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Abstract—This paper investigates the classification of normal
and abnormal radiographic images. Eleven convolutional neural
network architectures (GoogleNet, Vgg-19, AlexNet, SqueezeNet,
ResNet-18, Inception-v3, ResNet-50, Vgg-16, ResNet-101, DenseNet-
201 and Inception-ResNet-v2) were used to classify a series of x-
ray images from Stanford Musculoskeletal Radiographs (MURA)
dataset corresponding to the wrist images of the data base. For
each architecture, the results were compared against the known
labels (normal / abnormal) and then the following metrics were
calculated: accuracy (labels correctly classified) and Cohen’s
kappa (a measure of agreement) following MURA guidelines.
Numerous experiments were conducted by changing classifiers
(Adam, Sgdm, RmsProp), the number of epochs, with/without
data augmentation. The best results were provided by Inception-
Resnet-v2 (Mean accuracy = 0.723, Mean Kappa = 0.506).
Interestingly, these results lower than those reported in the
Leaderboard of MURA. We speculate that to improve the results
from basic CNN architectures several options could be tested, for
instance: pre-processing, post-processing or domain knowledge,
and ensembles.

Index Terms—CNN, X-ray, Wrist, Classification

I. INTRODUCTION

Wrist fracture is a common injury, especially among older
patients [29]. Incidents such as falling, slipping, tripping may
lead to fractures that sometimes are ignored by patients and
left untreated [33]. The fractures can provoke impairment in
the movement of the wrist [3], and in some cases it can lead
to serious complications such ruptured tendons or stiffness of
the fingers [6]. The basic treatment of fractures, that is, immo-
bilisation and casting, has not changed much in time, as there
are Egyptian records describing the re-positioning of bones,
fixing with wood and covering with linen [8]. The process of
immobilisation is nowadays performed under anaesthesia and
thus it is know as Manipulation under Anaesthesia (MUA)
and regularly performed in Accidents and Emergency (A&E)

departments [4]. The alternative treatment for the fractures is
open surgery, which is also known as Open Reduction and
Internal Fixation (ORIF) [1]. The surgical procedure is far
more complicated than manipulation, and can lead to serious
complications [2], however, it is more reliable as a long term
treatment as manipulations sometimes fail and then surgery is
needed. Despite the considerable amount of research in these
areas [1], [2], [4], [5], [13], [22], [23], there is no certainty
into which procedure to follow for wrist fractures [14]–[16].

The conditions of the hand and wrist depend on the integrity
and function of the ligaments, tendons, muscles, joints, and
bones [18]. Imperfect treatment could affect the whole body,
causing disruptions at home, work and negatively impact the
quality of life [44].

Nowadays, X-ray images have been widely used to visually
examine the internal condition of patient abnormalities. The
radiologist’s interpretation of the X-ray image as a case base
clinical information available is a critical point on how the
patient is treated [18].

In the United Kingdom, the condition of bone fractures
has become an intensive focus, as reflected by the increased
demand for diagnostic imaging and intervention radiology [7].
There have been solutions based on not just clinical perspec-
tive but also combination with technology works [10], [11],
[21], [30], [39].

This work investigates the classification radiographs from
the wrist and forearm into two classes, namely normal and
abnormal. Traditional analysis of wrists has focused on geo-
metric measurements that are extracted either manually [26],
[36], [37], [46] or through image processing [35]. However,
in recent times, Artificial intelligence (AI) inspired technology
has been used to to tackle some of difficult problems in many
areas, among them those related to healthcare and medical



imaging [27], [45]. Thus, in this work we will investigate the
performance of eleven different Convolutional Neural Network
(CNN) models to assess the classification of wrist fractures
into two classes: normal or abnormal.

A large dataset of musculoskeletal radiographs from [34]
was used to train to eleven widely-known CNNs. The results,
i.e. the ability to distinguish normal and abnormal, provided
by different neural networks is the first step to assist a
radiologist. Further steps could be directed into deciding the
most appropriate treatment for a patient, for instance treat
a fracture with MUA or a traditional cast or opt for more
complicated and expensive surgery with metal implants.

II. MATERIALS AND METHODS

A. Materials

This study analysed the wrist radiographs from the pub-
lic dataset Musculoskeletal Radiographs (MURA) [34]. The
dataset has been manually labelled by board-certified radiolo-
gists between 2001 and 2012. The radiographs (n = 14, 656)
are divided into images for training (n = 13, 457), and
validation (n = 1, 199). Furthermore, the radiographs belong
to a group called abnormal (i.e. fracture, foreign body, etc.)
(n = 5, 818) or normal (n = 9, 045). The distribution per
anatomical region is shown in Table I and selected cases are
illustrated in Fig. 1. Of these, the subset of the wrists were
selected for this study. In experiments, the actual numbers of
data have been checked as it shown in Table II. Furthermore,
this study emphasise in classification wrist x-ray images to
abnormal and normal category. Table III shows the actual
distribution of labelled images in the dataset. Each condition
is a combination of data labelled as Valid images and data
labelled as Train images.

TABLE I
DISTRIBUTION OF CASES OF THE STANFORD MURA (MUSCULOSKELETAL

RADIOGRAPHS) DATA SET [34] FOR STUDIES OF THE UPPER BODY.

No. Study Train Validation TotalNormal Abnormal Normal Abnormal
1 Elbow 1094 660 92 66 1912
2 Finger 1280 655 92 83 2110
3 Hand 1497 521 101 66 2185
4 Humerus 321 271 68 67 727
5 Forearm 590 287 69 64 1010
6 Shoulder 1364 1457 99 95 3015
7 Wrist 2134 1326 140 97 3697

Total 8280 5177 661 538 14656

B. Convolutional Neural Network architectures

CNNs are a subclass in the hierarchic terminology that
includes AI, machine learning, and deep learning [12].

A typical CNN combines a series of layers: convolutional
layers followed by sub-sampling layers (Pooling layer), then
another convolutional layers followed by pooling layers, and
can continue for a certain number of times after which fully-
connected layers are added to produce a prediction (e.g.
estimated class probabilities). This layer-wise arrangement

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 1. Illustration of different radiographs of the MUsculoskeletal
RAdiographs (MURA) dataset [34] corresponding to training set and negative
(no abnormalities) in the top row, and positive (abnormalities) in the bottom
row. (a) Elbow, (b) Forearm, (c) Postero-anterior view of Wrist, (d) Lateral
view of Wrist, (e) Elbow, (f) Fingers, (g) Forearm, (h) Hand.



TABLE II
DISTRIBUTION OF IMAGES IN MURA (MUSCULOSKELETAL
RADIOGRAPHS) DATASET FOR TRAINING AND VALIDATION.

No. BodyParts Number Images in
Train Folder

Number Images in
Valid Folder

1 Elbow 4931 465
2 Finger 5106 461
3 ForeArm 1825 301
4 Hand 5543 460
5 Humerus 1272 288
6 Shoulder 8379 563
7 Wrist 9752 659

Total per condition 36808 3197
Total actual images

in dataset 40005

TABLE III
DISTRIBUTION OF IMAGES IN THE STANFORD MURA

(MUSCULOSKELETAL RADIOGRAPHS) DATASET INTO ABNORMAL AND
NORMAL GROUPS. THIS WORK CONCENTRATED ON THE WRIST

RADIOGRAPHS.

No. BodyParts Abnormal
(Train + Valid)

Normal
(Train + Valid)

1 Elbow 2236 3160
2 Finger 2215 3352
3 ForeArm 812 1314
4 Hand 1673 4330
5 Humerus 739 821
6 Shoulder 4446 4496
7 Wrist 4282 6129
Total per Condition 16403 23602
Images total in dataset 40005

TABLE IV
WRIST RADIOGRAPHS WERE FURTHER SUBDIVIDED INTO FOUR STUDIES.

STUDIES 1,2,3 AND 4 REFER TO A PATIENT VISIT IDENTIFIER, EACH
PATIENT MAY HAVE VISITED THE HOSPITAL SEVERAL TIMES. ABNORMAL
CORRESPONDS TO POSITIVE ABNORMAL CONDITION LABELLED BY THE

EXPERT AND NORMAL CORRESPONDS TO NEGATIVE ABNORMAL
CONDITION LABELLED BY THE EXPERT.

Wrist-Train dataset Abnormal Normal
Study 1 3920 5282
Study 2 64 425
Study 3 3 45
Study 4 0 13
Total 3987 5765
Total Wrist Train Images 9752
Wrist-Valid dataset Abnormal Normal
Study 1 287 293
Study 2 5 59
Study 3 3 9
Study 4 0 3
Total 295 364
Total Wrist Valid Images 659
Total Images of Wrist 10411

allows CNNs to combine low-level features to form higher-
level features, learn features and eliminate the need for hand
crafted feature extractors. In addition, the learned features
are translation invariant, incorporate the two-dimensional (2D)
spatial structure of images which contributed to CNNs achiev-
ing state-of-the-art results in image-related tasks [9].

The input to a CNN, i.e. an image to be classified, transits
through the different layers to produce at the end some scores
(one score per neuron in the last layer). In the case of image
classification, these scores can be interpreted as the probability
of the image to belong to each of the classes. The goal of the
training process is to learn the weights of the filters at the
various layers of the CNN. The output of one of the layers
before the last layer, which is fully connected, can be used
as a global descriptor for the input image. The descriptor
can then be used for various image analysis tasks including
classification, recognition, and retrieval [25].

TABLE V
SUMMARY OF CONVOLUTIONAL NEURAL NETWORKS (CNNS) THAT WERE

USED IN THIS WORK.

No. Network Depth Image Input Size Reference
1 GoogleNet 22 224-by-224 [40]
2 Vgg-19 19 224-by-224 [38]
3 AlexNet 8 227-by-227 [24]
4 Squeezenet 18 227-by-227 [20]
5 ResNet-18 18 224-by-224 [17]
6 Inception-v3 48 299-by-299 [42]
7 ResNet-50 50 224-by-224 [17]
8 Vgg-16 16 224-by-224 [38]
9 ResNet-101 101 224-by-224 [17]
10 DenseNet-201 201 224-by-224 [19]
11 Inception-ResNet-v2 164 299-by-299 [41]

The classification of wrist radiographs into two cate-
gories (Normal / Abnormal) was considered with eleven
CNN architectures. There architectures considered were:
GoogleNet, Vgg-19, AlexNet, SqueezeNet, ResNet-18,
Inception-v3, ResNet-50, Vgg-16, ResNet-101, DenseNet-
201 and Inception-ResNet-v2. In addition, the training pro-
cess of the architecture was tested with different number
of epochs (10, 20, 30), different mini-batch sizes (16, 32,
64) and with and without data augmentation. The details of
the architectures are displayed in Table V. The experiment
pipeline is illustrated in Fig. 2. No pre- or post-processing
was applied in any case.

Experiments were conducted in MATLAB R©R2018b IDE
completed with Deep Learning Toolbox, Image Processing
Toolbox and Parallel Computing Toolbox. These experiments
were conducted by using a workstation with a processor from
INTEL R©Xeon R© W-2123 CPU 3.60 GHz, 16GB of 2666MHz
DDR4 RAM, 500GB SATA 2.5-inch solid-state drive, and
NVIDIA Quadro P620 3GB graphic card.

C. Performance metrics
Accuracy (Ac) was calculated as the proportion of correct

predictions among the total number of cases examined, that is:

Ac = (TP + TN)/(TP + TN + FP + FN), (1)



Fig. 2. Block diagram which illustrates the classification of the wrist radiographs with 11 different Convolutional Neural Network (CNN) architectures. 9752
images from MUsculoskeletal RAdiographs (MURA) Wrist dataset were used for training CNN architectures and 659 images were used for validation. Two
different metrics, Accuracy (Ac) and Cohen’s kappa (κ) were computed to assess the performance of 11 pre-trained CNNs. Image data augmentation was
used during training and different number of epochs and mini bach sizes were tested.

where TP and TN correspond to positive and negative
classes correctly predicted and FP and FN correspond to
false predictions. Cohen’s kappa (κ) was also calculated as
it is the metric used to rank the MURA challenge [28], [34]
and it is considered more robust as it takes into account the
possibilities of random agreements. Cohen’s Kappa κ was
calculated in the following way. With

Tot = (TP + TN + FP + FN), (2)

being the total number of events, the probability of a yes or
TP is

PY = (TP + FP )(TP + FN)/Tot, (3)

the probability of a no, or TN is

PN = (FN + TN)(FP + TN)/Tot, (4)

and the probability of random agreement PR = PY + PN ,
then

κ = (Ac− PR)/(1− PR). (5)

III. RESULTS

Eleven architectures were used to classify the wrist radio-
graph and the results for accuracy is shown in Table VII
and Cohen’s Kappa is shown in Table VIII with details of
the different classifiers. Each case was tested with different
number of epochs (10, 20, 30), different mini-batch sizes (16,
32, 64) and with and without data augmentation. The results
in this table aggregate the best results for each architecture.

The results indicated that Inception-Resnet-v2 provided best
results both for accuracy (Ac = 0.723) and Cohen’s kappa
(κ = 0.506). Very close was DenseNet-201 with (Ac = 0.717,
κ = 0.497). The lowest results were provided by GoogleNet
with (Ac = 0.654, κ = 0.381). Fig. 3 and Fig. 4 illustrate

some cases of the classification for Lateral and Postero-
anterior views of wrist radiographs.

Not one of the three classifiers provided consistent superi-
ority over the others, and equally, the number of epochs varied
and it was not observed that more epochs would consistently
provide better results. We speculate that the architectures
were converging before these epochs and thus there was not
significant advantage of running more epochs. Similarly, not
a single option of the size of the mini-batch provided the best
results.

IV. DISCUSSION

In this paper, the classification of wrist radiographs with
eleven CNN architectures was studied. Whilst Inception-
Resnet-v2 provided the best results (Ac = 0.723, κ = 0.506),
these were quite far below as compared with the published
Leaderboard of MURA, where, at the time of writing (July
2020) the top three results reported κ = 0.843, 0.834, 0.833
and the best performance for a radiologist was κ = 0.778.
The lowest value of the table is number 70 with κ = 0.518.
Interestingly, many of the architectures here explored appear
in the Leaderboard (Inception-ResNet-v2, Vgg-19, DenseNet)
and provided higher κ. Whilst in this paper only a subset (the
wrists) was explored, it is not considered that the wrists would
be more difficult to classify than the other anatomical regions,
thus the question arises, why would all the architectures
provide lower results than those at the bottom of the table?
Notice that many variations in the training of the networks,
such as epochs, classifiers, size of mini-batch were performed.

We speculate that to improve the results from the standard
CNN architectures, such as those analysed in this work, the
classification pipelines must include extra steps. Namely:



TABLE VI
SUMMARY OF CONVOLUTIONAL NEURAL NETWORKS (CNNS)

HYPERPARAMETERS FOR THIS WORK.

1 GoogleNet

Optimizer SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 64 64 64
Init. Learn. R. 0.01 0.001 0.001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

2 Vgg-19

Optimizer SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 64 64 64
Init. Learn. R. 0.001 0.001 0.001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

3 AlexNet

Optimizer SGDM ADAM RMSprop
Epoch 50 50 50

Mini batch size 128 128 128
Init. Learn. R. 0.001 0.001 0.001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

4 SqueezeNet

Optimizer SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 64 64 64
Init. Learn. R. 0.001 0.0001 0.0001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

5 ResNet-18

Optimizer SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 64 64 64
Init. Learn. R. 0.001 0.0001 0.0001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

6 Inception-v3

Optimizer SGDM ADAM RMSprop
Epoch 10 10 10

Mini batch size 64 64 64
Init. Learn. R. 0.001 0.0001 0.0001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

7 ResNet-50

Optimizer SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 64 64 64
Init. Learn. R. 0.001 0.0001 0.0001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

8 Vgg-16

Optimizer SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 128 128 128
Init. Learn. R. 0.001 0.0001 0.0001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

9 ResNet-101

Optimizer SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 32 32 32
Init. Learn. R. 0.001 0.0001 0.0001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

10 DenseNet-201

Optimizer SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 32 32 32
Init. Learn. R. 0.001 0.0001 0.0001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

11 Inception-
ResNet-v2

Optimizer SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 32 32 32
Init. Learn. R. 0.001 0.0001 0.0001

Momentum 0.9000 - -
L2 Reg. 0.0001 0.0001 0.0001

TABLE VII
RESULTS OF ACCURACY FOR ELEVEN MODEL OF CONVOLUTIONAL

NEURAL NETWORKS USED TO CLASSIFY THE WRIST IMAGES IN MURA
DATASET EXPERIMENTS. THE BEST RESULTS FOR EACH ROW ARE

HIGHLIGHTED IN italics AND THE OVERALL BEST RESULTS ARE
HIGHLIGHTED IN bold.

No. CNNs SGDM ADAM Rms
Prop Mean Ep.

Mini-
batch
Size

1 GoogleNet 0.650 0.671 0.640 0.654 30 64
2 Vgg-19 0.680 0.681 0.590 0.650 30 64
3 AlexNet 0.674 0.690 0.657 0.674 50 128
4 SqueezeNet 0.683 0.657 0.690 0.677 30 64
5 ResNet-18 0.704 0.709 0.668 0.693 30 64
6 Inception-v3 0.710 0.689 0.707 0.702 10 64
7 ResNet-50 0.686 0.718 0.716 0.707 30 64
8 Vgg-16 0.692 0.713 0.716 0.707 30 128
9 ResNet-101 0.715 0.706 0.701 0.707 30 32
10 DenseNet-201 0.733 0.695 0.722 0.717 30 32

11 Inception-
ResNet-v2 0.712 0.747 0.710 0.723 30 32

TABLE VIII
COHEN’S KAPPA RESULTS FROM ELEVEN MODEL OF CONVOLUTIONAL
NEURAL NETWORKS USED TO CLASSIFY THE WRIST IMAGES IN MURA

DATASET EXPERIMENTS. THE BEST RESULTS FOR EACH ROW ARE
HIGHLIGHTED IN italics AND THE OVERALL BEST RESULTS ARE

HIGHLIGHTED IN bold.

No. CNNs SGDM Adam Rms
Prop Mean Ep.

Mini-
batch
Size

1 GoogleNet 0.373 0.412 0.358 0.381 30 64
2 Vgg-19 0.433 0.446 0.335 0.404 30 64
3 AlexNet 0.420 0.450 0.390 0.420 50 128
4 SqueezeNet 0.438 0.390 0.448 0.425 30 64
5 ResNet-18 0.474 0.484 0.408 0.455 30 64
6 Inception-v3 0.487 0.450 0.482 0.473 10 64
7 ResNet-50 0.441 0.496 0.494 0.477 30 64
8 Vgg-16 0.453 0.491 0.492 0.479 30 128
9 ResNet-101 0.495 0.475 0.472 0.481 30 32
10 DenseNet-201 0.524 0.458 0.507 0.497 30 32

11 Inception-
ResNet-v2 0.485 0.548 0.484 0.506 30 32

1) Pre-processing steps, which may consist of: Low pass
filtering to remove high-frequency noise, cropping of
images to remove excessive background region (notice
that some of the incorrect classifications in Fig. 3
had large background regions). More elaborate pre-
processing approaches such as location and orientation
of bones [35] could help detect the areas of real interest,
and discard any region that may be biasing results, such
as the labels for right or left hand, which being always
very bright might be confusing the architectures.

2) Post-processing steps may also be considered, for in-
stance, the association between key features and the
predicted classes [32], [43]. Furthermore, the visualisa-
tion of key features may be useful to stakeholders (e.g.
clinicians or radiologists) who might be more interested
in the attributes of the original data rather than the



Fig. 3. Illustration of classification results for Lateral (LA) views of
wrist radiographs. (a) Corresponds to positive (abnormal) diagnosis image
but predicted as negative (normal), (b) Abnormal diagnosis and abnormal
prediction. (c) Normal diagnosis image and normal prediction. (d) Normal
diagnosis and abnormal prediction. Notice that the errors in classification
may have been biased by artefactual elements on the images.

architectures themselves [31].
3) Ensembles or combination of different configurations

may also help increase the results of individual config-
urations.

4) Finally, adding domain knowledge in terms of knowl-
edge of the anatomical region (i.e. elbow or hand) with
the possible cases (i.e. fracture or implant) may allow
the fine tuning of the architectures to detect not only an
abnormality but the type of abnormality and the location
of this.

V. CONCLUSION

In this paper, we described a comparison of eleven con-
volutional neural networks to classify normal and abnormal
radiographic images. The results obtained did not represent a
striking value and required additional steps in the classification
process. We suggest further steps such as image noise removal,
reduction of excessive background region, image features
association with predicted classes, enhanced visualisation of
a classified image, variations of training configuration, and
addition of anatomical region into the data set.

The classification of an image to normal or abnormal
conditions is not only restricted to medical domains but also

Fig. 4. Illustration of classification results for Postero-Anterior (PA) views
of wrist radiographs. (a) Corresponds to positive (abnormal) diagnosis image
but predicted as negative (normal), (b) Abnormal diagnosis and abnormal
prediction. (c) Normal diagnosis image and normal prediction. (d) Normal
diagnosis and abnormal prediction. Notice again that the errors in classification
may have been biased by artefactual elements on the images.

could apply to other areas such as inspection of production
defects from manufacturing products, animal treatments in
the veterinary medicines domain, and object detection from
satellite imagery such as landforms, settlements, and other
geographical features.
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