains unknown. This will be demonstrated in the following comparative study.  

4. Comparative Study on Wave Propagation and Impact on Structures 

Tab.1 Summary of different ISPH numerical schemes 
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Schemes              Formulations 

ISPH ∇ ∙ (
1

𝜌
∇𝑃𝑖) = ∑

8𝑚𝑗

(𝜌𝑖+𝜌𝑗)
2

(𝑃𝑖−𝑃𝑗)𝐫𝑖𝑗

𝑟𝑖𝑗
2 +𝜂2 ∙ ∇𝑖𝑊(𝐫𝑖𝑗)𝑁

𝑗=1                                      Eq. (10) 

ISPH_CSPM 

∇𝟐𝑃𝑖 = 2𝑰CSPM
T 𝑴2,CSPM

−1 (∑
𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑃𝑗 − 𝑃𝐼)∇(𝟐)𝑊(𝐫𝑗𝑖) −

∑
𝑚𝑗

𝜌𝑗
∇(𝟐)𝑊(𝐫𝑗𝑖)𝐫𝑗𝑖

T𝑴1,CSPM
−1 ∑

𝑚𝑘

𝜌𝑘

𝑁
𝑘=1 (𝑝𝑘 − 𝑝𝐼)∇𝑊(𝐫𝑗𝑖)

𝑁
𝑗=1 )                   Eq. (11) 

ISPH_CSPH2Γ 

∇𝟐𝑃𝑖 = 2𝑰T𝑴2,CSPH
−1 (∑

𝑚𝑗

𝜌𝑗
(𝑃𝑗 − 𝑃𝐼)𝛁̆𝑊(𝐫𝑗𝑖)

𝑁
𝑗=1 − ∑

𝑚𝑗

𝜌𝑗
𝒓𝑗𝐼

T 𝛁̆𝑊(𝐫𝑗𝑖)∇𝑃𝑖
𝑁
𝑗=1 )                                               

∇𝑃𝑖 = 𝑴1,CSPM
−1 ∑

𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑃𝑗 − 𝑃𝐼)∇𝑊(𝐫𝑗𝑖)                                           Eq. (12,13) 

ISPH_QSFDI  ∇𝟐𝑃𝑖 = 𝑰T ∑ 𝚽𝑗𝑖
𝑠 (𝑝𝑗 − 𝑝𝑖)

𝑁
𝑗=1                                                                    Eq. (16) 

 

In this section, the numerical comparative study on modelling the wave-structure 

interactions is conducted. It considers various cases including the solitary wave 

propagation, the wave impact on vertical and inclined walls, and the evolution of 

focusing waves. The performance of the QSFDI (Eq. (16)) for discretising the 

Laplacian operator in the PPE (Eq. (3)) is examined. For the purpose of comparison, 

other Laplacian discretisation schemes, including the CSPM (Eq. (11)), CSPH2Γ (Eq. 

(12)) and the scheme commonly used by ISPH (Eq. (10)), are also used.   For clarity, 

these schemes are referred to as the ISPH_QSFDI, ISPH_CSPM, ISPH_ CSPH2Γ and 

ISPH, respectively, as summarised in Table 1.    

 

As indicated above, the leading truncation error of Laplacian discretisation in the 

QSFDI is termed by the third derivatives of pressure, which is one order higher than 

the CSPM and CSPH2Γ. However, in addition to the Laplacian discretization, the 

accuracy and convergence of solving the PPE also depends on the estimation of its 

right-hand side, the implementation of the numerical schemes to deal with the boundary 

conditions on the free surface and solid boundaries, and the solver for solving the linear 

algebraic equations resulting from the discretized PPE.   In this paper, we mainly focus 

our attention to the performances of different Laplacian discretisation schemes, other 

numerical implementations are taken as the same for different ISPH schemes 

considered in the comparative study. These include a linear scheme (Eq. (7)) for 

estimating the velocity divergence in the right-hand side of the PPE, a linear scheme 

(Eq. (9)) for gradient estimation and implementing the solid-boundary condition. These 

match the accuracies of the Laplacian discretisation in the classic ISPH, ISPH _CSPM 

and ISPH _CSPH2Γ but would downgrade the overall accuracy of solving the PPE in 

the ISPH_QSFDI.  Furthermore, the overall accuracy of the projection-based ISPH is 
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also influenced by the estimations of the pressure gradient, viscous stress and velocity 

divergence, e.g. Eqs. (7-9), the time integration schemes for updating the velocity and 

displacement of the Lagrangian particles, the particle stabilization scheme. For the same 

reason, their numerical implementations remain the same for different ISPH schemes 

listed in Table 1.  For convenience, the implementations commonly applied by different 

ISPH schemes are summarised in Table 2.    

 

Table 2: Numerical implementations of ISPH schemes 

              Scheme/model 

Velocity divergence  Eq. (7) 

Viscous stress Eq. (8) 

Pressure gradient Eq. (9) 

Intermediate velocity, density 
𝐮∗ = 𝐮𝑡 + (𝐠 + 𝜈∇2𝐮)𝑡∆𝑡   where the viscous term is estimated 

using Eq. (8) ;  𝜌∗ = ∑ 𝑚𝑗𝑊(𝐫𝑖𝑗)𝑁
𝑗=1  

Linear algebraic solver 
Bi-CGSTAB method (Van der Vorst, 1992) without pre-

conditioning. Tolerance 10-5. 

Free surface condition 
Eq. (6), free surface particle is identified by using a method based 

on the auxiliary functions (Zheng, et al, 2014) 

Solid boundary condition 

Similar to Lo and Shao (2002), the solid boundaries are simulated 

by particles with mirror particles placed outside the solid walls. Eq. 

(5) is, directly discretized by using the SFDI (Ma and Zhou, 2009, 

Zheng, et al, 2014)  

Kernel funciton cubic B-spline kernel proposed by Monaghan and Lattanzio (1985) 

Particle stabilization  
The hybrid particle stabilization scheme proposed by Zhang et al., 

(2018) 

4.1. Solitary wave propagation and impact on a vertical wall 

The first case considered here is the solitary wave impact on a vertical wall. The 

experiment was carried out by Zheng et al. (2015) in a 3-D wave flume with a piston 

wavemaker in the Harbin Engineering University (HEU). The schematic diagram of the 

wave tank is shown in Fig. 1. The solitary wave height is h
 
= 0.15

 
m and the water 

depth d is 0.25 m, yielding a wave nonlinearity 𝜀 = ℎ/𝑑 of 0.6. A pressure sensor P1 is 

placed on the right end of the tank with a distance of 0.05 m above the tank bottom. 

The length of the wave tank L is 10 m.  In the numerical investigation, different particle 

spacing is used to evaluate the convergence rate of different ISPH schemes.  
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Fig. 1 Schematic wave tank for solitary wave impact on a vertical wall 
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Fig. 2 Comparisons of wave surface profiles between analytical solution and different 

ISPH results at t = 3.1 s 

 

Fig. 2 compares the free surface profiles at t
 
= 3.1 s obtained by different schemes with 

the same particle spacing dx of 0.01m (the corresponding number of particle N = 25,000) 

and the analytical solution from the Boussinesq equation (Lee et al., 1982). One may 

observe that all ISPH schemes lead to satisfactory results with reference to the 

analytical solution; there are differences in the wave crest and the ISPH_QSFDI results 

in better accuracy in the free surface profiles compared with other schemes. It is clearer 

in the error analysis illustrated in Fig. 3.  
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Fig. 3. Errors of numerical results corresponding to different numbers of particles. 

 

Fig. 3 compares the relative errors Errm  (L1-norm)  in terms of the maximum wave 

elevations 𝜁𝑚𝑎𝑥(Fig. 3(a)) and the averaged errors on the wave surface profiles Erra  

(L2-norm)  (Fig. 3(b)) of the ISPH results in the cases with different particle spacing. 

Errm  (L1-norm) is defined by 𝐸𝑟𝑟𝑚 = |𝜁𝑚𝑎𝑥
𝑎 − 𝜁𝑚𝑎𝑥

 𝑛 |/𝜁𝑚𝑎𝑥
𝑎 , where the superscripts a 

and n denote the analytical and numerical results, respectively. Erra  (L2-norm) is 

defined by 𝐸𝑟𝑟𝑎 =
√∑ (𝜁𝑖

𝑎−𝜁𝑖
𝑛)

2𝑁
𝑖=1

√∑ (𝜁𝑖
𝑎)

2𝑁
𝑖=1

, where 𝜁𝑖  is the wave elevations recorded at ??? at 

different time steps and N is the total number of time steps in the duration from t = 4 s 

to t = 5.4 s. For convenience, a straight line representing the linear convergence rate 

k=1 is included. Consistent with the patch test by Yan et al. (2020), the ISPH _CSPM 

and ISPH _CSPH2Γ exhibit a linear rate of reduction of the error as the particle size 

decreases (linear convergence rate), so does the classic ISPH.  However, the 

ISPH_QSFDI showed a quadric convergence rate in the patch test by Yan et al. (2020) 

but a linear convergence rate in Fig. 3. The main reason is that the right-hand side of 

the Poisson equation is given by the exact value formulated by given function in Yan 

Commented [ZN25]: Reviewer 2: Q15 
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et al. (2020), whereas in the present work, the right-hand side of the PPE is evaluated 

by a linear scheme (Eq. 7) . Furthermore, the patch test in Yan et al (2020) was 

conducted in a truncated domain with exact solutions providing on the boundaries, 

whereas a linear scheme (Eq. (9)) is used to impose the solid boundary condition.  This 

confirms our analysis stated above regarding the reduction of the accuracy of the 

QSFDI by these linear schemes.  Nevertheless, it is observed from Fig. 3 that the 

relative error of the present ISPH_QSFDI is lower than other schemes with different 

numbers of particles, implying that the present ISPH_QSFDI is more accurate than 

other schemes if the same particle spacing is considered.  
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Fig. 4. CPU times corresponding to different errors. 

 

In order to compare the robustness of the schemes, the CPU time spent by all the 

schemes corresponding to different numerical errors are illustrated in Fig. 4, which 

clearly shows that the ISPH_ QSFDI requires shorter CPU time to achieve the same 

level accuracy than other schemes, especially, in terms of the Errm  (L1-norm) 

corresponding to the maximum wave elevation, which is of great concern in 
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engineering practices.  

 

 

 

 

Fig. 5 The particle distributions with pressure contour: (a) standard ISPH; (b) 

ISPH_QSFDI; (c) ISPH_CSPM; and (d) ISPH_CSPH2Γ 

 

Fig. 5 illustrates the particle distributions with pressure contour from the classic ISPH 

(Shao and Lo, 2003) and other ISPH schemes at the time instant corresponding to the 

highest elevation on the right end of the tank. In these case, N = 25000 and dx = 0.01 

m. It seems that all schemes yield an appropriate and smooth pressure field. The 

corresponding quantitative comparison of the impact pressure at the sensor point P1 is 

shown in Fig. 6. Satisfactory agreements between the numerical results and the 

experimental data are observed by all ISPH schemes. To demonstrate the convergence 

properties, the error of the pressure predictions in the cases with different particle 

spacing is analyzed and Fig. 7 displays the averaged errors (L2-norm) of the pressure 

during t = 5.7 s to t = 6.1 s. Similar to Fig.3, Fig. 7 evidences that the ISPH_QSFDI 

achieves better accuracy than other schemes except in the case with the coarsest particle 

resolution. 
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Fig. 6 Comparisons of wave impact pressures between experimental data and 

different ISPH results 
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Fig. 7 Errors of the impact pressure of four numerical methods corresponding to 

different numbers of particles. 

 

For wave propagations, the energy conservation is a critical problem. The energy 

conservations in results predicted by different schemes are examined. Fig. 8 shows the 

time histories of the total energy of the fluid in the wave tank for solitary wave 

propagating in wave tank with L = 40 m, where wave condition is the same as the cases 

presented above and the particle spacing is ???.  As shown, the total energy increases 

up to t = 1.5 s (???) when the wavemaker stops. During this period, the fluid in the wave 
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tank acquires the energy from the wavemaker. After that, all numerical results exhibit 

energy loss. The rate of the reduction becomes relatively steady after t = 15 s.  It can be 

seen that the present ISPH_QSFDI schemes has better energy conservation 

performance than other schemes for solitary wave propagation.  
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Fig. 8. Time history of the energy changes of different ISPH schemes.  

4.2. Solitary wave overtopping on an impermeable seawall 

The second case considered here is the solitary wave impact on an impermeable 

trapezoidal seawall. The experiment was carried out by Hsiao and Lin (2010) and the 

corresponding experimental data was extracted from the publication to evaluate the 

performances of all  ISPH schemes. For clarity, the relevant parameters as that in 

experiment are sketched in Fig. 9. For the analysis of numerical results, the relative 

time 𝑡′ = 𝑡 − 𝑡𝑀𝑅  is used, where 𝑡𝑀𝑅  corresponds to the instant when the wave run-

up at the wall reaches the maximum value. The solitary wave is generated by a 

wavemaker. The numerical simulations are carried out to achieve 10-second results of 

the wave propagation and interacting with the sea wall. The wave gauge “G” and 

pressure probe “P” are also illustrated in Fig. 9.  

 

  

Fig. 9 Schematic setup of wave tank for solitary wave impact and overtopping. 

 

 

Commented [ZN26]: Reviewer 1: Q5 

Commented [YS27]: Ningbo, Can you make the y-axis 

ranged from 12.9 to 13? We need to highlight it 

总能量减去初始时刻的能量 



17 

 

0 2 4 6

0

0.03

0.06

0.09

0.12

 

 

t
,
(s)

 EXP

 ISPH

 ISPH_QSFDI

 ISPH_CSPM

 ISPH_CSPH2

H
(m

)

(a)

0 2 4 6

0

0.06

0.12

 EXP

 ISPH

 ISPH_QSFDI

 ISPH_CSPM

 ISPH_CSPH2
 

 

t
,
(s)

H
(m

)

(b)

 

Fig. 10 Wave time history recorded at (a) G10 (x = 9.644 m) and (b) G28 (x = 10.732 

m)  (experimental data is supplicated from Hsiao and Lin, 2010) 

 

Fig. 10 compares the wave time histories recorded at G10 and G28 which are located at 

9.644 m and 10.732 m from the initial position of the wavemaker. For the purpose of 

comparison, the experimental data by Hsiao and Lin (2010) is plotted together. In these 

cases, the particle spacing dx is taken as 0.01m. As observed, all numerical schemes 

lead to acceptable results. Due to the fact that the experimental data were extracted from 

the publication and therefore may not be sufficiently accurate to be the reference value 

when evaluating the quantitative error, the numerical results with the finest particle 

resolutions, i.e. dx = 0.01, is used to evaluate the errors of results with lower-resolution 

particles. The averaged errors of different methods are obtained by 𝐸𝑟𝑟𝑎 =

√∑ (𝜁𝑖
𝑓

−𝜁𝑖
𝑛)

2
𝑁
𝑖=1

√∑ (𝜁𝑖
𝑓

)
2

𝑁
𝑖=1

, where the superscript f denotes the results from the simulation with 

finesse particle resolution.    
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Fig. 11. Errors of ISPH schemes in the cases with different numbers of particles at (a) 

G10 (x = 9.644 m) and (b) G28 (x = 10.732 m) 

 

Fig. 11 illustrates the averaged errors with reference to the rsults shown in Fig. 10 using 

the durations of t = 2 – 4 s for (a) and t = 3 - 5 s for (b), respectively. The corresponding 

results on the CPU time are shown in Fig. 12. Overally, the ISPH_QSFDI has a similar 

convergence property to other schemes, but results in a higher accuracy for specific 

particle spacing than other schemes. More importantly, the CPU time required by the 

ISPH_QSFDI to achieve a specific accuracy is generally shorter than other schemes. 
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Fig. 12. CPU times corresponding to different errors at: (a) G10; (b) G28. 

 

 

 

 

Fig. 13 Particle distributions with contour of pressures near the sea wall for (a) 

standard ISPH; (b) ISPH_QSFDI; (c) ISPH_CSPM; and (d) ISPH_CSPH2Γ 

 

Fig. 13 shows snapshots of particles with contour of the pressure field during the wave 

impinging and overtopping on the trapezoidal caisson. As the wave overtops over the 

seawall, an overtopping tongue develops on the crown. One may see an obvious 

differences in the shape of the tongue and the free surface near the wall.   All schemes 
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seem to deliver smooth pressure field in Fig. 13. 
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Fig. 14 Comparisons of wave impact pressures between experimental data and 

different ISPH results 
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Fig. 15 Comparisons of average errors of the impact pressure of four numerical 

methods corresponding to different support size. 

 

Furthermore, Fig. 14 compares the impact pressures computed by using different ISPH 

schemes recorded by the pressure sensor P1  at coordinate (10.83, 0.249) on the 

trapezoidal structure. It is shown that the general trends of impact pressures computed 

by all ISPH schemes show a good consistency with the experimental data, although 
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there are some discrepancies due to the complication of the physical problem. Fig. 15 

shows the averaged errors of the pressure during t =3.0 s to t =4.3 s in the cases with 

different particle spacing. Once again, similar conclusion can be drawn for the 

improvement in the accuracy and convergence by the QSFDI compared with other 

schemes. 

 

 

Fig. 16. Sketch of the experimental setup  

4.3. Focusing wave propagation 

The last case considered in this paper is the focusing wave propagation.  Compared 

with the solitary waves, which were taken into account in the above two cases, the 

focusing wave is more popularly used in the offshore engineering to represent  the 

extreme waves. It typically consists of a list of wave components with a wide frequency 

range and is generally generated using spatial-temporal focusing mechanism in the 

laboratory. In this paper, the experiments conducted by Sriram et al. (2015) at the 

Ludwig-Franzius-Institute at Leibniz University of Hannover, Germany are considered 

as the reference values. As sketched in Fig. 16, the tank has a working depth of 0.7 m. 

The focused waves are generated by using the second-order wavemaker theory, as 

described in Sriram et al. (2015) and Sriram et al. (2020).  In the experiments, wave 

probes WP4 and WP5 will be used to validate the focused wave generation and 

propagation.  
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Fig. 17. Wave time histories of focusing waves (experimental data obtained from 

Sriram et al., 2020) 

 

Fig. 17 compares the wave time histories recorded at WP5 in which a focused wave 

height of 0.3 m is generated using a constant steepness spectrum of 32 components 

ranging from 0.34 to 1.02 Hz (Sriram et al., 2015).  The particle spacing dx = 0.01 m is 

used by all ISPH schemes and results in a satisfactory agreement between the 

experimental data and any sets of the numerical results.  As an essential practice, the 

convergence properties of these methods are examined in terms of the wave surface 

elevations at the wave probes WP5 from 38.2 s to 39.6 s (Fig. 17). The results are 

displayed in Fig. 18, from which one can find that the averaged error of the  

ISPH_QSFDI and ISPH_CSPM decrease as the particle spacing dx decreases at a nearly 

linear rate, whereas the ISPH and ISPH_CSPH2Γ converge at a rate lower than a linear 

rate. This also provides evidence of the convergence of numerical results in spatial 

domains. Again, Fig. 18 shows that the result of the ISPH_QSFDI method gives better 

agreement with experimental data than those of ISPH, ISPH_CSPM and 

ISPH_CSPH2Γ. To further evaluate the performance of the present model for the case 

considered here, the comparisons of the corresponding CPU time are also given in Fig. 

19. These cases are run in parallel in OpenMP using 16 cores on a workstation with 

Intel i7 3.3 GHz and 128 GB RAM to achieve the results in a time window to 42.0 s. 

Fig. 19 confirms the superiority of the ISPH_QSFDI in terms of saving CPU time for 

the same level of accuarrcy. 
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Fig. 18. Errors of numerical results from these numerical methods corresponding 

to different numbers of particles. 
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Fig. 19. CPU times spent by different numerical methods corresponding to 

different errors. 
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Fig. 20. Errors of numerical results with different support domain radius. 
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It is well recognised that the accuracy and convergence of the ISPH may be largely 

influenced by the support domain size. To shed light on this issue, different support 

domain sizes (support domain radius r = kdx) are used by all ISPH schemes. Some 

results are shown in Fig. 20. It can be found that there is an optimised value of k, i.e. 

???, results in a best accuracy for all schemes. No surprisedly, the ISPH_QSFDI 

schemes yields the best performance regardless the size of the support domain in these 

four methods.  

5. Conclusions and Discussions 

In this paper, the QSFDI is employed by the ISPH to discretise the Laplacian operator 

in the PPE.  Its performance in modelling wave propagation and wave-structure 

interaction is assessed and compared with other schemes, including the classic ISPH, 

the CSPM and CSPH2Γ.  This the first time, the QSFDI is extended to the practical 

application of the ISPH, following a systematic patch test in Yan et al . (2020). 

 

For the emphasis in Laplacian discretisation, all other numerical implementations 

applied by different ISPH schemes are kept the same, despite the fact that such 

implementation would downgrade the overall accuracy of the QSFDI-based ISPH.  It 

is found that the ISPH_QSFDI scheme generally has a better accuarcy than other 

schemes if the same number of particles in all the cases considered in the present 

investigation. It is also observed that the ISPH_QSFDI scheme requires considerably 

less computational time than other schemes to achieve the same accuracy.   

 

However, the theritical quadric rate of the convergence of the QSFDI, which has been 

proved in the patch test (Yan et al. (2020)), was not observed in this investigation, due 

to the fact that the linear schemes are employed for estimating the right-hand side of 

the PPE and to deal with the boundary condition. In future, the ISPH_QSFDI scheme 

can be extended by using the QSFDI to deal with numerical interpolaiton and gradient 

estimation, yielding a quadric ISPH scheme with linear consistancy in solving the PPE.   
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