lT City Research Online
UNIVEREI;;{]OSFgLfNDON

City, University of London Institutional Repository

Citation: Dixit, A., Singh, A., Rahulamathavan, Y. & Rajarajan, M. (2023). FAST DATA: A
Fair, Secure and Trusted Decentralized IloT Data Marketplace enabled by Blockchain. IEEE
Internet of Things Journal, 10(4), pp. 2934-2944. doi: 10.1109/jiot.2021.3120640

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/27294/

Link to published version: https://doi.org/10.1109/ji0t.2021.3120640

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

FAST DATA: A Fair, Secure and Trusted
Decentralized IloT Data Marketplace enabled by
Blockchain

Akanksha Dixit*, Arjun Singh!, Yogachandran Rahulamathavan! and Muttukrishnan Rajarajan*
*School of Mathematics and Computer Science Engineering, City, University of London, UK
Email: {akanksha.dixit, r.muttukrishnan} @city.ac.uk
School of Computer Science and Engineering, Nanyang Technological University, Singapore
Hnstitute for Digital Technologies, Loughborough University London, UK

Abstract—As the world calls it, data is the new oil. With vast in-
stallments of Industrial Internet-of-Things (IIoT) infrastructure,
data is produced at a rate like never before. Similarly, artificial
intelligence (AI) and machine learning (ML) solutions are getting
integrated to numerous services, making them ‘“smarter””. How-
ever, the data remains fragmented in individual organizational
silos inhibiting data value extraction to it’s full potential. Digital
marketplaces are emerging to allow data owners to monetize
this data. Yet concerns like privacy, security and unfair payment
settlement deter adoption of such platforms. In addition, the
state-of-the-art platforms are under the control of large multi-
national corporations with no transparency between buyer and
seller in terms of payment details, listing, data discovery and
storage. In this work, a novel decentralized platform of digital
data marketplace for IoT data has been proposed. The platform
leverages a decentralized data streaming network to host IoT
data in a reliable and fault tolerant manner. The platform ensures
fair trading, data storage and delivery in a privacy preserving
manner and trust metric calculation for actors in the network.
In order to study the feasibility of the proposed platform, an
open source library is developed using Hyperledger Fabric and
data network layer built on VerneMQ, the library is deployed
on a real-time Google cloud platform. The library is tested and
results are analysed for throughput, overheads and scalability.

Keywords— Industrial Internet of Things (IloT), Data Mar-

ketplace, Blockchain, Smart Contracts.

I. INTRODUCTION

Sensing-as-a-Service has emerged as a rapidly growing
industry spurring interest of enterprises that invested heavily
in installation of Industrial Internet-of-Things (IIoT) infras-
tructure for past few decades. They have realized that data
generated in their siloed environment is a tradeable commodity
with resale value. With proliferation of Al based solutions
in the market, data has garnered commercial value to train
novel machine learning models. Federated machine learning
models require IIoT data frequently in large volume. On
the other hand, there are companies that are not inclined
to invest in setting up IoT infrastructure but are willing to
pay for reliable data streams from heterogeneous domains
like weather, population density, soil type etc. They find it
profitable to buy data from corporations that have such sensors
installed. Such scenarios demand for a platform which makes
it feasible to sell and purchase data seamlessly. However,

wide-scale adoption of this idea still remains a challenge due
to uncertainties around trust, cross-domain trading facility,
fair transactions and security. Vendors willing to exchange
data as a commodity are looking for assurance on validity
of IoT devices and enterprises engaged in business. Siloed
identity verticals, unauthorized malicious entity posing as data
producers, centralized control of platform and fear around
equitable payment settlement are challenges that require a new
approach to make IoT data trading a reality.

In this work, a model is presented that is based on the
principle of data sovereignty in which independent IoT busi-
ness ventures can sell and purchase data reliably and in
a trust-worthy manner with undisputed compensation to all
the parties. We argue that such an effort requires a plat-
form that disintermediates the central storage operator. In
order to achieve transparency, accountability and fairness it
is necessary to forgo centralized control from trusted third
party (TTP) in terms of fair listing and seller discovery,
identity validation and payment settlement. Therefore, the
proposed digital marketplace uses blockchain platform as a
decentralized trusted party that facilitates fair listing of data
streams, identity verification and payment settlement using
smart contracts. According to GDPR Articles 16 & 17 (Right
to Rectification and Erasure), data modification/erasure must
be possible to comply with legal requirements. Hence, critical
data should not be stored on an immutable storage such as
blockchain, which does not allow for modification of data,
to ensure data integrity and trust. Therefore, in the proposed
framework no private data is stored on blockchain. Moreover,
blockchain is not a viable option for bulk data storage. Hence,
the proposed platform leverages a decentralized data storage
layer which is replicated across participating nodes to provide
data delivery in a fault tolerant manner. The authentication of
actors is executed using Self-Sovereign Identity (SSI) concept,
wherein each entity holds a unique Decentralized Identifier
(DID) [[10] to authenticate on the platform.

Several blockchain based solutions are present in the mar-
ket today for various industry verticals such as finance [9],
healthcare [21]], energy [12]], automotive [33]] etc. While data
sharing marketplace have been proposed by startups [6], [34]],

Design Elements

Smart-Contract + + + + + +
Decentralized Storage - - - + + -
Real-Time Data + + + + - -
Data Encryption - - - -

Trust Metric
Fair Settlement - - part -
Fault Tolerance - - - -
Decentralized ID Verify - - - + - -
DApp Support - - - +

+

o+

+
e

Table I: Comparison of Blockchain Marketplace Solution

significant contributions have been made in the trust and
fairness guarantees in the proposed platform. It is estimated
that the value of IoT data marketplace will reach 3.6 trillion
USD by the year 2030 [6]. Eliminating data sharing friction
will serve industries like healthcare, smart city and advanced
mobility infrastructure, agriculture, smart-grid and electricity,
research etc and promote interoperability.

While solutions are available for data marketplaces focusing
on centralized architectures using cloud infrastructure [14],
this work attempts at designing and analyzing decentralized
solution for IoT data marketplaces. The key contributions of
this work are as follows:

« We propose a novel proof-of-concept decentralized solu-
tion to IoT data marketplace that supports actor verifica-
tion, trust metric calculation and a secure and transparent
transactional model for paying the sellers all in a decen-
tralized manner by leveraging an innovative combination
of blockchain, DID, peer-to-peer data stream storage and
end-to-end encryption.

o The proposed model guarantees (i) fair settlement of
compensation to all the involved parties, (ii) unbiased
content listing using calculated trust metric, (iii) security
of the content from peers hosting and delivering data
streams (iv) fault tolerance and assured data delivery in
case of faulty storage network peers.

« We develop a proof-of-concept implementation with dis-
tributed applications (DApp) and blockchain layer us-
ing Hyperledger Fabric, and the decentralized real-time
stream data storage layer using VerneMQ [4]]. The work
includes study and discussion of the performance of the
system which demonstrate that the system scales well
with rational overheads.

The rest of this paper is organized as follows: Section II
describes the related works. Section III gives defines problem
definition. Section IV discuses the proposed architecture in
detail with protocol flow and design analysis of the system.
Section V describes the experimental settings and evaluates the
performance. Section VI analyses the security of the proposed
system. Section VII concludes the paper with discussion on
future work.

II. RELATED WORK AND STATE-OF-THE-ART

Digital Marketplaces: A range of tangible and non-tangible
goods are part of digital marketplaces today including com-

| 00| 12) | 122) | 23] | [27) | [36] | FAST |modity, e-books, music, images and videos. These market-

places termed as eCommerce are not bound by physical bound-
aries and provide ease and competitive rates to consumers
[20]. Such platforms have encouraged trading ecosystems like
Software-as-a-Service (SaaS) and Infrastructure-as-a-Service
(TaaS) [3]]. However, since most of these digital platforms
lack in listing and pricing transparency, seller has minimum
to no right in determining the terms of licensing agreement.
Moreover, these platforms are owned and regulated by a
centralized authority which dominates the decision making
process [19].

Peer-to-peer (p2p) data sharing network: P2P exchange of
information has emerged as a growing fraction of world’s
digital economy [8]]. This form of value exchange has ex-
panded dramatically to include services, information trading
and P2P lending. However, such networks suffer from reg-
ulatory challenges and building a marketplace using these
platforms alone is challenging. Platforms such as BitTorrent
[7]] scale well yet building a marketplace on them is infeasible
due to lack of properties like fairness, trust guarantees and
payment settlements among network users.

Decentralized and Distributed Storage: As opposed to the
centralized cloud servers, owned and regulated by a single
organization, decentralized storage solutions consist of a P2P
network, hosting and sharing data in a resilient and fault toler-
ant manner. Such form of storage has garnered attention both
from research community and commercial organizations due to
the advantages such as fault tolerance, collusion resistance and
attack resistance. Decentralized storage solutions like IPFS [5]]
has inspired projects like Filecoin [17] and OrbitDB [25]). IPFS
is a content addressable storage which prevents duplication
and provides high availability of content. Storage platforms
like IPFS when used along with a regulatory technology
like blockchain can help in creating holistic solutions like
Storj [31]], Filecoin [17]], Sia [30]. Although, these solutions
have incentivization mechanism for participants, they lack in
business logic, trust and fairness guarantees that are pivotal
for a digital marketplace.

Decentralized IoT Marketplaces: The present state-of-the-
art marketplaces are based on centralized cloud infrastructure
owned by a single organization [[13]]. Due to research interest
around decentralized marketplaces, there have been attempts
to design marketplaces for data sharing [24], [18]], [26]. How-
ever, marketplaces for IoT data remains a relatively untapped
ecosystem. Xu et. al [36] explore the use case of blockchain
marketplace in electricity and smart grid domain. They present
a theoretical business model archetype for energy market
in accordance with EU's Smart Grid Architecture Model
(SGAM). However, their work lacks in a concrete architecture
design involving incentive mechanism and security features.
Missier et. al [22] propose a decentralized infrastructure for
trading [oT data between producers and consumers exchanging
a data unit “cube” with the help of trusted edge gateways.
They analyse the feasibility using cost for “cube” settlement.
However, it is difficult to establish the scalability and trust
metric of the system. Ramchandaran et. al [27|] present a

Uploads data Digital Marketplace Purchases data
for selling [Blockchain Network] after payment
[Storage Network (B)]

Figure 1: System Actors in the Proposed Framework

simple smart contract based implementation of a decentralized
registry for IoT data trading for smart cities. However, their
work largely overlooks the analysis and illustration of essential
elements of a data marketplace like payment scheme, trust
and privacy. Niavis et. al [23|] proposes a decentralized data
sharing infrastructure for off-grid networking using blockchain
network and a distributed file system. While their work takes
into consideration a great deal of factors like identity man-
agement and private data exchange, elements like payment
settlement, trust among trading entities and fairness remain
unexplored. Drawing motivation and understanding from the
limitations of discussed works, an attempt is made to design
a fair, transparent, reliable and trust-less system for IoT data
trading in a decentralized manner.

III. SYSTEM ACTORS AND PROBLEM DEFINITION
A. System Actors

The actors as shown in Figure [I] with their respective roles
in the system as as follows:

1) Seller (S) wants to use the marketplace to trade the
IoT data generated in it’s facility. It may not be able to
host the data itself and create an infrastructure around
it. Hence, it uses the service of digital marketplace to
monetize it’s otherwise siloed machine data. S wants
the buyers to discover it’s offers and pay fairly for the
data. S is willing to pay the storage operator nodes in
exchange for their data hosting and processing service.

2) Storage Operators (O) are data facilitators of the
system. They are a cluster of decentralized peer-to-peer
(p2p) nodes that host data in the form of data streams
and are incentivised for their service. The independent
server providers with stake in the system can choose to
act as storage operator nodes and provide storage service
in the system at competitive rates.

3) Client (C') comes to the marketplace platform to browse,
purchase and get access to a myriad range of on-demand
data sets which otherwise is difficult for them to procure
in a trusted manner.

B. Problem Definition

The problems addressed in this paper are to ensure fair,
secure, trusted delivery of IoT data from a seller to a client
in a decentralized manner. Let II be a protocol executed by a
cluster of storage operator nodes O, with each node O; € O
hosting data for multiple topics T and a client downloading a
batch d of data stream of a topic 7; € T and paying price p.
Fair Trade: Protocol II is fair if the following hold:

1) Client Fairness: If C' pays p according to II, it is

assured of receiving the subscribed batch d of data

stream of topic T; for the agreed mode and time period
before termination of II.

2) Seller Fairness: If C pays p according to II to purchase
a batch d of data stream of topic 7; published by P, then
P is assured of getting their share of payments.

3) Storage operator Fairness: For all ¢ € S| , if S;
gives access to d of T; according to II, it is assured
of receiving payment.

Privacy: Protocol II is considered secure if execution of II
does not disclose the data on the marketplace to any storage
operator. The access of data should be given only to a client
who has purchased it by making payment p. It is important to
note that without privacy guarantee, fairness cannot be assured,
as any storage operator that gains access to data without prior
payment is a violation of the II.

Trusted Exchange: Protocol II is considered secure if it
allows only verified sellers to host data on the platform. After
verification, an honest seller should be rewarded with higher
Trust Score (TS) based on transaction history and feedback
from trading parties.

1V. PROPOSED PLATFORM
A. Design Features

In the proposed model, the storage operator nodes are
synchronized with each other to serve data under various
topics. Each topic is replicated to multiple partitions to avoid
centralization and ensure fault tolerance and scalability. Given
the above actors in the system, several questions arises with
regards to how the funds flow in the system, the payment
scheme and intervals of payment. While there are many
variants possible, two broad variants are discussed below:

« Batch Mode: In this mode of trading, the client can
access loT data in batches at regular intervals for a
stipulated period of time. The agreement in this mode
involves payment of a flat fee periodically before delivery
of each batch of data. We call this “batch” mode as
data is not served in real-time rather as small packets
of information.

» Stream mode: This mode is meant to serve data as real-
time streams subscribed by the client. The client pays the
seller and storage operator periodically for the subscribed
streams. The payment is made in advance by the client
before the streaming of purchased data can begin.

The proposed solution works with both the variants where a
smart contract ensures fair and smooth data trading. It achieves
a reliable trading flow in which the seller and storage operator
is paid for data and service respectively whereas the client is
assured of data delivery without losing any deposited payment.
In case of failure to deliver data, the smart contract refunds
the remaining funds back to the client.

Identity: Identity verification plays an important role in the
framework as it contributes towards trust building and reputa-
tion management of the clients. An identity verification step is
mandatory for seller in the proposed work. However, a client
can opt to undergo DID verification. If a client chooses to

Listing, Discovery,

. i Data Marketplace
Online Community, DAPP

Event Processing,

Event Processing Engine]
TRUST SCORE update, Oracle

Access Control, Encryption, DApp

Delivery, Publish/Subscribe,

Data Hosting
Identity Check, Permissioning,

Authrorization

Security Management] Decentralised
] Computation

Cluster

Network Layer

ChainCode Event Storage

gifuli

Hyperledger Fabric

Figure 2: Layered Architecture of proposed Framework

undergo the verification, it will have a wider range of data
streams to purchase as some sellers might want to give access
to their data to verified clients only. It facilitates benefits for
sellers (in the form of ability to charge high rates for verified
data) and benefits for buyers (in the form of discounts and
download permission for critical data).

We assume that the participating entities are adopters of
decentralized identity, Self-Sovereign Identity the (SSI) frame-
work [35]. In this framework, the end-users select a key-pair
based on asymmetric cryptography and call it DID (did),
which is associated with digital credentials issued by issuers
such as government, hospitals, universities, corporations etc.
This ensures that each seller on the platform is a verified or-
ganization/agency/facility. The process is very similar to an e-
Know Your Customer (eKYC) process done by an organization
to onboard customers.

Trust: The marketplace maintains a TRUST SCORE (TS)
metric for every actor in the network as explained later in
this work. TS is derived from two primary factors, reputation
and credibility. No centralized authority is involved in trust
score calculation.

Data Security: In our work, we ensure that data originating
from a seller is encrypted before it is outsourced to a storage
operator and later decryption keys are only available to a
client who has made upfront payment. We apply end-to-
end encryption (E2EE) on IoT data in our design. All the
communications are TLS/SSL encrypted.

B. Components of Layered Architecture

This section discuss the roles of each layer from Figure 2]

1) Data Marketplace: Data marketplace is a listing portal
implemented as a DApp. DApp is a decentralized appli-
cation/website that interacts with the blockchain back-end
through smart contracts. It enables listing and discovery of
data offers (DO) from the sellers. Data is offered in a publish-
subscribe data model [29] as it is suited for IoT domain,
since both the sellers and buyers are potentially large and are
constantly changing. A DO will contain meta-data for each
data stream like topic, the payment mode associated with data
subscription mode, price and terms/conditions for a buyer to
purchase the data stream (verified buyer) etc as shown below.

Data_Of fer = Topic + PaymentMode + Price + Terms

In the marketplace, listing will be available from potential
sellers accompanied with their respective TS.

2) Event Processing Engine: Events are generated from
various sources for e.g. at the origin of data streams, from
DApps, from client applications, execution of Smart Contract
functions etc. Engine listens to the events on network, pro-
cesses them for consumption by DApps/Smart Contracts and
take real-time actions on them. It also processes events to
update the TS for the entities.

3) Security Manager: This layer envelops the storage op-
erator nodes and monitors all the communication made by
an entity with them. The seller encrypts the data stream and
upload it on storage operators through this DApp. Later, when
a client wants to download the data, it first verifies its identity
with the smart contract, makes payment and obtains an access
token. This layer verifies the token with the blockchain and
allows the client to access data stream for allotted time frame.

4) Network Layer: It is the primary data transport layer
of the architecture. It is composed of a collection of p2p
network of storage operator nodes that facilitate data streams
and decentralized management of events. These nodes are
compensated for their service. The layer uses policies and
permissions defined in the smart contract for its functioning.

e Data Streams: Encrypted data streams are hosted by
verified sellers on the storage operator nodes. A single
stream is replicated across multiple storage operators
to ensure fault tolerance. To host a data stream, seller
makes a data offer and registers itself on the platform.
When a client wants to purchase data, it enters into a
agreement with the seller, the terms of which are detailed
down in the form of a Data Sharing License. The fields
of data stream are streamlD, streamName, topic/type,
owner/seller, permissions, conditions.

o Storage operator Nodes: They host data streams, deliver
encrypted data to clients, forward event streams to the
processing layer and communicate with security man-
ager DApp to securely process authorization of clients
requesting data stream access. Storage operator nodes will
expose all these functionalities via APIs.

5) ChainCode/Smart Contracts: These are self-executing
computer programs that enforce and govern the terms of
agreement in a blockchain. In the proposed architecture, smart
contracts are used for coordination between sellers and buyers,
identity verification (using SSI), payments, incentivization and
permissioning.

C. System Architecture Overview

A centralized data marketplace can encounter critical chal-
lenges like ensuring fair trade settlement, privacy and secu-
rity guarantees [28]]. A decentralized blockchain network of
consensus abiding peer nodes can supplant the TTP, enforce
equitable trading rules and manage autonomous payments
along with transparency and non-repudiability. A data storage
layer is required to host data and supplement blockchain
layer in the marketplace. The storage layer lacks intelligence
and need additional services to monitor security and privacy
policies. The Security Manager DApp regulates the authorized
access to stored data on this layer. It allows seller S and client

Digital Marketplace DAPP
Seller

![Data Offers] [Trust Score]
&b‘_) @mmd [Listngs | [Ratings
[} ¢

‘ Blockchain

[Chain Code][Ledger + World State]

Buyer
<>
%‘p

Event ¢
Processing % € l DID Blockchains

Engine
—)[[Security Manager DApp]L
SN

* e ‘. Storage Operator

0 0 6o 0 Cluster

Figure 3: Detailed Architecture of Proposed Data Marketplace

API Proxy

C to interact with the storage layer only after authorization.
Seller S and client C' will communicate with the blockchain
through Data Marketplace DApp to invoke ledger to make
queries and later transactions. The use of blockchain in pro-
posed architecture remains very generic and most systems
with support for smart contract can be used. However, a
permissioned blockchain with robust support for identity and
access control is better suited for an enterprise application.
In this work, we use Hyperledger Fabric as the blockchain
platform. Figure |3| shows a detailed architectural diagram with
all the system components.

D. Notations and Preliminaries

The blockchain ledger is denoted as L. All the transacting
parties will register with I before any trading takes place on
the platform. KeyGen (1*) — (sk, pk) generates a private key
sk and public key pk given a security parameter . Each actor
will implement this algorithm to generate the key pair.

Data streams are identified by their unique streamID which
includes seller’s name (S), stream name and time-stamp of
origination. Let GenerateID(.) be the procedure that returns
a streamID given a batch d of data stream, streamID; «—
GenerateID(S||streamN ame||timestamp).

HMAC-SHA256(k,P) is a keyed-hash message authentica-
tion code where k is the secret cryptographic key and P is the
plain text for which MAC, o needs to be generated. Sy (m)—
¢ is a signature algorithm that generates the signature ¢ of the
message m with the private key sk, and V. (¢, m)— {0,1} is
a verification algorithm that verifies whether the signature ¢ on
message m is valid or not using the public key pk and returns
1 if ¢ is a valid signature or 0, otherwise. Let (Enc, Dec)
be a secure symmetric encryption scheme. This scheme will
be used by the sellers to encrypt the data stream ’d’ before
uploading encrypted data stream ’e’ on storage operator nodes.

E. Smart Contract Functions

There are two DApps through which smart contract func-
tions are invoked. These functions are categorized as follows:

1) Data Marketplace DApp

o RegisterAndVerifySeller(dids, pks): seller S sends
its DID and public key.

o RegisterAndVerifyClient(didc, pkc): client C' sends
its DID and public key.

o RequestUploadToken(DO, pkg): S requests authen-
tication token to upload DO on storage operator
nodes.

e RecordStreamDetails(streamID, DO , k,,, ke, 04)
: record stream details on blockchain.

e RequestDownloadToken(p, DO, pkc): C makes
payment p and requests exchange token.

2) Security Manager DApp

o UploadDataStream(¢s, pks, €): S send encrypted
data e with signed authentication token.

o DownloadDataStream(¢¢, pkc): C sends signed
exchange token to receive data from storage opera-
tor nodes.

E Protocol Flow

The protocol is divided into three phases. The onboarding
phase deals with verifying the identities of the actors in the
network using did and registering them in the marketplace.
The data upload phase will allow the sellers to complete the
necessary steps to get their data up in the market for sale. The
data purchase phase will explain the steps involved from the
time a client picks a data offer to the settlement of payments.
1. Onboarding Phase: In this phase, the entity seller/buyer
makes an account, verifies its identity and registers itself
for trading activities on the blockchain through marketplace
DApp. Each entity uses KeyGen (1*) — (sk,pk) to obtain
a key-pair which is used to obtain a DID (did). The actor
sends the did associated with its identity to the DApp, which
is forwarded to the blockchain. The blockchain resolves the
did through the underlying decentralized network/blockchain
which was initially used to issue it to the entity. If the did is
successfully verified, an account is created for the actor and
it’s TS is incremented on the DApp. Later, the seller registers
the data offers DO it wants to make in the marketplace. These
offers along with payment details and terms are recorded on
the blockchain.

Algorithm 1: Onboarding/Actor

1 func VerifyandRegister(did, pk){

2 Send did, pk to Data marketplace DApp

3 If ID verified with issuing blockchain, register on L
4 S uploads DO on Data Marketplace DApp }

2. Data Upload Phase: The seller S generates streamlIDg
which uniquely identifies d. Then, S generates a key K, for
obtaining message authentication code of the data, MAC(d,
km) — 04, so that any potential client can verify the integrity
of purchased data. Later, S generates a secret key K. and
encrypts data batch Enc(d, k.) — e. Once the data is ready,
it initiates data upload by sending a request to marketplace

Seller Buyer

Data Marketplace DApp | | Security Manager DApp | ‘ Blockchain |

[Onboarding |
; 1Onboarding f
did, pk (AL: 2) | |
| ! verify did by résolving it
| through Identity blockchain (Al: 3) !
' ‘ If verified, in::remenl s ‘
dnbnarded |
Uplo:ad DO (Al: 4)
3 [vpiend |

i Prepare data for |
| upload (A2 : 1-4) |
) !

Upload Réquest(DO) (A2: 5)

Forward requesl,foblain token

Sends upload token (A2: 5)

fSign token with !
1 secret key (A2: 6) |
-« i

Authenticate with signed token (h2: 7) ' '
s Verify Seller »
Upload ¢ (A2: 7)

Record details (A2: 8)

Forward detfa\ils tolL
[Data Purchace |

| Data Purchase |

i 1 Get price for DO (A3: 2) |
| | ratings of sellers | ———- P2 07 IR 2)

| Generate req_ID(A3: 3)
]

Send payment for data (A3: 4) |

Receive data refriving information (Aé: 5)

Receive authentication token (A3: 6)

Sign token with
| secret key (A3: 7)
]

Authenticate (A3: 8)

w Verify Buyer »

Return data (A3: 9) |
| Recover and verify (A3: 10) ! ‘
] |

Figure 4: Protocol Flow

Algorithm 2: Data Upload/Seller (S)

1 func DataUpload(d, DO, k,,,
ke, S, streamName(sN), timestamp(ts)) {
2 streamIDg < GenerateID(S||sN]||ts)
3 MACU, ky,) — 04
4 Enc(d, k,) — e
5 Upload Request (DO) < w
6 Ssk(w)_’ (bs
7 Verify token Vi (¢s,w) — {0,1}, upload data e to B
8 DataAdded(streamIDg, DO, k,,, ke, 0q)

9}

DApp. The DApp sends the request to the blockchain which
responds by sending a token w to S. The token is used to
uniquely identify an upload request by the S, therefore, it signs
w with its secret key sk to generate ¢g. Using this signed
token, S verifies with the Security Manager DApp through
API Proxy layer, a service to help client interact securely
with storage layer. The encrypted data e along with related
metadata is stored on B, and secret keys, o4, streamID,; and
corresponding DO are recorded on the ledger.

Algorithm 3: Data Purchase/Client (C)

1 func DataPurchase(DO, streamIDg) {
2 Get p for streamlIDy from L

3 Generate a request ID, reqI D

4 Send Payment(streamlIDg,reql D, p)

5 Get K,,, K.,04 from LL for streamlID,.
6

7

8

9

Receive ¢ from L to retrieve data from B
C signs token Sgx(0)— ¢,
Authenticate at DApp Vi (¢¢, w) — {0,1}
If verified, receive e from B
0 d — Decle, ko) , 0y «— MAC(, k). If 0, == 04 ,
d == d, data verified

n}

3. Data Purchase Phase: In this phase, C' browses through
the listing of available DO on the DApp. It selects a batch d of
data with unique streamID4 on the marketplace. It generates a
request identifier req/D and sends it to the blockchain with the
payment p for the requested data stream through marketplace
DApp. The ledger will first verify if the owner S has placed
any restriction on the client it wants to sell data to, for e.g. the
client C' needs to be a verified client. If the terms specified
in the DO are met and payment p is received successfully,
the process to establish data transfer is initiated. C' receives
two secret keys from the ledger, encrypted by its pk, one for
verifying data integrity and other for decrypting the data. Later,
blockchain sends an exchange token § to C. The 4 is signed
by C using its sk to generate signature ¢c. C approaches
the Security Manager DApp through API Proxy service with
¢c. Upon successful authentication, it receives the data. It
decrypts the data, and creates a MAC from recovered data, if
the generated MAC matches with received one, the client can
be assured of integrity of data.

Payment: In section [[II-B} we have defined the term fairness
from a seller, client and storage operator perspective. In the
proposed design, the client can fetch the requested data stream
only after making payment to the blockchain. Since, the
interaction between the client and a storage operator contains
an intermediary layer, Security Manager DApp, ascertaining
that a storage operator has actually served the data it easy. This
layer keeps a check on the malicious storage operators who
otherwise can claim to have served the data without doing so in
order to maximize profit. Similarly, in our design it is difficult
for a malicious client to claim that they have not received the
data, while they have already downloaded it.

G. Design Analysis

In this section, we demonstrate that the proposed design
satisfies the goals outlined in section It is to be noted
that since a storage operator O is randomly assigned to S,
a collusion among the client C' and storage operator O;
is unlikely. Also, there is no direct interaction between S
and C in the proposed protocol, hence their collusion cases

reduce to individual malicious behavior rather than a group
phenomenon.
Fair Trade
Client Fairness: The proposed protocol II ensures that an
honest client who has made payment p to L should receive
access to data stream d for agreed time frame. Specifically, it
should be able to access the data stream d and it’s respective
decryption and integrity-check keys. Under the assumption
that blockchain is tamper proof and storage operator nodes
do not have direct access to unencrypted data, honest storage
operator nodes will follow the protocol and keep serving the
data stream. Since, the execution of smart contract is au-
tonomous, tamper-resistant and unbiased, therefore, malicious
parties cannot effect the key release by L after a successful
payment made by C. Thus, II guarantees client fairness.
Seller Fairness: For every successful data exchange, the
respective payment is made to L. As the smart contract holds
logic to directly pay S, execution of II guarantees seller
fairness under the assumption that smart contract execution
cannot be tampered with.
Storage Operator Fairness: In the proposed protocol, each
storage operator O; when delivers a data stream d for agreed
time frame, an event is generated and it receives the payment
from L corresponding to it. Under the assumption that the
smart contract execution is tamper-resistant, the payment to
all storage operator nodes is guaranteed as it is controlled by
L, only when they served C'. Thus, the protocol IT guarantees
storage operator fairness.
Privacy: According to II, no storage operator can look up the
data stored on storage operator p2p network. This is due to
two reasons, first, due to E2E encryption, nodes are oblivious
to the content of the data, and secondly because keys are not
available to any storage operator node. Therefore, a disconnect
is maintained between the data and key set, which can only be
simultaneously obtained by a client C' who has made upfront
payment to the smart contract. Under the assumption that
smart contract is fairly deployed, an adversary will not be
able to obtain the data. In this way, privacy and security of
the data is maintained by II.
Trusted Exchange: When multiple unknown parties transact
with each other, there should be a metric to ascertain their
honesty and integrity. In the proposed system, we use TRUST
SCORE (TS), a metric associated with each seller and client
on the platform to assess their trustworthiness. The trust metric
of PeerTrust’s in [16] is modified to suit the proposed plat-
form’s functionality. We use reputation and credibility values
to compute the trust values. In this work, reputation is derived
from the verification status of entity’s identity which we denote
by decentralized identifiers (DIDs). Credibility represents the
confidence an entity has garnered from its transacting parties.
It’s value is derived from ratings and feedbacks an entity
received after completion of each transaction in the past.
Given a recent time window, let I(u,v) denote the total
number of transactions performed by an actor v with v and
I(u) denote the total number of transactions performed by actor
u with all other actors, a(u,?) denote the other participating

actor in actor s ith transaction, S(u,) denote the normalized
amount of satisfaction actor u receives from a(u,%) in its
ith transaction, C'r(v) denotes the credibility of the feedback
submitted by v, T R(u, i) denote the transaction rating v gives
to u for ith transaction. For an actor v, actor u’s credibility at
a given time can be computed using following equation:

I(w)

2 (S(u,i)) * Cr(a(u,i)) + TR(u,i) (1)

i=1

Cr(u) =

The actor u’s TS at a given time can be calculated as:

V(n)
TS(u) =) VI(k,u)xCr(u) 2)
i=1
where V' (n) is the total number of identifiers submitted by
actor u, VI(k,u) is the reputation value derived from the
identifier, organization k issues to u, and Cr(u) is actor u’s
credibility as calculated in equation [T}
External Sharing: In cases where seller has no objection to
reselling of the data, they will define terms of reselling in
Data Stream Licenses as defines in Section IV-B-4. However,
when Seller does not want to resell the data, a game-theory
based pricing model nees to be developed to make external
data sharing economically unattractive. Such a practice will
be discouraged as in order to make profit, the party will quote
a higher price for reselling data. Whereas, the marketplace
always offers a wide variety of data at competitive prices. Yet
another inhibiting factor is that IoT data, unlike other formats
of data (videos, software, images) derives its value from real-
time generation and consumption. Therefore, for a malicious
party it will be increasingly difficult to get hold of a constant
stream of IoT data at profitable prices from a party externally
sharing data without delay.

V. IMPLEMENTATION AND RESULT EVALUATION
A. System Components

1) Hyperledger Fabric: The proposed framework is
blockchain platform agnostic as long as it supports execution
of smart contracts and some form of transaction processing
[15]. However, for an enterprise use-case certain level of
confidentiality is preferred as compared to a completely public
system (Blockchain, Ethereum). In a public blockchain, anony-
mous participants join the network without validation and view
the complete transaction details which makes the network fully
untrusted. Another reason remains poor transaction through-
put for public blockchains like Ethereum and Blockchain.
Hyperledger Fabric (henceforth called Fabric), serves the
requirement well. It is an open source, modular permissioned
blockchain platform that permits pluggable components for
consensus, data store and membership service management
among other modules.

assume there are three organizations (a private firm, a
government agency and a research lab) each contributing peer
nodes as resource in the network. For the governance structure,

in Fabric we have a Membership Service Provider (MSP), that
binds identity of each participant to a root identity provider.
Each of these three organizations will also define an admin
peer using their MSP which define policies and roles in
the network. And the network is governed by these policies
including transaction ordering, execution and processing.

Each Fabric peer in the network runs an instance of the Data
Marketplace smart contract. This contract maintains the listing
of data offers including terms and mode of data streams, client
details and provide interface to make and verify payments. The
Security Manager smart contract deals with authentication and
access management to access the data streams from VerneMQ
network. In the results section, for blockchain nodes = 3, each
organization contributes one peer each and for nodes = 6, the
contribution is two from each organization.

2) VerneMQ Cluster: VerneMQ [4] is a distributed
MQTT(Message Queuing Telemetry Transport) message bro-
ker, that ensures low latency and fault tolerant guarantees.
MQTT is a lightweight, publish-subscribe network protocol
that transports messages between devices. The encrypted data
streams are stored on the VerneMQ network nodes that are
modelled in a crash tolerant fashion. As a whole, VerneMQ
provides a reliable data hosting capable of tolerating faults.
VerneMQ with some additional security access policies con-
stitute the storage layer in the proposed architecture.

3) Interaction Details: Data marketplace and Security
Manager DApp are implemented as Golang application in-
teracting with blockchain network through smart contracts.
Sellers and Buyers are implemented as Golang scripts that
sends queries and transactions to blockchain network by re-
questing the respective application. Both these entities publish
and subscribe to data streams by authenticating at security
manager DApp.

B. Evaluation

The experiment was setup on Google Cloud Computing
Platform (GCP) running an instance of Linux Ubuntu-2004-
focal-v20210325 configured with 16vCPUs (16 CPU cores),
64 GB RAM and 100 GB HDD storage. The experiments
were run by varying a number of parameters to understand the
dependency on each of them. The parameters being number
of storage operator nodes (i), number of blockchain nodes per
organization and file size to be uploaded and downloaded. In
each experiment, we vary a different parameter keeping other
parameters constant, to understand its impact on performance.
The Fabric network was run in the form of Docker containers.
Each experiment is run 5 times and the averaged observations
are reported. To analyse the performance of experimental
setup, a benchmark tool was written in Go v1.15.0. The bench-
mark tool helps to create several virtual sellers and buyers
that sends simultaneous requests to the blockchain network.
We chose to implement the IoT devices communication using
MQTT as its a lightweight protocol and closely resembles the
communication requirement of an IoT data marketplace. The
IoT data used for the testing was generated by a virtual clients
written in Golang. Depending on the file size given as input

Total Runtime/seller (i = No. of storage nodes)

10
B
6
: I II
2
0 mm [|] II I
100 150 200 250 300 350 400 450

10 50

Time (sec)

No. of Sellers

mi=1l mi=3 mi=5

Figure 5: Total Runtime/Seller [Blockchain Nodes = 3]

Total Runtime/seller (i = No. of storage nodes)

100 150 200 250 300 350 400 450

No. of Sellers

25

20

Time (sec)
s

u

o mm= NN
10 50

mi=1 mi=3 =5

Figure 6: Total Runtime/Seller [Blockchain Nodes = 6]

by the user, a script recursively generated bytes of data at
constant interval to emulate IoT sensor data generation from
a hardware sensor. The complete open-source implementation
of data marketplace project is available online at Github [11]].
Varying concurrent load We study how latency observed by a
Seller varies with overall system load both for blockchain node
count 3 and 6 each for storage cluster (i) count as 1, 3 and 5
. We measure the latency as two parameters i.e. total runtime
for each seller as shown in Figure [3} [6] and upload runtime
as shown in Figure [7] and [8] The total runtime includes the
time taken by a Seller to register on the blockchain network
and adding data offers on the network while upload time is
the time taken by a Seller to authenticate and upload data on
storage operator network. It can be inferred from the results
that with the increase in the number of concurrent sellers,
the total runtime increases. However, total runtime is a one
time process and therefore, it is a feasible overhead for each
seller in the network. The upload runtime is relatively low
when compared to the total runtime which is a good practical
advantage as data upload will be done more often by the
sellers.

Varying Blockchain Nodes It can be seen from Figures [and
[6l that with increase in the number of blockchain nodes, total
runtime do not come down, rather it increases by fraction of
milli-seconds. This is due to the fact that with increase in the

Upload Runtime (i = No. of storage nodes)

0 III ‘ll “‘ “‘ “‘ “‘ |“ |“ ||‘ |||
10 50 100 150 200 250 300 350 400 450

No. of Sellers

o o o
E 8 B &

Time [msec)

I
=1
=}

mi=1 mi=3 mi=5

Figure 7: Average Upload Time [Blockchain Nodes = 3]

Upload Runtime (i = No. of storage nodes)
0.12
0.1

T 0.08
@

g
E o6
£
Eom
0.02
0
10 50 100 150 200 250 300 350 400

Mo. of Sellers

mi=1 mgi=3 mi=5

Figure 8: Average Upload Time [Blockchain Nodes = 6]

number of blockchain nodes, the transaction synchronization
time among nodes increases. The real bottleneck is transaction
processing, and not the consensus protocol as elaborately ex-
plained in the work [32]]. The transaction synchronization time
can be reduced by vertical scaling of the system i.e increasing
the processing power. However, this only comes into effect for
transactions that lead to state change in blockchain and not for
queries to the blockchain as seen in Figure [7] and

Varying number of storage operators (i) The results for
variation in the number of storage operator cluster can be
witnessed for all the results. The upload runtime shows
positive trends for average upload time with increase in the
value of i as shown in Figure [7]and [§] which will improve the
publishing speed of the sellers hence increasing the overall
throughput as shown in the Figure [and [I0] Therefore
horizontal scaling helps in the case of storage operator nodes.
While for blockchain nodes, vertical scaling along with sparse
peer node that selectively commits transactions as proposed
in will be advantageous. Upload throughput Figure 9] and
is the total bandwidth (msgs/sec) processed by the system
under concurrent load of Sellers. The upload throughput shows
similar performance trends as total runtime/seller in Figure [3]
and |§l However, the performance increases with increase in
number of storage operators.

Upload Throughput (i = No. of storage nodes)

0 IIIIIIIIII
10 50 100 150 200 250 300 350 400 450

Mo. of Sellers

Time (sec)
58383888

[
o=

mi=l mi=3 mi=5
Figure 9: Upload Throughput [Blockchain Nodes = 3]

Upload Throughput (i = No. of storage nodes)
250

200

1
0 .
10 50 100 150 200 250 300 350 400

Mo. of Sellers

w
o

Time (sec)
8

w
o

mi=1 mi=3 mi=5

Figure 10: Upload Throughput [Blockchain Nodes = 6]

Varying file upload frequency We study the impact of data
stream sizes on latency faced by the clients. Figure [T1] and
[12] shows the latency impact for upload of data streams, for
file sizes ranging from 100 B/sec to 1 MB/sec for blockchain
nodes 3 and 6 both. As expected, the latency increases sub-
linearly with file size in both the cases but the overall overhead
shows positive outcome. The overhead of file size increase is
within 10% of the baseline.

VI. SECURITY ANALYSIS

In this section, we analyse the most common security
threats in IoT (MITM, DDoS) and blockchain domain (Sybil,
Forking). In traditional IoT systems there are many security
weaknesses, some of which can be removed with the use
of blockchain such as information disclosure, repudiation,
dependency on a trusted third party. The discussed attacks
have been specifically chosen as they are critical from a
decentralized architecture point of view such as IoT.

A. Man-in-the-Middle (MITM) Attack

In order to prevent MITM attack, several defense mechanisms
have been provided in the architecture. Firstly, all the com-
munications taking place between architecture components
happen over a secure channel over TLS/SSL. Secondly, all the
transactional messages are digitally signed with the secret key

Avg Runtime (i = No. of storage nodes)

3 I I|
0 III III II III I

1008 10 KB 100 KB 1MB

w
n o

Time (sec)
(=] - =
[P P

File Sizes

mi=1 mi=3 mi=5

Figure 11: Average runtime with file size variations for
[Blockchain Nodes = 3]

Avg Runtime (i = No. of storage nodes)

4 |
0 I|| II| II| I|| ||

100 B 10KB 100 KB 1MB

Time (sec)
b [=] W F-N
oln o in owoin in

[=]
n

File Sizes

mi=1 mi=3 mi=5

Figure 12: Average runtime with file size variations for
[Blockchain Nodes = 6]

sk of the sender which makes it difficult for an impersonator
to replicate them. Besides, since the sellers and clients in the
network posses unique did, secured by public-private key pair,
an attacker cannot inject malicious signed messages.

B. Distributed Denial of Service (DDoS) attack

DDoS attack can be mitigated by using unique identities in
the network as proposed in our architecture. The blockchain
network in general provides a certain level of security against
malicious nodes. Moreover, since the blockchain in our archi-
tecture is a permissioned network hence, only trusted nodes
are added in the network. In addition, only entities whose dids
have been successfully verified are allowed make account and
later query/send transactions in the network thus, preventing
malicious traffic attacks on network.

C. Sybil Attack

Sybil attacks are a major challenge in public decentralized
network where the same node can fake multiple identities. The
proposed framework has an advantage over this attack as the
blockchain network is a permissioned network. In this network
the consensus over a set of transactions is achieved only after

receiving endorsements by a number of verified nodes. Hence,
no single node or a set of nodes holds absolute power. In the
Fabric blockchain, identity certificates are issued to each node
and hence, identity faking becomes difficult.

D. Information Disclosure Attack

In the proposed framework, the information stored on
blockchain can strictly be queried only by verified actors of the
system. For e.g. a client can only request key release once they
have made full payment for the data. In order to query DO
which includes price, metadata and terms of data exchange ,an
entity needs to verify their did. Similarly, no suspicious entity
can gain access to the data stored on storage operator nodes
until they authenticate themselves at Security Manager DApp
using authentication token.

E. Forking Attack

Hyperledger Fabric blockchain differs from well-known public
blockchain like Bitcoin and Ethereum in the sense that in
Fabric the consensus among nodes is a three step process
which includes execute-order-validate unlike order-execute.
First the transactions are checked for correctness and endorsed
by endorsing peers. Then, they are ordered via a consensus
protocol and lastly they are validated according to application-
specific endorsement policy before committing transactions
to the ledger. Hence, the proposed architecture can prevent
forking attacks.

VII. DISCUSSION AND FUTURE WORK

In this work, we addressed the issue in real-time decentral-
ized trading of IoT data which is a future reality owing to the
massive progress in advanced Al algorithms that need bulk
of data to make informed decisions. By leveraging an innova-
tive combinations of blockchain, peer-to-peer storage facility,
decentralized applications, the proposed system guarantees
fairness to all participants despite presence of maliciousness,
privacy of data from peers involved in hosting content, fault
tolerance and availability, all without reliance on a central
facilitator.

While designing such a system, certain challenges were
faced that can be taken up as future work in this research direc-
tion. The first challenge remains designing equitable payment
methodologies between the two parties. The parties can agree
to transact in either cryptocurrencies/native token or existing
payment methods. Crypto-tokens can also act as incentive
mechanism for early adopters of the platform. Designing a
payment layer over such a system architecture is one of the
future works. Yet another challenge remains to put a check
on external sharing of platform IoT data in the long run. For
that, game theory approaches can be taken to design, better
pricing models and terms of data exchange. In the proposed
work, we have proposed a basic incentivization mechanism,
in future works, more robust and theoretically tested schemes
can be designed to make unfair transactions economically
unattractive. These directions are some of the challenges of
the proposed framework and they hold huge possibilities for
improvement.

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]
[10]
[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]
[19]

REFERENCES

K. R. Azyilmaz, M. DoAan, and A. Yurdakul. “IDMoB:
IoT Data Marketplace on Blockchain”. In: 2018 Crypto
Valley Conference on Blockchain Technology (CVCBT).
S. Bajoudah, C. Dong, and P. Missier. “Toward a
Decentralized, Trust-Less Marketplace for Brokered IoT
Data Trading Using Blockchain”. In: 2019 IEEE Inter-
national Conference on Blockchain (Blockchain).

P. Banerjee, R. Friedrich, C. Bash, P. Goldsack, B.
Huberman, J. Manley, C. Patel, P. Ranganathan, and
A. Veitch. “Everything as a Service: Powering the New
Information Economy”. In: Computer 44.3 (2011).

M. Bender, E. Kirdan, M.O. Pahl, and G. Carle. “Open-
Source MQTT Evaluation”. In: 2021 IEEE 18th An-
nual Consumer Communications Networking Confer-
ence (CCNC).

J. Benet. “IPFS - Content Addressed, Versioned, P2P
File System”. In: CoRR abs/1407.3561 (2014). URL:
http://arxiv.org/abs/1407.3561.

A. Broring, S. Schmid, C. Schindhelm, A. Khelil,
S. Kabisch, D. Kramer, D. Le Phuoc, J. Mitic, D.
Anicic, and E. Teniente. “Enabling IoT Ecosystems
through Platform Interoperability”. In: IEEE Software
34.1 (2017), pp. 54-61.

B. Cohen. Incentives Build Robustness in BitTorrent.
2003.

M. Cohen and A. Sundararajan. “Self-Regulation and
Innovation in the Peer-to-Peer Sharing Economy”. In:
University of Chicago Law Review Online 82.1 (2015).
Decentralized Finance (DeFi). |https://ethereum.org/en/
defi/. [Online: Accessed 11-Feb-2021].

Decentralized Identifiers. [Online]: https://www.w3.org/
TR/did-core/. [Accessed: 15-Feb-2021].

A. Dixit and A. Singh. IoT Data Marketplace. https:
//github.com/akankshadixit/loTMarketplaces. 2021.
Electron. https://electron.net. [Accessed: 11-Feb-2021].
U. Habiba, R Masood, M. A. Shibli, and M. A. Ni-
azi. “Cloud identity management security issues &
solutions: a taxonomy”. In: Complex Adaptive Systems
Modeling 2.1 (2014).

Internet of Things (IoT) solutions. [Online]. Available:
https ://aws . amazon . com/marketplace/solutions/IoT.
[Accessed: 04-March-2021].

W. Karl and A. Gervais. “Do you Need a Blockchain?”
In: 2018 Crypto Valley Conference on Blockchain Tech-
nology (CVCBT). 2018.

L. Xiong and L. Liu. “PeerTrust: supporting reputation-
based trust for peer-to-peer electronic communities”. In:
IEEE Transactions on Knowledge and Data Engineer-
ing 16.7 (2004).

Protocol Labs. Filecoin. https://filecoin.io. [Accessed:
11-Feb-2021].

LBRY. https://lbry.com. [Accessed: 12-Feb-2021].

J. Li, A. Grintsvayg, J. Kauffman, and C. Flem-
ing. “LBRY: A Blockchain-Based Decentralized Digital

[29]

Content Marketplace”. In: 2020 IEEE International
Conference on Decentralized Applications and Infras-
tructures (DAPPS). 2020.

S. J. Liebowitz. Re-thinking the Network Economy:
The True Forces that Drive the Digital Marketplace.
AMACOM, 2002.

Medicalchain. https://medicalchain.com/en/. [Accessed:
11-Feb-2021].

P. Missier, S. Bajoudah, A. Capossele, A. Gaglione,
and M. Nati. “Mind My Value: A Decentralized In-
frastructure for Fair and Trusted IoT Data Trading”. In:
Proceedings of the Seventh International Conference on
the Internet of Things. 2017.

H. Niavis, N. Papadis, V. Reddy, H. Rao, and L. Tassi-
ulas. “A Blockchain-based Decentralized Data Sharing
Infrastructure for Off-grid Networking”. In: IEEE Inter-
national Conference on Blockchain and Cryptocurrency
(ICBC). 2020.

Open Bazar. https://openbazaar.org. [Accessed: 12-Feb-
2021].

OrbitDB. https://orbitdb.org. [Accessed: 11-Feb-2021].
Origin. https://www.originprotocol.com/en. [Accessed:
12-Feb-2021].

G. S. Ramachandran, R. Radhakrishnan, and B. Krish-
namachari. “Towards a Decentralized Data Marketplace
for Smart Cities”. In: 2018 IEEE International Smart
Cities Conference (ISC2). 2018.

R. Schollmeier. “A definition of peer-to-peer network-
ing for the classification of peer-to-peer architectures
and applications”. In: Proceedings First International
Conference on Peer-to-Peer Computing. 2001.

D. Shi, J. Yin, Z. Wu, and J. Dong. “A Peer-to-
Peer Approach to Large-Scale Content-Based Publish-
Subscribe”. In: 2006 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent
Technology Workshops. 2006.

Sia. https://sia.tech. [Accessed: 11-Feb-2021].

Storj. https://storj.iol [Accessed: 11-Feb-2021].

P. Thakkar and S. Natarajan. Scaling Hyperledger Fab-
ric Using Pipelined Execution and Sparse Peers. 2021.
arXiv: 2003.05113 [cs.DC].

The data exchange for advanced mobility and infras-
tructure. [Online]: https://terbine.com. [Accessed: 04-
March-2021].

To monetize and acquire 1oT data. [Online]: https://
www.dawex.com/en/monetization-data-iot/. [Accessed:
04-March-2021].

A. Tobin and D. Reed. “The Inevitable Rise of Self-
Sovereign Identity”. In: The Sovrin Foundation. 2016.
Y. Xu, P. Ahokangas, S. Yrjold, and T. Koivumaki. “The
fifth archetype of electricity market: the blockchain
marketplace”. In: Wireless Networks (July 2019).

http://arxiv.org/abs/1407.3561
https://ethereum.org/en/defi/
https://ethereum.org/en/defi/
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/
https://github.com/akankshadixit/IoTMarketplaces
https://github.com/akankshadixit/IoTMarketplaces
https://electron.net
https://aws.amazon.com/marketplace/solutions/IoT
https://filecoin.io
https://lbry.com
https://medicalchain.com/en/
https://openbazaar.org
https://orbitdb.org
https://www.originprotocol.com/en
https://sia.tech
https://storj.io
https://arxiv.org/abs/2003.05113
https://terbine.com
https://www.dawex.com/en/monetization-data-iot/
https://www.dawex.com/en/monetization-data-iot/

	Introduction
	Related Work and State-of-the-Art
	System Actors and Problem Definition
	System Actors
	Problem Definition

	Proposed Platform
	Design Features
	Components of Layered Architecture
	Data Marketplace
	Event Processing Engine
	Security Manager
	Network Layer
	ChainCode/Smart Contracts

	System Architecture Overview
	Notations and Preliminaries
	Smart Contract Functions
	Protocol Flow
	Design Analysis

	Implementation and Result Evaluation
	System Components
	Hyperledger Fabric
	VerneMQ Cluster
	Interaction Details

	Evaluation

	Security Analysis
	Man-in-the-Middle (MITM) Attack
	Distributed Denial of Service (DDoS) attack
	Sybil Attack
	Information Disclosure Attack
	Forking Attack

	Discussion and Future Work

