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Abstract

Anthony Medina

A Common Value OTC Network Model

This thesis looks at decentralized client-dealer markets by representing them as a

Bertrand competition over a network of connections and examines the Nash equilib-

rium bid-ask spread properties. We specifically look at OTC financial markets with a

common but unknown true value and show how equilibrium bid and ask prices can be

viewed as the optimal amounts of signal reduction in a common-value first-price auc-

tion. We algebraically examine the equilibrium in the duopoly case and then analyze

the equilibriums numerically in the n-dealer case. Our model suggests that changing

transparency can have non-intuitive effects that depend on both the network struc-

ture and the information asymmetry. Similarly, the model can explain the empirically

observed centrality premiums and discounts found in some OTC markets and other

noted pricing anomalies. We apply our network model to the UK betting market

using data from the UK General Election 2019. In betting markets, win probabilities

are the asset, and dealers are the bookmakers, and we find that bookmakers’ odds

closely follow the model’s predicted levels and exhibit a predicted centrality discount.
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Chapter 1

Introduction

example.bib

1.1 General

Many standard financial market instruments, such as common stocks or listed options,

trade on organized exchanges such as the NYSE or the CBOE. However, a significant

number of financial assets, such as most loans, government and corporate bonds,

derivatives, and currencies, have no central exchange, and traders need to locate a

counterparty for each trade. The reason is that, unlike equities, many securities are

not as homogenous, with non-standard expiries and payoffs. In the EU, for example,

there are 6800 listed shares, but Xtrakter’s CUPID database contains information on

over 150,000 debt securities in issue, with only 3000 that trade more than once per

day. This decentralization has led to professional firms becoming intermediaries or

market-makers, and these markets are known as over-the-counter or OTC markets. In

these markets, transactions are bilateral, prices are dispersed, trading relationships

are persistent, and typically, a few large dealers intermediate a large share of the

trading volume, Babus and Kondor (2018). These markets are also characterized

by dealer sophistication due to the illiquid and sometimes complex nature of the

instruments traded. This thesis develops a network model of OTC trade between

clients and dealers that reflects these features.

Our model incorporates two critical drivers of price formation in OTC client-dealer

markets. Firstly, the extent of the participants’ information sets over the true asset

value, a common theme in standard microstructure models, which we model with a

noisy signal or estimate of the true value. Secondly, the topology of the network of
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connections between clients and dealers, as seen in the large body of work that views

markets as a network. We explore a network model that combines these two drivers,

and we examine the Bayesian Nash Equilibrium dealer pricing strategies.

We investigate how increasing transparency using our network model, where trans-

parency is modeled as a refining of the clients’ information sets regarding the asset’s

true value. We find that the clients’ degree distribution is critical in the direction of

the effect on spreads. Clients with low dealer connectivity (a degree of 1 or 2) ben-

efit from increased transparency through lower bid-ask spreads. In contrast, clients

with a higher degree (3 or more links) suffer increased spreads in equilibrium. This

increase is due to the increasing dominance of the winners’ curse effect and the initial

relative informedness of clients and dealers. This result might offer some explanation

as to the mixed results when regulators have mandated increased transparency.

An effect in OTC markets, known as the centrality premium effect, where more

centrally located dealers make consistently wider or tighter spreads than less centrally

located dealers, has been documented by various authors. Traditional market models

cannot totally explain the range of these effects. Hollifield et al. (2012) find a negative

relationship between bid-ask spreads and dealer centrality in the US securitization

market. In contrast, Di Maggio et al. (2017) and Li and Schürhoff (2019) find a

positive relationship between bid-ask spreads and dealer centrality in the US corporate

bond and US municipal bond market. Our network model predicts these premiums

and discounts. Similarly, our model correctly predicts a centrality discount for the

largest bookmakers in our empirical study of the UK gambling market.

We also apply the model to several pricing anomalies identified by Biais et al.

(2005), such as why safe municipal bonds have bigger spreads than riskier bonds

or equities. Our model explains these effects by the different link distributions of

the clients and asymmetric information. The effect of illiquid bonds having tighter

spreads than very liquid bonds in the US corporate bond market was observed by

Goldstein et al. (2007). Our model shows how these two markets’ topological and

information structures are consistent with this effect.

In our model, the market consists of clients, a set of dealers, and a homogenous

security that has a common but unknown value to all agents. It is a natural assump-

tion to assume a common value element in security valuation, Bilais et al. (2000).
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Clients requests trading quotes from their connected dealers, as determined by their

links in a network. Each client has an exogenous reason for trading but is not a noise

trader in the traditional microstructure sense. Instead, they are boundedly rational

and attempt to measure the true value before trading. The clients then trade at

the best price observed in their local network, only if the price is better than their

estimate. This classification of client behavior is consistent with the empirical work

of Gode and Sunder (1993), where the machine traders that turned out to be most

similar to human traders were the zero-intelligence ones with budget constraints -

traders who were not allowed to trade at a perceived loss. Similar to de Kamps et al.

(2012), we examine heterogeneous boundedly rational clients who base their trading

decisions on their noisy valuation of the asset. Dealers are risk-neutral and strategic

(they form expectations over other beliefs and actions in the network) and, similar

to the clients, estimate the asset’s true value. They use these to make a bid and ask

price to maximize their payoffs in competition with the other connected dealers.

This thesis follows many authors in representing decentralized trade using a net-

work, and we represent a stylized OTC market as a bipartite network, where node

types are partitioned into clients and dealers. This partition follows naturally from

price makers and price takers’ market functions, leading to a Bertrand price compe-

tition among connected dealers, with the best-priced dealer winning the trade.

In contrast to the majority of papers that examine the OTC inter-dealer market,

this thesis examines the client-dealer OTC network in a similar way to authors such

as Hendershott et al. (2020), and de Kamps et al. (2012). Our interest is how clients

connect to the dealer set and use the empirical results of Hendershott from the corpo-

rate bond market, who found a power-law distribution in client dealer links with an

exponential tail. One-third of clients had only one dealer link, with a small fraction

having a large number of links. Similarly, the UK gambling market can be catego-

rized as an OTC market where bookmakers are the dealers and gamblers are the

clients. Again, 44% of clients have only one account with a mean of 2.7 accounts, UK

Gambling Commission (2019). These empirical observations of the network topology

in the client-dealer network form the basis of our network modeling.
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Although networks offer an excellent description of the topology of who is con-

nected to who, the trading interactions or microstucture1 determine the traded prices

once the network has been set. While much of economics abstracts from the mechanics

of trading, microstructure literature analyzes how specific trading mechanisms affect

the price formation process, and how agents negotiate the terms of trade are critical.

We assume a Bertrand price competition amongst the dealers with each client, and

each dealer does not price discriminate due to not knowing the client’s degree. This

interaction could lead to the usual Bertrand paradox – when a client is connected to

two or more market-makers, price competition will force the price to marginal cost

causing zero profits in expectation. In financial market securities, we assume a com-

mon but unknown value to the security. This uncertainty in the common value causes

competitive dealers to make non-zero bid-ask spreads and, importantly, non-zero pay-

offs in equilibrium. This unknown common value effect on Bertrand competition is

similar to the results of Spulber (1995), who analyzed the independent private values

case and found a similar non-zero profit result. This non-zero profit in competitive

equilibrium leads to the dealer’s price to depend on the client base’s degree of con-

nectivity, which leads to equilibrium prices to depend on the network topology. This

result is in contrast to many microstructure models, for instance, Kyle (1985), who

postulated a zero-profit condition without any game-theoretic foundation but is in

line with the models of Bernhardt and Hughson (1993) and Bilais et al. (2000), who

also predicted positive profits in equilibrium.

Our network model consists of two elements: the nature of the price forming

interactions between clients and dealers, which we assume is a standard Bertrand

price competition with unknown common values. Secondly, the nature of the set of

dealers that the client requests trading prices from, the network structure. Much of

the literature uses search models for this stage, but our model uses a fixed network

which better represents the nature of client-dealer links in many OTC markets, such

as corporate bonds and derivatives. Empirically, while some markets can be described

by random meetings among traders who are small relative to the market, in others,

1Maureen O’Hara defines microstructure as the study of the process and outcomes of exchanging
assets under explicit trading rules.
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in particular, client-dealer OTC markets, relationships are not random. Due to rela-

tionship formation and maintenance costs, clients adopt relatively few links to dealers

to find prices and trade. This formulation is in line with the assumptions of Babus

and Kondor (2018) and others who rely on a fixed network and the empirical work of

Hendershott et al. (2020) in the corporate bond market and Mallaburn et al. (2019)

in the Bank of England empirical study on investment grade and high yield bonds.

The roadmap of this thesis is as follows: Chapter 1 provides an introduction and

a review of the relevant OTC and microstructure literature, Chapter 2 introduces the

microstructure model that governs the price formation process, Chapter 3 looks in

detail at the nature of the equilibrium solutions in a duopoly dealer market, Chapter 4

introduces networks and specifies the network topology of the network model, Chapter

5 introduces the payoffs in a multi-dealer network game, numerical procedures for

finding them and looks at the effects on the equilibrium in various informational

regimes and network topologies, Chapter 6. presents an empirical study of the UK

gambling market and applies the model to calculating bookmakers odds prices.

1.2 Related Literature

Our model can be split into two main parts. Firstly, the price negotiation process

between individual customers and their connected dealers. Secondly, applying this

microstructure to a network setting of multiple customers and dealers with heteroge-

neous connections. The first part is related to the traditional microstructure litera-

ture, and the second part is related to models of search on a network and specifically

to the extensive work on trade in OTC markets.

1.2.1 OTC Literature

The standard method of analyzing OTC markets has been the search and bargaining

approach, and the cornerstone to modeling decentralized markets was first proposed

in the seminal paper by Burdett and Judd (1983). They proposed a model where

customers search firm counterparties with an associated cost. They considered both

nonsequential search, where consumers decided ex-ante how many firms to contact for
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prices, and noisy sequential search, where customers continue searching until certain

conditions are fulfilled. They show that an equilibrium strategy exists in both cases

and leads to price dispersion in the market.

The most common approach to modeling price formation in OTC markets is

based on this random search and matching approach, typically without a fixed net-

work. This approach to modeling OTC markets was pioneered by Duffie et al. (2005);

Pedersen et al. (2007), who study how asset prices in OTC markets are affected by

the search costs associated with the search for counterparties and subsequent price

bargaining. They show how bid-ask spreads are lower if traders can more easily find

other traders or are connected to multiple market-makers and characterize the equi-

librium pricing. They subsequently extend their search frictions analysis by looking

at the effects of risk aversion and supply shocks.

Another important paper by Lagos and Rocheteau (2009) looks at the liquidity

providing function of dealers and its importance during periods of market turmoil.

Their model involves allowing continuous trading between dealers, but trading with

investors is subject to search delays and bargaining. They examine the dealer in-

centives that satisfy both liquidity provisioning and market efficiency. In their later

paper (2009), they extend the model of Duffie et al. (2005) by allowing unrestricted

asset holding and show how asset demand changes are a key determinant of the bid-

ask spread and other trading metrics. Afonso and Lagos (2015) develop a model of

the federal funds market using the search and bargaining approach of Duffie, where

banks have to search for a suitable counterparty and then negotiate the terms of

the loan size and repayment schedules. Duffie et al. (2017) characterize the role of

benchmarks in OTC markets as a mechanism of reducing informational asymmetry

between dealers and customers, who, similar to our model, are typically less well

informed than the dealers. They show that providing a benchmark in opaque OTC

markets can improve efficiency by encouraging customer entry, improving matching

efficiency, and search costs. This effect is also evident in our model by increasing the

signal precision of the clients relative to the dealers.

By design, in OTC search models, transactions are between atomistic dealers

through non-persistent links. Therefore, using a fixed network, our model’s method-

ology better captures the effects of greater centrality of the few large dealers that
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intermediate the bulk of the trading volume. Empirically, while some markets can be

described by random meetings among traders who are small relative to the market,

in others, in particular, client-dealer OTC markets, relationships are not random but

fixed and persistent through time. Due to relationship formation and maintenance

costs, clients adopt relatively few links to dealers to find prices and trade.

In our model, we take the market network structure (who trades with whom) as

given and, in this sense, are closer to this separate strand of literature that views

agents as interacting on a fixed network, such as the seminal work by Kranton and

Minehart (2001). They looked at a network of buyers and sellers (in an IPV set-

ting) and showed, using Hall’s Marriage Theorem, the existence of a matching in a

bipartite buyer-seller network. They use an ascending price auction representation

of competition to solve for an equilibrium, which they show is efficient and pairwise

stable. The paper demonstrates how buyers’ and sellers’ network structure is formed

and includes the idea of link costs in the formation. Several of these ideas appear

in our OTC model. Firstly, we restrict client networks to a fixed small number of

links due to link formation and maintenance costs. Secondly, we also use a heteroge-

neous asset estimate for each agent; however, we use a common value for the payoffs,

which makes the auction calculations more difficult. Gale and Kariv (2007) develop

a financial network model with similarities to Kranton et al. In this paper, agents

interact on a fixed network structure similar to our model, although they consider

a unimodal network where agents are either buyers or sellers. Blume et al. (2009)

model intermediation over a fixed network and finds that equilibrium strategies are

network-dependent.

1.2.2 Microstructure Literature

The market microstructure literature is extensive (see Biais et al. (2005) for a full

review) but is divided into primarily two distinct approaches - Inventory Models and

Asymmetric Information Models. A key assumption in most microstructure modes

is the existence of a proportion of informed and uninformed traders. This proportion

is generally held to be common knowledge. These trader classes can be viewed as

a simplification of the client group’s level of ’informedness’, and this informedness
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of the clients is covered in our model with the variance or precision of the trader

signal error. Low (relative) signal error corresponds to low variance in the model and

mimics the literature’s informed traders. Conversely, high signal variance corresponds

to less informed traders. Many of the models also assume a zero profit condition in

competition which is an assumption we do not make. Indeed, the non-zero profit

condition is critical to the network effects of the model.

Inventory Models

The inventory-based models assume that a market-maker adjusts the bid-ask spread

in response to the asynchronous arrival of trades. These models assume that the

market-makers’ primary role is as liquidity providers and demonstrate how the bid-

ask spread compensates them for price risk on inventory. Garman (1976) was the first

to model microstructure from an inventory perspective. Briefly, the model considers

a single market-maker and assumes that buyer’s and seller’s arrival follow a Poisson

process. The arrival frequencies depend on prices traded, and the dealer uses a bid-ask

spread to make profits causing lower amounts of trade with a wider spread. The dealer

constraint is that inventories are targeted at a specific level. The asset is assumed to

follow a mean zero random walk, hence ensuring a non-zero probability of bankruptcy

over time. In order to counter this, market makers adjust prices dynamically with

inventory positions.

Similar to Garman, Amihud and Mendelson (1980) extend the Garman model

where the dealer’s inventory is allowed to fluctuate between two bands. Quotes are

updated when inventory approaches these bands to affect the arrival rate of buyers

and sellers. Like Garman, traders are assumed to be uninformed liquidity traders,

and dealers only include inventory in the pricing function.

Ho and Stoll (1981) focus on how risk-averse dealer’s inventory, processing costs,

and adverse selection determine the bid-ask spread. The additional assumptions in

this model are; a dealer with risk aversion with no hedging possibilities and seek to

maximize the final utility of wealth. This model concludes that the bid-ask spread

is independent of the inventory position but is affected by the dealer’s risk aversion.

Ho and Stoll (1983) extend the model and show that inventory affects the dealer’s
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quote level but not the spread magnitude is robust to multi-period and multi-dealer

settings.

More complicated models have been introduced, and some of the major contri-

butions have been: Stoll (1989), Huang and Stoll (1997), which add complications of

adverse selection and, Bollen et al. (2004), who uniquely use option analysis to iden-

tify the components of the bid-ask spread. However, the setup continues with the

assumption of informed and uninformed traders, where by definition, the informed

traders are more informed than the dealer.

Asymmetric Information Models

Asymmetric information models assume that the market comprises agents with vary-

ing degrees of information regarding an asset’s price. Again, the market-maker role

is assumed to provide liquidity to traders who can be either informed or uninformed

about the true asset value. Market-makers make losses when trading with informed

traders and profits when trading with uninformed traders leading to the market-

maker trying to recoup informed trader losses from uninformed traders by providing

a bid-ask spread. Rational, competitive market-makers set their bid and ask prices ac-

cordingly, and more extreme information asymmetries lead to wider bid-ask spreads.

These asymmetric information models are further classified as either strategic trade

models, where clients participate in the market only once, or sequential trade models,

where randomly selected clients sequentially arrive at the market.

Sequential trade models refer to the class of asymmetric information models where

randomly selected traders arrive sequentially at the market. The main assumption in

these models is the existence of heterogeneously informed traders. These are defined

as ”informed traders,” who trade due to private information on the asset’s funda-

mental value, and ”liquidity traders,” who trade for exogenous reasons, like portfolio

rebalancing or liquidity needs.

Copeland and Galai (1983); was the first paper to consider the cost of asymmetric

information. A simple setup of a proportion of informed and uninformed traders

interacts with a dealer who makes a bid and an ask price. The ratios of the types of

traders are known, and the dealers’ optimization problem is simply the maximization

of the expected payoffs from both types of traders.
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Glosten and Milgrom (1985) produced a seminal model in the literature similar

to the Copeland model. An asset has a high or low payoff with a certain probability,

and the informed traders know the actual realization. The uninformed traders trade

randomly. Notably, the dealer is uninformed but knows the proportion of informed

traders and has a zero profit condition. As trades enter, the dealer updates the

probabilities of the expected value of the asset. The model predicts that order flow is

correlated, and bid-ask spreads decline over time as the actual probability precision

narrows.

Easley and O’Hara (1987) extend the Glosten model, where both sets of traders

can decide between large or small trade volumes. There are now two market-makers

and a zero profit condition. The model’s main point is that their bid-ask spreads

are affected by trade size since large trades are correlated with adverse selection. In

their follow-up paper in Easley and O’Hara (1993), they added a no-trade option for

uninformed traders, thereby adding correlation to the timing of trades.

In Strategic trade models, traders and market-makers form expectations over the

other’s behavior in order to find an optimal strategy. The seminal model in this field

is the model by Kyle (1985) and has been extended by various authors. In particular,

Vives (2011), who formulates a model based on Kyle and uses dealer price schedules

to examine equilibrium. Babus and Kondor (2018) then extend the Vives model to a

network setting.

The Kyle (1985) model is set up similarly to the other asymmetric information

models: a single-period model with a random (normally distributed) final value as-

set, a group of liquidity traders, a single risk-neutral insider trader, who knows the

final realization, and a single risk-neutral uninformed market-maker. The liquidity

traders submit orders to buy a random (normally distributed) amount of shares of

the asset, and the insider must decide on optimal trade size. The market-maker must

strategically decide on a bid-ask spread strategy that incorporates the probability of

the insider trading. As order volumes increase, the market maker makes increasing

spreads as the size of the aggregate order flow is correlated to the insider trades. The

insider also models the market maker’s strategy and submits orders accordingly. Ad-

mati and Pfleiderer (1988) provide an extension of the Kyle model by allowing some

uninformed traders to behave semi-strategically by allowing them to time their trades.
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They are referred to as discretionary traders because although they are obliged to

trade, they have some discretion on their trades’ timing. Our model’s clients bear

some similarity to these discretionary traders, but instead of timing, they have a

reservation price, based on the true value, that must be met before they can trade.
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Chapter 2

A Model of Trading in OTC

Markets

An OTC market is distinguished from a centralized market by the network of con-

nections of the participents - who is connected to whom. As clients can only receive

trading prices from connected dealers, the form of the interactions or trading pro-

tocols between the clients and dealers and their link topology can lead to different

prices trading in different parts of the network. We model the interaction between

clients and dealers as a price competition process in the style of Bertrand (1883) with

unknown common values between the clients and their connected dealers. We begin

by defining the agents, properties of the asset, their connectivity in a network, and

finally, the trading protocols that govern the price-setting process.

2.1 Agent Types

There are two agent types in our OTC market model - clients and dealers, which are

analogous to the firms and customers in traditional economic theory.

2.1.1 Clients

Clients have an exogenous reason for trading (and can be either a buyer or a seller).

They are boundedly rational in the sense that they attempt to estimate the true

value but naively use this estimate as their reservation price before accepting a dealer

quote. This client specification is in line with Gode and Sunder (1993), who found
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that the artificial traders that were the most similar to human traders were the zero-

intelligence ones with budget constraints, i.e., traders who were not allowed to trade

at a perceived loss. In our model, each client’s reservation price is a random variable

that depends on the true value and sets the boundedly rational strategy of the clients.

This formulation of the client reservation prices allows us to model differences in

information sets regarding the true value via signal variance differences and is similar

to the fundamentalist client specification in de Kamps et al. (2012), who also used

client valuations to determine their trading strategy.

2.1.2 Dealers

The dealers are risk-neutral strategic agents who seek to maximize their expected

profits by quoting a buy price PB and a sell price PA to the clients. They are strategic

in the sense that they attempt to estimate the true value of the asset traded, form

beliefs as to the competitor estimates, and use these estimates to construct their

buy and sell prices. Dealers fulfill the liquidity-providing market function by being

compelled to both make a price if requested and trade on that quoted price. These

assumptions contrast with the pure uninformed liquidity provider assumptions of

both the inventory and Asymmetric information-based microstructure models. They

set their buy prices and sell prices to maximize their expected profits in equilibrium,

and the difference between their buy and sell prices is known as the bid-ask spread.

Dealers base their bid and ask prices as a function of their estimate of the true value

and an expectation of all other agents’ estimates and assume that other dealers will

be doing the same.

2.2 Common Asset True Value and Signals

In many OTC markets, such as derivatives and corporate bonds, the trading frequency

in each issue and the proportions of buyers and sellers at any one time make matching

trades between clients difficult, suggesting dealers need to have a valuation of the final

payoff of the asset. For example, in the US and UK corporate bond market, each

individual bond issue trades on average 2.4 times per day, Bessembinder et al. (2020).

For illiquid issues, they trade even less often. In the corporate bond market in the EU,
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there are over 150,000 outstanding securities issued where only the top 3000 trade

more than once per day. In addition, average trade sizes are over $1million compared

to equities of $43,000, International Capital Markets Association. Dealers knowingly

assume the opposite side of the client trade and receive any ensuing payoffs from the

asset. Therefore, they have an incentive to value the asset as accurately as possible.

In our model, we assume a common unknown value of the asset to each agent at the

time of trading. For most traded financial assets, the final or true value is the same

for all agents. However, the process of measuring this value a priori is subject to both

measurement and model error.

The clients and dealers estimate the asset’s value before trading but with some

error or uncertainty, which we characterize with some noise N(0, σ). Agents attempt

to measure this true cost (value), and we can model this by each of them receiving

a sample (signal) from a known distribution. This measurement of the true value is

subject to independent and idiosyncratic measurement error or interpretation, and

we use a normal distribution as the common distribution of the error signals. In many

fields, measurement errors (as opposed to systematic errors) are modeled as normally

distributed. We can view measurement as the result of a process, where each step in

the process may lead to a small error with a probability distribution (F.P. Schloerb,

Computational Physics, University of Mass). The sum of these errors over all of the

measurement steps leads to a final error that is normally distributed, whatever the

error distribution in the individual steps.

In our case, since the asset’s true value is subject to many micro-measurements

that may come from any distribution, we can apply a normal distribution. For in-

stance, the price forecast for a stock is dependent on correctly measuring current

earnings, likely sales growth, consumer trends for their products, global interest rates,

and general economic conditions, to name but a few. The central limit theorem says

that the distribution of these price estimates will tend to a normal distribution as the

number of estimated factors grows large.

There is some empirical evidence for investor valuations being normally dis-

tributed: CXO Advisory group analyzed 6582 forecasts1 for the US stock market

between 2005 - 2012, and found that their forecast accuracy was on average close to

1see https://www.cxoadvisory.com/gurus/ for the full analysis
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zero with an approximately normal distribution. Also, the estimates of Vote shares in

forthcoming elections are modeled with a normal distribution by polling companies

in Chapter 6.

In line with Babus and Kondor (2018) and others, we have adopted an additive

(normal) error term as the signal and the statistical form of the beliefs of the true

value. Although stock price and earnings forecasts are not an exact proxy for beliefs

(due to herding and other strategic behavior), SPX forecasts were found to be approx-

imately normally distributed with a zero mean (true value), and Kim et al. (2017)

analyzed individual stock analyst forecasts using IBIS data over a 30 year period.

They found a lognormal distribution best describes the forecasts with a positively bi-

ased mean and unbiased median. Individual forecasts are complex as they are affected

by the individual incentives of the financial analysts, as evidenced by some fat tails

in extreme forecasts. In any event, the normal distribution is a good approximation

to a lognormal distribution when the variance is small relative to the mean value. A

widely used heuristic rule is that if X is LN(m,s), then X is approximately N(m, s) if

m > 6s. Suppose a security has a mean value of 100 with an estimation error or 10

or 15%, then figure 2.1 illustrates the approximation.

Figure 2.1: Illustration of the normal approximation to lognormal
when means are greater than standard deviations

As an example of financial market instrument measurement error even in the

simplest of instruments, Cammack (1991) found that empirical bond auction results

suggest that imperfect information is present in the Treasury bill market. This fi-

nancial instrument should have one of the lowest forms of potential measurement
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or interpretation error (short duration and limited pricing factors). She found the

mean auction price for 3-month bills was, on average, four basis points below the

comparable secondary market price for the 1973-84 period. She concluded that this

”downward biasing” is positively related to the anticipated amount of dispersion of

auction bids that suggested that auction bidders use a bidding strategy that accounts

for their lack of agreement about the bill’s value.

Suppose the true asset value is V so that the client i has an estimate Vi which we

model by them receiving a signal Vi = V + εi, where εi ∼ N(0, σT ). Similarly for the

signal of dealer j: Vj = V + εj where εj ∼ N(0, σM ). Note that E[Vi] = V , the true

value, for both clients and dealers. We assume that all dealers have the same signal

error variance, although relaxing this assumption does not fundamentally change the

model or the results. The variance of the signal could also be interpreted as the so-

phistication of the clients. If their level of sophistication is anti-correlated with their

connectivity, this may add an important multiplying effect. We only consider that

clients all have the same signal variance in the model and analyze the dealer behav-

ior towards them. However, if client degree and signal variance are anti-correlated,

certain effects will be magnified, and these will be clear in the later sections.

2.3 Client and Dealer Strategies

As above, dealers and clients begin the trading process by attempting to estimate

the true asset value. The clients set their reservation prices based on their signal

level and have a naive strategy that maps each possible signal (value estimate) onto

a reservation price. The dealers make bid and ask prices around their own signal.

We assume a symmetric linear bidding strategy from the dealers, which is justified

by the equilibrium solutions of Wilson (1969) in the 2-bidder case and both Levin

and Smith (1991) and Wilson (1992) in the n-bidder case and explored in section

2.9 and 3.3.2. That is, each dealer i receives a signal Vi regarding the true value V,

Vi ∼ N(V, σM ) and makes a price quote of (Vi− δi, Vi + δi) to their connected clients,

where δi is known as the semi bid-ask spread. This linear bidding strategy maps each
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signal (asset valuation) onto a trading price.

PBID(Vi) = Vi − δi : Vi → R

PASK(Vi) = Vi + δi : Vi → R
(2.1)

Where, Vi ∈ (−∞,∞), δi ∈ [0,∞).

We assume that the dealers are strategic in their selection of δi. Their buy and sell

prices incorporate a reduction δi to their estimate Vi that is designed to compensate

for the possible error in their estimate, a profit margin, and an expectation of other

dealer strategies. This amount over the estimated true values δ is the semi bid-ask

spread. The dealers do not see the other dealers’ prices when they make their bid

and ask prices. The technical justifications for a linear bidding strategy are discussed

in the next chapter.

2.4 Connectivity in a OTC Financial Market

In OTC markets, empirical observations have shown the network structure to have

three main features. Firstly, a highly connected core of dealers, Li and Schürhoff

(2019) and others. Secondly, a small subset of dealers that intermediate a dispro-

portionate amount of trade, Hendershott et al. (2020), Mallaburn et al. (2019) and

others, and thirdly, client nodes with relatively few but persistent links to the deal-

ers, Babus and Kondor (2018). These empirical observations of the OTC network

topology (detailed in section 4.3) suggest a core-periphery network structure. How-

ever, we do not explicitly model the dealer-dealer subnetwork and focus only on the

client-dealer subnetwork.

The competitive process in OTC client-dealer markets is comprised of two eco-

nomic agent types - clients and dealers. The clients connect to the dealers in some

way and request quotes from these connected dealers. Typically, clients have only

a few links to dealers, as demonstrated by the empirical work of Hendershott et al.

(2020) in the corporate bond market. Clients do not typically connect with them-

selves due to search costs constraints. In OTC financial markets, dealers often also

connect to other dealers in order to trade together due to heterogeneous inventory
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capacities, Chung-Yi Tse et al. (2021). The dealer-dealer behavior is not modeled,

but we assume that dealers are connected in a dense network, Mallaburn et al. (2019),

Li and Schürhoff (2019) (and many others) and use this inter-dealer network to trade

with each other in order to balance inventory, meet liquidity needs and speculate,

de Kamps et al. (2012).

We construct a simplified version of an OTC client-dealer market by representing

it as a bipartite network (a network with two node types), where nodes represent the

dealers and clients and the links represent a possible trading relationship between

them. Suppose there are N dealer nodes and M client nodes.

Figure 2.2: A graphical bipartite network representation of an
OTC market

Figure 2.2 shows an example of a bipartite network representation. Dealers Di

have a valuation VDi of a homogenous asset and make prices Pi to their connected

clients Cj . The clients have a valuation VCj of the asset. Each client can only trade

with the dealer(s) that they are connected to at a price Pi suggested by that dealer.

The client selects the best price of their connected dealer(s), and trade occurs. The

exact trading protocols are discussed in detail in section 2.6.

2.5 OTC Trading Architecture

Most OTC dealer markets have some standard trading protocols, and Biais et al.

(2006), after extensive interviews in the OTC client-dealer market for bonds, identi-

fied several essential features of OTC dealer markets, which guide the trading proto-

cols of our model:

• Clients request quotes from dealers.



20 Chapter 2. A Model of Trading in OTC Markets

• Dealers respond to these requests for quotes by posting bid or ask prices simul-

taneously and independently. These quotes are firm, and the customer allocates the

order to the best quote.

• There is no pre–trade transparency, in the sense that the customer does not

see quotes before submitting the request for quotes. Neither do the dealers see the

quotes of their competitors.

This schedule of trading interactions can be modeled as a simple Bertrand price

competition with an unknown common ’true’ value V. The dealer with the best price,

P, trades with the client and receives a payoff of P − V . All other dealers who are

also connected to this client receive a zero payoff. We assume that the dealers are

simultaneously pricing with other clients and the dealers do not price discriminate

and make the same prices to all their connected clients.

The model of the OTC market that we use can be described as a 1-period, quote

driven market with a single risky asset traded that has an unknown common value a

priori to all agents. Price sensitive, price-taking clients interact through risk-neutral

price-setting dealers who are strategic in their price setting and who seek to maximize

their payoffs in equilibrium. The dealers make executable 2-way prices (buys and

sells), and the clients contact the dealers and accept their quotes to trade or not,

depending on their reservation prices. We assume a unit demand from the clients for

the asset.

2.6 Model Protocols

• We assume that it is common knowledge that each dealer and client estimate the

true value of the asset with a known (normal) probability distribution. Furthermore,

it is common knowledge that each dealer adds an linear amount to their estimate to

make a trading price

• Dealers estimate true asset price V, modelled by each receiving a signal Vi ∼

N(V, σM )

• Clients Cj estimate true asset price V, modelled by receiving a signal Vj ∼

N(V, σT )

• Dealers construct bid and ask prices based on their estimate of Pi
B = Vi − δi
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and Pi
A = Vi + δi

• Clients form reservation prices R based on their signal of R = Vj

• Clients Cj request trading prices from their connected dealers N [Cj ]

• If best trading price from connected dealers is better than R, then a unit trade

occurs at the best dealer’s price

• After all trading, true value V is realized and payoffs are calculated

A client asking N dealers for a price in an OTC market, where the dealers do not

see each other’s quotes, is strategically equivalent to the client conducting a blind

first price common value sealed bid auction with the N dealers. In this setup, the

client is the auctioneer, and the dealers the bidders.

Figure 2.3: The trading protocols for a buying client connected to
a subset of dealers

2.7 Payoffs

We begin by examining the base case of the expected payoffs for multiple competitive

dealers and one client. This is then extended to the M client case, where the clients

are connected to the dealers in a sparse network structure which we define in detail

in Chapter 4.

Let there be N dealers and 1 client. Dealers and clients receive independent signals

{Vi} as to the true value of the asset with a signal error that is normally distributed

with mean V and standard deviation σM for each of the dealers and σT for the clients.
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Clients set their reservation price at their signal - a naive estimation, to model the

boundedly rational behaviour of clients. We make the standard assumption that

dealers seek to maximize their expected payoffs in equilibrium.

2.7.1 N dealers, 1 Client payoffs

In an OTC market with one client and n dealers, the payoff for dealer i, in competition

with the N-1 other dealers from a single selling client is :

Πi =

 V − Pi : if Pi > Pj ∀j and Pi > R

0 : otherwise

 (2.2)

where Pi is the buying quote of dealer i and V is the true value. Pj represents the

buying quotes of the other N-1 dealers. R is the client reservation price that must

be bettered if a trade is to occur and is a random variable dependent on the client’s

signal variance. The dealer has a non-zero payoff only if they have the highest price

with an analogous expression for the client buying. The dealer with the highest price

gets selected to trade, and the expected payoff is the expected value of this highest

price, conditional on the price being a maximum for buys (and minimum for sells).

Client payoffs are the opposite of the dealer payoffs, and the game is zero-sum;

hence the client payoff is:

Πclient = {Pmax − V : ifPmax = Max(Pi) > R : zero otherwise } (2.3)

There is an analogous expression for a buying client. In this case the dealers make a

buying price of Pi = Vi − δi = V + εi − δi , that is, they reduce their signal by δi and

the payoff for dealer i becomes:

Πi = {−εi + δi : if εi − δi > εj − δj , ∀j & Pi > R : zero otherwise} (2.4)

The dealer with the highest signal error, adjusted by their bid-ask spread, gets

selected to trade. This bidding strategy can lead to a negative payoff problem if

δi is too low and leads to the widely observed phenomena of the winners curse2.

2Common Value Auctions and the Winners’ Curse, Princeton U Press (2001)
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This phenomenon occurs in common value auctions when bidders do not sufficiently

compensate for the fact that the probability of having an incorrect price is less than

the probability of an incorrect price conditional on being the best price. This non-

strategic behavior can lead to overbidding and negative payoffs.

The expected payoff for buys is the expected value of −(εi − δi) conditional on

this being a maximum in the game and for sells is the expected value of −(εi + δi)

conditional on this being a minimum in the game. When ε is from a symmetric

normal distribution with a mean zero, these payoffs are identical. The expected value

is calculated below for the n-player case.

We assume each dealer Di, uses a linear bidding function (strategy) that maps

their signals Si (estimates) onto a trading price and quotes a selling price (after

receiving their signal) of Pi = Si + δi = V + εi + δi and has a payoff of (εi + δi) if

(εi + δi) is less than all the other (εj + δj) of the other dealers and also less than the

client reservation price εT +R, zero otherwise. Each (εi + δi) is normally distributed

as N(δi, σi).

Consider the N-1 other dealers and the client reservation price. We first need to

calculate the probability that dealer i’s price is less than the minimum of this group.

Formally we are looking for the probability of dealer i, to win a competitive auction

with N-1 other dealers subject to a client reservation price. P (pi = V + εi − δi < Y )

where Y = min{ε1 + δ1, ε2 + δ2, ...., εi−1 + δi−1, εi+1 + δi+1, ..., εN + δN , εT +R}.

Consider N+1 independent normal random variables, X0, X1, ..., XN , where each

Xi has a mean δi and standard deviation σi.

Hill, J (2011), analysed the case of the probability of an independent normal RV

X0 ∼ N(δ0, σ0) being less than the minimum Y of N other normal (independent)

RV’s X1, ..., XN with Xi ∼ N(δi, σi) is :

Pr(X0 < Y ) =

∞∫
−∞

1

σ0
φ(
s− δ0

σ0
)

N∏
j=1

(1− Φ(
s− δj
σj

))ds (2.5)

where δj is the spread charged by dealer j who receives a signal Sj ∼ N(V, σj) and Φ(·)

and φ(·) are the distribution and density functions of a standard normal distribution.
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The expected value of this RV is:

E[X0] =

∞∫
−∞

sPr(X0 = s) Pr(Y > s)ds (2.6)

Therefore, we can express the expectation of the payoff Πi from each buying client

as:

E[Πi] =

∞∫
−∞

s

σMi
φ

(
s− δi
σMi

) N∏
j=1,j 6=i

(
1− Φ(

s− δj
σMj

)

)(1− Φ(
s+R

σT
)

)
ds (2.7)

Now consider the selling clients. The calculations are the same but now involve

maximum order statistics. Specifically, each dealer makes a buying price (after re-

ceiving their signal) of V + εi − δi and has a payoff of P − V = −(εi − δi) if (εi − δi)

is greater than all the other (εj − δj) of the other dealers and greater than the client

reservation price εT +R, zero otherwise.

Consider the N-1 other dealers and the client reservation price. We are interested

in the probability that dealer i’s price is greater than the maximum of this group. By

the same procedure as above, this expected payoff equals:

E[Πi] = −
∞∫
−∞

s

σMi
φ

(
s+ δi
σMi

) N∏
j=1,j 6=i

Φ

(
s+ δj
σMj

)Φ

(
s−R
σT

)
ds (2.8)

It is easy to show that the payoff functions (2.7) and (2.8) are the same. This is

also apparent by a symmetry argument. In this chapter we are only considering the

case of σMi = σM , that is, all dealers have same signal variance.

Variance of the expected payoffs from a single client can also be calculated as:

V [εi − δi] = E[(εi − δi)2]− E[(εi − δi)]2

V[εi−δi] =
∞∫
−∞

s2

σMi
φ( s+δiσMi

)
N∏
j=1

Φ(
s+δj
σMj

)Φ( s−RσT )ds−

(
∞∫
−∞

s
σMi

φ( s+δiσMi
)
N∏
j=1

Φ(
s+δj
σMj

)Φ( s−RσT )ds

)2

(2.9)
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In summary, with one client (buyer or seller) that connects to a sub-network of

dealers D1, ...Dk, and sets a reservation price of Vj ∼ N(V, σT ) and each dealer uses

a symmetric bidding strategy of (Vi − δi, Vi + δi), Vi ∼ N(V, σM ) the expected payoff

to dealer i is:

E[Πi] = −
∞∫
−∞

s

σM
φ

(
s+ δi
σM

) k∏
j=1,j 6=i

Φ

(
s+ δj
σM

)Φ

(
s

σT

)
ds (2.10)

This is the expected payoff to each dealer and depends only on the choice variable δi,

the semi bid-ask spread, and the variance of the client and dealer estimate σM ,σT .

Figure 2.4: Comparison of numerical simulation to the derived
payoff functions

As a check, we ran numerical simulations using vectors of length z of normally

distributed random variables. We compared the payoff to each dealer in each row for

various different spread and variance levels. As an illustration, we look at 3 dealers

and 1 client. All dealers receive a signal N(V, 2) and the client a signal N(V, 3). Dealer

1 uses a spread of 2, dealer 2, 3 and dealer 3, 4. For each random signal realization

we select the dealer with the highest signal and set the payoff to the actual payoff

or zero if their price was not the highest. The average payoff for each dealer over

each sample set was taken and compared to the theoretical level above. The results
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are illustrated in 2.4. Figure 2.5 shows a sample of the 5,000,000 auctions simulated

for the average values with the winner highlighted in red. A client win means the

reservation price was not bettered and no trade occurred.

Figure 2.5: Sample of random realizations in each auction

2.8 Bid-Ask Spreads, Bertrand Competition and Auc-

tions

2.8.1 Bid-Ask Spreads and Bertrand Competition

In the traditional Bertrand model of competition, Bertrand (1883), n firms, each with

a marginal cost C, set selling prices Pi of a homogenous good to a client who selects

the lowest price to trade. This firm with the lowest price captures the whole market

and makes a payoff equal to Pi − C. This leads to a Nash equilibrium solution of all

firms pricing at marginal cost, Pi = C, in competition.

In an OTC market, the dynamics are the same, but in addition, dealers simulta-

neously provide a buying price for the asset. Suppose there are n dealers connected

to a client. Dealers (i = 1 : n), make selling prices, P selli , to a client who buys at the

lowest price, min(P selli ) of their connected dealers. Simultaneously, dealers make a

buying price P buyi to a client, who selects the highest price max(P buyi )of their con-

nected dealers. The payoff to the winning selling dealer is P selli − V , where V is the
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true or realized value of the asset. Similarly, for the buying dealer, they have a payoff

of V − P buyi .

If the true value V is known, then in competition, the standard Bertrand results

imply that each dealer would price both buy and sell prices at the marginal cost V,

causing a zero bid-ask spread. However, this common value V is not known ex-ante to

making a price. We need the Nash equilibrium solutions of a Bertrand competition

with unknown common values in order to generate the bid-ask spread. When the

cost is unknown, bidding your signal leads to the winner’s curse problem - the dealer

with the worst estimate gets selected to trade and has a negative expected payoff.

Theoretically, this estimate needs to be ’shaved’ by some amount to compensate for

this.

2.8.2 Bertrand Competition and Auctions

A customer requesting a buying price from n firms, where the customer sells to the

highest price, is the same as a price auction, where the customer is the auctioneer and

the firms the bidders. In the OTC market case, there is a common value asset, firms

do not see the quotes of other firms, and the highest price firm wins the trade. This

is strategically equivalent to the client conducting a first price common value sealed

bid auction with the n dealers. In this setup, the client is the auctioneer, and the

dealers the bidders. Because of the unknown common value, the equilibrium results

of marginal cost pricing in the standard Bertrand model do not hold, however this

auction representation of the competition process can be analyzed using the equilib-

rium results of Wilson (1969, 1977) for the pure common value case and Milgrom and

Weber (1982) for the more general payoff case. These equilibrium results of bidding

strategies will equate to a bid-ask spread around the true value of an asset. This

bidding strategy ’shaves’ an optimal amount from the estimate in order to generate

a bid and an ask price.

The next chapter looks in detail at a two dealer duopoly OTC market and looks at

the nature of the equilibrium solution in a Bertrand unknown common value competi-

tion using the results of the Wilson (1969) equilibrium bidding strategies in common

value auctions. The duopoly problem adds more insight than the general case into
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the nature of the equilibrium solution as most of the equations have neat analytical

solutions.

2.9 Equilibrium Bidding Strategies in First Price Com-

mon Value Auctions

2.9.1 Introduction

Several theoretical and empirical studies have focused on bidding behavior in the

symmetric first-price common-value sealed-bid auction, FPSBA, given different em-

pirical specifications of the distribution of bidders’ signals and the distribution of the

true value (e.g. Thiel (1988); Levin and Smith (1991); Paarsch (1992); Wilson (1992).

This appendix follows the assumptions and methodologies of Levin and Smith (1991)

in deriving the linear form of the equilibrium pricing strategy in an FPSBA when the

seller adopts a naive reservation price strategy. We show that the complication of a

naive client reservation price strategy in an n-bidder FPSBA, where the client sets

the RP at their estimate, is equivalent to an (n+1)-bidder auction where the (n+1)th

bidder uses a naive bidding strategy. This asymmetric variation has a similar solution

as the symmetric variation described by Levin, Wilson, and Milgrom.

2.9.2 Setup

We assume that n risk-neutral bidders are bidding for a particular object, where the

value of the object V is identical but unknown to all bidders prior to bidding. Before

the auction, each bidder receives a private signal Xi concerning the value of the object.

The seller sets an (unannounced) reservation price set at their own estimate Xc, and

the bidder who submits the highest bid that is also greater than the reservation price

is selected as the winner and awarded the object. Each bidder uses their private

signal Xi to form an estimate of V, i.e., E(V |Xi). No bidder knows the estimate of

any other bidder. The bidders’ signals Xi are positively correlated (affiliated) with a

cumulative distribution function F (X|V ). The bidders have prior beliefs about the

true value V which is characterized by the cumulative distribution function G(V ).
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The number of bidders and the distribution functions of Xi and V are assumed to be

common knowledge.

2.9.3 Solution to the Standard FPSB Auction

Levin and Smith (1991), in a comment on Thiel (1988) derive the explicit form of

the equilibrium bidding solution in a standard common-value auction (no reserve

prices). Each bidder observes a random signal Xi with variance σ2, which is an

estimate of the unknown value V of the item being auctioned. F (Xi|V ) represents

the conditional distribution of the ith bidder’s estimate, and g(V |Xi) represents the

bidder’s posterior density for V given the signal Xi. Let B(X) represent the symmetric

equilibrium strategy used by each of n bidders, with B
′
(·) > 0 such that the inverse

r(B) = B−1 is well defined. If all other bidders are using this strategy, then the ith

bidder’s problem may be written as:

max
B(X)

∫
ΣV |X

(V −B)F (r(B)|V )n−1g(V |X)dV (2.11)

Taking the first-order condition and additionally imposing the following three

conditions proposed by Thiel (1988):

1) Each bidder’s prior distribution of value V is diffuse: g(V ) is constant for all

V.

2) Estimation errors are statistically independent of the item’s true value: F
′
(Xi −

V |V ) = f(Xi − V |V ) = f(Xi − V )

3) Each bidder’s estimate of the value is unbiased: E(Xi) = V .

Leads to the differential equation:

B′(X) +K1B(X) +K2 −K1X − 1 = 0 (2.12)

This has a solution of:

B(X) = X − K2

K1
+ β exp(−K1X) (2.13)

Given the assumptions above and, additionally, the assumption that the estima-

tion errors are normal and independent of the true value, then Levin and Smith
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(1991), show that the optimal bid function in the first-price auction can be derived

as a family of solution with a parameter β ≥ 0

B(X) = X − αnσ + β exp(−
∫ ∞
−∞

tdG(t)nX/σ) (2.14)

Where αn =
∫∞
−∞ t

2dN(t)n/
∫∞
−∞ tdN(t)n is the ratio of the second and first moments

of the maximum values of a standardized normal distribution. β = 0 corresponds to

a linear solution.

Wilson (1992) remarked that in practice, bidding strategies are often constructed

on the assumption that the marginal distribution of the common value has a large

variance. For example, suppose that each estimate Xi has a normal conditional

distribution with mean V and variation σ2, and that the marginal distribution of

V has a normal distribution with variance s2
0. Then with no reservation prices, the

limit of the symmetric equilibrium bidding strategy as s0 →∞ is B(X) = X − σan.

That is, bidding strategies converge to linearity as normally distributed priors become

diffuse in the limit.

Empirically, a linear bidding function in FPSBA has been observed in the US

Treasury market, Cammack (1991) and Paarsch (1992) found that a value of β = 0

(a linear bidding function) was statistically the most likely value of β from the data

of 144 separate auctions.

For both theoretical and empirical reasons, we focus on the linear bidding strategy

solution in a standard FPSBA3.

2.9.4 Equivalence of Reservation Prices and Extra Bidder

Although in an FPSB auction with uninformative prior distributions and normal

estimates, the symmetric Nash equilibrium strategy is linear in signals; this may

not necessarily hold when we add the complication that the client also receives a

private signal Xc about the true value V and adopts a naive reservation price strategy

RP (Xc) = Xc. In this case the seller’s ask price can be regarded as another bid, since

3From Levin and Smith (1991) ”Linear strategies are not unknown in the literature. Previous
researchers have noted their existence under the restrictions of 1-3 above. Richard Engelbrecht-
Wiggans and Robert J. Weber (1979) were among the first to discuss the necessity of a diffuse prior
(restriction 1). Michael H. Rothkopf (1980) and Robert L. Winkler and Daniel G. Brooks (1980)
provided examples in which independent estimation errors (restriction 2) were used to derive linear
bidding functions.”
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bidder i wins the standard n-player auction if {Bi > Bj ∀j }, j = 1...n and wins in a

reservation price auction if {Bi > Bj and Bi > Bc} which is equivalent to an (n+1)

bidder standard auction with no reservation prices, where the (n+ 1)th ’bidder’ uses

a naive bidding strategy B(Xc) = Xc.

Although there are very few general results for asymmetric information cases, the

asymmetry in this auction is solvable since the (n+ 1)th bidder is not strategic.

2.9.5 Signal and Bid Distributions

In the (n+1) player auction, each bidder i = 1, ..., n receives a sample Xi from a

distribution described by a CDF F (V, σ2
M ) with mean V and variance σ2 and the

(n+1)th bidder (the seller) receives a signal from the same distribution F, with mean

V but with variance σ2
T . Each bidder uses a bid function Bi(Xi) which we assume is

monotonically increasing in X.

Suppose bidder i wins the auction and we want to calculate the probability that

bidder i was the highest bid. The set of bids {B1(X1), B2(X2), ..., Xn+1, Bi(Xi)},

without knowing B(·), makes impossible forming the distribution of the maximum

Bi(Xi). Note in particular that Xi > Xn+1 does not imply that Bi(Xi) > Xn+1.

Bidder i wins the auction only if his bid was the largest out of the other bidders’

bids and also larger than the (n+ 1)th bidders bid (which by design is their signal).

We can assume a symmetric bidding function B(·) for the n bidders (by homogeneity),

and since the bidding function is monotonically increasing in the signal, then we can

work backward to the order of equivalent signals of the (n+1) bidders by applying an

inverse function B−1(·) to all the bids including the seller. The probability of bidder

i winning the auction is now the same as the probability of bidder i having the largest

signal in this associated signal set.

The n+1 signal set now has the same ordering as the bid set and implies that if

Xi > Xn+1 =⇒ B(Xi) > Xn+1. Since B(·) is an unknown function, we still cannot

calculate the maximum order statistics needed to derive the probability of winning;

however, we know the exact distribution, F of these associated signals (bar one), and

so bidder i wins the (n+1) FPSB auction when his signal is largest in the associated

signal set S = {X1, ..., B
−1(Xn+1), Xi}. The {Xj : j = 1, ...., n} are all distributed

as F with mean zero and variance σ2
M , but B(·) is still an unknown function whose
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inverse is assumed to exist. Therefore z = B−1(X) may not be described by distn F

(depending on the bidding function B of the n bidders and the nature of F). When F

is normal, and B is linear, a particularly simple form emerges.

2.9.6 Equilibrium Bidding Strategy

Following the derivation of Levin and Smith (1991), we derive the equilibrium bidding

strategy of the (n-1) strategic bidders in a standard n-bidder FPSBA when bidder n

uses a naive bidding strategy of B(X) = X. This auction is strategically equivalent

to an (n-1)-bidder standard FPSBA auction when the n-1 bidders face a seller that

sets a naive reservation price strategy of RP (X) = X as described in 2.9.4. As in the

standard FPSBA derivation, this solution produces a non-linear term when the prior

distribution has a variance σ2 ≡ ∞.

Each bidder i = 1, .., (n − 1) observes a random signal Xi with variance σ2
M ,

which is an estimate of the unknown value V of the item being auctioned. F (Xi|V )

represents the conditional distribution of the ith bidder’s estimate, and g(V |Xi) rep-

resents the bidder’s posterior density for V given the signal Xi. Similarly, bidder n

observes a random signal Xn with variance σ2
T . Let B(X) represent the symmetric

equilibrium strategy used by each of n-1 bidders, with B
′
(·) > 0 such that the inverse

r(B) = B−1 is well defined. If all bidders i = 1, ..., n− 1 are using this strategy, and

we now also assume that the nth bidder adopts a naive bidding strategy that is fixed

as Bn(X) = X then the ith bidder’s problem may be written as:

max
B(X)

∫
ΣV |X

(V −B)FσM (r(B)|V )n−2FσT (r(X)|V )g(V |X)dV (2.15)

Taking the first order condition B
′
(X) = 0 gives:

0 =

∫
ΣV |X

FσT (r(X)|V )[(V −B)(n− 2)FσM (r(B)|V )(n−3)fσM (r(B)|V )r′(B)−

FσM (r(B|V )n−2]g(V |X)dV (2.16)

At the symmetric equilibrium, r(B) = X and r
′
(B) = B

′
(X)−1 and so :
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B
′
(X) =

∫
ΣV |X(V −B)FσT (r(X)|V )(n− 2)FσM (X|V )n−3fσM (X|V )g(V |X)dV∫

ΣV |X FσT (r(X)|V )FσM (X|V )n−2g(V |X)dV

(2.17)

A symmetric equilibrium must satisfy this differential equation 2.17. We now

apply the three Thiel conditions as in section 2.9.3, making the substitution z =

X − V , and additionally noting that the denominator is simply the probability of

bidder i having the greatest signal denote by 1
α(6= 1

n):

Giving :

B
′
(X) =

∫
Σz

(X −B − z)(n− 2)FσT (r(z))FσT (z)n−3f2
σM

(z)dz∫
Σz
FσT (r(z))FσM (z)n−2fσM (z)dz(= 1

α)
(2.18)

=⇒ B
′
(X) +K1B(X) +K2 −K1X = 0 (2.19)

where

K1 = α

∫
Σz

(n− 2)FσT (r(z))FσM (z)n−3f2
σM

(z)dz (2.20)

K2 = α

∫
Σz

z(n− 2)FσT (r(z))FσM (z)n−3f2
σM

(z)dz (2.21)

Equation 2.19 is an ordinary linear differential equation in standard form, with

solution:

B(X) = X − (1 +K2)

K1
+ βe−K1X (2.22)

Where β characterizes a family of solutions which are a consequence of the inte-

gration constant in 2.19, and we focus on the solution β = 0, (which is the limiting

solution for the uninformative prior beliefs case with independently normal distribu-

tion of signals in the standard FPSBA). Equation 2.22 with β = 0 gives an equilibrium

bidding function that is a linear function of the estimates, B(X) = X − δ

Now applying the normally distributed signal condition gives the coefficients K1

and K2 :
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K1 = α

∫
Σz

(n− 2)FσT (r(z))ΦσM (z)n−3φ2
σM

(z)dz (2.23)

K2 = α

∫
Σz

z(n− 2)FσT (r(z))ΦσM (z)n−3φ2
σM

(z)dz (2.24)

Where φσ(·) and Φσ(·) are the density and distribution function of a standard

normal with variance σ2. Given equation 2.22 , B−1(X) = X + δ, therefore, z + δ is

also a normal RV and so FσT (r(z)) is a normal CDF, which leads to:

FσT (B−1(z)) = ΦσT (z + δ) = Φ

(
z + δ

σT

)
(2.25)

Since z is ∼ N(0, σT ) after the varoable change in equation 2.18. Integrating

2.23 and 2.24 by parts and noting the order statistics result that the expected value

of the maximum of n independent normal Y = max{X1, ..., Xn} but not identical

distributions Xi ∼ N(δi, σi) i = 1, ..n can be written as :

E [Y ] =

n∑
j=1

1

σj

∫ ∞
−∞

sφ

(
s− δj
σj

) n∏
k=1,k 6=j

Φ

(
s− δk
σk

)
ds (2.26)

Which is just the first moment of the first derivative of the distribution function

of the maximum order statistic , F =
∏n
k=1 Φ

(
s−δk
σk

)
. Therefore, δ is the value that

satisfies:

δ =

∑n−1
j=1

∫∞
−∞ s

2φ
(

s
σM

)∏n−2
i=1 Φ

(
s
σM

)
Φ
(
s+δ
σT

)
ds∑n−1

j=1

∫∞
−∞ sφ

(
s
σM

)∏n−2
i=1 Φ

(
s
σM

)
Φ
(
s+δ
σT

)
ds

(2.27)

Which, not surprisingly, is similar to the ratio of the 2nd to 1st moment solution

in Wilson (1992) for the standard SBFPA normal case with n-1 bidders.

2.9.7 Summary

The equilibrium bidding solution in an n-bidder FPSBA4 where bidder i = 1, .., n− 1

receive a signal Xi ∼ N(V, σM ) and bidder-n receives a signal Xn ∼ N(V, σT ) and

4Using the same methodology as above, can show that in an n-bidder auction where k-bidders
adopt a naive strategy, the equilibrium bidding strategy for the (n-k) strategic bidders is:

B(X) = X − δ
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adopts the naive strategy B(X) = X is:

B(X) = X − δ (2.28)

Where δ satisfies:

∫∞
−∞ s

2φ
(

s
σM

)
Φn−2

(
s
σM

)
Φ
(
s+δ
σT

)
ds∫∞

−∞ sφ
(

s
σM

)
Φn−2

(
s
σM

)
Φ
(
s+δ
σT

)
ds
− δ = 0 (2.29)

This is strategically equivalent to an (n-1) bidder FPSBA where the seller adopts

a naive reservation price RP (X) = X.

This function for δ (the amount of bid shaving) is not dependent on any signal

realizations and is the value of δ that satisfies 2.29 and can only be solved numerically.

This theoretical result, along with the empirical evidence of Cammack (1991) and

Paarsch (1992) gives justification for examining a linear bidding strategy in the rest

of the thesis.

2.9.8 Numerical Checks

As a numerical check, We examined three bidders (2 strategic 1 naive) and generated

a vector of (1000 x 3) random normal samples, then calculated the rest response

signal shaving given the other bidders’ strategies. Figure 2.6 illustrates the result

that the mutual best response point (the Nash equilibrium) coincides closely with the

theoretical numerical solution of equation 2.29 as 1.73.

As a further numerical test, we attempted to reproduce the equilibrium spread

levels with varying amounts of client signal variance that we previously calculated by

numerically solving the payoff functions using the relaxation algorithm. The results

appear to be identical and are shown in 2.7 for the 2, 3, 4, 5, and 10 bidder cases.

Where δ satisfies: ∫∞
−∞ s

2φ
(

s
σM

)
Φn−k

(
s
σM

)
Φk
(
s+δ
σT

)
ds∫∞

−∞ sφ
(

s
σM

)
Φn−k

(
s
σM

)
Φk
(
s+δ
σT

)
ds
− δ = 0
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Figure 2.6: Best response functions of the 2 strategic bidders

Figure 2.7: Optimal bid reductions for the n strategic bidders with
1 naive bidder wrt relative signal variance
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Chapter 3

Duopoly OTC Markets

3.1 Introduction

To analyze the equilibriums in a two-dealer OTC game, as defined in the previous

chapter, we need the equilibrium results for a two-player Bertrand competition when

there are unknown common values with asymmetric information. Although much has

been written on Bertrand competition, there appears to be little in the competition

literature concerning unknown common values with asymmetric information. The

literature focus is primarily on an Independent Private Values modeling environment,

where each firm or bidder has a private valuation or private marginal cost function,

leading to a payoff that is the difference between the traded price and this private

cost. The cases covered include where either market costs are known to all (the full

information model, Bertrand (1883) and many subsequent complications) or where

one-sided costs are unknown (partial information models, Spulber (1995), Wambach

(1999), Janssen and Rasmusen (2001), Patra et al. (2019)).

The closest solution to this problem is Spulber (1995), who analyses an exten-

sion of the standard Bertrand model using an auction type representation in which

marginal costs are not common knowledge among the competitors but are, for each

firm, independently drawn from a distribution and private information for the individ-

ual firms. This is a one-sided information problem, where private costs are known but

competitor’s costs are unknown. This paper also uses an independent private value

model and does not calculate the equilibrium’s explicit form. This incomplete infor-

mation about costs changes the equilibrium prediction dramatically, and prices are

now set substantially above marginal costs. Other notable contributions are Janssen
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and Rasmusen (2001), who looked at uncertainty in the number of competitors in

price competition and found that prices rise with the reducing probability of greater

numbers of competitors. Wambach (1999) introduced risk aversion into cost uncer-

tainty, to name but a few, but these papers, in common with the majority, all model

an Independent Private Values case, indeed according to Routledge and Edwards

(2020), even the literature concerning informational uncertainty in competition is not

large.

In the first part of this chapter, we examine the simple case of a common marginal

cost to both firms (a common value model), combined with a limited information set

regarding the true value of this cost, where only the estimated cost variance is known

ante to setting a price. The common value case is a more realistic representation for

markets where there is an unknown common cost element, for example, the amount

of oil in a tract of land, the future raw materials cost in production. In particular,

where there is an unknown common value to a financial instrument. However, the

calculation of this value is subject to some measurement error or interpretation.

Price competition models play a significant role in public policy debates in regu-

lation and antitrust; however, the standard full information Bertrand model of com-

petition is subject to what is known as the Bertrand Paradox. This paradox is where

two firms reach a Nash equilibrium state where both firms charge a price equal to

marginal cost, share the market somehow, and earn zero profits.1 However, the full

information Bertrand model’s standard conclusions critically depend on the assump-

tion that firms have full information about the entire market cost structure.

We show that in the uncertain common cost Duopoly, each firm’s uncertainty

about the common marginal costs eliminates the discontinuity in the pricing strat-

egy’s effect on profit. Like Spulber (1995), we also show that all firms earn positive

expected profits in equilibrium and are therefore incentivized to enter the market and

engage in price competition. These results then translate directly into the bid-ask

spread of dealers in an OTC market. The result of non-zero payoffs in equilibrium

of a partial information Bertrand competition model is particularly relevant to other

market models that assume a zero profit condition.

1If all firms have constant marginal cost and if one firm has an absolute cost advantage over its
rivals, it prices at the marginal cost of the next to lowest cost firm and captures the entire market.
Thus, all other firms earn zero profit,
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We model the competitive Bertrand price process as a sealed bid first price com-

mon value auction and use Wilson (1969) standard equilibrium results for a two player

auction. (whose results were extended in the seminal paper by Milgrom and Weber

(1982), who provided a full if a somewhat unfriendly description of the general form

of the equilibrium in auctions.)

This chapter also looks specifically at the case of asymmetric information between

the two firms in a duopoly. We show that in an uncertain common cost environment,

as uncertainty regarding the true value goes up for either firm, both firms’ equilibrium

price also goes up. This is due to the firms’ strategic nature when they know the

level of uncertainty (variances) in the market, and the level of uncertainty is common

knowledge. Intuitively, if one knows one’s competitor is very unsure about the true

costs, one can be less aggressive in one’s own pricing strategy. This result gives further

evidence that public information can reduce spreads in the market. It has the biggest

effect on the worst-informed firms, which affects the best-informed firms’ ability to

exploit their informational advantage.

We also look at asymmetric information between the dealers and the clients and

demonstrate how dealers take advantage of their informational advantage. This result

is particularly relevant to OTC markets since clients are often at an informational

disadvantage to the dealers.

According to Routledge and Edwards (2020), ”our understanding of price compe-

tition in the presence of production cost uncertainty is still rudimentary”, notwith-

standing the large volume of work on competition spawned by Bertrand and Cournot.

Even concerning the century-old standard Bertrand model, ”there is a notable gap

in the research. There are no equilibrium existence results for the classical Bertrand

model when there is discrete cost uncertainty.”

This section adds to the literature in two directions. Firstly, examining in de-

tail the equilibrium in a Bertrand Duopoly price competition with unknown common

costs and asymmetric information using an auction methodology. Secondly, in ap-

plying this competition methodology to financial market instruments, where market

makers replace the traditional firms and marginal cost is replaced by a ’true’ common

value, and pricing takes the form of a bid-ask spread. Bertrand competition’s pricing
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equilibria then translate into predictions for the equilibrium bid-ask spread in finan-

cial markets, which typically accords with the main microstructure models’ findings

but allows for greater flexibility when applied to a network and dispenses with some

empirically questionable assumptions.

The extent of the firms’ information sets when making a price is critical to which

price they make. In standard Bertrand price competition literature, the true cost

is the marginal cost to the firm of supplying the object. In contrast, in financial

markets, the true cost is the true value but is realized only after trading. Agents

attempt to measure this true cost, and we model this by them receiving a sample

(signal) from a normal distribution with an unknown mean but known variance. The

assessment of the true value by the firms of the marginal cost or value is subject to

measurement error or interpretation.

3.2 The Model

We begin by looking at the dual uncertain information duopoly price problem, a

standard Bertrand competition model with unknown common costs to both players:

two identical firms who compete in price for a homogeneous good. Each firm has

a common marginal cost C, which is unknown to both firms a priori. We simplify

the market structure by assuming a unit demand from each customer; however, the

results from a linear demand curve are shown to have very similar effects. Next,

we apply this common value auction methodology to financial market prices where

firms provide a firm buy and sell price to the market customers. The firm with the

lowest price matches the customer buy order, and the highest buy price matches the

customer sell order. The payoff to the firms is price - cost, where the price is the best-

quoted trading price and the cost is the future true value (or can be interpreted as the

future mark to market value). We can model this price competition (Bertrand) as a

common value first price sealed bid auction where the object’s true cost is unknown

but the same to each bidder. In the auction setup, the customer acts as the auctioneer

and the firms as the bidders.
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3.2.1 Information Sets

The uncertainty of the firms regarding the true cost C defines a game of incomplete

information. In line with the methodology of Harsanyi (1967), we convert this game

to a game of imperfect information by assuming a probability distribution over the

true value. As each firm does not know the other firm’s signal, each firm forms a

probability distribution belief around competitor types (error signal distributions),

which we assume is common knowledge along with the bidding functions and own

signal error distributions. This is the standard technique, known as the Common Prior

Assumption, for converting games of incomplete information to games of imperfect

information. We assume that the distribution of each firm’s error signal is common

knowledge which is itself common knowledge. This allows us to specify this structure

as a static Bayesian game and the Bayesian Nash Equilibrium as the equilibrium

concept.

Specifically, we assume that the true value estimation is modeled as a draw from

a probability distribution. The firms know the functional form of the distribution

(normal) and know the variance. However, the mean (the true value) is unknown.

3.2.2 Normal Distribution of the Estimation (Signal) Errors

The extent of the information sets that firms have when making a price is critical in

what price they make. Our motivation in this chapter is that firms in general and

financial market participants, in particular, have a payoff that is essentially (price

traded - cost), where the true cost is unknown. In financial markets, the true cost

can be replaced with the true value since the financial instrument will realize a true

value (bond repayment, derivative expiry etc.) at some future time. As in Chapter

2, agents attempt to measure this true cost (value), and we can model this by each

of them receiving a sample (signal) from a normal distribution.

Therefore, we model the true value estimation process by each firm i of common

cost C by them receiving an independent signal Si where firm i receives a signal

Si = C + εi with εi normal N(0, σi) .

.
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3.3 Optimal Bidding Strategies

3.3.1 The Standard Auction Model

The most common equilibrium bidding model is a non-cooperative Nash equilibrium

with risk-neutral bidders, known as a risk-neutral Nash equilibrium (RNNE) solution.

Wilson (1969) was the first to develop an RNNE solution to the common value auction

problem, and this methodology was significantly extended to include private values

by the seminal papers of Milgrom and Weber (1982).

Although auctions of varying types have been analyzed for a very long time,

Milgrom and Weber’s paper provides a comprehensive solution to the equilibrium of

various auction formats, which launched many papers with varying degrees of compli-

cation. However, in general, the solutions to the equilibriums in Milgrom equations

are not simple to explicitly find. Athey (1997), Lizzeri & Persico (1998) and Ro-

driguez (2000) prove existence and uniqueness results. Athey also develops numerical

algorithms for computing the equilibrium. Laskowski & Slonim (1999) provide an

asymptotic solution for a parametric model. Kagel & Levin (1999) exhibit a bounded

rational solution for a similar model. Hausch (1987) determines the equilibrium for

a discrete setting. Campbell & Levin (2000) solve the equilibrium for a discrete,

parametric model.

The Wilson Model

Wilson set up the framework for the equilibrium solution of the common value prob-

lem. The following brief summary is taken from his seminal paper. Suppose that two

parties, called 1 and 2, will bid for a prize of monetary value v which is not known

with certainty by either party. For simplicity, assume that both parties initially assess

the same prior probability density, g(v), for the value of the prize v. Then, before

the bidding, each party i observes an outcome θ1 of a random variable θ̂1 distributed

with the conditional density hi(θi|v). We assume that conditional on v, θ̂1, and θ̂2

are independent.

Our aim is to identify the equilibrium pure strategies when they exist; say, pi(θ1)

is the bid to be made by party i if he observes θi. He then shows that a pure
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strategy function pi(θi) is monotonic and so an inverse function Πi(pi) exists satisfying

Πi(pi(θi)) = θi. He further assumed that each inverse function Πi is differentiable.

Finally, a utility function for money that is linear in money is assumed for each

party. Each agent chooses his bidding strategy to maximize his expected net gain if

he should win, given his opponent’s strategy. Suppose party 2 chooses p2(θ2) as a

strategy.

The final solution to the equilibrium is the solution of a differential equation of

the form:

dΠ2

dΠ1
=
ϕ21(Π2|Π1)

ϕ21(Π1|Π2)
(3.1)

where, fji(θj |θi) =
∫∞
−∞ hj(θj |v)gi(v|θi) dv is the posterior marginal density for his op-

ponent’s observation, and the posterior marginal distribution function is Fji(θj |θi) =∫ θj
−∞ fji(ξ|θi) dξ and the function ϕji(θj |θi) :=

Fji(θj |θi)
fji(θj |θi) which yields Π1 as a function

of Π2.

Let v̄(θ1, θ2) be the expected value of the common value v, conditional on the

observations θ1 and θ2, then;

v̄(θ1, θ2) =

∫ ∞
−∞

v[h2(θ2|v)g1(v|θ1)/f21(θ2|θ1)] dv (3.2)

and the equilibrium solution is obtained by solving the following equation that is

derived from the first order condition:

ϕji(Πj(p)|Πi(p)) = [v̄(Π1(p),Π2(p))− p]Πj
′
(p) (3.3)

In the independent information case, v̄(Π1(p),Π2(p)) = Π1 and by inspection of

the partial differential equation PDE (3.3), a linear solution is apparent. Consider a

candidate linear solution, i.e, p = Πi + β, for some β, then Πi
′
(p) = 1 and its easy to

check that this a solution to the PDE when β = ϕ(Πj(p)|Πi(p)), and so p = Πi − β.

Suppose that the two parties have the same types of information available, mean-

ing that h1 and h2 are identical functions and, therefore, that ϕ12 and ϕ21 are identical

functions. In this case, a solution to (3.1) is Π2(p) = Π1(p). Further, if the com-

mon prior assessment g is a diffuse Normal density and the observations θi are each
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Normally distributed with mean v, then each posterior marginal density fji is a Nor-

mal density function with mean Πi and a common standard deviation, say σ; hence,

Fji(Π1|Π1) = 1
2 , fji(Π1|Π1) = 1

σ
√

2π
and ϕj i(Π1|Π1) = σ

√
π
2 v̄(Π1,Π1) = Π1. The

solution to PDE (3.3) is therefore Π1(p) = Π2(p) = p+σ
√

π
2 and the optimal strategy

functions are pi(θi) = θi − σ
√

π
2 , i = 1, 2.

Therefore, the equilibrium strategy is calculated as Pi(Si) = Si−σ
√

π
2 , where σ2 is

the variance of the posterior normal distribution (after observing your sample). From

Bayesian statistical updating, the prior standard deviation, σprior, and the posterior

deviation, σpost, after 1 sample are related by:

σpost =

(
1

σ2
prior

+
1

σ2
prior

)−1

=
σprior√

2
(3.4)

Therefore, in relation to the prior variance σ of the error distribution (which we

assume is common knowledge), the Nash equilibrium as calculated by Wilson can be

rewritten as:

Pi(Si) = Si − σ
√
π (3.5)

3.3.2 Linear Bidding Functions

As we are concerned with a pure common value representation, we use the results of

Wilson (1969), who gave a linear solution to the simple normal distribution error case

N(0, σ) in a common value sealed bid auction with unit demand function and two

bidders. The solution is of the form b(Si) = Si+σ
√
π, and was derived by solving the

bidding function as a solution to first-order conditions of the payoff functions leading

to a differential equation and certain boundary conditions.

Section 2.9 gives a theoretical basis for examining a linear bidding function in the

more general n-bidder case with normal signal error. Empirically, Cammack (1991)

ran multiple regressions on the Treasury Bill auction dataset, where traders placed

bids in a Treasury market auction, and she finds: ”They imply a linear functional

form between the bidding adjustment and the empirical measures of dispersion of

opinion and number of bidders.”

This theoretical and empirical evidence motivates us to examine a symmetric

linear bidding function for the firms. Specifically, when a firm receives an estimate
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Si, they are aware that if they bid their estimate, this is likely to be too high and leads

to a negative expected payoff. This is because their estimate of the common value is

the highest amongst the other competing firms, and on average, will give a negative

payoff. This is because the probability that the estimate is too high, conditional on

it being a maximum, is greater than the unconditional probability that the estimate

is too high. This is known as the ’Winners Curse’. See Kagel and Levin (1986) for a

comprehensive study into this effect. The firms are strategic in the sense that they are

aware of this conditional probability problem and therefore seek to shave an amount

from their estimate.

3.4 Standard Duopoly Market

3.4.1 Assumptions

Consider a standard duopoly market with a single customer and two firms that com-

pete in price for an identical good. The customer has unit demand and trades at

the best price of the two firms that he is connected to. Each firm can produce this

homogenous good that depends entirely on an uncertain common cost C.

Each firm i attempts to estimate this common cost C and receives an independent

signal Si where firm 1 receives a signal S1 = C+ε1 with ε1 normal N(0, σ1) and firm 2

receives a signal S2 = C+ε2, where ε2 is N(0, σ2) to allow for differences in estimation

precision.

Each firm adds a profit margin δi to their signal and each seek to maximize

their payoff. Firm 1 makes a price P1(S1) = S1 + δ1 and firm 2 makes a price

P2(S2) = S2 + δ2. The firm with the lowest price gets to trade and has a payoff of

Pi − C or zero if the price is higher than the other firm.

We make the common assumption that the firms are risk-neutral and seek to

maximize their expected profits in equilibrium.

This setup can lead to a winner’s curse problem - if δi is too low, then the proba-

bility of trading is increased, but expected profits are low (possibly negative), and if

δi is too high, the probability of winning is low but expected profitability is high. The

Winner’s Curse is the name of the phenomena that is the tendency for the winning

bid in an auction to exceed the intrinsic value or true worth of an item.
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3.4.2 Game setup

From a game-theoretic perspective, we can model this partial information competitive

process as a Bayesian game. The Bertrand game follows the usual protocols. Firms

1, 2, receive signals Si as to the true marginal common cost C. Firms make a price

Pi(Si), where the function Pi(.) is known as a bidding function and is a strategy that

maps each possible cost estimation onto a trading price. The firms do not see the

other firms’ price before making their own price. The client then selects the firm with

the lowest price to trade. The true cost C is realized, and the payoffs are P - C for the

best-priced firm, which captures the whole market. The payoff is zero for the other

firm.

Players: Firms 1 and 2

Typesets: Each player receives a signal Si drawn from a distribution N(C, σ) - the

estimate of the cost C determines types

Strategies: Each firm i, makes a price P, with a bidding function P (Si) = Si+δi, δi ∈

[0, inf) , i = 1, 2, this strategy maps each possible cost estimate onto a trading price

Payoffs: Payoffs are Pi − C if Pi < Pj , zero otherwise

3.4.3 Expected Payoffs

Each firm i=1,2 makes a selling price (after receiving their signal Si) of

P (Si) = Si + δi = C + εi + δi (3.6)

and has a payoff of

Πi = (P (Si)− C)1(εi+δi) = (εi + δi)1A (3.7)

where 1A is an indicator function that is equal to 1 if (εi+ δi) < (εj + δj) of the other

firm, zero otherwise.

We are interested in the probability that firm i’s price is less than firm j’s price.

Formally we are looking for the probability of firm i, to win a competitive auction

with one other firm, that is;
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P (Pi < Pj) = P (V + εi + δi < V + εj + δj) (3.8)

Consider N+1 independent normal random variables, X0, X1, ..., XN , where each

Xi has a mean δi and standard deviation σi. It is standard theory2 that the probability

of an independent normal RV being less than the minimum of N other normal Rv’s

is

Pr(X0 < Y ) =

∞∫
−∞

1

σ0
φ(
s− δ0

σ0
)
N∏
j=1

(1− Φ(
s− δj
σj

))ds (3.9)

And the expected value of this RV is:

E[X0 : X0 < Y ] =

∞∫
−∞

sPr(X0 = s) Pr(Y > s)ds (3.10)

Therefore, using this result allows us to specify the expected payoff to firm i as:

E[Πi] = E[(εi + δi)1A] =

∞∫
−∞

s

σMi
φ

(
s− δi
σMi

)(
1− Φ

(
s− δj
σMj

))
ds (3.11)

This formulation can be easily extended to n firms, but this integral (3.11) has

an analytic solution only in the 2 firm case, and the Expected payoff of firm 1, given

δ1, δ2, σ1, σ2: can be shown to be:

E[Π1(δ1, δ2, σ1, σ2)] = δ1Φ

(
δ2 − δ1

θ

)
− σ2

1

θ
φ

(
δ2 − δ1

θ

)
(3.12)

where θ =
√
σ2

1 + σ2
2 and Φ(·) and φ(·) are the distribution and density functions of

a standard normal distribution N(0, 1).

Similarly firm 2’s expected payoff is:

E[Π2(δ1, δ2, σ1, σ2)] = δ2Φ

(
δ1 − δ2

θ

)
− σ2

2

θ
φ

(
δ1 − δ2

θ

)
(3.13)

These expected payoff functions Eqn (3.12) and Eqn (3.13) are decreasing as a func-

tion of σ1 for firm 1 and similarly decreasing in σ2 for firm 2. Superior information

(estimation of true value) translates into higher expected payoffs.

2See for example, Hill (2010) - Minimum of Normally distributed random variables
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As both variances tend to zero limσi→0 E[Π1] = δ1 if δ1 < δ2, δ1
2 if δ1 = δ2, 0 if

δ1 > δ2, which is the full information set normal Bertrand competition payoffs with

known costs with the familiar discontinuity and the cause of the leapfrogging by each

firm to a price of marginal cost.

3.4.4 Equilibrium

Symmetric Information Case

This 2-player non-cooperative game has a Bayesian Nash Equilibrium by standard

existence theorems and a pure strategy risk neutral (Bayesian) Nash equilibrium was

calculated analytically in the case of a traditional auction for the common estimation

error case, σ1 = σ2 = σ by Wilson (1969, 1977) using the solution to the first

order conditions of a general bidding function. Later, again using an auction setup,

Thompson et al. (2005) assumed a linear type bidding function and solved the first

order conditions of the maximum order statistics using several standard probability

distributions. They both lead to the same result as:

δ∗(σ) =

1
2 +

∞∫
−∞

xφ2
σ(x)dx

∞∫
−∞

φ2
σ(x)dx

= σ
√
π (3.14)

Where φσ is the normal density function with variance σ2 which is the variance of

the distribution of the normal errors.

The expected payoff at this equilibrium is :

E[Πi(δ
∗, δ∗, σ, σ)] = σ(

π − 1

2
√
π

) (3.15)

Interestingly, the payoff for both firms at this equilibrium is positive for non-zero σ -

in contrast to the full information Bertrand models. This is similar to the results of

Spulber, who found that uncertainty over competitor’s costs created non-zero profits

in equilibrium (although this was in an Independent Private Values setting). This

non-zero profit in equilibrium in the presence of common cost uncertainty is another

solution to the classic Bertrand Paradox. When σ −→ 0, δ∗ −→ 0 and E[Π] −→ 0 as

in standard full information Bertrand model.
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The more general problem with a greater numbers of firms can be solved in a similar

way but unfortunately the solutions, which can only be expressed as complicated

integrals, can only be solved numerically and offer less insight into the nature of the

equilibrium. However, we provide an analysis of the equilibrium in the important

case of asymmetric information in the 2 firm case below.

Figure 3.1: Theoretical and Numerical Simulation of Signal Reduc-
tion Best Response Curves - Firm1(blue) N(0,1), Firm2(red) N(0,1)

signal error.

To gain intuition, Figure 3.1 illustrates the best response functions of the 2 firms

who both receive a N(0, 1) error signal, and compares the theoretical predictions with

numerical simulations of the mean payoffs from 10,000 auctions. At the intersection

point, both firms have a mutual best response to each others’ strategy and hence

is a Nash equilibrium. The numerical intersection is seen to be consistent with the

theoretical result -
√
π approx 1.7725.

Asymmetric Information

An explicit expression for the Nash equilibrium exists in the uncertain and asymmetric

information case, but simple best response functions cannot be expressed explicitly

and must be calculated numerically. For each choice of firm j, we calculate the best

response of firm i. We do the same for firm i and find the point of intersection of these

best response curves. For intuition, consider the Duopoly market as mentioned above

but now with firm 2 having a less accurate ability to measure the true common cost.

This situation can be modeled by having firm 2 receive a signal that has a higher

variance than firm 1.

Figure 3.2 graphically illustrates the best response functions of the two firms

when firm 1 has a signal error of N(0, 1) and firm 2 has a signal error of N(0, 2).

The intersection of the best response curves is the Nash equilibrium of the system as
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Figure 3.2: Signal Reduction Best Response Curves - Firm 1 has
N(0,1) and Firm 2 has N(0,2) signal error

this is a mutual best response to each other’s strategies. The best response function

of firm 1 (the low variance firm) is less sensitive to firm 2’s strategy than vice versa.

In fact, numerical simulations suggest that the equilibrium levels are equal for any

combination of σ1 and σ2. The payoffs for the 2 firms at these levels are, of course,

very different, with the lower signal error firm making significantly higher payoffs.

This motivates the following proposition which allows us to explicitly calculate the

equilibrium level.

Proposition 1. Given the auction duopoly with unknown common values described

above and firms receive signals S1 ∼ N(C, σ1) and S2 ∼ N(C, σ2) regarding the true

cost, then in equilibrium, where the 2 firms use a bidding strategy B(Si) = Si + δ∗i ,

then for any σ1, σ2, we have δ∗1 = δ∗2 .

Proof. Assume equilibrium and both firms are choosing their mutual best responses

(δ∗1 , δ
∗
2). Consider firm 1, they have an expected payoff of

E[Π1] = δ1Φ[
−δ1 + δ2√
σ2

1 + σ2
2

]− 1√
2π

σ2
1√

σ2
1 + σ2

2

e
− (δ1−δ2)2

2(σ2
1+σ2

2)

Let a =
√

π
2 , Z =

√
σ2

1 + σ2
2, δ∗2 = aZ and let δ∗1 = aZ + ∆, where ∆ now becomes

firm 1’s choice variable.

E[Π1] = (aZ + ∆)Φ[
−∆√
Z

]− 1
√

2π
σ2

1
Z

e
−∆2

Z2 (3.16)
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At the equilibrium, the choice of ∆ is a best response of firm 2’s choice, hence:

δE[Π1]

δ∆
= Φ(

−∆

Z
) + (1− a)φ(

∆

Z
) +

2∆

C2
√

2π
e
−∆2

Z2 = 0

∆ = 0 is clearly a solution and can be shown to be unique. Similarly, examining

the payoffs of firm 2 and setting δ2
∗ = δ∗1 + ∆

′
gives identical expressions which

demonstrate that ∆
′

= ∆ = 0, hence, δ1
∗ = δ2

∗

This proposition has some interesting consequences. In equilibrium, the 2 firms

tend to make the same signal reduction, independent of their estimation error. In

fact, given that the equilibrium spreads are the same, the expected payoffs for the 2

firms are:

E[Π1] =
δ∗

2
− σ2

1√
(σ2

1 + σ2
2)
, E[Π2] =

δ∗

2
− σ2

2√
(σ2

1 + σ2
2)

(3.17)

The payoffs are decreasing with standard deviation of the error signal and increasing

in the uncertainty of the competitor.

In fact, given this proposition and the payoff functions, we can state the following:

Proposition 2. Given the auction duopoly with unknown common values described

above and firms receive signals S1 ∼ N(C, σ1) and S2 ∼ N(C, σ2) regarding the true

cost, then in equilibrium, where the 2 firms use a bidding strategy B(Si) = Si+δ
∗
i , then

for any σ1, σ2, we have that both firms have a Nash equilibrium strategy δ∗1 = δ∗2 = δ∗,

where δ∗ =
√

π
2 (σ2

1 + σ2
2)

Proof. Follows from proposition 1. Set δ∗2 = δ∗1 + z, take partial derivative of payoff

2 wrt z and solve the first order condition which leads to an expression for δ∗1

E[Π2(δ∗1 , δ
∗
2 , σ1, σ2)] = (δ1 + z)Φ[

−z√
σ2

1 + σ2
2

]− 1√
2π

σ2
1√

σ2
1 + σ2

2

e
− (z)2

2(σ2
1+σ2

2)

The first order condition wrt to z is:

Ez[Π2] = Φ(
−z√
σ2

1 + σ2
2

)− δ∗1 + z√
σ2

1 + σ2
2

φ(
−z√
σ2

1 + σ2
2

) +
2z

σ2
1 + σ2

2

σ2
1√

2π(σ2
1 + σ2

2)
e
− z2

(σ2
1+σ2

2)
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At equilibrium z=0 by Proposition 1, therefore, after some rearranging:

δ∗1 = δ∗2 =

√
(σ2

1 + σ2
2)Φ(0)

φ(0)
=

√
π

2
(σ2

1 + σ2
2) (3.18)

Also it is easy to check that this is an equilibrium, which then also proves proposition

1.

This expression demonstrates that as uncertainty regarding the true value goes

up for either firm, the equilibrium price goes up. The increase in the equilibrium

price is due to the firms’ strategic nature when they know the level of uncertainty

(variances) in the market. As the uncertainty goes up for one firm, they need to

make greater signal reductions to protect themselves from the winner’s curse. The

other firm knows this and can afford a greater signal reduction, leading to a higher

payoff. As usual, the full information case is covered with σ1 = σ2 = 0 and gives the

standard result of marginal cost pricing in equilibrium.

The expected payoff at this equilibrium is :

E[Π1] =

√
π
2 (σ2

1 + σ2
2)

2
− σ2

1√
2π(σ2

1 + σ2
2)

=
σ2

1(π − 2) + πσ2
2√

8π(σ2
1 + σ2

2)
(3.19)

E[Π2] =

√
π
2 (σ2

1 + σ2
2)

2
− σ2

2√
2π(σ2

1 + σ2
2)

=
σ2

2(π − 2) + πσ2
1√

8π(σ2
1 + σ2

2)
(3.20)

These are simply derived by inserting the equilibrium values into the individual payoff

functions (3.12), (3.13). These expected payoffs are always non-zero for any non-zero

sum of the variances (σ2
1 +σ2

2), illustrating that even a less informed firm can compete

profitably with a better informed firm in equilibrium. These results are critically

dependent on the information sets of the 2 firms and this particular observation is a

consequence of both firms knowing the variances, σ2
1 and σ2

2 of the other firm’s signal

error and pricing strategically.

The fact that in equilibrium, the prices rise for both firms if one of the firms is less

well informed is analogous in some ways to the standard full information Bertrand

model where one firm has a private cost advantage over the other firm. The Nash
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equilibrium of this standard duopoly model is that the equilibrium price is the higher-

cost firm’s marginal cost.

There is some empirical evidence to suggest this effect in real pricing - the disper-

sion of bid-ask spreads in financial markets is relatively small considering the various

firms’ varying estimation abilities and myriad sources of measurement error. The

consistent high profitability of the major financial firms suggests that their spreads

are very profitable. In contrast, small market-making firms appear less so. Huang and

Masulis (1999) analyzed the dealer bid-ask spreads in the foreign exchange market,

which has some similarities to our stylized model. The fx market is an OTC market

with no central marketplace, and clients contact dealers directly to ask for trading

quotes. They found that average dealer spreads to customers were 0.807% with a

standard deviation of 0.0137%

3.4.5 Customer Payoffs

The expected payoff E[ΠC ], to the customer is the negative sum of the payoffs of

both firms, which is :

E[ΠC(δ1, δ2, σ1, σ2)] = θφ

(
δ1 − δ2

θ

)
− δ1Φ

(
δ2 − δ1

θ

)
− δ2Φ

(
δ1 − δ2

θ

)
(3.21)

which is the standard formula for the expected value of the minimum of two normal

random variables N(δ1, σ1), N(δ2, σ2), as in Nadarajah and Kotz (2008), who also ex-

tended this formula to include correlated error signals and if θ =
√
σ2

1 + σ2
2 − 2ρσ1σ2,

where ρ is the correlation coefficient between the two samples (or estimation errors),

the Eqn (3.21) is the more general expression for the expected payoff.

At equilibrium, δ∗1 = δ∗2 and the expected payoff to the customer is :

E[ΠC(δ1, δ2, σ1, σ2)] =

√
σ2

1 + σ2
2 − 2ρσ1σ2

2π
− δ∗ (3.22)

Equation (3.22) is decreasing in the correlation coefficient ρ, that is, as firms

error signals become more correlated, expected payoffs to the customer decrease,
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hence firms’ payoffs increase. As error signals become increasingly correlated, the

competition effect diminishes. This in turn causes equilibrium spreads to decrease.

3.4.6 Non Unit Demand Functions

So far the payoff functions have assumed a unit demand. The equilibriums calculated

also hold for a classic downward sloping linear demand function in the symmetric

information case. Suppose the duopoly is set up as above, with firm 1 receiving a

signal S1 ∼ N(0, σ1) and firm 2 receives signal S2 ∼ N(0, σ2). Suppose that both

firms face a market demand function D(P ) = aP + c, a < 0. The payoff to firm 1 is:

Π1 = D(P )(P − C) = D(P (S1))(P (S1)− C) = D(V + ε1 + δ1)(ε1 + δ1)

if (ε1 + δ1) is less than (ε2 + δ2), zero otherwise. Analogous expression for firm 2.

Then the expectation of this payoff E[Π1] is:

E[Π1] = E[D(V + ε1 + δ1)]E[ε1 + δ1]− 2COV [D(V + ε1 + δ1), ε1 + δ1]

In the linear case D(P ) = aP + c, this becomes:

E[Π1] = E[a(V + ε1 + δ1) + c]E[ε1 + δ1]− 2V ar[ε1 + δ1] (3.23)

The variance of the minimum order statistic (ε1 + δ1) can be calculated 3

V ar[εi + δi] =

∞∫
−∞

s2

σ1
φ(
s− δ1

σ1
)Φ(

s− δ2

σ2
)ds−

 ∞∫
−∞

s

σ1
φ(
s− δ1

σ1
)Φ(

s− δ2

σ2
)ds

2

(3.24)

At equilibrium, δ1 = δ∗1 and hence maximizes E[ε1 + δ1] (the unit demand case), and

D(x) is a decreasing function, therefore δ∗1 also maximizes E[D(V +ε1 +δ1)]E[ε1 +δ1].

In the symmetric information case δ∗1 must equal δ∗2 by symmetry, therefore, V ar(ε1 +

δ∗1) is the same as V ar(ε1 + δ∗2). Therefore, at equilibrium, the Nash equilibrium pair

(δ∗1 , δ
∗
2) of the unit demand case, is also the same equilibrium of the linear demand

3The first two moments of Y = min(X1, X2) are E[Y ] = µ1Φ(µ2−µ1
θ

) + µ2Φ(µ1−µ2
θ

)− θφ(µ2−µ1
θ

)
and E[Y 2] = (σ2

1 + µ2
1)Φ(µ2−µ1

θ
) + (σ2

2 + µ2
2)Φ(µ1−µ2

θ
)− (µ1 + µ2)θφ(µ2−µ1

θ
) , see Nadarajah (2008)
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case. This allows us to restrict the analysis to the unit demand case as the algebra is

simpler, however, all of the previous results hold for the more realistic case of a linear

demand function.

In the asymmetric σi case, the equal equilibrium price levels no longer hold as

the conditional variance (3.24) of the minimum order statistic is not symmetrical

for the two firms, however, using numerical simulations shows that the downward

sloping demand curves cause the better informed firm to charge a slightly lower price

in equilibrium than the higher demand firm. The effect appears to be much smaller

than the effect of the absolute level of variances through empirical observations.

As an illustration, suppose firm 1 receives a signal S1 ∼ N(C, 1) and firm 2 S2 ∼

N(C, 4), i.e firm 2 has much greater measurement error of the cost C. In the unit

demand case, the Nash equilibrium is (5.16,5.16) for both firms. In the case of a steep

linear demand curve of D(P ) = 100− 10P , then the equilibriums change to (4.6,5.6),

see figure 3.3.

Figure 3.3: Nunerically Derived Signal Reduction Best Response
Curves - Firm 1 has N(0,1) and Firm 2 has N(0,4) signal error with a

(-)ve sloping linear demand curve

This effect is understandable, albeit quite small relative to the absolute levels of

the variances - if a firm is relatively more confident in their cost estimation, they

benefit from making smaller signal reductions and capturing a greater share of the

market.
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3.5 OTC Market Bid-Ask Spreads

As detailed in Chapter 2, the true security value in a duopoly OTC market is analo-

gous to the costs in a traditional firm/customer Bertrand competition. In this case,

firms (the dealers) make a selling price of true value estimate plus a spread and ad-

ditionally provide a buying price of their true value estimate minus a spread. Similar

to above, each dealer attempts to estimate the true value of the security, which we

model as receiving an independent sample Vi from a normal distribution. We assume

the risk-neutrality of the market makers, so maximizing utility is the same as max-

imizing profits. Choosing the bid-ask spread is a symmetrical problem in which the

firm makes a buy and a sell price for the asset of (Vi − δi, Vi + δi) and they seek to

maximize the expected payoff wrt to the value of δi.

This model of an OTC duopoly is set up as follows; two identical market-making

firms (dealers) who compete in price for a homogeneous security are connected with a

customer. The security has the same common value to both firms, which is unknown

to both firms ex-ante. We also simplify the structure by assuming a unit demand

from the customer, which is a more reasonable assumption in these markets - dealers

often quote prices for a fixed quantity of the security known as ’Exchange Market

Size’ or EMS4 although the results from a linear demand curve are less tractable but

numerical simulations produce similar effects. As in standard models, the dealers

provide a firm buy and sell price to their connected clients. The dealers do not see

the other prices before trading. The firm with the lowest price matches the customer

buy order, and the highest buy price matches the customer sell order, and trades

occur. After trades are matched, the true value is revealed and payoffs are realized.

The payoff to the firms is price - cost, where price is the trading price and the cost

can be viewed as the future true value (or future mark to market value, depending

on the firm’s time frame, which we assume is identical) of the security.

In exactly the same reasoning as above for the Bertrand duopoly problem, the

market makers, who receive a signal (estimate) Vi ∼ N(V, σ) as to the true value V

4The London Stock exchange, for instance classifies every security with a EMS number, defined
as the number of shares used to calculate the minimum quote size for each security and in fact
’must display bid and offer orders at the same time in at least Exchange market size and observe the
maximum spread thresholds set out in parameters’ - Stock Exchange Rule Book 2019
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of the security, in equilibrium make a semi bid-ask spread of δ∗(σ) = σ
√
π in the

symmetric information case.

This result is in line with the vast literature concluding that improved information

about the true value reduces bid-ask spreads. The dealers also make positive profits

in equilibrium, in contrast to the full informational model of Bertrand. This non-zero

payoff in equilibrium questions the ubiquitous zero profit condition prevalent in many

market microstructure models when considering multi-dealer competition.

As the dynamics are analogous to the simple 2-firm Bertrand case, the asymmetric

case is also analogous. If two market makers have a different estimation ability to

correctly value the security, they receive signals S1 ∼ N(V, σ1) and S2 ∼ N(V, σ2),

then in equilibrium, both will make a price of P (Si) = Si+δ
∗ with δ∗ =

√
π
2 (σ2

1 + σ2
2),

that is, both firms will use the same bid ask spread around their true value estimate.

This is even stronger evidence that public information can reduce spreads in the

market as it has the greatest effect on the worst-informed firms, which affects the

ability of the best-informed firms to exploit their informational advantage.

3.6 Client Reservation Prices

A central thread of this thesis is examining how different information sets between

various agents change the equilibrium and payoffs in the system. The addition of

customer reservation prices allows us to examine the asymmetric information case

between customers and firms or clients and dealers in the OTC market case. Client-

dealer information asymmetry is particularly relevant to the questions of transparency

of information that are an important concern of policymakers. We consider boundedly

rational clients in the sense that they attempt to estimate the true value but naively

use this estimate as their reservation price.

Consider the standard Bertrand financial market competition model as above,

with two identical market-making firms, homogenous security, and error signals S1 ∼

N(V, σ1) and S2 ∼ N(V, σ2) with a true common value V. We now incl;ude that the

clients also set reservation prices that are based on their value estimate. The clients

also do not have an exact knowledge of the value V and also attempt to measure

it and are modeled by them receiving a signal V3 ∼ N(V, σ3), where they set their
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reservation price. i.e., they set their reservation price at the naive level of their

estimation of true value.

From the dealer’s perspective, this formulation of the reservation prices is equiva-

lent to viewing the clients as having a private asset valuation. These private valuations

are normally distributed around the true value V.

The firm’s spread problem now becomes:

Each firm i=1,2 makes a selling price (after receiving their signal Vi) of P (Vi) =

V +εi+δi and has a payoff of P (Vi)−V = (εi+δi) if (εi+δi) is less than the (εj +δj)

of the other firm and also less than the client reservation price ε3, zero otherwise

Formally we are looking for the probability of firm i, to win a competitive auction

with one other firm.

P (pi = V + εi − δi < Y )

where Y = min{ε1 + δ1, ε2 + δ2, ε3}

Using the same methodology as in section 3.4.3 , we can calculate the expected payoff

to firm i , i= 1,2 as:

E[Πi] = E[εi + δi] =

∞∫
−∞

s

σi
φ(
s− δi
σi

)(1− Φ(
s− δj
σj

))(1− Φ(
s

σ3
))ds (3.25)

Unfortunately, this payoff function (3.25) does not have a nice algebraic represen-

tation, therefore, only numerical evaluation of the integral is possible. The dealers’

objective is to maximize the payoff function (3.25) and the best response curves can

be calculated numerically. For every choice of δj by firm j, firm i has a best response

δi and is found by solving the first order condition of the payoff functions.

As an illustration, figure 3.4 is a plot of the 2 payoff surfaces with respect to the 2

delta choices with N(0,1) signal errors and with customer reservation prices set at the

naive valuation level. The best response curves are added which graphically suggest

a single fixed point or point of mutual best responses and hence a Nash equilibrium.

The results of numerical simulations suggest identical effects to the non-reservation

price duopoly case but with much lower payoffs in equilibrium. The reservation prices

also cause spreads to narrow but is dependent on the level of information asymmetry
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Figure 3.4: Payoff surfaces for the 2 firms with the best responses
shown in red and blue

between firms and customers since adding a reservation price is similar algebraically

to adding a third competitive firm into the competition.

3.7 Other Informational Asymmetries

Using numerical analysis, we can determine how prices respond to changes in customer

information sets and how asymmetric dealer information affects the equilibrium when

clients also measure the true value. We model the extent of an agent’s information set

by how accurately they can measure the unknown value by a single variable σ. We

examine numerically how the equilibrium level spread changes for changes in relative

customer/dealer informedness, that is, changes in the ratio of σM and σT

3.7.1 Client-Dealer Asymmetry in Monopoly

Consider the standard Bertrand financial market competition model as above, with

only one monopoly dealer, homogenous security, and error signals SM ∼ N(V, σM )

with a true common value V. The clients receive a signal ST ∼ N(V, σT ), and again

set their reservation price at the naive level of their estimation of true value.

The signal variance differences between the client and dealer lead to different

prices and bid-ask spreads in equilibrium. In the limit, when the client is completely

uninformed, and behaves as a liquidity trader, the dealer will price as large a spread

as is possible.
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The expected payoff to the monopoly dealer can be calculated as:

E[ΠD(δ, σM , σT )] = δΦ

(
−δ
θ

)
−
σ2
M

θ
φ

(
δ

θ

)
(3.26)

where θ =
√
σ2
T + σ2

M . The monopoly dealer’s objective is to maximize equation 3.26.

In the extreme case of the dealer being perfectly informed, σM = 0, and equation

3.26 is solved with an infite spread as in the standard monopoly Bertrand case.

Figure 3.5: Monopoly dealer equilibrium spread levels varying with
client relative signal variance

In figure 3.5, we fix the dealer’s signal error to 1 and vary the client’s signal

standard deviation. We notice effects that reproduce results from the standard mi-

crostructure models. Clients better informed than the dealers correspond to the

informed trader case in the Glosten and Milgrom (1985) model and dealers use in-

creasingly higher spreads to protect themselves from their superior information. Sim-

ilarly, as clients become worse informed, spreads increase as the dealer exploits their

informational advantage. Spreads are lowest when clients are slightly worse informed

than the dealer. The winner’s curse effect - if the chosen spread is too low then there

are negative payoffs, are compensated for by using wider spreads.

3.7.2 Client-Dealer Asymmetry in Duopoly

Consider a market setup as before with two dealers and one client, who sets a reser-

vation price at their naive estimate of true value. In the case where both dealers are

equally well informed, both dealers make the same spread, but the spread level is
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now affected by the client’s strategic actions, which are determened by their signal

variance. Fixing the σ of the dealers at σ = 1 and varying the σ of the client produces

the Nash equilibrium spreads shown in figure 3.6.

Figure 3.6: Dealer equilibrium spread level with client signal
variance

The shape of the dealer’s equilibrium spread levels are similar to the monopoly

case but dramatically compressed. The equilibrium spreads are tighter when the

client is semi-strategic and worse-informed than the dealers by choosing a reservation

price over the non-reservation price levels. When clients are better informed, dealers

respond by raising their spreads to protect themselves from the better-informed client.

3.7.3 Price Dispersion

Many papers look at price dispersion, and we can examine this in the duopoly case

by calculating the variance of traded prices.

Proposition 3. Given the duopoly OTC market with unknown common values de-

scribed above and dealers receive independent signals V1 ∼ N(V, σ1) and V2 ∼ N(V, σ2)

regarding the true value, then in equilibrium, where the 2 dealers use a symmetric

pricing strategy: Buy(Vi) = Vi − δ∗i and Sell(Vi) = Vi + δ∗i , then for any σ1, σ2, the

variance of the market buy and sell traded prices in equilibrium is θ2
(
π+1
2π

)
Proof. Suppose X1 ∼ N(µ1, σ1) and X2 ∼ N(µ2, σ2). The first two moments of

Y = min(X1, X2) are

E[Y ] = µ1Φ(
µ2 − µ1

θ
) + µ2Φ(

µ1 − µ2

θ
)− θφ(

µ2 − µ1

θ
) (3.27)
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and

E[Y 2] = (σ2
1 +µ2

1)Φ(
µ2 − µ1

θ
) + (σ2

2 +µ2
2)Φ(

µ1 − µ2

θ
)− (µ1 +µ2)θφ(

µ2 − µ1

θ
) (3.28)

where θ =
√
σ2

1 + σ2
2 , originally calculated by Nadarajah and Kotz (2008).

We examine the variance in the dealer traded selling prices (equivalently the

client buy prices). As above, dealers make a selling price of Pi = V + εi + δi, where

εi ∼ N(0, σi), therefore Pi ∼ N(V + δi, σi), i = 1, 2 and let P = min(P1, P2).

Therefore, from the clients perspective, P is the trading price and the variance of P

is :

V ar[P ] = E[P 2]− E[P ]2 (3.29)

In equilibrium, δ∗ = θ
√

2π and δ1 = δ2 (by Proposition 1 and 2) and so the

moments becomes:

E[P ]2 =

(
V + θ

√
2π − θ√

2π

)2

(3.30)

E[P 2] =
(
V + θ

√
2π
)2

+
θ2

2
−

(√
2

π
V θ + 2θ2

)
(3.31)

V ar[P ] =
(
V + θ

√
2π
)2

+
θ2

2
−

(√
2

π
V θ + 2θ2

)
−
(
V + θ

√
2π − θ√

2π

)2

(3.32)

After some manipulation, the variance of P reduces to :

V ar[P ] = θ2

(
π + 1

2π

)
(3.33)

As the signal variance of either dealer goes up, the variance of the traded prices

increases quadratically with theta, or linearly with the sum of the dealer signal vari-

ances, and in equilibrium depends only on the signal variance. The variance of the

buying prices is equivalent by a symmetry argument.
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3.8 Conclusion

We have looked at a particular case of the very well-studied Bertrand competition

model with the added condition of an unknown common marginal cost and asym-

metric information regarding the true cost. The common value case is particularly

relevant for examining price formation in OTC financial markets and how the bid-

ask spread is equivalent to the optimal bidding strategy in a first-price auction. We

use the auction equilibrium results of Wilson (1969) to demonstrate how the bid-ask

spread is affected by the clients’ and dealers’ information sets and extended our anal-

ysis to the asymmetric information case. This chapter’s main narrative is that the

extent of firms’ information sets significantly affects their equilibrium pricing behav-

ior. We examined the nature of the common value equilibrium with normal error

signals and applied it to a competition duopoly. We found that firms with asymmet-

ric information make the same level of signal reduction with a unit or linearly sloping

market demand and how, in equilibrium, even worse informed firms can compete with

better-informed firms. This result also explains why firms with worse informational

costs are not driven out of the market. As with other papers on the subject, in par-

ticular, Spulber (1995), we find that informational uncertainty in the common value

case is enough to resolve the Bertrand paradox of firms pricing at marginal cost and

earning zero profits in expectation. We have assumed that competing dealers connect

to identical clients, so they have the same form of the payoff function and use stan-

dard auction results. When clients are not homogenous, their network connections

will affect the equilibrium payoffs and dealer strategies. These network effects offer

an explanation for observed empirical facts that are otherwise difficult to explain, and

we explore these effects in subsequent chapters.
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Chapter 4

OTC Network Model

4.1 Introduction

In addition to the trading protocols detailed in Chapter 2, we now add a network

component to the game. Before any trading occurs, each client must first select a

subset of dealers and form potential trading relationships. This process forms the

bilateral network links, and we develop a simple preferential attachment model that

mimics this process. Preferential selection is the mechanism whereby clients express

their preferences over the dealer set by choosing specific nodes over other nodes. This

process of client link choices in the US corporate bond OTC market was highlighted

by Hendershott et al. (2020), who examined the persistence of client links and the

relationship distribution amongst clients and theorized that it was driven by linking

costs and future trading expectations. The empirical result was that clients form a

small number of persistent links to dealers, with some central dealers who execute a

large proportion of the trade. A similar result was found by Mallaburn et al. (2019)

in the UK corporate bond market.

The bipartite market model has been employed in a variety of contexts of eco-

nomic exchange on networks, with and without intermediaries, see the review of

intermediation networks, Conderalli and Galiotti (2015) for a brief summary of Inter-

mediation networks and Manea (2009) for a comprehensive summary of the literature

on bilateral trading on networks.

We take the market structure (who trades with whom) as given and, in this sense,

are closer to the strand of literature that views agents as interacting on a fixed net-

work, such as the seminal work by Kranton and Minehart (2001) (which shares some
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ideas with this thesis using an ascending auction with private values) and others

that were reviewed in Chapter 1. Gale and Kariv 2007; Blume et al. 2009; Gof-

man 2011; Manea 2011; Nava 2015; Condorelli, Galeotti, and Renou 2017; Choi,

Galeotti, and Goyal 2017; Babus and Kondor (2018); Elliott 2015; Rahi and Zigrand

2013; Bramoulle, Kranton, and D’Amours (2014). Like the random network matching

models, the fixed network literature largely views decentralization as a restriction on

the efficiency of trade. However, although we use a fixed network for examining equi-

librium pricing, we think it is a novel approach to develop a method of generating a

continuum of bilateral market networks using two parameters of preferential selection

and client degree distribution to create networks with known degree centrality.

4.2 Basic Network and Graph Concepts

We start this chapter by summarizing some basic network concepts and definitions1

that we use to construct the network OTC model. We also define some standard

network formation models and briefly review the empirical OTC network literature.

We then introduce a methodology to create a network with preferential selection

using a fitness type model. The idea is to represent the trading connections between

the clients and the dealers as a bipartite network, which we then use to define the

dealers’ payoff functions. This representation allows a much-simplified analysis of the

equilibrium pricing levels.

4.2.1 Basic Definitions

The terms network and graph are typically used interchangeably in the literature;

however, graphs are primarily used to refer to abstract mathematical objects, whereas,

networks represent real-world objects in which the nodes represent entities of the

system, and the edges represent the relationships between them. We start by defining

a graph formally. Let us consider a finite set V = {v1, ..., vn} of unspecified elements

and let V ⊗ V be the set of all ordered pairs [vi, vj ] of the elements of V. A relation

on the set V is any subset E ⊆ V ⊗ V .

1The definitions in this section 4.2 are taken from Estrada and Knight (2015). Graph and Network
Theory. In digital Encyclopedia of Applied Physics, Wiley-VCH Verlag GmbH Co. KGaA (Ed.).
https://doi.org/10.1002/3527600434.eap726
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We can define a simple graph as the pair G = (V,E), where V is a finite set of

nodes, vertices or points and E is a symmetric2 and anti-reflexive3 relation on V,

whose elements are known as the edges or links of the graph. A directed graph is

defined as one where E is non-symmetric.

In many real world applications, the links or relationships between the nodes

have weights and a more general graph definition is warranted. A weighted graph

is defined as a quadruple G = (V,E,W, f), where V is a finite set of nodes, E ⊆

V ⊗ V = {e1, ..., em} is a set of edges, W = {w1, ..., wr} is a set of weights such that

wi ∈ R and f : E →W is a surjective mapping that assigns a weight to each edge.

For a simple graph, an adjacency matrix A can be defined as Aij = 1, if eij ∈ E,

0 otherwise. The degree of a node in a simple network is simply the number of links

connected to it and in a directed network, we can define an in-degre and an out-degree

representing the number of in-links and out-links that are incident on the node with

a similar weighted adjacency matrix representation of the node edge relationship.

4.2.2 Types of Networks

The simplest type of graph or network is the tree. A tree of n nodes is a graph that

is connected and has no cycles. The simplest tree is the path Pn. The path (also

known as linear path or chain) is the tree of n nodes, n − 2 of which have degree 2

and two nodes have degree 1. We can find a spanning tree for any graph, a subgraph

of this graph that includes every node and is a tree. A forest is a disconnected graph

in which every connected component is a tree. A spanning forest is a subgraph of the

graph that includes every node and is a forest.

An r -regular graph is a graph with rn/2 edges in which all nodes have degree r . A

particular case of regular graph is the complete graph where every node is connected

to each other. Another type of regular graph is the cycle, which is a regular graph

of degree 2, i.e., a 2 -regular graph, denoted by Cn. The complement of a graph G

is the graph G with the same set of nodes as G but two nodes in G are connected if

and only if they are not connected in G . An empty or trivial graph is a graph with

no links. It is denoted as Kn as it is the complement of the complete graph.

2The relation E is symmetric if [vi, vj ] ∈ E ⇒ [vj , vi] ∈ E
3The relation E is anti-reflexive if [vi, vj ] ∈ E ⇒ vi 6= vj and is reflexive if ∀v ∈ V, [v, v] ∈ E
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A graph is bipartite if its nodes can be partitioned into two disjoint (non-empty)

subsets V1 ⊂ V , (V1 6= ∅) and V2 ⊂ V , (V2 6= ∅) and V1 ∪V2 = V , such that each edge

joins a node in V1 and a node in V2. If all nodes in V1 are connected to all nodes in

V2, the graph is known as a complete bipartite graph and denoted by Kn1,n2 , where

n1 = |V1| and n2 = |V2| are the number of nodes in V1, V2 respectively. Similar to the

unimodal case, we can construct a matrix A, known as a biadjacency matrix, where

the entryAij represents the link between nodes i and j.

Bipartite networks have proven to be a useful tool in many fields: condensed

matter physics, socio-economic networks (firms and customers in traditional economic

theory) and is the network structure that we examine in this thesis as the basis of

the interconnectivity between clients and dealers in an OTC market.

4.2.3 Centrality Measures

Node centrality in a network is one of the many concepts that have been created in the

analysis of social networks and then imported to the study of any kind of networked

system. Measures of centrality can be either for each node – local centrality or for

the whole network – global centrality. There is a distinction in centrality measures

between directed and undirected networks. For directed networks, outgoing arcs are

known as measures of influence, and incoming arcs are measures of support. In

our client-dealer-directed network, the dealer links represent incoming price quote

requests from the clients, and the outgoing links represent the trading quotes from

the dealers to their connected clients.

Degree is the simplest of the node centrality measures that use the local structure

around nodes and is the measure we use in identifying central dealers in the OTC

network. In a directed network, degree is split into out-degree and in-degree, and this

concept has been extended to weighted networks (Barrat et al. 2004, Newman, 2004)

and labeled node strength. Other centrality measures, such as closeness centrality

(the inverse sum of shortest distances) and betweenness centrality (the amount that

a node lies on the shortest path between other nodes), have problems when applied

in a bipartite network as many nodes are often disconnected, and it is the behavior

of the competitive process with the dealer nodes that determine equilibrium pricing.

Weighted degree centrality or node-strength then also naturally leads to how the
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weights of an influencing node are distributed and finally to a global concentration

measure.

The simple degree centrality of a node in a network was first considered as a

centrality measure by Freeman (1979) in order to account for immediate effects taking

place in a network. The degree centrality can be written as

ki =
n∑
j=1

Aij (4.1)

In directed networks, we have in-degree and out-degree centrality of a node:

kini =

n∑
j=1

Aij (4.2)

koutj =
n∑
i=1

Aij (4.3)

There are many other centrality measures that are useful depending on the context

of the network studied. The closeness centrality, which measures how close a node is

from the rest of the nodes in the network and in simple networks, the distance metric

dpg = d(p, q) of 2 nodes, p and q is defined as the number of edges in the shortest path

between them. Similarly for directed networks, there is an analogous directed distance

measure which is a pseudo-metric as typically dpg 6= dqp, breaking the symmetry

requirement for metrics. The closeness centrality, CC(u), of a node u, is defined as

CC(u) = n−1
s(u) , where the distance sum s(u) is defined as s(u) =

∑
v∈G d(u, v).

The betweenness centrality quantifies the importance of a node in relation to their

position between other pairs of nodes in the network. It can be viewed as measuring

the proportion of information that passes through the target node when there are

communications between other pairs of nodes in the network. For every pair of nodes

in a connected graph, there exists at least one shortest path between the nodes such

that either the number of links that the path passes through (for unweighted graphs)

or the sum of the weights of the links (for weighted graphs) is minimized. The

betweenness centrality for each node is the number of these shortest paths that pass
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through the node. It is defined as:

g(v) =
∑
s 6=v 6=t

σst(v)

σst
(4.4)

Where σst(v) is the total number of shortest paths from node s to node t and σst is

the number of those paths that pass through v.

The Katz centrality is an important measure that can be viewed as an extension

of the simple degree centrality where it seeks to include the influence of distant as

well as close nodes. The Katz centrality Index can de defined, Katz (1953) as:

Ki =
{

[(I− ν−1A)−1 − I]1
}

(4.5)

where I is the identity matrix, A is the adjacency matrix, 1 is a column vector of 1’s

and ν 6= λ1 is an attenuation factor (λ1 is the principal eigenvalue of A).

Another type of centrality that captures the influence not only of nearest neighbors

but also of more distant nodes in a network is the eigenvector centrality. This index

was introduced by Bonacich (1987) and is the ith entry of the principal eigenvector

of the adjacency matrix.

Many of these centrality measures have severe interpretation issues when applied

to a bipartite network as nodes in each disjoint subset do not connect to each other,

hence we restrict the centrality measure to weighted and unweighted degree centrallity.

Notably, in most empirical research on centrality measures, the level of correlation

between the different measures in real market structures is very high, see Valente

et al. (2008).

4.2.4 Random Networks

The simplest and earliest model of a random graph was introduced by Erdös and

Rényi (1959). A random graph in the Erdös Rényi model starts by considering some

isolated nodes. Then, with probability p > 0 an edge is created between a pair of

nodes. Consequently, the graph is determined only by the number of nodes, n and

edges, m such that it can be written as G(n,m) or G(n, p).
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4.2.5 Core-Periphery Networks

The intuitive concept of the set of nodes in a network having one subset that is more

connected and central, and a peripheral subset of nodes that are less connected and

less central has been used in economics since the 1950s. However, the definition of a

core-periphery structure can and has been defined in numerous ways. The standard

discrete model definition of a core-periphery network is a partition of the nodes into

two subsets. One class of nodes forms a cohesive core sub-graph in which the nodes

are highly interconnected, and the second class of nodes consisting of peripheral nodes

that are loosely connected to this core, Borgatti and Everett (2000).

A limitation of this partition-based approach is the excessive simplicity of defining

just two node types: core and periphery. This partitioning could be expanded to a

three-class partition consisting of core, semi-periphery, and periphery, as world-system

theorists have done. ’World-system refers to the inter-regional and transnational

division of labor, which divides the world into core countries, semi-periphery countries,

and the periphery countries. ’ Barfield, Thomas (1998).

In empirical studies of OTC markets, the network structure is found to have three

main features. Firstly, a highly connected core of dealers, secondly, a small subset of

dealers that intermediate a disproportionate amount of trade, and thirdly, client nodes

with relatively few but persistent links to the dealers. These empirical observations of

the OTC network topology (detailed in section 4.3) suggest a type of core-periphery

network structure by viewing the network as unimodal (core-periphery structures are

not traditionally defined for bipartite networks).

4.2.6 Degree Distributions

The statistical distribution of the node degrees is a network characteristic that has

received considerable attention in the literature. Let p(k) = n(k)/n where n(k) is the

number of nodes having degree k in the network of size n . That is, p(k) represents the

probability that a node selected uniformly at random has degree k . The distribution

of p(k) versus k represents the degree distribution for the network. Depending on

the generating mechanism of the network, the degree distribution could take many

forms. A typical distribution which is expected for a random network of the type of
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Erdös-Rényi is the Poisson distribution. However, a notably common characteristic

of socio-economic networks is that many of them display some kind of ‘fat-tailed’

degree distributions. In these distributions a few nodes appear with very large degree

while most of the nodes have relatively small degrees.

A typical example in the litereature of these distributions is the power-law distri-

bution, which is illustrated in Fig 4.1 taken from Estrada and Knight (2015), along

with the Poisson distribution of an ER network. Other distributions such as lognor-

mal, Burr, logGamma, Pareto, etc. (Foss et al., 2011) fall in the same category.

Figure 4.1: Degree distribution of Poisson and Power Law Networks

In power law networks, the probability of finding a high-degree node is relatively

small in comparison with the high probability of finding low-degree nodes. These

networks are usually referred to as ‘scalefree’ networks. The term scaling describes

the existence of a power-law relationship between the probability and the node degree:

p(k) = Ak−γ with γ referred to as a scale parameter.

Among the many possible degree distributions existing for a given network, the

‘scalefree’ one is one of the most ubiquitously found. Consequently, it is important

to study a model that can produce random networks with such a degree distribution.

That is, a model in which the probability of finding a node with degree decreases as

a power-law of its degree. The most popular and one of the original models of these

networks is the one introduced by Albert and Barabási (2002). Power-law degree

distributions (with exponential tails) have been found to model the link structure

in numerous OTC networks and other socio-economic network structures; however,

”knowledge of whether or not a distribution is heavy-tailed is far more important than
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whether it can be fit using a power law”, Stumpf and Porter (2012). This observation

is especially true in OTC competition networks.

4.3 Empirically Observed Market Networks

Most OTC markets, such as bonds, swaps, interbank lending, foreign exchange, real

estate, and domestic energy, exhibit a stable core-periphery network structure. Abad

et al. (2016), European interest rate, foreign exchange and credit derivatives and

Hendershott et al. (2020), US corporate bonds, Di Maggio et al. (2017) and Li and

Schürhoff (2019) in US municipal and corporate bonds, among others, find using

TRACE and DTCC datasets, a power law link structure in numerous OTC financial

markets. Although core-periphery structures are technically only defined for one

node (unimodal) networks, the critical point is that core dealers tend to have higher

centrality than periphery dealers. Abad et al. find that in financial markets4, roughly

the same 10-15 dealers form the core, with the vast majority of trades having one of

these core dealers as a counterparty. The largest 16 derivatives dealers, for instance,

known as the ’G16’ intermediate 53% of the total notional amount of interest rate

swaps and 62% of credit default swaps. Craig and von Peter (2014) find a core-

periphery structure in interbank lending markets.

There is an extensive literature of empirical observations of core-periphery net-

works and an equally large number of theoretical papers that attempt to explain the

endogenous formation of a core-periphery structure. They range from some dealers

having an ex-ante special advantage (for example, Chang and Zhang (2016)) to Far-

boodi (2015), who argues that the core-periphery structure is endogenously generated

by counterparty default risk management. Notwithstanding, this configuration seems

to be a defining feature of OTC bilateral markets. We find that the ubiquitous nature

of this network structure is a key determinant of the more centrally located dealers’

spread behavior.

4These statistics were computed by Abad et al. (2016) using EMIR dataset
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4.4 Preferential Attachment Network Models

Real-world network structures do not resemble the random network structures of the

Erdos Renyi model, and core-periphery structures and power-law degree distributions

are observed in many socio-economic structures, Kolotilin and Panchenko (2018). A

common explanation for this is a random network formation process with preferential

attachment. Albert and Barabási (2002) built the first theoretical model of network

formation with a preferential attachment that differed from random network forma-

tion in two key ways. Firstly, growth - the random network model assumes a fixed

number of nodes, whereas, in real networks, the number of nodes continually grows

due to the addition of new nodes. Secondly, these new nodes prefer to connect to

more popular nodes (as opposed to random connections) in a process known as pref-

erential selection. These two characteristics, growth, and preferential attachment,

define a network structure that more accurately models observed socio-economic net-

works and have dramatic implications for degree distributions. In OTC markets,

these degree distributions determine the level of competition faced by the dealers and

determine the amount of market power that firms have when pricing the product in

a network and critical in affecting the equilibrium pricing behavior.

Although there is extensive literature on preferential growth networks, such as

Cooper and Frieze (2003), who detail a more general model, and Jackson and Rogers

(2007) with a hybrid homophily (nodes attach to similar nodes) preferential attach-

ment model, the main mechanism of preferential selection (certain nodes are preferred

in some way and results in a core-periphery structure in a unimodal network and con-

centrations of centrality in bimodal networks) is the basic generating feature of these

economic market network models.

Although the network generating process is outlined above, we consider the net-

work as fixed when we examine the pricing and equilibriums in a one-period game.

4.4.1 Bipartite Model with Preferential Selection

The traditional BA model of network formation in a unimodal network assigns a

greater preference of newly created nodes to connect to nodes that already have a

greater number of links. The ideas of the BA model of network formation can be
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illustrated by applying them to our bilateral OTC network as follows: We start with

m0 dealer nodes and zero client nodes at t = 0. We add a new client node that

connects to a dealer node with one link at each timestep. The probability that a link

from this client node connects to dealer node Di depends on the ki = Deg(Di) as

P (ki) =
1

m0
+

(
m0 − 1

m0

)
ki∑
ki

(4.6)

That is, the probability is skewed from pure randomness ( 1
m0

) by the degree of the

dealer nodes ki = Deg(Di) - the more clients that are connected to a dealer, the more

likely they are to get selected by new nodes. As new clients enter the market, they

increasingly make a connection to the higher degree dealer nodes. This process leads

to a core-periphery structure for the client-dealer network, resulting in a small number

of dealers having more links to the clients and executing a disproportionate amount

of trade in the network - a result consistent with empirical evidence detailed in 4.3.

After a large number of new client nodes have been formed, the resulting network has

an almost identical structure to the BA unimodal model of network formation with

a degree distribution of the dealer nodes that have a power-law distribution. The

BA model has been subject to some criticism with regard to real-world networks.

BA themselves recognize that the initial configuration is critically important to the

eventual link distribution of the network. This model makes it difficult for any new

nodes to become significant once the network is established (it is a pure rich-get-richer

model). In a competitive market network with firms and clients, this feature is not

desirable as new entrant firms can often become popular (aggressive pricing, superior

technology, marketing, etc.).

Although existing degree (popularity) is the source of preferential selection amongst

new client nodes in the BA model, we examine a more general situation where there

is some attribute of the dealer nodes that allows the clients to rank them in terms

of preference. In terms of modelling, this does not change the analysis. Suppose we

have m0 dealer nodes that a new client node could connect to. If there was no pref-

erence, then each dealer node gets randomly selected with probability 1
m0

. We add

preferential selection by allowing some nodes to have a greater probability of being

selected.
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Suppose dealer node 1 is preferred by clients in some way (perhaps because of size,

risk management or marketing strategy or some combination of defining features) and

this is modelled by dealer 1 having an excess probability of being chosen of α, where

0 ≤ α ≤ m0−1
m0

. We assume that α is constant. The preferred dealer node 1 has a

probability p(D1) of being selected by a new client node as:

p(D1) =
1

m0
+ α (4.7)

The remaining m0 − 1 dealer nodes now have a probability of being selected as:

p(Di) =
1

m0
− α

m0 − 1
(4.8)

This formulation is more flexible than just using node degree for preferential selec-

tion. We can control the exact amount of preferential selection in the network, which

allows us to examine the relationship between this preferential selection parameter

α, (which also maps linearly onto weighted degree centrality), and the equilibrium

prices charged in the network.

More generally, if we assign a constant probability pi to each dealer node being

selected, then after the creation of N client nodes, the expected degree distributions

follows: E[deg(Di)] = Npi. and the ratio of the expected degree of any two nodes,

Di and Dj is: E[deg(Di)]
E[deg(Dj)]

= pi
pj

We formulate these ideas of network formation and preferential selection in more

detail in section 4.8.

4.4.2 Higher Degree Client Node Networks

So far, we have looked at each new client selecting only one link, but the clients

may select more links than this in order to receive a more competitive price. The

amount of connectivity (degree) of clients and their degree distribution may affect

the equilibrium pricing level. The price quoted in a 1-link monopoly structure is

often different from that quoted in a multi-link connection with competing firms.

Indeed, dealers’ price quotes depend on the amount of competition they face with

other dealers and, hence, the quotes charged in the resulting equilibrium strategies.
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This simple model can also incorporate this client characteristic by allowing a

distribution over the clients’ link structure. Suppose clients have a degree that is

distributed with a probability mass function f, such that P (ki = s) = f(s) where kj

ranges from 1 : m0, that is, there is a probability mass function that determines if

a client connects to only 1 dealer (monopoly) up to m0 dealers (fully competitive).

Suppose a new client node is created that has a degree of k links and connects to

the dealer set D, |D| = m0 ≥ k, we want to calculate the expected degree of the

preferred and non-preferred nodes in D. The probability that a link from this client

node connects to a preferred dealer node D1 is calculated and then used to calculate

the expected degree. The probability pi of being selected by the ith link (and not

having been selected by the previous (i− 1)th links is defined recursively as:

p0 = 0

pi =
i−1∏
j=1

(1− pj)
(

1

(m0 − j + 1)
+ α

)

And so the probability P (k) of the preferred dealer node receiving a link from a client

with degree k is:

p(k) =

k∑
i=1

pi =

k∑
i=1

i−1∏
j=1

(1− pj)
(

1

(m0 − j + 1)
+ α

)
(4.9)

Suppose that N client nodes have been created (with fixed m0 dealer nodes), and let

β1, ...βm0 be the proportions of the N clients that have a degree of 1, ...,m0, where

0 ≤ βi ≤ 1 and
∑
βi = 1, then the expected degree k1 = Deg(D1) of the preferred

dealer node is:

E[k1] = N (β1p(1) + ..+ βm0p(m0)) = N

m0∑
i=1

βip(i) (4.10)

Various distributions of β = [β1, ..., βm0 ], of the client degree, give rise to various famil-

iar economic network structures. If we classify each generated network by parameters

(α, β), then the particular network (α = 0, β = {1, 0, 0, .., 0}), case, corresponds to a

bilateral star network where each client connects to only one dealer randomly (evenly
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to the dealers in expectation). This is a monopoly market with multiple monopoly

dealers, each with their own client base. At α = m0−1
m0

, (it’s maximum value), and

, β = {0, 0, ..0, 1} corresponds to the complete network, the totally competitive mar-

ket. By varying these parameters of client degree β and preferential selection α we

can generate the entire space of possible competitive networks.

These two generating characteristics, the distribution of the client links to the

dealers β and the amount of preferential selection α for the dealers by the clients

when forming their links, constitute the basis of out OTC network model. We will

also map these parameters onto a network centrality measure in section 4.8.

4.5 N Dealer, M Client Network Game

Following the network structure described in section 4.4.1, how the clients connect to

dealers (in our model represented by the tuple (α, β)), is the key element in determin-

ing the amount of competition in each potential client-dealer transaction and hence

the equilibrium pricing choices of the dealers. We introduce two types of agents:

Dealers Di : i = 1, ...., N Clients Cj : j = 1, ....,M . Due to restraints of search costs,

each client node Ci, maintains contact with a finite number ki = Deg(Ci) (≤ N) of

dealer nodes from whom they request quotes. ki is the number of links with the

neighborhood set N [Ci] that can be maintained given the clients’ search and mainte-

nance cost constraints. The intuition is that it is a lengthy (and hence costly) process

to create and maintain trading relationships with dealers, limiting the number of

connected dealers.

We characterize each client Ci(Vi, N [Ci]) with 2 parameters, Vi, which is the

clients’ value of the asset and N [Ci] , the neighbourhood set (sub-network) of dealers

{D1, ...., Dki} that the client is connected to, in order to request prices.

The links characterize potential trading relationships between the clients and the

connected dealers, and the OTC game of the set of {Di} dealers and {Ci} clients

can be represented by a bipartite graph game G = (D,C,E,Π), where E denotes the

links or trading relationships between the dealers and clients. Cardinality |C| = M

|D| = N and Π, the payoff functions for each dealer given their pricing choices pi.
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The biadjacency matrix of G is a |C|x|D| matrix E, where eij = 1 if a trading

relationship exists and 0 if not. |C| >> |D| or M >> N , (there are many more clients

than dealers). We use the simplified notation that G(Cj , N [Cj ]) is the competitive

price game comprising client Cj and their connected dealer neighbourhood set N [Cj ].

ΠDiG(Cj , N [Cj ]) is the payoff to Di in this sub-network (with dealer prices p =

[p1, .., pn]).

This chapter is primarily concerned with the network structure and connections

between the clients and dealers. However, in order to simplify the OTC competition

network, we introduce some game structure to the bilateral network. Clients connect

to the dealers and form a network structure given by (α, β). We assume that α and

β are common knowledge.

The trading protocols follow the usual structure. The clients request a trading

price from their connected dealers (their neighbourhood sets N [Ci]) and each dealer

Di quotes a trading price pi to their neighbourhood client sets N [Di]. The quoted

trading price represents the dealers’ strategy in this game. Each client and dealer has

a valuation Vi for the homogenous good. The clients choose the best price from these

dealers, and trade occurs in a Bertrand price competition. process.

Figure 4.2: Clients C1, .., C5 and associated neighbourhood sets
and valuations

Figure 4.2 shows a typical OTC market network. The second image illustrates
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a subsection of the main network involving clients C1, ..., C5 who are connected to

dealers D1, D2, D3. The clients submit requests for trading prices to these connected

dealers and these dealers respond with prices p1, p2, p3. Both clients and dealers have

a valuation of the asset Vj

The payoff toD1 is the payoff from interacting with his neighbourhhod setN [D1] =

{C1, C2} and hence is the sum of the payoffs of the sub-games G(C1, N [C1]) and

G(C2, N [C2]). The probability of trading and the trading price is affected by the

prices pi of the dealers and the payoff to each dealer is a function of each dealer’s

valuation level which we explore in greater detail in the next chapter.

4.6 Network Payoffs

Let there be N dealers and M clients connected in a network represented by Γ =

[{C,D}, A] where C,D are the sets of client and dealer nodes, connected via a biad-

jacency matrix A. Let G = [Ci, N [Ci], A
∗] be a subnetwork consisting of a client Ci

and it’s connected dealer set N [Ci].

We introduce the notation that E[ΠDiG(Cj , D1, ..., Dm|δ1, .., δm, σM , σT )] is the

expected payoff to dealer Di when connected to a client Cj , who is also connected to

m dealers D1, ..., Dm and each of these dealers uses semi bid-ask spreads of δ1, ..,δm.

The set of connected dealers of Cj is the neighbourhood set N [Cj ]. It is understood

that the expectation is conditional on the action set {δ1, ..δm} of the dealers and

error variances σM and σT and so we will drop this from the notation for brevity.

Generally, the clients are connected to different subsets of dealers and so the expected

payoff of dealer i is the sum of payoffs over all the clients they are connected to and

each interaction with each client may have different numbers of competing dealers.

Let Ci ∈ {C1, ..., CM} and let N [Ci] be the neighbourhood set of dealers of client Ci.

The expected payoff or profit of dealer i in the entire network game G, E[ΠDi(Γ)] is:

E[ΠDi(Γ)] =
∑

s∈N [Di]

E[ΠDiG(Cs, N [Cs])] (4.11)

where N [Di] is the neighbourhood set of dealer i, Di. N(Cs) is the neighbourhood

of client Cs and each Cs is a member of N(Di). This expression is just the sum of
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payoffs over all subgames with connected clients of dealer i.

For intuition, consider a subset of a dealer network that comprises {Di, D1, D2, D3, D4}

with a topology described in figure 4.3.

Figure 4.3: Example of a 5-dealer market with clients C1,C2, C3
and associated neighbourhood sets

It is clear that dealer Di’s payoff depends on both its neighbourhood set N [Di]

and the neighbourhood sets of this neighbourhood set, N [N [Di]] = {N [C1], N [C2]}.

Although Di is not connected to C3, the pricing decisions of D3 with C3 affect the

pricing decisions with D3 and C2, which in turn affects the pricing decision of Di with

C2. Through this mechanism, pricing and information flows through the network and

causes interconnectivity of pricing strategies.

Equation 4.11 is the sum of payoffs from each individual client that dealer Di is

connected to and each term of the sum has the form of equation (2.8). The dealers

all seek to maximize this expected payoff function (4.11) in equilibrium by choosing

an appropriate bid-ask spread δi that is used in all of their sub-network games.

This formulation is the essence of the OTC game structure - a sum of competition

payoffs with multiple clients in a network configuration with each dealer using a single

choice variable δi, the bid-ask spread.

4.7 Weighted Biadjacency Matrix Representation

The links that represent potential trading relationships between clients and dealers

have been characterized as an unweighted bipartite network, where each link has

a weight of 1, which represents a potential trading relationship. This unweighted
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network can be converted into a weighted bipartite network, which reduces the total

number of possible market topologies (only a limited number of ways to connect

to the dealer set) and allows us to measure the effects of dealer centrality more

easily. The interactions between the set of D dealers and C clients through the

links can be represented by a network game G = (D,C,E,Π), where E denotes the

links or potential trading relationships between the dealers and clients. Cardinality

|C| = M , |D| = N and Π, the payoff functions. The biadjacency matrix of G is a

|C| X |D|(= M X N) matrix E, where eij = 1 if a trading relationship exists and 0

if not. |C| >> |D| or M >> N .

We introduce a more compact form G∗ = (D,C∗, E∗), where the clients are now

partitioned into sets with the same topological link structure. i.e., if two clients are

both connected to the same set of dealers, we can use one node and a weighted link.

This is allowable because we assume that the expected payoff to a dealer from two

identical clients is the same. The biadjacency matrix of G* is a weighted biadjacency

matrix E*, where eij = εij are the proportion of clients with a certain link structure

and 0 ≤ εij ≤ 1.

Monopoly case

Consider a monopoly market network (star network) with M homogenous clients and

a single dealer; we can represent this as a weighted network with 2 nodes: a client

node and a dealer node as in figure 4.4.

Figure 4.4: Strategic equivalence of monopoly market, M clients

Node C1 represents the only strategic choice of the clients. The payoff for the

dealer D1 only depends on the weight M. We can equivalently express this as M =

1, which is 100 % of clients connect to the dealer D1 with one link. Importantly, we

assume the expected payoff from each client with the same link structure is the same,
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then the expected payoff in the network game G from this node is the sum of the

expected payoffs from each of the M identical clients, i.e:

E[ΠDi(G)] =

M∑
j=1

E[ΠDi(Cj)] = ME[ΠDi(C1)] (4.12)

Duopoly Case

Figure 4.5: Strategic equivalence of duopoly market, M total clients

Similarly with a 2-dealer market, here clients can either have 1 link to either dealer

or connect with both in a competitive process as in figure 4.5.

The link weights are the proportions of M that have that particular topology. α+β+γ=1

and C1, C2, C3 represent all the possible strategic choices of the clients. i.e. C1 rep-

resents the clients’ choice to have a single link to dealer 1, D1. C2 is the set of clients

with a single link to D2 and C3 represents the set of clients that connect to both. If

clients have no preference for a particular dealer, then α=β in expectation.

If clients choosing the same strategy (topology) are assumed to be homogeneous,

then no information about the network is lost in this transformation.

General case

Every possible bipartite network adjacency matrix E(NxM), can be represented with

a new single matrix E(N x 2N − 1) with different biadjacency weight parameters

representing the partition of the client topology.

In a general network of N dealers and M clients with each client connecting to k

dealers, there are CN
k possible nodes (+ n dealer nodes) in the network (where CN

k
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are the binomial weights). Each dealer is involved in 2N − 1 distinct auctions (some

will be empty depending on the network)

Therefore the union of all these networks (k=1:N) represents the network of all strate-

gic possibilities for the M clients - these are the only ways to connect to a dealer

subset.

This union network U has total number of nodes or client strategic choices:

|U | =
N∑
i=1

CN
i = 2N − 1 (4.13)

4.7.1 Dealer Payoff in Weighted Network Representation

Again, using the notation that G(Cj , N [Cj ]) is the competitive game played be-

tween the client Cj and its neighbourhood set of connected dealers {D1, ..., Dk} and

E[ΠDi(G)] is the expected payoff for dealer i in game G. Let the set of dealers

be a vector D = [D1, ...., Dn] and the set of possible clients’ connective strategies

C = [C1, ....., Cp] where p = 2N − 1, i.e. we group together all the clients that have

the same topology or equivalently, identical neighbourhood sets. Let A be the biad-

jacency matrix of connections where aij is the weight of the connection 0 ≤ aij ≤ 1

and represents the proportion of clients connected in this way. The expected profit

of a dealer is the sum of expected profits from each of its connected client groups.

Let there be N dealers and M clients and let αi be the proportion of clients

connected to each possible dealer subset, of which there are 2N − 1 possible subsets

(the binomial permutations). See section 4.7. The payoff to dealer i who is connected

to multiple clients C1, ..., Ck, where each client Cj is connected to a subset of dealers

N [Cj ] is:

E[ΠDi(Λ)] = M

2N−1∑
j=1

αjE[ΠDiG(Cj , N [Cj ])] (4.14)

Which is the sum of payoffs from each individual client that dealer Di is connected to

and each term of the sum has the form of equation (2.8). The dealers all seek to max-

imize this expected payoff function (4.14) in equilibrium by choosing an appropriate

bid ask spread δi that is used in all of their sub-network games.
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In general and in matrix form, the expected payoff for the dealers:

E[ΠD(G)] = MAE[ΠD(C)] (4.15)

, where D = [D1, D2, ..., DN ]T , E[ΠD(C)] = [E[Π(C1)], E[Π(C2)], .., E[Π(Cp)]]
T

M is the number of clients and A=weighted biadjacency matrix of connections, N ×

(2N − 1) and E[Π(Ci)] is the expected profit from one of the possible client auction

games Ci. If the dealer is not connected to a client, we set the payoff in this game to

zero.

Example in a 3-dealer network

There are 23 − 1 = 7 client strategic possibilities in this game (represented by the

columns of the biadjacency matrix)

A =


α1 0 0 β1 β2 0 δ1

0 α2 0 β1 0 β3 δ1

0 0 α3 0 β2 β3 δ1


where the weights

∑
αi + βi + δi = 1

C = [E[Π(G(D1))], E[Π(G(D2))], E[Π(G(D3))], E[Π(G(D1, D2))],

E[Π(G(D1, D3))], E[Π(G(D2, D3))], E[Π(G(D1, D2, D3))]]

Consider dealer D1, represented by the first row of matrix A. D1 is connected to C1,

C4, C5 and C7. The expected payoff is a function :

E[ΠD1] = α1E[ΠD1(C1)] + β1E[ΠD1(C4)] + β2E[ΠD1(C5)] + δ1E[ΠD1(C7)] (4.16)

and in terms of distinct games:

E[ΠD1] = α1E[ΠD1(G(D1))] + β1E[ΠD1(G(D1, D2))]

+ β2E[ΠD1(G(D1, D3))] + δ1E[ΠD1(G(D1, D2, D3))]

Where for example G(D1,D3) is the distinct auction game involving dealers 1 and 3

and the E[ΠD1(G(D1, D3))] is the expected payoff for D1 in game G(D1,D3)
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4.8 Simplified Preferential Attachment Network

4.8.1 1 and n Degree Client Case

To simplify client network choices but maintain the sensitivity between higher and

lower client degree choices, we assign each client to either a low or high degree class.

The low degree class has only one link to a dealer, and the high degree class connects

to all of the dealers in the network. These simplifications model the fact that some

clients only choose limited price competition due to link creation costs, whereas other

clients choose many firms to quote with. Therefore, firms would like to have a dif-

ferent pricing strategy depending on how much competition they face in each client

interaction. This simplification is consistent with the observed power-law link dis-

tributions observed in OTC markets, Hendershott et al. (2020) and Mallaburn et al.

(2019).

The weighted biadjacency matrix has a simple form and becomes:

A =



α1 0 0 0 0 0 γ

0 α2 0 0 0 0 γ

. . . . . . .

. . . . . . .

. . . . . . γ

0 0 0 0 0 αn γ


which is an nx(n+1) matrix and

∑
αi + γ = 1

The payoff vector for the N dealers with M clients is: E[Π(D)] = MAC , where

D = [D1, D2, ..., DN ]T and C = [E[Π(C1), E[Π(C2), .., E[Π(CN+1)]T

The payoff for a dealer i is:

E[ΠDi] = αiE[ΠDi(G(Di))] + γE[ΠDi(G(D1, ..., DN ))] (4.17)

which is the expected payoff for dealer i from 2 distinct competitions - the monopoly

game G(Di) and the complete game G(D1, ., ., , DN ).

(In equilibrium, generally E[ΠDi(G(D1, ..., DK))] 6= E[ΠDj(G(D1, ..., DK))] - as the

payoff and choices for each dealer in equilibrium are affected by the spread choices in
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all the other subgame competitions that each of the dealers are involved in.)

We now also add preferential selection to the simplified matrix representation by

allowing one of the dealers to be more popular. Each dealer with 1 link is equally

likely to be selected, with probability 1/n. Suppose dealer n, Dn is preferred and

its’ probability of being selected is increased by α. The probability p of Dn being

selected is p = 1
n + α and the other dealers [D1, D2, ..., Dn−1] have a probability of(

1
n −

α
(n−1)

)
of being selected. Suppose also that a proportion β of clients have degree

1 and (1-β) have degree n. Our expected biadjacency matrix now looks like:

A =



β
[

1
n −

α
n−1

]
0 0 . 0 0 (1− β)

0 β
[

1
n −

α
n−1

]
0 . 0 0 (1− β)

. . . . . . .

. . . . . . .

. . . . . . (1− β)

0 0 0 . 0 β
[

1
n + α

]
(1− β)


The biadjacency matrix has 2 parameters, α and β, where:

α characterizes the amount of preferential selection of the preferred dealer and

maps linearly to weighted degree centrality, 0 ≤ α ≤ (n − 1)/n and determines the

distribution of centrality in the network

β represents the proportion of low degree clients in the network and determines

the average centrality in the network 0 ≤ β ≤ 1

By varying α and β, we can examine how the equilibrium prices change for different

types of competition market networks. α=0 corresponds to no central node, α=1 is 1

central dealer trading exclusively with all low degree clients and equally participating

with the high degree clients (weighted degree centrality =1). β=0 corresponds to a

complete network, β=1, corresponds to the monopoly network.

NB:

(α,β) = (0,0) corresponds to the complete network (total competition)

(α,β) = (1,1) corresponds to the star network (monopoly market)

The idea is to move between these 2 extreme networks by varying these parameters
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We can now use this variable network representation in the payoff function of a dealer

in this network auction game: The peripheral dealers {Di} have a payoff function:

E[ΠDi ] = β

[
1

n
− α

n− 1

]
E[ΠDi(G(Di))] + (1− β)E[ΠDi(G(D1, ..., Dn))] (4.18)

and the central dealer Dn has an expected payoff:

E[ΠDn ] = β

[
1

n
+ α

]
E[ΠDn(G(Dn))] + (1− β)E[ΠDn(G(D1, ..., Dn))] (4.19)

where E [ΠDi (G)] is the expected payoff for Di from the game G

We could equally have chosen 2 links and n-1 links as the 2 examples to simplify

the network problem, but this is complicated by the connection permutations and

the results are identical. The important features are captured in this representation,

being the 2 extremes of the client game choices, which is a blend of monopoly and

fully competitive payoffs.

In the following chapter, we specify the exact form of E [ΠDi (G)], which is the

Bertrand price competition payoff with unknown common valuations.

The expected weighted degree centrality DC(Dn) of the central dealer described

above given the parameters (α, β) can be calculated as:

DC(Dn) = E[kn] = β

[
1

n
+ α

]
+ (1− β) (4.20)

and the peripheral dealers, Dp (p=1,..,n-1), have an expected weighted degree cen-

trality as:

DC(Dp) = E[kp] = β

[
1

n
− α

n− 1

]
+ (1− β) (4.21)

Where as before n is the (fixed)number of dealers, and (α, β) are the network generat-

ing parameters as described above. For a fixed preferential selection α, the centrality

of all dealer nodes is an increasing linear function of the amount of low degree clients

β and similarly for a fixed β the centrality is an increasing linear function of α for

the core dealer and a decreasing linear function for the periphery dealers.

Although both α and β affect the centrality calculation, they affect it in different

ways. β affects the global level of dealer centrality and network density, whereas
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Figure 4.6: Relationship between α and weighted degree centrality
with 50% low and high degree clients

Figure 4.7: Relationship between α and relative degree centrality
DC(Dn)/DC(Dp) of central to peripheral dealers with various

proportions of low degree clients

α affects how unequally the links and centrality are distributed. Figure 4.7 shows

the centrality of the central dealer, normalized by the centrality of the non-preferred

dealers. Our next chapter examines the centrality premium effect, that is how central

and peripheral dealers make different prices in equilibrium that is related to their

relative centrality in the network and so we will typically fix β and vary the amount

of relative preferential selection (and hence the centrality measures of the central and

peripheral dealers) α to better understand the origins of this centrality effect.

4.9 The OTC Network as a Static Bayesian Game

We can represent our OTC market network game model as a Static Bayesian game

as in Chapter 2 with the addition of the network generating parameters. All other

protocols remain the same. A Bayesian game is a game in which the players have
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incomplete information of the other players’ strategies or payoffs, but they have beliefs

over other players’ types with a known probability distribution. With a network

setting, types now refer to both network position and signal realization. A Bayesian

game can be converted into a game of complete but imperfect information under the

common prior assumption. Each player knows the probability distribution over types,

and this itself is common knowledge among all the players. Firstly, clients connect

to dealers with a probability mass function p(·) that is determined by the generating

parameters α, β. Secondly, dealers and clients receive an independent signal Vi as to

the asset’s true common value, and this pre-game process determines player types.

Dealers quote a buy and a sell price to the clients with a bidding strategy that maps

their signal (or estimation of the true value) onto real numbers, such that,

PBID(Si) = Si − δi : Si → R

PASK(Si) = Si + δi : Si → R
(4.22)

Where, Si ∈ (−∞,∞), δi ∈ [0,∞).

We assume a symmetric bidding strategy, (each dealers’ bidding function has the same

linear functional form) and is common knowledge, as is the probability distributions

of signals and client link distributions in the network and, as is usual with Bayesian

games, we assume risk neutrality, so maximizing utility is the same as maximizing

payoffs.

(i) Players: M client nodes and N dealer nodes

(ii) Action spaces: Dealers: δi ∈ R+ , Clients: {0, 1} where 0 indicates no trade

and 1 indicates a unit trade with a connected dealer depending on their reservation

price

(iii) Distribution over player types:

Dealers: dealer i’s type space is a 2-tuple (Si,N(Di)) where each signal Si is IID

normal RV drawn from N(V, σM ) and dealer i’s neighbours (clients) are drawn from

a known distribution.

Clients: Client j’s type space is a 2-tuple (Sj ,N(Cj)) where each Si is IID normal

RV drawn from N(V, σT ) and client j’s neighbors N(Cj)(dealers) are also drawn from

a known distribution.
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Proposition 4. In the OTC network game described above, the dealers can form an

expression for their expected payoff function without a full knowledge of the network

connections and it is sufficient to know the generating parameters of the bipartite

network (α, β).

Proof. Consider Di, dealer i. Nature chooses their signal, Si and their local network of

connections to clients, N [Di]. Dealer i knows their own signal (their estimate of true

value) and their neighbourhood (the number of clients they are connected to). They

don’t know the signal realizations of the other dealers and clients and importantly,

doesn’t know the network properties of other dealers or clients. Importantly, they

doesn’t know the network properties of their connected clients. We use the common

prior assumption, Harsanyi (1967), and dealer Di then forms a belief about the type

of each client and dealer in the market, conditional on their own signal and their

neighbourhood set realization (signals of each client and dealers and beliefs about the

likely network connections).

As before, let ΠDi(Cj , {N(Ci), δi, δ−i})be the payoff function for dealer Di, in an

auction game with client Cj who has a local network of dealer connections {N(Cj)}.

Dealer Di now forms an expectation of this neighbourhood set, given the network

link distribution, which is common knowledge. He also forms an expectation about

the signals of other players.

In a bipartite network, each client has at most 2N − 1 possible connections to

different dealer sets (identical neighbourhoods) and so must belong to 1 of these

client types. Each of these 2N − 1 clients types occurs with probability p(·) which is

determined by the probability mass function that we are taking as common knowledge.

The expected payoff to dealer i in the whole network Λ, using a spread of δi

and other dealers using a bid ask spread of δ−i, is the sum of expected payoffs from

each subnetwork of these client node types, Cj , j = 1, .., 2N − 1 each of which has a

probability or weight in the network of p(·) from an independent distribution.

E[ΠDi(Λ)] = M

2N−1∑
i=1

p(i)E[ΠDi(Ci), N [Ci]] (4.23)
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As in section 2.4, we use a simplified network structure with preferential selection,

generated by parameters (α, β) where the probability of only 1 link was calculated

previously, and the payoff function to the peripheral dealers becomes:

E[ΠDi(Λ)] = M

(
β

[
1

N
− α

N − 1

]
E[ΠDi(G(Di))] + (1− β)E[ΠDi(G(D1, ..., DN ))]

)
(4.24)

and the core dealer DN ’s expected payoff becomes:

E[ΠDN (Λ)] = M

(
β

[
1

N
+ α

]
E[ΠDN (G(DN ))] + (1− β)E[ΠDN (G(D1, ..., DN ))]

)
(4.25)

Where E [ΠDi (Λ)] is the expected payoff for Di from the entire network, Λ and is

the same as the payoff functions in section 4.8, and demonstrates that knowledge

of the network generating parameters (α, β) is sufficient to form an expectation of

the payoffs. The exact knowledge of the network is not strictly necessary as long as

dealers cannot price discriminate.

As before, each of these 2 subgames is a distinct auction with an associated

expected payoff function derived in section 2.7.1

Dealer i forms an expectation, given the probability mass function of the network,

of all the weights in the network, then sums all these payoff expectations of each

subgame (distinct client neighbourhood sets) to get an expected payoff.

The objective for each dealer is to maximize their payoff functions, described by

equations, 4.24, 4.25. The existence of an equilibrium point is given in the following

section 4.10.1 and a numerical methodology to find it is given in section 4.10.4.

4.10 Equilibrium Pricing Solutions

4.10.1 Existence

Proof of existence of a pure strategy equilibrium can be accomplished by showing that

an equilibrium exists for a subnetwork of 1 client and arbitrary numbers of dealers

and that this then can be extended to an irregular network by standard theorems.
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4.10.2 Case 1 - the regular network

The regular network is defined by each client having the same number of links and each

dealer is connected a similar subnetwork of clients. This network can be generated

from the α, β parameters by setting β = 1 and α = 0 and fixing the client link number

k, so that the resulting network is a k-regular bipartite network. The competition

process with each client can be viewed as a first price sealed bid auction with unknown

common values. This problem was first analyzed by Wilson (1969), extended by

Milgrom and Weber (1982). Suppose there are N dealers and M clients. Each client

connects to k dealers randomly. The expected links of each dealer comprise of Mk
N

distinct client links and the expected payoff to this dealer, Di is :

E[ΠDi ] =
Mk

N
E[ΠDi(G(Cj , N [Cj ])] (4.26)

Each subgame E[ΠDi(G(Cj , N [Cj ])] comprises a first price auction with client Cj and

k− 1 other dealers, where the client can be viewed as the auctioneer and the dealers

the bidders.

The solution in terms of bid ask spreads is given by both Wilson (1969) who gave

a general partial differential equation of the bidding functions for the duopoly case

and Thompson (2005) who provided an explicit solution in the common value linear

bidding case. I have restated their common value auction results substituting a semi

bid ask spread s instead of bidding functions as:

Theorem 1. (Wilson (1969) Thompson (2005)) Suppose we have an OTC market as

described above with a set of k homogeneous dealers, each receiving a signal Vi = V +εi

Where εi is drawn from a distribution with zero mean and SD σ. For any (continuous)

distribution of the signal errors with density fσ and distribution Fσ there exists a

unique Nash equilibrium spread strategy δ∗, where each dealer’s bidding strategy is of

the form B(Vi) = Vi + δi. Suppose the client sets no reservation price and trades at

the best price that is observed. The Bayesian Nash equilibrium semi spread for each

dealer using the auction results of Wilson is:
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δ∗(k, σ) =

1
k(k−1) +

∞∫
−∞

xF k−2
σ (x)f2

σ(x)dx

∞∫
−∞

F k−2
σ (x)f2

σ(x)dx

(4.27)

The equilibrium not only exists, it has an explicit formulation. However, as reser-

vation prices and network differences are added, the solution no longer has such an

analytical form.

4.10.3 Case 2 - the irregular network

The irregular network has an added complication. Each dealer may be involved in

multiple auctions, each of which no longer has the same form as in the regular case.

For example, a dealer might be connected to 1 client who only connects to them - a

monopoly market and also to a client that is quoting prices with many other dealers

in the network (competition). In order to justify the existence of the equilibrium in

this network we state 2 simple propositions.

Lemma 1. Suppose there are two separate auctions A1 and A2 for a homogenous

product with unknown value V in both auctions. Let signals and bidding functions be

as before. Let the set of bidders in A1 be denoted X = {a1, ..., ak} with equilibrium

point (δ∗, ..., δ∗)and in A2 by Y = {b1, ...bl} with equilibrium point (β∗, ..., β∗), then

if there is a bidder x that is in both X and Y , and this bidder seeks to maximize

their total expected payoff across both auctions using a single bid ψ in both auctions,

E[Π(A1|ψ) + Π(A2|ψ)], then both auctions A1 and A2 still have an equilibrium point.

Proof. Both A1 and A2 are single common value first price auctions and therefore

have a Nash equilibrium point by the existence theorems of Wilson (1969), and in

our case, we assume a linear bidding function, therefore it is both continuous and

differentiable. It can be shown that each bidder has a (unique) best response to any

actions of the other bidders (the payoff functions have a single maximum) , which

means they also have a best response if one player does not play (locally) optimally.

Fix actions of other players, then x has a best response to these actions (payoffs are

concave and sum of concave functions is concave). Therefore A1 and A2 both still

have a Nash equilibrium point.
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Proposition 5. The irregular network OTC market as described above has a Nash

Equilibrium point (δ1, ..., δN )

Proof. This is a consequence of the above Lemma. Suppose we have a network market

as described above. Each separate sub-network can be viewed as a separate auction

which has an equilibrium point. If one of the dealers is involved in another auction,

then the remaining dealers adapt their best responses to account for the sub-optimal

choice of this dealer (in the sense that the choice is different from the local nash equi-

librium) and by lemma 1 also has an equilibrium point. This reasoning then follows

iteratively : if another dealer then also plays locally sub-optimally the remaining deal-

ers still have a best response and so this subnetwork also has an equilibrium point.

Therefore the entire network has an equilibrium point.

These equilibriums can only be solved numerically, except in the regular network case.

Alternatively, the existence of a pure strategy Bayesian equilibrium to the network

game exists follows from the following theorem, reported by Asu Ozdaglar (MIT)

(2010) and is a result obtained separately by Debreu (1952), Glicksberg (1952), and

Fan (1952):

Theorem 2. (Debreu (1952)) Consider a Bayesian game with continuous strategy

spaces and continuous types. If strategy sets and type sets are compact, payoff func-

tions are continuous and concave in own strategies, then a pure strategy Bayesian

Nash equilibrium exists.

It is possible to show that the payoff functions satisfy these conditions and that

they are also continuous and concave by showing that any local maximum is also a

global maximum. Graphically it appears obvious for any combination of parameters.

Fix δ−i of the other dealers to obtain the payoff wrt own spread choices. See figure

4.8.
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Figure 4.8: Dealer payoff function wrt spread choice, keeping other
dealer spreads fixed

4.10.4 Numerical Solution of equilibrium

The equilibrium solution set of bid-ask spreads is simply a matter of jointly maximiz-

ing the N payoff functions of the set of dealers, given by the equations:

E[ΠDi(Λ)] = M

2N−1∑
i=1

p(i)E[ΠDi(Ci), N [Ci]] Di = D1, ..., DN (4.28)

Following the work of Krawczyk and Uryasev (2000) we can compute an equi-

librium for the network game numerically. Their method is briefly described here.

We have i = 1, ..., n dealers participating in the OTC game as described above. Each

dealer can take an individual action of δi in the Euclidean space R+. All players com-

bined can take a collective action, which is the vector ∆ = (δ1, . . . δn) ∈ R+×. . . .×R+

Let Πi : δi → R be the payoff function of dealer i, choosing the action δi Let

∆1 = (δ1, . . . δn) and ∆2 = (ζ1, . . . ζn) be 2 action sets contained in the action space

then
(
ζi|∆1

)
is defined as (δ1, . . . , δi−1, ζi, δi+1, . . . ., δn) which is the action set where

the ith dealer ’tries’ ζi while the remaining dealers play δj , j = 1, 2, . . . , i−1, i+1, . . . , n

Let the collective action set be as above and let Πi : δi → R be the payoff functions

of the n dealers. A point ∆∗ = (δ1
∗, δ2

∗, . . . .., δn
∗) is called the Nash equilibrium if,

for each i,

Πi(∆
∗) = max

(δi|∆∗)∈∆
Πi(δi|∆∗) (4.29)

at δ∗ no dealer can unilaterally improve their payoff and is a Nash equilibrium.
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Let Πi be the expected payoff function of dealer i. The Nikaido-Isoda function,

Nikaidô and Isoda (1955), Ψ is defined as :

Ψ(∆1,∆2) =
n∑
i=1

[Πi(ςi|∆1)−Πi(∆
1)] (4.30)

wrt to the action sets defined above. Each summand can be viewed as the difference in

payoff for each dealer when that dealer tries a different spread action ζi. An action set

∆∗ contained in ∆ (the total action space) is a Nash equilibrium if max
δi∈∆

Ψ(∆∗,∆) = 0

The Optimal Response Function, Z, at the point ∆1 is defined as: Z(∆1) =

arg max
ςi∈∆

Ψ(∆1,∆) which is a function that returns the set of dealers’ actions (best

response vector) where all dealers unilaterally try to maximize their own payoffs given

∆1. Using these concepts, the relaxation algorithm as suggested by Krawczyk et al.

(2000) can be summarised as follows:

Suppose there is an initial game state ∆0 = (δ1,....,δn) , where each dealer would like

to find their maximum payoff and we aim to find the Nash equilibrium. Given the

optimal response function Z(∆) is single valued (vector), the relaxation algorithm is

given by:

∆t+1 = (1− γ)∆t + γZ(∆t) (4.31)

where γ is a fixed constant (0 ≤ γ ≤ 1). The result is a weighted average of the

improvement point Z(∆t) and the current point ∆t . The convergence to the Nash

equilibrium is guaranteed if certain conditions on the payoff functions are met. It is

sufficient for the payoffs to be concave functions in own strategies(i.e have a single

maximum and no local maximums). I will just state without proof that the conditions

are met in our dealer auction game. Specifically, we numerically find the equilibrium

for each dealer by iteratively finding the best response of each dealer to the current

dealer action set. The sequence of spreads adopted by a dealer i at step (t+1) is:

δi(t+ 1) = γδi(t) + (1− γ) arg max
δi

E[Πi(δi, δ−i(t))] (4.32)

for each i in turn and for some step size γ (typically 0.7 is a reasonable choice). It is an

iterative sequence of best responses to other dealers’ best responses or alternatively

a dynamic hill climbing optimization algorithm (the hill changes slightly after each
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step).

See appendix 4.10.5 for an evaluation of the algorithm convergence to the equi-

librium solution and appendix B.0.2 for a comparison with an Agent Based Model

solution. The algorithm converges to the equilibrium point in approximately 15-20

iterations of the algorithm, even in quite complex networks.

4.10.5 Algorithm Convergence to NE

As a test for the algorithm, we can see how the solution converges to a known solution.

We can use the solution to the common value auction optimal linear bidding strategies

as calculated by Wilson (1977)). Suppose we have an OTC market as described above

with a set of n homogeneous dealers, each receiving a signal V i = V + εi Where εi is

drawn from a distribution with zero mean and SD σ. For any (continuous) distribution

of the signal errors with density fσ and distribution Fσ there exists a unique Nash

equilibrium spread strategy δ∗. Suppose the client sets no reservation price and trades

at the best price that is observed. Then expected dealer i payoff is,

E[Πi(δi, δ−i, σM , σT )] = −
∞∫
−∞

(t− δi)

 k∏
j=1
j 6=i

FσM [t+ δj − δi]

 fσM (t)dt

and the Bayesian Nash equilibrium semi spread for each dealer is:

δ∗(n, σ) =

1
n(n−1) +

∞∫
−∞

xFn−2
σ (x)f2

σ(x)dx

∞∫
−∞

Fn−2
σ (x)f2

σ(x)dx

Now consider the network comprising of M clients, each connects to all n dealers.

This is a complete bipartite market network and we group client games as before

The payoff from this game for each dealer is equivalent to the payoff in a single

client network as above, and so we can check the algorithm against the algebraic

expression for the Nash equilibrium. We could also use a symmetry argument for the

M clients and the N dealers. Let n=5 and assume a standard normal distribution of

errors (with mean 0 and sd 1) and indeed, the algorithm finds the theoretical Nash

equilibrium quickly, which is:
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Figure 4.9: Strategic equivalence of networks

δ∗(5, 1) =

1
20 +

∞∫
−∞

xF 3
1 (x)f2

1 (x)dx

∞∫
−∞

F 3
1 (x)f2

1 (x)dx

=

1
20 +

∞∫
−∞

xΦ3
1(x)φ2

1(x)dx

∞∫
−∞

Φ3
1(x)φ2

1(x)dx

≈ 1.5478

This is the spread that each dealer adopts in equilibrium. From the clients’ perspec-

tive, the observed spread ∆, in equilibrium when n=5 is: E[∆] ≈ 0.7696

A slightly more complicated market: M clients, all with degree 2 who connect to

the 5 dealers randomly. The expected network has M clients with degree 2 and 5

dealers with degree 2M/5. Grouping the clients with same game structure together

gives a regular sparce network:

Figure 4.10: Network with client grouping, G(Di,Dj), represents
game G played with dealers Di and Dj

For each subgame, G(Di,Dj), the NE formula above can be used to give a NE

spread of ≈ 1.7725 ( ≈ 1.2083, effective spread to client) and since it is the same NE

spread in all subgames, it must be the NE spread for the whole network. Again the

algorithm correctly converges to the theoretical NE:
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Figure 4.11: Algorithm convergence to Nash equilibrium in the 2
networks, N(0,1) signal errors
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Chapter 5

Equilibrium Pricing in the

Network

5.1 Introduction

Traditional market microstructure models are designed for liquid markets, where

dealers can offset trades by adjusting their bid and ask prices. Unfortunately, OTC

markets are characterized by low liquidity and relatively large trade sizes and these

models cannot totally explain the range of empirically observed pricing anomalies

and in particular, the Centrality Premium Effect, which as been documented in many

OTC financial markets. Hollifield et al. (2012) find a negative relationship between

bid-ask spreads and dealer centrality in the US securitization market. In contrast,

Di Maggio et al. (2017) and Li and Schürhoff (2019) find a positive relationship

between bid-ask spreads and dealer centrality in the US corporate bond and US

municipal bond market.

The centrality premium problem illustrates the limitations of standard market

microstructure models and assumptions. In financial OTC markets, the effects of

competition, asymmetric information sets, and network topology interact in the price

formation process. The microstructure of the market is greatly affected by the topol-

ogy of who is connected to who. We focus on the observed core-periphery network

structure and the link distribution of the clients to dealers and find that these features

interact in non-linear ways, producing effects that are magnified by any asymmetric

information.

We also examine the effects of increasing transparency using our network model,
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where transparency is modeled as a refining of the clients’ information sets regarding

the asset’s true value. We find that the clients’ degree distribution is critical in the

direction of the effect on spreads. Clients (or markets) with low connectivity (a degree

of less than 3) benefit from increased transparency through lower bid-ask spreads. In

contrast, clients with a higher degree suffer increased spreads in equilibrium. This is

due to dealers raising spreads in equilibrium, to compensate for the increasing risk

of the winners’ curse which is increasing in the relative information sets of clients

and dealers. This result might offer some explanation as to the mixed results when

regulators have mandated increased transparency.

Finally, we apply the model to apparently unconnected empirical puzzles, such as

why do safe municipal bonds have bigger spreads than much riskier bonds or equities,

and find the answers are very related to the same fundamental drivers of the cen-

trality premium, namely, heterogeneous client link formation, preferential selection,

and asymmetric information. The effect of illiquid bonds having tighter spreads than

very liquid bonds has been documented by Goldstein et al. (2007) from an analysis

of the US corporate bond market spreads and liquidity. Our model shows how these

markets’ topological and information asymmetries are consistent with this effect.

5.2 Bid-Ask Spreads and Uncertainty

Our model predicts that bid-ask spreads will rise with uncertainty over the final asset

value. As the asset becomes increasingly hard to measure, bid prices will fall and ask

prices will rise.

Our model’s equilibrium in a regular network is linearly related to the standard

deviation of this measurement error. In fact, if δ∗ is the equilibrium dealer bid-ask

spread in a market with M clients all connecting to N dealers, and each receiving a

signal with standard deviation σT = λσM and σM , with λ an asymmetry coefficient,

then if they receive signals aσT and aσM , a > 0, the equilibrium dealer spread will

be aδ∗.
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This can be seen in the set of payoff equations, for dealers i=1,..,N at the equilibrium:

E [ΠDi (G(D1, ..., DN ))] = −
∞∫
−∞

s

σM
φ

(
s+ δ∗

σM

) N∏
j=1,j 6=i

Φ

(
s+ δ∗

σM

)Φ

(
s

λσM

)
ds

(5.1)

Set σM = aσM , and σT = aλσM , where λ is an asymmetry coefficient, giving a new

set of payoff equations:

E [ΠDi (G(D1, ..., DN ))] = −
∞∫
−∞

s

aσM
φ

(
s+ δi
aσM

) N∏
j=1,j 6=i

Φ

(
s+ δj
aσM

)Φ

(
s

aλσM

)
ds

(5.2)

Substitution aδi for δi, then a simple change of the integration variable from s to aS,

E [ΠDi (G(D1, ..., DN ))] = −a
∞∫
−∞

s

σM
φ

(
s+ δ∗/a

σM

) N∏
j=1,j 6=i

Φ

(
s+ δ∗/a

σM

)Φ

(
s

λσM

)
ds

(5.3)

Leads to the same equation as equation 5.1 (with a higher constant multiplier a,

signifying higher profits). This equation 5.1 has an equilibrium point of δ∗, therefore

equation 5.3 has an equilibrium of aδ∗. This result shows that the equilibrium bid-ask

spreads scale linearly with standard deviation and therefore scale to the square root

of time in a multi-maturity asset.

Another implication of this result is the standard observation that reducing asset

value uncertainty will reduce transaction costs (and dealer profits) in a market. From

a dealers’ incentive perspective, they should dedicate resources in the hardest to value

complex instruments with the most informational asymmetry. Complex derivative

securities probably fall into this category.

An empirical example of this time uncertainty effect can be seen to occur in the

US Treasury market for increasing the maturity of bonds. As the bond’s maturity

increases, the factors that go into the pricing become more uncertain (inflation ex-

pectations amongst others), and so spreads will rise. This effect was documented by

Brandt and Kavajecz (2004), who analyzed the US treasury market and concluded

that ”Considering the three pieces of evidence together, we are confident that the yield
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changes associated with orderflow imbalances are not attributed to liquidity/inventory

risk premiums. The evidence is instead fully consistent with (and further supportive

of) our hypothesis of price discovery”. Figure 5.1, taken from Brandt, shows the

increases in spreads in on-the-run US treasuries with increasing maturity.

Figure 5.1: Dealer spreads in US Treasuries

We can use the model to predict the shape of the bid-ask spreads relative to

maturity, and we plot these results on the right of figure 5.1. This plot gives the

bid-ask spreads of the yield curve normalized at the bid-ask spread for the 0-6 month

security.

The bid-ask spreads in our model scale with the square root of time; that is, a

security with double the maturity has a bid-ask spread of
√

2 of the spread in the

shorter maturity. This scaling is consistent with a measurement uncertainty whose

variance is linear in the maturity and consistent with our model assumptions on the

estimation of true value. A similar effect appears to be present in these empirical

observations.

The US Treasury market has 22 primary dealers that make bid-ask prices for US

Treasury securities. This OTC market’s price-setting process, similar to other bond

markets, has some similarity to a sealed-bid first-price auction.

5.3 Bid Ask Spreads and Transparency

There are two driving features in our OTC game: first, the agents’ information sets,

characterized by their signal error over the true common value, and the competition

effect introduced by multiple dealers and their network topology.



5.3. Bid Ask Spreads and Transparency 105

Market transparency refers to the ability of market participants to observe infor-

mation about the trading process, Madhavan et al. (2005) and can be viewed as a

potential to refine the agents’ information sets by observing prices and trades of other

agents. It has been a major focus of financial market regulators, particularly since

the financial crisis of 2008/9. In our model, we can examine the changes to quoted

price equilibriums by varying the signal variance to the clients and dealers to mimic

changes in transparency. We use the representation that clients receive a normal

signal with standard deviation σT and dealers σM but could equally view σT = λσM ,

with λ an asymmetry information parameter. With increased transparency of prices,

both sets of agents get an opportunity to refine their estimation of the true value by

either a Bayesian updating approach or a heuristic methodology (for example, the

increasingly popular learning process presented by DeGroot (1974), which uses an

averaging process to refine the agents’ signals) and these learning processes lead to a

reduction in the variance of the estimates.

We will examine two main network configurations: a regular market network

where clients have a fixed number of links, connecting equally to the dealers, and a

second network with a preferential selection for one of the dealers.

We focus on a five dealer market, and therefore, each client can connect to the

dealers with 1 to 5 links. The network with each client having only one link is

the monopoly type network, and the network with each client having five links is the

complete or fully connected network, where every client is connected to every possible

dealer.

We fix the variance of the homogenous dealers’ signal error at 1 and vary the

signal error of the clients to mimic changes in relative client information sets. This

is then equivalent to varying the asymmetry coefficient λ above. We then compute

the dealer equilibrium bid-ask spreads using a numerical algorithm for each set of

signal variances at each point, by solving the joint maximization problem using the

algorithm described in the previous chapter.

5.3.1 Preferential Selection Network Payoffs

As in section 4.8, we introduce an element of preferential selection into the dealer

network by allowing one of the dealers (DN ) to have an increased probability α of
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being selected from pure randomness. Each dealer with 1 link is equally likely to be

selected, with probability 1/n. Suppose dealer N, DN is preferred and its’ probability

of being selected is increased by α. The probability p ofDN being selected is p = 1
N +α

and the other dealers [D1, D2, ..., DN−1] have a probability of
(

1
N −

α
(N−1)

)
of being

selected. Suppose also that a proportion β of clients have degree 1 and (1-β) have

degree N. Our expected biadjacency matrix now looks like:

A =



β
[

1
N −

α
N−1

]
0 0 . 0 0 (1− β)

0 β
[

1
N −

α
N−1

]
0 . 0 0 (1− β)

. . . . . . .

. . . . . . .

. . . . . . (1− β)

0 0 0 . 0 β
[

1
N + α

]
(1− β)


We can now use this variable network representation in the payoff function of a

dealer in this network game: The non-preferred dealers {Di} have an expected payoff

function in the whole network of:

E[ΠDi(Λ)] = β

[
1

N
− α

N − 1

]
E[ΠDi(G(Di))] + (1− β)E[ΠDi(G(D1, ..., DN ))] (5.4)

and the preferred dealer DN has an expected payoff:

E[ΠDN (Λ)] = β

[
1

N
+ α

]
E[ΠDN (G(DN ))] + (1− β)E[ΠDN (G(D1, ..., DN ))] (5.5)

Where E [ΠDi (G)] is the expected payoff of Di from the game G.

And the exact payoff in each subgame is given by equation 2.10 in section 2.7.1 giving:

E [ΠDi (G(Di))] = −
∞∫
−∞

s

σM
φ

(
s+ δi
σM

)
Φ

(
s

σT

)
ds (5.6)

E [ΠDi (G(D1, ..., DN ))] = −
∞∫
−∞

s

σM
φ

(
s+ δi
σM

) N∏
j=1,j 6=i

Φ

(
s+ δj
σM

)Φ

(
s

σT

)
ds

(5.7)
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Equations 5.4, 5.5,( together with 5.6 and 5.7) give the exact payoffs for all dealers

in the OTC network game using a Bertrand price competition with an unknown

common value asset. Our aim now is to jointly maximize these payoffs to find an

equilibrium solution of the dealer action set of bid ask spreads (δ1, ..., δN ).

5.3.2 The Regular Network

We define the k-regular network as a bipartite network where each client has k links

and connects to the dealer set equally. Since all of the dealers are connected to the

same client subsets, the equilibrium spread is the same for all dealers. To recap, the

payoff to dealer i, in competition with N-1 other dealers is:

E [ΠDi (G(D1, ..., DN ))] = −
∞∫
−∞

s

σM
φ

(
s+ δi
σM

) N∏
j=1,j 6=i

Φ

(
s+ δj
σM

)Φ

(
s

σT

)
ds

(5.8)

Where here, we calculate for each N the number of dealers from 1 to 5, setting σM = 1,

varying σT and solve for the equilibrium.

The results are illustrated in Figures 5.2 and 5.3 which shows how, in equilibrium,

as the relative signal error of the clients rises, dealer spreads reduce up to the point

that clients and dealers are roughly equally well informed (similar to the Glosten

Milgrom microstructure results). After this point, the dealer spreads progressively

increase in the 1 and 2 client degree networks but progressively decrease in the 3,

4, and 5 client degree networks. Two main features drive the equilibrium pricing.

Firstly, the information asymmetry causes spreads to rise - for protection against

the winner’s curse in better-informed clients and for increased profits in the case of

worse-informed clients. Secondly, the amount of competition causes spreads to fall.

The speed of both of these opposite effects is different for different client degrees,

causing the curve shapes in Figures 5.2 and 5.3.

The intuition for this is that with only 1 or 2 dealer connections, the spread

lowering effect of competition is very dominated by the spread increasing effect of

the increasing relative signal error. In contrast, in the higher degree networks, the

beneficial competition effect of the extra dealers quickly dominates the client’s lack

of information.
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Figure 5.2: Dealer spreads to degree and asymmetric information

As client signal error becomes relatively greater, clients make more ’mistakes,’ and

it becomes increasingly profitable to trade with them, therefore in equilibrium, the

dealer spreads tend to reduce. The behavior of 1 and 2-degree networks with respect

to asymmetric information is markedly different to 3 or more-degree networks. It

appears that a minimum of 3 competitors is needed for the competition effect to

dominate asymmetric information; if clients do not set reservation prices, a mini-

mum of 4 dealers is required for the competition effect to dominate any client-dealer

asymmetric information.

Bessembinder et al. (2020) analyzed the corporate bond market after the intro-

duction of the TRACE reporting system of increased transparency. He finds a small

spread cost advantage to large traders, and a much larger spread cost advantage to

smaller customers. Although the network configuration is not discussed, it is rea-

sonable to assume that larger traders’ degree is greater than that of smaller traders.

Again, the empirical paper by Hendershott et al. (2020) supports this assumption in

the UK corporate bond market. In addition, the corporate bond-buying program in

the UK, as part of the QE mandate, caused all corporate bonds’ prices to rise. How-

ever, the bid-ask spreads of those sterling corporate bonds eligible for the program

narrowed by 5.3 basis points more than the ineligible bonds after the announcement.

Bank of England report on the effects of the QE program on corporate bonds (2018).

This QE announcement effectively reduced the uncertainty over these eligible bonds’

value, and our model suggests that a reduction of bid-ask spreads would accompany

this.
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Figure 5.3: Effects of increasing information transparency with
client degree when clients have high signal error

The effect of increasing transparency in asymmetric information networks is ap-

parent and summarized in Table 5.3, assuming that clients are initially much worse

informed than the dealers. Decreasing client signal variance, which can be viewed

as a proxy for increasing transparency, reduces spreads to the lowest degree clients

(degree 1 and 2) until clients become as well informed as the dealers. At this critical

point, spreads rise again (similar to Glosten and Milgrom (1985) and other informed

trader models), but for those clients with a higher degree (> 3), the decreasing signal

variance translates into higher spreads from the dealers regardless of their signal vari-

ance. The important feature here is that increasing transparency (reducing relative

client signal error) is a non-linear effect - it can reduce spreads for the least connected

clients (2 or fewer links) but can increase it for the most connected clients. The client

degree distribution in the network will determine the effect of increasing transparency

on overall market spreads. This transition between degree 2 and degree 3 can be seen

more clearly in figure 5.4 by extending the client asymmetry and removing the degree

1 curve.

5.3.3 Bipartite Preferential Attachment Network

We can extend this analysis by examining the effects of preferential selection of certain

dealers on bid-ask spreads and the resulting network structure. We have the same 5-

dealer network, but now clients connect to each dealer with equal probability and to a

core dealer with a probability related to the variable α, which is the excess probability

from random chance that a dealer is selected. P(central dealer is selected)= 1
5 + α,

0 ≤ α ≤ (n−1)
n . The dealers now form two groups - the central dealer and the

peripheral dealers. Critically, we have non-homogenous client degree - there are 50%
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Figure 5.4: Dealer spreads to degree and asymmetric information

low connectivity (degree 1) clients and 50% high connectivity (degree 5) clients. This

simplification is a model of the common degree distribution found in OTC market

networks. For instance, in the UK corporate bond market, the average degree is 3.5,

BOE (2019)). Furthermore, one-third have a degree one, Hendershott et al. (2020).

In the UK betting market, 44% have degree one with a mean degree of 2.7, Gambling

Commission (2019).

Figure 5.5: Equilibrium Spreads with Asymmetric Information

The dynamics of the equilibrium show similar effects as seen in Figure 5.5 - equi-

librium spreads decrease for the central dealers with reducing client signal variance

up to a critical point, at which point spreads start to increase as the similarity of the
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information sets causes an increase in the adverse selection problem. The peripheral

or non-central dealers show a different effect - increasing transparency causes them

to increase spreads for high levels of α since they are connected to more high-degree

clients. In this example, we numerically calculate the equilibrium spreads for dealers

in a market with β = 0.5 (50% low degree clients, 50% high degree clients) in varying

amounts of central-peripheral effect, α. Dealers receive an N(0,1) signal error, and

clients receive a varying signal error. As it becomes more central (popular), the core

dealer raises its spread faster with increasing client signal error than the periphery

dealers. This U-shaped spread effect is due to the clients’ non-uniform link distribu-

tion - the dealers are balancing the spreads to clients in low and high competition

sub-games. These non-linear effects in transparency changes are critically dependent

on the extent of client information asymmetry. The extent of the central-peripheral

structure compounds the effect, and these effects lead naturally to the centrality

premium puzzle.

These results offer insight into the mixed results when regulators have tried to

increase transparency in financial markets. The empirical literature on transparency

mainly agrees that increases in transparency reduce bid-ask spreads - it also tends to

find that average client connections are also low, for example, the Bank of England

report on corporate bonds1 find client degree around 3 and Municipal Bonds in the

US at less than 2. Biais (2005), in his paper summarizing some empirical findings

of bid-ask spreads in OTC financial markets, noted that Edwards et al. (2007) had

found that increasing transparency in US corporate bond markets reduces spreads.

Additionally, increasing transparency in the New York stock exchange in 2001 led

to a reduction in bid-ask spreads (see Boehmer et al. (2005)). In contrast, when

transparency was increased on the Toronto stock exchange, this caused spreads to

increase (see Madhavan et al. (2005)).

Two features determine the effect of increasing transparency - the initial state of

the client’s relative informedness and the client link distribution. Our model suggests

that if clients are less informed than the dealers, increasing transparency will reduce

spreads in low degree networks; however, if the clients are equally able to value

1Bank of England study into UK corporate bond market found average degree of clients is 3 -
Staff Working Paper No. 813 Resilience of trading networks: evidence from the sterling corporate
bond market (2019) David Mallaburn, Matt Roberts-Sklar, and Laura Silvestri.
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the asset as the dealers, increasing transparency may cause bid-ask spreads to rise

independently of the network topology. Since it is reasonable to assume that in most

markets, professional trading firms have a better ability to measure the true value of

an asset than clients, and clients typically have very few links, we would expect that

increasing transparency would reduce most market spreads.

5.4 Centrality Premiums in the Network Model

The centrality premium effect can be described as the tendency for more centrally

located dealers in a network to make wider prices than those less centrally located,

and has been empirically observed fact in many OTC markets by many authors.

In terms of existing literature, numerous other models predict a centrality dis-

count, including Neklyudov (2013), Weller (2013), and Zhong (2014), but these mod-

els do not provide a natural explanation for a centrality premium. In Zhong (2014),

a centrality premium can arise unconditionally, but there is a centrality discount

conditional on trading volume. Similarly, other models predict a centrality premium

and use a trading volume reasoning, for example, Uslu (2015), who provides condi-

tions for both a centrality premium and a centrality discount. A centrality premium

arises when core dealers intermediate large enough trades in equilibrium. Another

example is by Hollifield et al. (2012), who describe an outside options analysis of the

securitization market, which tends to exhibit a centrality discount.

In the empirical results, a centrality premium is found by Di Maggio et al. (2017)

for corporate bonds and Li and Schürhoff (2019) for municipal bonds, whereas a

centrality discount is found by Hollifield et al. (2012) in the securitization market.

Our theoretical model, similar to Hollifield, provides conditions on when a centrality

discount or a premium can arise. In contrast to the general outside options analysis

of Hollifield, our model tackles the root payoff functions of the dealers in a price

competition (a common value auction) game and find that the centrality effect is a

consequence of the Bayesian Nash equilibrium pricing strategy in a network auction

game when there are some preferential selection and asymmetric information.
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The centrality premium effect, which is observed in many OTC markets, is typi-

cally characterized by having a large unsophisticated client base, whereas the central-

ity discount appears to be confined to specialized markets with a more sophisticated

client case, as also noted by Hollifield et al. (2012).

In our model, if clients are less informed than the dealers and there exists a pre-

ferred dealer (core-periphery structure), then the preferred dealer will have a higher

centrality and will make wider prices in equilibrium than other dealers. The pre-

ferred dealer feature implies a central/less central or core-periphery dealer network

structure, which is empirically observed across most OTC markets.

5.4.1 Stylised Model of OTC Network

Similarly, as before, we can model the effect of a single dealer being more or less popu-

lar and central than the other dealers by way of the biadjacency weights and using the

matrix derived in section 4.8. The idea is to vary the dealer’s attractiveness (the core)

relative to the others (periphery) and examine the Nash equilibrium dealer strategies.

Similarly, for the clients, we can vary our parameter β, to change the proportion of

low-degree clients in the market. This will give some insight as to the sensitivity

of the dealer equilibriums to the client link distribution. (as mentioned previously,

client links are often distributed in an approximately scale-free distribution)

Consider a 5-dealer market and suppose dealers have equal probability of being

selected by the clients and we vary dealer 5 probability of being selected by α. Dealer

5 now has probability (0.2 + α), dealers 1-4 have probability of (0.2− α/4) of being

selected. We vary α between 0 and 0.8, so probability of dealer 5 getting selected by

the 1-degree clients, varies between 0 and 1.

Suppose there are β clients with degree 1 and (1-β) clients with degree 5. The

expected network has a biadjacency matrix:
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A =



β
(
0.2− α

4

)
0 0 0 0 (1− β)

0 β
(
0.2− α

4

)
0 0 0 (1− β)

0 0 β
(
0.2− α

4

)
0 0 (1− β)

0 0 0 β
(
0.2− α

4

)
0 (1− β)

0 0 0 0 β(0.2 + α) (1− β)


Where as before, α is a parameter determining the attractiveness of a core dealer,

and β is a parameter describing the proportion of low link clients in the network.

Case 1 - Dealers Better Informed than Clients

Relatively better-informed dealers would correspond to the majority of real client

dealer markets, where the dealers’ analytical and informational resources dominate

those of the clients. Setting client signal error to be higher than that of the dealers

and varying the parameters, alpha, and beta gives a centrality premium of spreads

for the core dealer. See figure 5.6

Figure 5.6: Centrality premium sensitivity to various network
configurations

As dealer 5 becomes more popular (increases in α), its spreads increase and the

other dealers’ spreads decrease to compensate for their lack of popularity. The cen-

trality premium, described here as the ratio of the core dealers spread divided by the

peripheral dealers’ spread, is increasing in the amount of the core dealers’ centrality,
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α and also increasing in the proportion of low-link clients, β (analogous to the scale

parameter in a power distribution).

The centrality premium is a direct consequence of the network properties (scale

parameter and preferential selection) and asymmetric information. In other words,

heterogeneous clients, dealers, not being equally preferred, and clients that are worse

informed than dealers cause this effect. Applying extra transparency to this market

Figure 5.7: Centrality premium sensitivity to increasing
asymmetric information

may cause the centrality premium to decrease, as presumably, the clients are the main

beneficiaries of the extra information. Absolute signal noise levels do not affect it - if

transparency has an equal effect on the dealers, then the centrality premium will not

change.

Markets with a high proportion of unsophisticated low link clients and a set of

preferred dealers will exhibit the highest centrality premiums.

The centrality premium is quite sensitive to asymmetric information between the

clients and dealers and is typically increasing in information asymmetry. As a corol-

lary to this sensitivity to the relative signal error, in a period such as the financial

crisis of 2008-2009, we would expect that the centrality premium in a given market

would increase during this period, where presumably, it was much harder for clients

to assess the true asset value accurately.
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This effect can be seen in the analysis of Di Maggio et al. (2017), where they

analyze the corporate bond market spreads over the financial crisis period and find

that central dealer spreads appear to rise more than the peripheral dealer spreads in

the uncertain crisis environment - i.e., the centrality premium increases.

Case 2 - Dealers Equally (or Worse) Informed than Clients

Conversely, some OTC markets have a very sophisticated client base, for example,

the markets for asset securitization, which have almost no retail clients, Biais et al.

(2005). We will model this by having both dealers and clients receive the same signal

error, i.e., they are both equally able to accurately value the asset. If clients have the

same or better signal noise, we predict a centrality discount:

Figure 5.8: centrality discount when clients equally informed

Similar to the first case, as dealer 5 becomes relatively more popular, its spreads

decrease, and the other dealers’ spreads increase. The centrality discount, described

here as the ratio of the core dealers spread divided by the peripheral dealers’ spread,

is increasing in the amount of the core dealers’ centrality, α and also increasing in

the proportion of low link clients, β (analogous to the scale parameter in a power

distribution).

If clients are equally or better informed, the equilibrium monopoly spread is less

than the equilibrium spread charged in competition with multiple other dealers.

An empirical example of this effect was analyzed by Hollifield et al. (2012), and

they found that in the securitization market, which is characterized by having almost
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no retail clients and only sophisticated investors but still showing a scale-free link

distribution, there was a centrality discount in the spreads charged by the dealers.

The absolute centrality effect. (+)ve or (-)ve, is increasing in core dealer centrality

and proportions of low degree clients, regardless of the signal error.

Figure 5.9: Envelope of centrality premia with asymmetric
information

The envelope of centrality premiums is stretched higher with increases in relative

client signal error, and the centrality premium is increasing in the proportion of low-

degree clients and the extent of the dealers’ preferential selection.

For a given level of core-periphery structure, the centrality premium has a maxi-

mum value at approximately 70% low link clients. (The UK domestic energy market,

by coincidence, has 70% of users with 1-link and the core suppliers charge much higher

prices than the smaller competitors - it appears that the centrality premium for the

core suppliers is around 50%. A similar model can be applied to this game, and we

would forecast, given the topology, that the core suppliers would have a very large

centrality premium in equilibrium).

These premiums and discounts in spreads charged by core and peripheral dealers

are common in all markets where there is a degree of preferential selection, and

this simple model gives some intuition about the network structures that produce

the greatest effects. From a regulatory perspective, the easiest way to combat this

centrality premium is to decrease the proportion of low link clients in the network.
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5.4.2 1 and 2 Degree Client Case

In a similar manner to the 1 and n-link (monopoly and maximum competition) exam-

ple outlined above, we can also construct the biadjacency matrix and expected payoff

functions for the more messy 1 and 2 link case. Suppose we have n dealers and M

clients which have either 1 or 2 links to the dealers. Suppose a proportion 1−β clients

have degree 1 and β have degree 2. As before each dealer is initially equally likely to

be selected with probability 1
n . Now let dealer n be preferred by an amount α and the

probability of being selected by the one degree clients is now (1−β)( 1
n +α), with the

remaining n-1 dealers now having probability (1−β)( 1
n −

α
n−1) of being selected. The

probability of the central dealer being selected with one link and another dealer with

the other link by a two degree client is β
((

1
n + α

) (
1

n−1

)
+
(

1
n −

α
n−1

) (
1
n + α

))
and

the probability of the (n-1) peripheral dealers being paired with another peripheral

dealer is 2β
(

1
n −

α
n−1

)(
1

n−1 −
α
n−2

)
where β ∈ [0, 1], α ∈ [0, n−1

n ]. These are just the

sum probabilities of either being selected by the first link combined with the proba-

bility of being selected by the second link, given that you weren’t selected from the

first link.

In a 5 dealer market with generating parameters (α, β), the biadjacency matrix

becomes:

A =



ψ1 0 0 0 0 γ12 γ13 γ14 γ15 0 0 0 0 0 0

0 ψ2 0 0 0 γ12 0 0 0 γ23 γ24 γ25 0 0 0

0 0 ψ3 0 0 0 γ13 0 0 γ23 0 0 γ34 γ35 0

0 0 0 ψ4 0 0 0 γ14 0 0 γ24 0 γ34 0 γ45

0 0 0 0 ψ5 0 0 0 γ15 0 0 γ25 0 γ35 γ45


To recap, the rows represent each dealer. The columns represent the distinct topo-

logical connections of the clients and there are 5C2 + 5C1 = 15 of these. Columns 1-5

represent the client 1-degree strategies and columns 6-15 represent the 2 link strate-

gies. The entries represent the proportion of the clients that are connected in this

way, so
∑
aij = 1. For example a11 = ψ1 is the proportion of clients with 1 link that

select dealer 1, a16 = a26 = γ12 is the proportion of clients that select dealers 1 and

2 etc. All of the ψi and γij are generated by the network parameters (α, β), that is,
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for a give (α, β), each of the proportions are fixed.

There are general expressions for the values of these biadjacency matrix coeffi-

cients and I show the results for the n dealer case. For the (n-1) non-preferred dealers

i=1:n-1:

ψi = (1− β)

(
1

n
− α

n− 1

)
= Ψ1

γij = 2β

(
1

n
− α

n− 1

)(
1

n− 1
− α

n− 2

)
= Γ1

(5.9)

and the nth preferred dealer:

ψn = (1− β)

(
1

n
+ α

)
= Ψ2

γij = β

((
1

n
+ α

)(
1

n− 1

)
+

(
1

n
− α

n− 1

)(
1

n
+ α

))
= Γ2

(5.10)

The expected payoff function of dealers 1-(n-1) is the sum of the payoff from the

1 degree clients and the 2 degree clients that they are connected to and is :

E[ΠDi ] = Ψ1E[ΠDi(G(Di))] + Γ1

n∑
k=1
k 6=i

E[ΠDi(G(Di, Dk))] + Γ2E[ΠDi(G(Di, Dn))

(5.11)

where E[ΠDi(G(Di, Dj))] is the expected payoff to Di in a price competition with

Dj and E[ΠDi(G(Di))] is the payoff to Di in a monopoly client structure.

Obviously E[ΠDi(G(Dj , Dk))] = 0 for j, k 6= i as this represents the payoff to a dealer

in a game they are not involved in.

Similarly, the expected payoff to the preferred dealer, Dn is:

E[ΠDn ] = Ψ2E[ΠDn(G(Dn))] + Γ2

(
n−1∑
k=1

E[ΠDn(G(Dn, Dk))]

)
(5.12)

The expected degree centrality of dealer 1:(n-1) is simply:

E[DC(ki)] = Ψ1 + (n− 2)Γ1 + Γ2 (5.13)

and the preferred dealer Dn is :

E[DC(kn)] = Ψ2 + (n− 1)Γ2 (5.14)



120 Chapter 5. Equilibrium Pricing in the Network

for β ∈ [0, 1], α ∈ [0, n−1
n ]

These degree centrality measures of the central dealer are strictly increasing in α

and β and are plotted in figure 5.10 with n=5, a 5 dealer network.

Figure 5.10: Raw centrality of central dealer relative to changes in
network parameters α, β

Figure 5.11: Relationship between α and relative degree centrality
DC(Dn)/DC(Dp) of core to peripheral dealers with various

proportions of low degree clients

Although both α and β affect the centrality calculation, they affect it in different

ways, β affects the global level of network centrality and density, whereas α affects how

unequally the links and centrality are distributed. Figure 5.11 shows the centrality

of the preferred dealer, normalized by the centrality of the non-preferred dealers.

We can check the equilibriums in this network. All the connections between

the clients and dealers are determined by the generating parameters (α, β). Figure

5.12 graphically summarizes the relative spreads between the central and peripheral

dealers in the 1,2 link and 1,n link case. These plots demonstrate that if clients are less
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informed (or less sophisticated) to the dealers, the central dealers increase spreads

as preferential selection increases. Intuitively, if the clients are equally (or better)

informed than the dealers, the central dealer makes tighter prices as preferential

selection goes up.

The results are identical to the 1 and n dealer network centrality premium results

- as the core dealer relative degree centrality increases, spreads increase.

Figure 5.12: At the equilibrium, when clients are equally informed
there is a centrality discount and when the clients are worse informed

there is a centrality premium

5.5 Empirical Anomalies in OTC Markets

5.5.1 Low-Risk and High-Risk Bonds Bid-Ask Spreads

Spreads in low-risk municipal bonds are higher than medium-risk bonds, which are

greater still than risky equities in a survey of the empirical literature conducted by

Biais et al. (2005). A possible explanation for these counterintuitive observations is

likely to be a network effect similar to the drivers of the centrality premium effect

discussed above. Municipal bonds have a substantial proportion of retail clients who

typically have very few dealer links (the market has a high scale parameter (see Li
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and Schürhoff (2019)). These retail clients would typically have a high signal error

and so tend to be charged closer to a monopoly price in a transaction. There are over

2200 broker-dealers in the municipal bond market, and it is infeasible that a retail

client would have access to more than a handful. In contrast, institutional clients

would be more likely to have multiple dealer-accounts for quoting prices. It is also

likely that the retail clients have a higher signal error than the dealers causing an

exaggerated centrality premium, as detailed previously combined with high bid-ask

spreads. There is also a significant amount of preferential dealer selection, with the

top 12 dealers (the core) intermediating over 72% of all transactions.

In summary, high information asymmetry combined with a large proportion of low

degree clients causes a large centrality premium and large average bid ask spreads.

According to Biais et al. (2005), ”The results obtained by Harris and Piwowar

(2004) and Green (2005) are remarkably similar, in spite of the different methods used

in the two papers. This convergence of the results speaks in favor of their robustness.

Overall, they suggest the Municipal Bond market is highly illiquid, and dealers earn

significant markups. Such low liquidity may stem from the lack of transparency of

this market. The opacity is such that it is very difficult for retail traders to estimate

the market valuation of the security. This puts them in a weak bargaining position.”

Conversely, corporate bonds have a much broader blend of client types, hence a

higher average client degree, and so the competition element forces the spread down.

The core dealers in this market intermediate around 40% of trades, and retail clients

account for only 9% of notional volume. This relatively more sophisticated client

base causes average degree to rise and relative uninformedness to decline. These two

parameters were demonstrated to be primary drivers of both bid-ask spreads and

centrality premiums.

In summary, low information asymmetry combined with a large proportion of high

degree clients causes a small centrality premium and small average bid ask spreads.

This market structure would tend to suggest high (average) bid-ask spreads and

high centrality premiums in the municipal bond market and smaller (average) spreads

and smaller centrality premiums in the corporate bond markets. These bid-ask spread

predictions were empirically observed by Di Maggio et al. (2017) for corporate bonds

and Li and Schürhoff (2019) for municipal bonds.
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5.5.2 Liquid and Illiquid Bonds Bid-Ask Spreads

Goldstein et al. (2007) have documented the effect of illiquid bonds having tighter

spreads than very liquid bonds in an analysis of the US corporate bond market spreads

and liquidity. They found that lower liquidity corporate bonds often had tighter

spreads than more liquid issues. Similar to the previous reasoning, the model offers

two possible reasons for this: firstly, as above, if low degree clients are more attracted

to the liquid issues, spreads will be higher in the liquid bonds, given the same signal

error. Alternatively, dealers are very well informed about both sets of bonds’ true

valuations due to their extensive research resources; however, clients find it harder to

measure the illiquid bonds’ true value. This leads to a situation where the clients’

relative un-informedness is greater in the illiquid bonds than the liquid ones. Our

model would predict that in this case, if the clients have a sufficiently high degree,

the illiquid bonds would have a tighter spread. Intuitively, this is because clients

would typically make more trading ’mistakes’ in the illiquid bonds, which leads to

higher dealer profits, which leads to lower spreads in equilibrium. Which explanation

is more compelling depends on the clients’ network properties in these two markets -

if clients who trade illiquid bonds quote with multiple dealers, notwithstanding their

ill-informedness, then spreads could be relatively low. It illustrates perfectly that

the combination of relative information and network properties drives the eventual

pricing outcomes.

5.6 Conclusion and Discussion

We have set out a simple theoretical network model of the trading process in a general

client dealer market where there is a common unknown asset value, and clients and

dealers attempt to estimate the true value of this asset. Clients, either retail or

institutional, request quotes from their connected dealers, who then respond with a

firm quote to buy and sell, and the client order is executed against the best quote.

Typically, markets are studied either as a monopoly or as a perfectly competitive

structure. Our model offers some insight into the interesting behavior that occurs

between these two extremes by examining the network topology with the backdrop

of asymmetric information sets. By using an auction-based approach to the payoff
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functions and finding the dealers’ Bayesian Nash equilibrium strategy, we can un-

derstand something of the effects of different network configurations and asymmetric

information.

As in many market models, for example, the model of Biais et al. (2005), we find

the winners’ curse problem to be a significant driving force in the determination of

dealer spreads and is the main reason why the spreads charged by centrally located

dealers can be either a premium or a discount to peripheral dealer spreads. This is

an information set phenomenon, but the network effects of client degree distribution

and preferential selection play an equally significant role.

We also examine the effects of increasing transparency in these markets, where

transparency is modeled as a refining of the clients’ information sets regarding the

true value of the asset. We find that the degree distribution of the clients is critical

in the direction of the effect on bid ask spreads. Markets that have low connectivity

clients (a degree of less than 3) benefit from increased transparency by way of lower

bid ask spreads, whereas clients with higher degree suffer increased spreads in equilib-

rium. This is due to the increasing dominance of the winners’ curse effect but is also

dependent on the initial relative information sets of clients and dealers - relatively

uninformed clients benefit most. This could offer a possible explanation for some of

the mixed empirical results on the effectiveness of increased transparency on bid-ask

spreads.

Finally, we show how our model can offer some explanation to some other puzzles

in the empirical literature that are contrary to established economic theory. We

saw how the spreads in low-risk municipal bonds can be greater than medium-risk

bonds, which are greater still than risky equities. These observations are driven by

the client degree distribution and extent of the relative information sets over the true

value. Similar reasoning explains the observation that illiquid bonds can have tighter

spreads than liquid bonds. These phenomena can also be explained by adding the

network topology of preferential selection and degree distribution into the analysis.
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Chapter 6

Gambling Markets as Common

Value OTC Markets

6.1 Introduction

The UK general election betting market in 2019 offers a unique data opportunity to

examine the individual bid-ask spreads in a bilateral market with a common unknown

outcome that is likely to be impacted by news events. This market structure is ideally

suited to be modeled by an unknown common value price competition over a network.

Due to the public nature of bookmakers’ individual prices, we were able to collect both

the individual bookmaker prices, the best prices in the overall market and exchange

prices, and importantly, the betting prices on the range of outcomes from interval

level bets (allowing us to create a model of the belief distribution). The betting data

was collected over one month leading up to election day.

This chapter’s purpose is twofold: first, to understand if the analysis of price

formation in the preceding chapters is actually observed in real markets and the extent

of any informational content in the betting market prices. Our novel contribution

is to look at bookmaker prices with a bid-ask spread price representation in win

probabilities and use an unknown common value Bertrand competition methodology

in a bilateral network as a model for the trading dynamics between customers and

bookmakers.

In terms of betting market microstructure, we can assume a clear partition be-

tween bookmakers and customers’ functions, allowing a bilateral network represen-

tation and their symmetric information sets over the final outcome, modeled by the
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equal variance of error signals. There is little chance of any insider knowledge over

the final result, and more generally, it is unlikely that anyone has a notably greater

knowledge of the final general election outcome. The network of connections between

the customers and the bookmakers is sparse (UK Gambling Commission Report);

that is, customers only connect to a small number of the total bookmakers and can

be represented by a sparce bilateral market network.

I find that, contrary to the standard zero profit assumptions of the full information

Bertrand model, bookmakers prices are very close to the predicted Nash equilibrium

spreads in an unknown common value FPSBA network model. The regression of

predicted values to observed values has an R2 of 90% with a nearly 1:1 slope between

the two with a zero intercept (and well within 95% confidence bounds).

Our model setup of the election gambling market starts with both bookmakers

and customers forming a belief as to the true probabilities of each party’s chance

of winning the election. The bookmakers then post odds prices to their connected

customers, and if the implied probabilities of the prices observed are less than the

customers’ estimation of the true probability, then a unit trade occurs.1 The book-

makers need to price the initial event probabilities as accurately as possible as it is

often difficult that bets can be totally profitably offset.

The odds prices quoted also include some margin or spread so that each bet that

the bookmaker lays has a positive expected value. Understanding that his estimate

is subject to error is the driving force behind a large part of the bid-ask spread ( the

bid ask spread is referred to as the overround in betting markets). Indeed, even if

the overround were zero, the bookmaker would be expected to lose money over time

in competition. This is a function of the celebrated winner’s curse – the conditional

probability of someone having the wrong price given they were the best price is greater

than the unconditional probability of having the wrong price.

We can also compare the bilateral betting market with betting exchanges, which

have been a feature of the betting market since 2000. These exchanges are traditional

peer-to-peer continuous double auction marketplaces that are open to all participants

1For example, if the best offered odds price was 2:1 (a : b = b
a+b

) implying a win probability

of 1
3

and the customer believed the true probability was 1
2
, then they would back the event at 2:1,

effectively buying the probability at 1
3
. If the true probability is indeed 1

2
then they would have an

expected payoff of ( 1
2
− 1

3
= 1

6
) x (their stake).
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and trade the same or similar products as the individual bookmakers. By far the

largest exchange is the Betfair Exchange, which has over 1m customers worldwide

and provides bid and ask odds on election betting. Although prices are typically

preferable to bookmakers’ prices, betting exchanges still account for only a small

share (< 15%) of the total online gambling market for reasons that are not well

understood. The main differences between the betting exchange and the bilateral

market mechanism are; customers can both buy and sell odds on an event, trade

with each other rather than just their selected bookmakers, and unwind bets at any

time with another counterparty. Most importantly, since opening an account with a

bookmaker has a certain cost (time to complete opening procedures and depositing

of initial amount), the search costs for the best prices are greatly reduced.

In addition to individual bookmaker data, we also collected the data from this bet-

ting exchange, which enables us to compare the two market mechanisms in real-time

and answer questions of market efficiency. We notice that although win probabilities

are similar, there is a measurable amount of the well-documented longshot bias in

the bookmakers’ prices compared to the betting exchange – that is, the bookmakers’

prices tend to under-price the probability of favorite outcomes and over-price prob-

abilities of longshots. These are similar to the results of Franck et al. (2009), who

compared the prices between bookmakers and betting exchanges on football results.

They concluded that a strategy that placed bets with bookmakers when their odds

were better than the exchange generated positive net returns. This concurs with

the idea that the betting exchange provides the most accurate forecasts for unknown

events and is consistent with a form of the efficient market hypothesis. We also

analyze how the implied probability distribution of voting intentions compares with

opinion poll distributions and expert forecasts.

Similar to some OTC financial markets (for example, the securitization market

analyzed by Hollifield et al. (2012) also exhibited a centrality discount), we also found

a centrality discount in the prices charged by the most popular (central) bookmakers

in the gambling market. Although the centrality discount effect is not totally ex-

plained using traditional economic theory, our model offers a possible explanation -

it is simply a property of a Bertrand competition model when played over a network

with preferential attachment.
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6.2 Literature Review

The importance of gambling markets for predicting unknown events has been exten-

sively covered by economists and are generally held to be one of the most accurate

forms of forecasting in various domains such as sport, politics, and entertainment,

Rothschild (2009), Arrow et al. (2008) and others. This forecast accuracy is due to

the financial incentives of gathering information and embedding this into the market

price, the so-called ’Wisdom of Crowds’ effect, popularized by Surowiecki (2004). The

Iowa Electronic Markets’ election prediction markets have outperformed the accuracy

of the large-scale polling organizations, Berg et al. (2008) and Senatorial elections in

the US in 2008.

In particular, the literature of using gambling market implied-probabilities in UK

elections range from, for example, Wall et al. (2012) which looked at constituency

level betting market data to forecast seat shares in the 2010 UK general election,

to Rosenbaum (1999) on the accuracy of betting market forecasts in the 1997 UK

general election. This paper approaches a less studied aspect of these prediction

markets, which is the bookmakers’ individual pricing behavior and, in particular,

their bid-offer spread and the confidence or belief in their estimates of final value,

which can be implied from the interval level bet prices. These interval level bets,

which are odds prices for a specific vote share interval, for example, the odds price of

a party gaining between 10% and 20%, provide an approximation to the probability

distribution of the point estimates of expected final outcomes.

Market microstructure literature would suggest (see Biais for a comprehensive

summary of the microstructure literature Biais et al. (2005)) that bookmakers’ odds

are expected to move on exogenous news (information effects) about the likely out-

come of the event but also on account of the flows of bets that they receive (inventory

effects). It appears that inventory effects were not a driving factor of bid ask spreads

in the gambling market over the time period (1 month) that we monitored prices and

prices moved very little intraday. The conventional bookmakers’ strategy has been

described by Wall et al. (2012) as ’uses expert knowledge to derive the probability

of a given outcome, and then offers customers’ odds’ at which they can back that

outcome.’ According to Levitt (2004), ”The market for sports gambling is structured
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very differently from the typical financial market. In sports betting, bookmakers an-

nounce a price, after which adjustments are small and infrequent. Bookmakers do not

play the traditional role of market makers matching buyers and sellers but, rather,

take large positions with respect to the outcome of game.” This structure is reminis-

cent of many OTC financial markets such as corporate bonds and derivatives, where

liquidity in each individual issue is small, but trade sizes can be quite substantial,

ensuring that dealers are incentivized to attempt to price each security as accurately

as possible.

6.3 Background

6.3.1 UK General Election Basics

In the UK, General Elections take place every 5 years in May, unless Parliament

votes to hold an election sooner, which is what happened to initiate this election in

December 2019. Candidates compete for a seat in the House of Commons and the

election is comprised of 650 individual elections for each seat or constituency, which

each have a similar number of voters. The party that wins a majority of seats, gets

to form a government for the next 5 years.

At the start of the election process, there were several important features. Brexit

and the consequent importance of the Brexit party vote share were paramount, as it

was feared that the Brexit Party votes would hurt the Conservatives disproportionally

in its marginal seats. The competitor, Labour, (the UK general election has been

won by either Conservative or Labour at every election since 1918 2) was polling very

poorly due to its new leadership and political agenda. This led to initial implied

probabilities of 85% for the Conservatives winning the most seats but also a 50%

chance of a hung parliament, where no one party has more seats than the sum of the

others.

Our analysis focuses on two types of data, the prices (probabilities) associated

with the final winner (most seats) and the final vote percentage for each party. The

vote to seat problem, that is, the inference of seat share from vote shares, is briefly

discussed below.

2www.commonslibrary.parliament.gov.uk
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6.3.2 Vote to Seat Prediction Problem

This first past the post system, FPTP, or technically the Single Member Plurality

(SMP) electoral system, in 650 individual constituencies complicates the forecasting

of the final most seats result from small national samples as each party has core con-

stituencies that require large swings to change the result and other constituencies that

need only small swings in the percentage vote to change the winner. Consequently,

predicting vote share is a simpler problem compared to predicting seat shares due to

the costs of polling representative samples.

The problem of vote share to seat share has been analyzed extensively, and a

comprehensive summary of the vote to seat problem is provided by Whiteley (2005).

There are three main approaches to the problem. Firstly, the ’cube rule’ and various

later extensions, which are heuristic rules that are derived from the original empirical

observation that the ratio of seat shares to the ratio of the cube of vote shares was

approximately equal. This simple rule has been found reasonable success in predicting

seat shares where there are two main competitors. Other power-law formulations

have been tried with varying levels of success to take account of election-specific

idiosyncrasies such as vote fragmentation and geographical clustering. The second set

of methodologies is econometric and includes detailed data about previous elections’

vote and seat share data. Lebo and Norpoth (2007); Whiteley (2005) both employed

time series models that include both a component of previous vote shares, seat shares,

and current opinion poll data in an attempt to forecast the predicted seat share.

Coefficients were calibrated using all previous UK election data since 1945.

Given the complexities and idiosyncrasies of each election, a perfect general model

of seat shares is difficult to achieve; however, the betting markets ask a slightly

different but simpler question – what is the probability that a particular party wins

the greatest number of seats on the election date. The question reduces the necessity

of forecasting seat numbers to which party wins the most seats, which is equivalent

to which party has the greatest vote share over a threshold dependent on each vote-

share. Figure 6.1 illustrates the nonlinearity of this threshold at a point in time. It

shows that, because of the constituency nature of the election, the percentage vote

share needed to win depends on both the relative vote-share and the distribution of
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the shares.

Figure 6.1: Vote Share Thresholds to Win Election
(electoralcalculas.com)

With implied probability density functions of each party’s vote share, we can

compute winning probabilities of the greatest number of seats without forecasting

the seat numbers directly.

6.4 Probabilities and Bid-Ask Spreads from Betting Data

6.4.1 Dataset

Data were collected from 19 bookmakers (16 consistently active) over the period

12 November to 12 December 2019 from published betting prices on the internet

– oddschecker.com, a betting aggregation portal, individual bookmaker sites, and

the Betfair betting exchange data. Two data types were collected – pricing data of

winning the election (defined as winning the most seats) and data indicating the size

of the vote share for the three main parties. The odds data were then translated into

probabilities to compare bookmakers’ actual spread quotes with our theoretical spread

predictions. We also compared the implied belief distribution versus the opinion poll
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data at the time. Data collection can be difficult as bookmakers deter automated

data scrapping from their websites by changing the location of betting prices.

Figure 6.2: Sample daily odds prices from main bookmakers

Figure 6.2 shows a screenshot of a typical daily data source from oddschecker.com,

summarizing the quoted betting odds from the major bookmakers. Figure 6.6 shows

a sample screenshot from a leading bookmaker showing the interval level bets on the

percentage vote bands for one of the political parties. These interval level bets allow

us to calculate a distribution of beliefs around the mean forecast.

6.4.2 Implied Probability Bid-Ask Calculation

Odds can be easily transposed to probabilities by the following formula. If a book-

maker makes an odds price for the Conservatives (C) to win the election of C1 to C2,

then the associated probability is: P (C wins) = C2
C1+C2 . For example, if the quote

was 2:1, then the probability of winning is 0.33.

We ignore the very small and nationalist parties and focus only on Conserva-

tive, Labour, and LibDem parties (and the Brexit party pre their 11th November

announcement of not standing in conservative held seats, after which their expected

vote share collapsed to nominal levels).

Bookmakers do not generally provide odds that allow a gambler to lay (sell) a

particular bet, but we can implicitly obtain the odds of the bookmakers’ ’bid price’

odds by simply computing 1 – P(Labour Wins) – P(LD Wins), that is what is,
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the probability of conservatives not winning by betting on the other two possible

outcomes.

Event Win Odds Win Probability Offer Win Probability Bid

Conservatives 1:20 95.24% 89.92% (implied)
Labour 10:1 9.09% 3.77% (implied)
LibDem 100:1 0.99% -4.33% (implied)

Totals 105.32% 89.36%

Table 6.1: Win and Lose Probabilities derived for Odds Prices

This methodology allows us to view the bookmaker prices as a bid-ask spread pair

in probabilities for each event. The quoted win probabilities over all possible events

do not sum to 1, and the excess over one is known as the overround. The overround

of 5.32% is the excess bookmakers’ prot if they laid (sold) each of these bets in equal

quantities and is also the expected loss to customers since it is a zero-sum game.

Bookmakers can prot from these prices, and in particular the overround, in two ways,

rstly if the volume of bets placed is in the exact ratio of the odds is sold (laid), then

the bookmaker has a guaranteed prot of 5.32%. i.e., if bookmaker laid £95.24 at

1:20, £9.09 at 10:1 and£0.99 at 100:1, then whichever of the three outcomes occurs,

the bookmaker makes a risk-free prot of £5.32. Secondly, for any open bets that

the bookmaker has sold, the expected value to the bookmaker of these bets is the

dierence between the implied probability sold and the true probability multiplied by

the volume staked on each bet.

If we assume risk-neutrality and rationality, that is, bookmakers only care to max-

imize their expected payoff over time, then this implies that each event should have

a positive expected value and hence overestimate the true or perceived probability,

since the bookmaker cannot be sure what volume will be received for each event. In

extremis, a risk-averse bookmaker would adjust prices to maximize the chances of

laying the bets in the correct ratio, and the risk-neutral bookmaker would prefer to

sell the bet with the highest expected value.

Monitoring the individual bookmaker prices over the month suggests that prices

are made with most regard to expected final value as price movements are infrequent

and tend to move slowly with the changing expected mean of the distribution of vote

shares. See Wang and Pleimling (2019) for a discussion on Wager distributions at the
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aggregate level.

The average daily volume of bets split was approximately 48% Conservative, 45%

Labour, and 7% others. (source: oddschecker.com, daily % of bets placed through

the site). This suggests that the bookmakers did not adjust prices to encourage the

risk-free proportion of bets and also that they entered the election with a negative

inventory exposure to a Labour win and hence would have been profitable since the

conservatives won the election. Prices appeared to move very little on inventory

effects and moved purely on new information regarding the outcome, consistent with

the bookmaker description given by Wall et al. (2012).

6.4.3 Summary Win Probabilities

The table in figure 6.3 shows the summary results of applying this methodology to the

data set and yields the following bid ask spread results for the expected win, defined

as the party winning the greatest number of seats, using the individual bookmaker

prices and the exchange market as a comparison. The bid ask prices are the highest

bid and lowest ask prices across all bookmakers. It should be noted that these are

derived from the actual trading prices with no data adjustment for any potential bias:

Figure 6.3: Summary of Implied Bid Offer Probabilities

The difference caused by the longshot bias is quite apparent in figure 6.3 between

the best of the individual bookmaker mid prices compared to the exchange mid prices:

The outsider, Labour, seen in Figure 6.4, is consistently assigned a higher proba-

bility (lower odds) by the bookmakers than at the exchange. Similarly, the favourite,

Conservative, also seen in Figure 6.4, has consistently lower probability (higher odds)
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Figure 6.4: Average Implied Win Probabilities from Odds Prices

than the exchange using the mid prices. The structural benefit of the exchange al-

lows gamblers the opportunity of adding extra supply to the outsiders (they can lay

outsiders directly) and so will tend to mitigate the longshot bias of the bookmakers’

prices. The mid-prices suggest that the bookmakers make better (lower) prices than

the betting exchange, but this in fact is not true. The larger bid offer spreads with

the bookmakers means that the exchange is still a cheaper source of favourite (Con-

servative) probabilities. This dataset thus allows us to quantify the extent of this bias

which I don’t believe has been empirically estimated before in election markets.

6.4.4 Bilateral and Exchange Pricing

Unlike most financial markets, the gambling market has both types of market mech-

anisms trading a homogeneous product – the final election outcome probabilities. In

the UK gambling market there are both individual bookmakers making OTC type

prices and a betting exchange (the Betfair exchange) with a continuous double auction

limit order book open to everyone.

Figure 6.5 shows that spread prices on the exchange are consistently tighter than

not only individual bookmakers prices but also the best bid and best offer over all our

16 active bookmakers. This is a well-known phenomenon and was one of the reasons

that initially, betting exchanges were thought to be the future of online gambling. For

reasons not well understood, this has not occurred and betting exchanges account for

< 15% of the online volume.
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Figure 6.5: Obseverd Exchange, Bookmaker and Best of
Bookmaker Spreads

6.4.5 Adjusting Implied Probabilities from Bias

Inferring the true event probabilities from the probabilities implied by the betting

prices suffer from two well-documented problems; the behavioral bias that is known

as the longshot bias, which is the tendency for gamblers to under-bet the favorites

and over-bet the outsiders and the overround problem, Peel et al. (2003). Although

for most of our analysis, specifically, predicted and actual spreads, we use only the

quoted prices without adjustment, the calculations for the variance of beliefs require

a different method as there are typically nine possible event bands that make the

additive method of reducing the overround inaccurate.

The most researched stylized fact of gambling markets is the favorite-longshot

bias and was first noted by Griffith in 1949 and has been observed in most non-

exchange betting data. Equilibrium market prices are a biased estimate of the true

probability of an event occurring, and the expected return to gamblers on longshots

is lower than the expected return on favorites at the bookmaker equilibrium prices.

See, for example, Snowberg and Wolfers (2010) and Peel et al. (2003) for a complete

discussion of this phenomenon.

There are two sets of competing theories to explain the empirical observation of

the apparent irrationality of over-betting on the worse-expected value events relative

to the best-expected return events. Firstly, a neoclassical approach that explains
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this by proposing risk-loving utility functions – the return to gamblers on favorites is

small relative to the return from outsiders. Secondly, behavioral theorists suggest an

approach that concerns cognitive errors and probabilistic misconceptions. Cognitive

psychology has demonstrated that people are systematically poor at differentiating

between small and tiny probabilities and treat both similarly Kahneman and Tversky

(1979). Odds of 100:1 or 200:1 (P= 1% and 0.5%) do not affect the demand for that

event bet; hence bookmakers prefer to offer at the lower odds, thereby distorting the

true win probabilities. Also, people exhibit an irrational preference for certainty over

highly probable outcomes, which leads to the under-pricing of favorites - odds of 1:20

and 1:30 (95% and 96% probability) again cause limited demand changes and hence

bookmakers tend to prefer to make the 1:30 price. Snowberg and Wolfers (2010)

tested a dataset consisting of over 5 million horse races over 1992-2001 and concluded

that misperceptions in probability drove the longshot bias.

In the case of the distribution of vote-share beliefs, the longshot bias leads to

bookmakers reducing odds for low probability event vote-shares more than for higher

probability vote-shares, and the effect of this is that the raw implied probabilities

from the odds data will imply a greater variance than the true distribution of beliefs

over final outcomes.

The total π of the implied probabilities for each event is known as the booksum

and the excess, π−1, the overround. Methods have been devised to extract true event

probabilities from this overround by normalizing each event’s implied probabilities to

closer to the true event probabilities. The question of how to translate these betting

probabilities into accurate event probabilities has been widely studied, as knowledge

of true event probabilities can be used to predict future events, Vovk and Zhdanov

(2007) and others.

There are four main methods of translating the actual event probabilities from

the betting probabilities and removing the bookmakers’ overround (see Clarke (2017))

for a full description). Firstly, the Additive Method distributes the overround evenly

between the n outcomes as a probability adjustment. The second, and most commonly

used method in the literature, is the Normalization Method, which normalizes each

implied probability by the booksum, π. Suppose event A has implied probability πA,

this is adjusted to the true probability P(A), by P (A) = πA
π . This method allocates
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the same proportion of the overround to each event and thus does not address the

longshot bias. A third method was proposed by Shin, H. S. (1993) and used an

iterative method based on an assumed fraction z of informed traders to compensate

for the informed traders’ effects on prices.

The final method, and the one we use in this paper to normalize the belief prob-

abilities, is known as the Power Method and is originally attributed to Victor Khut-

sishvili and is described by Vovk and Zhdanov (2007) and Clarke (2017). It is the

basis for many commercial automated betting algorithms at several bookmakers. The

method is a natural extension of the Additive and Normalization Methods and raises

each implied probability to a fixed power k in order to reduce the booksum to 100%.

P (A) = πkA with
∑

A π
k
A = 1. The effect is that the overround is eliminated and

affects the low probabilities more than the higher probabilities. This method’s pre-

dictive power has been empirically demonstrated to be superior to the other three

methods after applying it to over 20,000 actual sporting events. This method also

appears to compensate for the inherent longshot bias.

6.5 Implied Beliefs and Opinion Polls

6.5.1 Implied Belief Calculation

Some bookmakers provide odds prices for certain percentage vote share bands (known

as interval level bets), and these odds can be translated into probabilities and hence

an implied distribution with the mean corresponding to the mean belief of the final

vote share and distribution around it. See figure 6.6 for a sample data of interval let

bets from 888sport bookmaker.

Figure 6.6: Sample interval level bets from 888Sport bookmaker
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This set of contracts reveals an approximation to the full probability distribution

of market expectations. Beliefs extracted from the betting market were transformed

using the Power method as described by Clarke (2017) because to calculate the implied

buying price using the selling prices of all of the other interval level bets requires too

many crosses of the bid-ask spread (8 crosses of the spread) and so calculations are

not helpful.

Quoted N-Method P-Method
Event Odds P(Win) P(Win) P(Win)

under 14.99% 100:1 0.99% 0.79% 0.47%
15-19.99% 80:1 1.23% 0.98% 0.61%
20-24.99% 40:1 2.44% 1.94% 1.34%
25-29.99% 18:1 5.26% 4.19% 3.28%
30-34.99% 7:1 22.22% 17.69% 17.44%
35-39.99% 7:1 36.36% 28.94% 30.90%
40-44.99% 13:1 38.10% 30.32% 32.61%
45-49.99% 6:1 14.29% 11.37% 10.44%
over 50’% 20% 4.76% 3.79% 2.92%

Total 125.66% 100% 100%

Table 6.2: Summary of Conservative Party Event Odds and Implied
True Win Probabilities using N and P method

Table 6.2 shows a sample data field showing the event and quoted odds by a lead-

ing bookmaker on 14th November 2019, together with the normalized probabilities

(normalizing each probability by the extent of the overround) and the power nor-

malization that eliminates the overround by raising each probability to a power and

somewhat compensates for the longshot bias. The mean and standard deviation are

easily calculated from this frequency table as 38.97% and 6.25%, respectively. The

mean and variance are then used to fit a normal distribution to the data.

Figures 6.7 represent the histograms of beliefs taken from bookmaker prices on

interval level bets of vote share for each party. The probabilities are normalized in

the usual way and give an insight into the both the mean and the variance of the

point estimates of vote shares.

Graphically, the beliefs data seem well modelled by a normal distribution that is

also drawn over the histogram for illustration (using the sample mean and variance).

This fitting process is repeated for each bookmaker and also for every day in order

to give a daily average belief distribution of the expected vote shares of each party.
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Figure 6.7: Histograms of Implied Observed Belief Distributions

Goodness of fit of a normal distribution to the data can be confirmed with a

standard chi-squared goodness of fit test. Table 6.3 shows the average daily chi-

squared test statistics for each party.

Conservatives Labour Libdem

χ2 statistic 3.97 3.85 3.62

95% Critical Value 9.35 11.14 7.38

Table 6.3: Average Test Statistics for Normality of Data

The χ2 statistics are all comfortably below the critical value and so we are confi-

dent that the normal distribution is a good approximation for the belief data which

confirms the graphical intuition.

Figure 6.8 plots the mean values of these implied distributions, which not sur-

prisingly, due to non-arbitrage consistency of the odds prices, are consistent with the

both the win probabilities and opinion poll data. Figure 6.9 shows the diminishing

standard deviation of the belief distributions over time, which is consistent with our

modelling assumptions.

As shocks that might substantially alter the perceived outcome fail to occur, mean

beliefs trend towards the final outcome monotonically. In addition, the standard

deviation (or lack of confidence) in these beliefs decreases in a linear manner as the

chances of shocks decrease linearly with time.
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Figure 6.8: Implied
Vote Shares

Figure 6.9: Implied
SD of Votes Shares

6.5.2 Opinion Polling and Expected Beliefs

Opinion polls are a perennial feature of most political elections, and 63 opinion polls

by 12 opinion pollsters were conducted over the period 1st November – 11th December

2019, with an average of 2 polls published per day. The problem with opinion polls

is that they do not exactly measure what we need to know to price a bet on the

outcome. The opinion polls aim to measure (with some sample error) the voting

intentions on a given day. They do not measure what probability these voters might

switch their vote on the actual day of the election due to a variety of factors or the

confidence level of each respondent.

The Pew Research Centre has examined how and in which order questions are

asked and how these affect the answers given. Determining voter preference among

the candidates running for office would appear to be a relatively easy task by simply

asking them who they will vote for on Election Day. Differences in how this ques-

tion is asked and placed in the questionnaire can affect the results. They find that

many people have given little thought to the campaign or are genuinely ambivalent

about their choices. For these voters, the structure of the questionnaire impacts their

answers.

Poll respondents are typically asked a question along the lines of ‘if the general

election were tomorrow, how would you vote?’. It is difficult to know how seriously

respondents take such questions and what degree of certainty their response implies

(see van der Eijk et al., 2006 for a fuller discussion on opinion poll limitations).

Suppose a polling company could sample the entire population and obtain the
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vote shares for each party. This would have a sample error of zero but would not be

a precise forecast for the vote share at some future date, although presumably, it is

an unbiased estimator due to the independence of potential news shocks. The nature

of the polling business is to use this estimator as a proxy for future election day vote

shares and extrapolate them into seat shares.

Figure 6.10: Opinion
Poll Forecasts

Figure 6.11: Market
Forecasts

Figures 6.10 and 6.11 indicates the consistency between the betting market and

opinion polls estimation of party vote share predictions. The opinion polls have

greater volatility than the mean implied vote shares from the betting market. Also,

the opinion polls are just a point estimate (with a sampling error), whereas the betting

market also produces a confidence band for these estimates vis the interval level bets.

Additionally, the betting markets ask the more interesting question with regards

to pricing – what the is likely distribution of beliefs over the election date and takes

into account the current voting intentions and the variance of changes that might

occur due to exogenous events or last-minute switching. Consequently, although the

mean of the betting market distributions is similar to the pollsters mean, the stan-

dard deviation is much higher – a standard deviation of approximately 6% versus the

pollsters’ typical reported (sample) error of 1.5%. As time progresses, the betting

market distribution variance reduces as the possibility for exogenous shocks reduces,

and this is indeed what the empirical data reports. The betting markets effectively

ask the question: ”how do you think other people will vote?” which is different from

asking, ”How would you vote?” On the day before the election, the 6 opinion polls

were published, and the results are summarized in Table 6.4.
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Poll Average Poll Range Market % Final %

Conservative 43.83% 41-45% 42.88% 43.60%
Labour 33.5% 31-35% 33.88% 32.2%

Lib Dem 11.33% 9-14% 13.13% 11.50%

Table 6.4: Opinion Poll Summary - Election Day -1

Although the average of the final six final polls published was very close to the final

realization, the range of the polls’ estimates was quite large – average absolute error of

4, which is the same absolute error as the betting market. The average RMSE of the

pollsters’ forecasts was 2.54% compared to the market RMSE of 2.44%, suggesting

that the market forecast was slightly better than the average opinion poll. The betting

market error could be an example of the bias inherent in prediction markets – the

longshot bias of small probabilities, the home bias, which is the desire of gamblers

to bet on their home outcome – seen in International football and US baseball. See

Wolfers and Zitzewitz (2004) for a complete discussion of possible prediction market

bias sources.

6.6 Model

6.6.1 Network Structure of the Betting Market

A network can be used to describe a market, where the nodes of the network rep-

resent the economic entities and the links represent potential trading relationships

between them. In the gambling market, we have bookmakers and customers, and the

customers connect to the bookmakers in some way and represent a possible trading re-

lationship. This basic structure is known as a bipartite network (two node types), and

we can calibrate this network with empirical data. The gambling market structure’s

main parameters can be inferred from the UK Gambling Commission’s annual report

and survey of gambling behavior. The Gambling Commission is the UK’s main reg-

ulator for gambling activity and conducts regular surveys to track problem gambling

and changes in gambling behavior. Since 2015, they have also tracked how gamblers

hold many separate accounts, and in 2019 this was reported as 2.7 accounts per gam-

bler, with 44% of gamblers having only one account. These are self-reported numbers



144 Chapter 6. Gambling Markets as Common Value OTC Markets

but appear to be steady over the last five years. (www.gamblingcommission.gov.uk).

An unfortunate consequence of regulation to protect vulnerable gamblers is the more

onerous account setup procedures which appear to have had the effect of slightly dis-

incentivizing the opening of competing accounts – 3.5 to 2.7 over the five years. It

should be noted that the majority of bookmakers for sports betting also make prices

for political events.

Figure 6.12: Average Number of Online Accounts, taken from the
Gambling Commission

The Gambling Commission reports that 44% of clients have only one account,

with the mean number of accounts as 2.7. We can simplify this distribution as the

clients belonging to 2 groups - a group that selects only one betting account and

a second group that selects five accounts. That is, 44% of clients randomly choose

only one bookmaker, and the second group of 56% of clients randomly chooses five

bookmakers to produce a link distribution consistent with the Commission’s data.

Clients choose their bookmakers for multiple reasons, including; tightness of

spreads, range of betting products, online technology solutions, financial solvency,

etc. The largest and most popular bookmakers spend over £1.5B 3 in the UK in ad-

vertising per year, and so it is reasonable to assume a certain amount of preferential

selection for these bookmakers. i.e., the client who wishes to open one betting ac-

count is more likely to choose an already popular one. The combination of this client

degree distribution (which is a common feature of many socio-economic networks)

combined with the preferential selection for certain large bookmakers means that the

largest bookmakers have a higher ratio of degree 1 clients to degree 5 clients than

3www.responsiblegamblingtrust.org.uk report on UK Gambling advertising



6.6. Model 145

the peripheral bookmakers. This, in turn, means that the most popular bookmak-

ers tend to price their odds towards the monopoly level price, and the less popular

bookmakers, which are subject to more competition, tend to price their odds for a

competitive market. Normally, when the price maker is more informed than the price

taker, the monopoly price is higher than the competitive price. However, if the clients

are equally or better informed than the bookmaker, the reverse can be true. This

is due to the winners’ curse dominating the payoffs. See section 6.9 for a complete

discussion.

We will assume that at each time t, both bookmakers and clients have an equal

standard deviation of beliefs in the final outcome - i.e. all players have the same

degree of uncertainty as to the final value. We also make the assumption that there is

prefferential selection for the largest and most popular bookmakers and although

we don’t have the data for the numbers of clients, we use quoted UK gambling

revenue figures as a proxy for popularity. Suppose bookmaker i has percentage of

total market revenue of RVi = UK gambling revenue / total UK gambling revenue,

then the probability of bookmaker i being selected by a new client is equal to RVi.

Suppose there are M clients and a fraction α clients are degree 1 and (1 − α)

clients are degree 5, then each bookmaker Bi, r has an expected ratio f of 1 degree

clients to 5 degree clients as

E[f ] =
αRVi

(1− α)(1− (1−RVi)5)
(6.1)

which is a strictly increasing function in α and also strictly increasing in RVi, i.e. the

ratio of 1-degree clients (no competition) to 5-degree clients (competition) increases

with both the amount of preferential selection and with the proportion of 1-degree

clients in the market and is the primary reason for centrality discounts and premiums

in market networks

It follws that if the expected payoff for bookmaker i is:

E[Π] = M(αRViE[Πdeg1clients] + (1− α)(1− (1−RVi)5)E[Πdeg5clients]) (6.2)

Typically, the monopoly price is greater than the competitive price but in a common
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value situation, the reverse can be true due to the winners’ curse effect. If however,

the optimal spread for 1-degree clients is lower than the optimal spread for 5-degree

clients, the blended maximimizing spread will be higher for less popular bookmakers

and cause a centrality discount.

6.6.2 Multi-Period Unknown Common Value FPSBA Model

Suppose a bookmaker is connected to n customers, and each customer is connected

to m (n >> m) bookmakers. The bookmaker wants to make a betting price for a

Conservative win in the General Election, defined as winning the most seats out of

all the other parties, and the connected customer will place a unit bet with their

connected bookmaker that has the best (lowest probability) price for this event. This

is a Bertrand competition model in odds (probabilities) prices and can be analyzed

using a common value FPSBA representation as described in the previous chapters.

The betting market most closely resembles the FPSBA as the bookmakers can

only observe previous competitor prices (published historical odds) as there is no re-

altime centralized exchange to compare prices. Bookmakers do not observe the other

(unknown) competitor prices during the actual odds quoting process, as the exact net-

work structure is unknown, i.e., you do not know whom you are competing against in

each quote. It is also a one-shot price – bookmakers cannot change their price while

quoting with a customer and have no accurate knowledge of competitors’ prices. A

critical feature of ascending auctions is the ability to sequentially improve your price

as other prices become apparent. For these reasons, we use an FPSBA as a modeling

concept rather than an ascending auction process to model the trading interactions.

However, it should be noted that the bookmakers do have more information than is

usually assumed in a standard FPSBA due to the availability of historical quotes,

which would allow them to infer likely competitor prices.

Although auction theory categorizes auctions as belonging to 4 main types (FPSB,

Vickrey, Dutch, English), MaKafee et al. (1987), real-world auctions often have

idiosyncrasies that deviate from the strict definitions. In the betting market, the

two types that most closely resemble the pricing dynamics are an FPSBA and an

English (ascending) auction. Although it appears possible for each bookmaker to

observe the other bookmakers’ prices (and hence adjust their own price/valuation) in
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the manner of an ascending auction, because of the limited connectivity of the clients

and the limited information of the network connections, bookmakers do not know

which competitor prices are relevant in the competition.

The bookmaker forms beliefs over the likely win probability of each party, and

we assume (see section 6.5 for the empirical evidence) that the vote share of each

party is distributed as a normal random variable with the Conservative Vote Share,

CV S ∼ N(µC , σC) , Labour Vote Share, LV S ∼ N(µL, σL), which we assume are

dependent normal random variables as a large reading fr one will translate into a

small reading for the other.

The probability p, that the Conservatives gain a higher vote share than Labour

(discounting the LibDem and Brexit party chances) is given by

p = P (Con wins) = P (CV S > LV S) = 1− Φ

 (µL − µC)√
σ2
L + σ2

C + 2COV (CV S , LV S)


(6.3)

Let PT ≡ µC − µL and σD ≡
√
σ2
L + σ2

C + 2cov(CV S , LV S), then the distribution

of the excess Conservative vote share is distributed as Cexcess ∼ N(PT , σD)

Bookmaker i estimates this true value PT , the excess vote share, on election day

(t=T) with a certain error or confidence.

Since odds and probabilities are interchangeable, for simplicity we let the book-

maker make a probability price p ∈ [0, 1] for the bet on the success of the Conservative

party in the election.

As in previous chapters, we model this measurement or estimation process by

bookmaker i, receiving a signal Si,t = PT + εt, at time t, which is an estimate of the

Conservative’s excess vote share that realizes on election day with mean PT , the true

excess realized vote share. εt ∼ N(0, σD) with variance σD

Bookmaker i, makes a betting price at time t of Bi,t = Si,t + δi to his connected

customers and these customers select the bookmaker with the lowest (probability)

price to trade. δi is the overround or profit margin selected by the bookmaker for

this bet.

We simplify the behaviour of customers as follows – for each customer of degree

k, (so is connected to k bookmakers), each customer forms a belief R as to the correct
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winning probability of the event. The customer then checks the prices of his connected

bookmakers, and if the odds imply a lower probability of winning than their estimate

R, a unit trade occurs.

The payoff for bookmaker i, in competition with k-1 other bookmakers j is:

Πi =

 Bi,t−PT : ifBi < Bj∀j ∩Bi < R

0 : otherwise

 (6.4)

i.e. bookmaker i makes a payoff of Bi,t−PT = εi + δi, if Bi,t is the lowest price in the

network of the customer connections and is also better than the customer’s estimate R,

which is a Bertrand price competition model in odds prices with a common unknown

true value. This means that in equilibrium, the bookmaker with the highest adjusted

signal error (the estimate plus the overround) is selected to trade.

In a market with a single client who receives a signal Si = PT + εi where εi is

drawn from a normal distribution with zero mean and standard deviation σC and sets

a reservation price equal to Si (their estimate of the true probability)and n (n ≥ 1)

bookmakers, where the bookmakers receive an independent signal Si = PT + εi where

the εi are drawn from a normal distribution with zero mean and SD σB , the expected

payoff for a bookmaker i is a function of all the bookmakers’ margins and the signal

standard deviations of bookmakers and clients, moreover:

E[Πi(δi, δ−i, σB, σC)] = −
∞∫
−∞

s

σB

 n∏
j=1
j 6=i

Φ[
s+ δj
σB

]

Φ[
s

σC
]φ(

s+ δi
σB

)ds (6.5)

Where δi is the bookmaker’s profit margin, δ−i are the profit margins of the

competing bookmakers, σB is the standard deviation of the bookmakers’ belief over

the final point value estimate.

This model of expected payoffs, shown in figure 6.13, gives some insight into the

reason the overround should never be zero and is an illustration of the winners’ curse

effect – the conditional probability of making a wrong (losing) price after having been

selected to trade is greater than the unconditional probability of making a losing price.

The winner’s curse can only be avoided by adding an overround to your estimate of

true value and there exists an optimal amount of overround that needs to be added to
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Figure 6.13: Illustration of Winners Curse due to Overrounds

maximize expected payoffs. We assume that each bookmaker looks to maximize this

expected payoff and are risk neutral, and hence only care about expected returns. This

can be represented as a static Bayesian game and has a Bayesian Nash equilibrium

solution as per the other chapter.

Summarizing the important assumptions of this model:

• Risk Neutral - bookmakers maximize expected payoffs and are indifferent to

inventory and variance of payoffs

• Rationality - bookmakers make prices that are independently profitable – rel-

ative to their beliefs, each event odds bet has a positive expected payoff. This a

consequence of 1 – the expected utility of a losing bet can be positive if it offsets

some risk)

• All bookmakers have same variance of error in estimate of final values.

• Distribution of errors is common knowledge which is itself common knowledge.

At each time period, t, each bookmaker looks to add a profit margin δi,t to their

expected true final outcome value and makes a price of Bi,t = Si,t + δi,t , and at each

time period t, the mean and variance of the distribution of Si,t may change due to

exogenous events. The excess margin δi,t need not be the same for each event and∑
E δi,t = π > 1 is summed over all events E and π − 1 is known as the overround.

Each bookmaker is simultaneously attempting to maximize their expected payoff
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and theoretically there is an amount of margin that each bookmaker adds that cannot

be unilaterally improved upon. This Bayesian Nash equilibrium (it is a Bayesian game

because of the belief assumptions of all the players and the common prior assumption)

can be solved numerically with the algorithm of the previous chapter.

In this competitive setup as described, at each day t, each bookmaker has a Nash

Equilibrium amount, δi , to add to their estimated final value, and an amount −δi to

subtract from it in order to generate a 2-way probability price in an event’s outcome,

given a common final event distribution function F.

The bid-ask spread is the difference between what prices a customer could back

and lay an outcome with the same bookmaker. We investigate if the bookmakers’

bid-ask spreads in odds prices approximate a Nash equilibrium bidding strategy by

analyzing the empirical data and estimating the relevant variables required to cal-

culate the theoretical spread levels. The expected payoff function includes three

unknown quantities that we will calculate or estimate from the empirical dataset.

Firstly, the functional form of the distribution of beliefs, which we shall approximate

as being normal and is consistent with the empirical data, secondly, the mean and

variance of these beliefs, which we also calculated from the data and lastly the num-

ber of competitors and network position each bookmaker faces when making a price

to a customer. We infer this distribution from the UK gambling commission survey

reports. We also take the UK betting revenue as a proxy for popularity (preferen-

tial selection) in constructing preferential attachment in the network to examine the

centrality premium and behavioral differences.

6.6.3 Converting Vote Share to Seat Majority Beliefs

The aim now is to produce a seat win probability from the vote share data. As

before, let conservative final vote share be distributed as C ∼ N(µC , σC) and the

expected Labour final vote share be L ∼ N(µL, σL) , then the probability p, that

the Conservatives gain a higher vote share than Labour (discounting the LibDem

chances) is given by

p = 1− Φ

 (µL − µC)√
σ2
L + σ

2
C + 2COV (CV S , LV S)

 (6.6)
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Unfortunately, the beliefs are not independent as a large realization for one party

would likely produce a large negative realization for the other party as there is a

fixed population to draw from, therefore the covariance between the Labour and

Conservative vote shares, cov(C,L), is unknown and certainly negative.

However, in order to calculate spreads, we just need the fact that the distribution

is normal with some unknown variance σX since the distributions of both Labour and

Conservative vote shares is normal, any linear combination of these distributions is

also normal. The p(C > L) is already known by the separately quoted win proba-

bilities (point values) and µC and µL are known from the means of the interval level

bet data (belief distributions). We can then solve for the effective variance of this

new normal variable, which is σ2
X = σ2

L + σ
2
C + 2COV (C,L) , to use for the effective

variance of the outright win probabilities and the inputs to the theoretical spread

calculations. This variable is the variance of the beliefs or margin of error of the win

probabilities.

Figure 6.14: Standard Deviation of Conservative Party Most Seats
Win Belief Probabilities

Figure 6.14 plots these standard deviations of Conservative most seat win prob-

ability beliefs that are derived from the Conservative and Labour vote share beliefs

after solving for the implied covariance. It can be viewed as a confidence measure

on the mean probabilities (estimates) of winning the most seats. Similar to financial
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markets and standard behavioural theory, we notice over and under-reactions to ex-

ogenous shocks, which is particularly noticeable after the Brexit Party non-compete

announcement on the 11th November. This was unequivocally good news for the

Conservative vote share, which went up, but the initial surge in confidence appears

exaggerated and was subsequently reversed over the next few days. The smoothed

beliefs, also plotted, use 3-day simple moving average to give an indication of market

beliefs that are more consistent with the observed changes in beliefs of the individual

vote shares.

6.7 Observed and Predicted Spreads

We can now examine the predicted equilibriums in our betting market model and

compare them with the data. We have now calculated or observed all of the parame-

ters necessary for the bid-ask spread pricing model, namely, the extent of competition

(network properties) and belief distributions (standard deviations). We now use these

parameters to determine if the bookmaker bid-ask spreads in the market follow either

a Nash equilibrium strategy or a zero profit strategy. For each day, we use the implied

variances of winning beliefs (Conservatives only for brevity) to calculate both the NE

spread and the zero-profit spread that are consistent with these parameters.

Figure 6.15: Mean Observed Spreads and Predicted Spread Levels
Evaluated from Belief Data
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Figure 6.15 shows that the average bookmaker spread tends to follow a strategy

close to the theoretical NE spread calculated from the implied beliefs of winning. The

predicted spreads are more volatile than the observed spreads in the market, and this

may be due to data fluctuations in the belief odds data. In line with the theory on

Bertrand competition on common value items, the bookmakers do not charge zero

expected profit prices in equilibrium.

Figure 6.14 shows the level of noise in the beliefs and smoothed belief levels. Using

the smoothed beliefs as inputs for the equilibrium level gives the following outputs for

a predicted spread level versus the observed spread levels. Also plotted, for reference,

is the calculated zero profit spread levels. These are calculated in the same way from

the payoff functions but with the algorithm target set to zero profits.

Looking instead at the spreads derived from smoothing the belief data, Figure

6.16 gives a very clear result – the bookmakers’ spread strategy appears to follow

these predicted NE spreads quite closely and are much higher than the estimated

zero-profit spread levels. The smoothing uses a simple 3-day moving average of the

beliefs.

Figure 6.16: Observed and Belief Smoothed Predicted Spread
Levels
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6.8 Model Evaluation

A common and straightforward approach to evaluate models on complex systems is to

regress predicted vs observed values, Piñeiro et al. (2008) (or vice versa) and compare

slope and intercept parameters against the 1:1 line. We ran a linear regression between

the observed spread prices and the predicted equilibrium spreads using the market

beliefs of the final outcome variance as inputs. The model produced a nearly 1:1

relationship with an R2 of 90%. A perfect model would have a slope of 1 and an

intercept of zero, and the fitted linear model has a slope of 1.118 with 95% confidence

bands of (0.9036, 1.332) and an intercept of -0.5888 with confidence bands of (-1.951,

0.7729).

Figure 6.17: Observed vs Predicted Linear Regression

Figure 6.17 plots the linear model of the predicted versus the observed values.

Figure 6.18: Residuals of observed vs predicted values regression
model

The plot of the residuals, show in figure 6.18, also shows no obvious structure.

Conducting a ’runs’ test, Bradley (1968), on the residuals, where the null hypothesis

H0: the sequence was produced in a random manner vs H1: the sequence was not
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produced in a random manner was investigated. The result is we cannot reject the

null hypothesis at both the 95 and 99% level.

R2 also represents the proportion of the linear covariance of observed and pre-

dicted values with respect to the total variance of observed and predicted values.

In this sense, the R2 indicates how much of the linear variation of observed values

is explained by the variation of predicted values. Linearity between observed and

predicted values can be tested following (Smith and Rose, 1995). Thus, the R2 of

observed vs. predicted values is a valid parameter that gives important information

of the model performance

It is always possible that our “explanatory variables” are completely useless for

predicting the observed values and are due to natural variability of the data - noise

vs signal. We can formulate this as a hypothesis test with the null hypothesis that

all regression parameters (except the intercept) are zero, that is, we form the null

hypothesis:

H0 : β1 = 0

versus the alternative hypothesis:

HA : β1 6= 0

That is, we can say that under HA, the model has some predictive power over

a constant model. This is accomplished by performing an F-test on the regression

coefficients of the predicted vs observed values.

Figure 6.19: F-test results on the linear regression coefficients



156 Chapter 6. Gambling Markets as Common Value OTC Markets

The F-statistic vs a constant model of 127 says we can reject the null hypothesis

H0 at both the 95% and 99% confidence level and has a p-value of 4x10−8. That is,

the probability of a type 1 error (data is actually generated from a constant model)

is 4x10−8. Clearly as we have only one explanatory variable, the predicted value, the

p-value of the F-statistic is the same as the t-statistic.

Given the assumptions, noisy data and complexities of calculations, it is notable

that the price competition mechanism over a network manages to produce prices that

are measurably close to the theoretical predictions.

6.9 Centrality Premium Effect

In many financial markets, a centrality premium exists; that is, the more centrally

located dealers charge higher prices than the more peripheral dealers. The betting

market structure is very similar to the OTC market structures of the financial markets,

and we examine the data to determine if any centrality discount or premium exists.

The results show a centrality discount for the more central and active bookmakers,

compared to the smaller, less active ones. This discount is predicted in our common

value network model when there are symmetric information sets and preferential

selection by the customers for a particular subset of bookmakers. It seems reasonable

to assume that given the costs of establishing accounts and the average number of

accounts being three, that the biggest bookmakers are likely to be preferred as one of

the client choices over the smaller ones when opening only a small number of accounts.

This preferential selection is the driving force of the centrality discount, as presented

in the previous chapter.

The 16 active bookmakers that were represented on oddschecker.com (3 book-

makers making sporadic prices were dropped from the analysis) were sorted by total

UK revenue using published online data.

Table in figure 6.20 shows the ranking and average spreads over the 1-month

period prior to the election day.

As time progresses to the election day, the outcome’s variance reduces due to the

reduced probability of election changing news – leader’s debates, speech gaffes, for

example. Since our model estimates a spread that is positively related to the final
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Figure 6.20: Partitioning on Bookmakers by Revenue

value estimate variance, we would expect a drift down in spreads on no significant

news and a sharp drop in spreads on any large positive news that permanently in-

creases a party’s chance of election. The data suggest that this effect does occur –

there is a significantly large drop in spreads after the Brexit party announcement on

the 11th November that they were not going to compete in Conservative-held seats.

This produced a significant increase in the expected Conservative Vote share and a

considerable reduction in a Conservative win’s uncertainty. Spreads for a conserva-

tive win collapsed by nearly 2% - the most significant drop over the whole election

dataset. It could be argued from the data that the Conservatives effectively won

the election on 11th November with the Brexit party non-compete announcement, as

demonstrated by the large reduction in the belief variances

Figure 6.21 plots the average bid-ask spreads of both central and peripheral book-

makers and clearly shows that the central bookmakers consistently make tighter

spreads than the peripheral bookmakers. This is a surprising result, considering

the extra costs of marketing that the large bookmakers spend. This result, however,

is consistent with our model of spread prices with a client-base that is at least as

informed as to the outcome as the bookmakers and bookmakers are subject to a level

of preferential selection as new clients enter the market. In a growing network with

preferential selection, the bookmakers with the largest numbers of links are more

likely to get selected by the clients. Following the network model described in section

6.6.1, we have that each client has a 44% probability of having just one link and a 56%

probability of having five links. The bookmakers are selected with some preferential
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Figure 6.21: Spreads of Largest and Smallest Bookmakers

selection that is based on their popularity. At each time point, we assume that the

clients and the bookmakers have an equal standard deviation of beliefs as to the true

final value.

The bookmakers all seek to maximize their expected profits by adjusting their

profit margin δ, which is given by:

E[Π(δ)] = M(0.44RViE[Πdeg1clients(δ)] + (0.56)(1− (1−RVi)5)E[Πdeg5clients(δ)])

(6.7)

where M is the total number of clients, RVi is the proportion of market share of

bookmaker i.

and the expected payoff from degree 1 clients of bookmaker i, is given by:

E[Πi,deg1clients, (δi, σB)] = −
∞∫
−∞

t

σB
Φ[

t

σB
]φ(

t+ δi
σB

)dt (6.8)

and the expected payoff from degree 5 clients is :

E[Πi(δi, δ−i, σB)] = −
∞∫
−∞

t

σB

 5∏
j=1
j 6=i

Φ[
t+ δj
σB

]

Φ[
t

σB
]φ(

t+ δi
σB

)dt (6.9)

These systems of equations (over all bookmakers) have a fixed point at which each
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bookmaker is in equilibrium regarding the profit margin added to their estimate and

is a Bayesian Nash equilibrium that can be approximated numerically.

If bookmakers and clients are, on average, equally able to measure the outcome,

the equilibrium spread level for the 1-degree clients is lower than the equilibrium

spread level for the 5-degree clients and was discussed at length in Chapter 3. This

common variance tends to cause a centrality discount in equilibrium when there is a

preferential selection for the bookmakers.

6.10 Conclusion

The UK general election provided a perfect dataset to test the idea in this thesis that

non-centralized markets with common uncertainty over the true value can produce

non-intuitive pricing effects in equilibrium. We collected data over the month preced-

ing the election and showed that beliefs over the final outcome were well represented

at each time point by a normal distribution, which gives a richer representation of be-

liefs than the usual point estimates. We then used these belief distributions to create

a Bertrand unknown common value competition model in odds prices and found that

the quoted prices accorded very well with the model’s theoretical Nash equilibrium

levels. Similar to some OTC financial markets (the securitization market analyzed

by Hollifield et al. (2012) also exhibited a centrality discount), we also found a cen-

trality discount in the prices charged by the most popular (central) bookmakers in

the gambling market. Although the centrality discount effect is not totally explained

using traditional economic theory, our model offers a possible explanation - it is sim-

ply a property of a Bertrand competition model when played over a network with

preferential attachment.

In terms of forecasting and informational content, we find, similar to others, that

the betting markets provide a forecast at least as accurate as polling data. One caveat

is that there is a well-documented longshot bias for small probability events that need

to be considered, and this was adjusted for by standard normalization methods.
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Chapter 7

Conclusion and Discussion

This thesis describes a simple network model of the trading process in a general client-

dealer OTC market, with a common unknown asset value. Clients connect to dealers

via a network of trading relationships, and both clients and dealers form an estimate

of this asset’s true value. Clients request quotes from their connected dealers, and

dealers respond with a firm quote to buy and sell, and the client order transacts at

the best-observed quoted price.

Our model offers insight into the interesting equilibrium pricing between perfect

competition and monopoly by examining the network topology within a framework

of asymmetric information sets. We view dealer bid-ask spreads as analogous to the

signal reductions in first-price auctions and use traditional auction analysis to find

the optimal dealer pricing strategy. We jointly maximize the dealer payoff functions

numerically to find their Bayesian Nash equilibrium strategy and examine the effects

of different network configurations and asymmetric information on the equilibrium

bid-ask spread.

As in many traditional asymmetric information microstructure models, we find

asymmetric information to be a significant driving force in determining equilibrium

dealer spreads. The extent of asymmetric information is a primary driver of why

in a network with heterogeneous client links, central dealer spreads can be either a

premium or a discount to the less-central dealer spreads. Setting bid-ask spreads to

either compensate or exploit informational asymmetries depends on both the relative

information sets and network topology, which interact in non-linear ways.

Similarly, we find that the client degree distribution is a major factor in determin-

ing the effects of increasing information transparency on equilibrium bid-ask spreads,
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where transparency is modeled as a refining of the clients’ information sets regarding

the true value of the asset. Clients with low degree (less than 3) experience re-

duced spreads, whereas higher degree clients face higher spreads when transparency

is increased. This is due in part to the increasing dominance of the winners’ curse

effect with improved client information sets and dealers attempting to mitigate this in

equilibrium by increasing spreads. This may offer some explanation as to the mixed

empirical results seen when market transparency has been increased by regulators

and is further evidence of the importance that market network topology plays.

This common value model also generates two types of price dispersion in both the

buy and sell prices. Firstly, from the asset value estimate variance, with increased

dispersion when asset value uncertainty is high. Price dispersion is also shown to

fall when clients become better informed as to the true value of the asset. This price

dispersion is a feature unique to non-centralized markets, with different prices trading

in different parts of the network. Secondly, there is also a prices dispersion between

clients of different degree, with increased degree equating to lower price dispersion as

the variance of the equilibrium prices decreases with degree.

We use the equilibrium results to show how our model can explain some other

puzzles in the empirical literature inconsistent with established economic theory. We

looked at how spreads in low-risk municipal bonds can be greater than medium-risk

bonds, which can be greater still than risky equities. Additionally, illiquid bonds

can have tighter spreads than liquid bonds. These phenomena cannot be explained

by pure informational asymmetry or inventory arguments. In harder-to-value illiq-

uid bonds, inventory models would predict the opposite effect due to the increased

difficulty in offsetting positions and so would command a higher spread. Similarly,

asymmetric information models predict that the harder to value securities would

command a higher bid-ask spread. When the network connections are included, the

combination of clients’ low-degree and relative uninformedness explains these obser-

vations.

Finally, we apply the network model to the gambling market with data gathered

from the UK general election of 2019. We find that a normal distribution well repre-

sents the distribution of beliefs of the true value, and the network topology is similar

to many OTC financial markets. We demonstrate that bid-ask spreads in odds prices
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are consistent with our network model.

We have shown that even a simple Bertrand price competition can give rise to

many non-linear and counter-intuitive effects when executed over a network. The

three elements of this story, information sets, degree distribution, and preferential

selection, combine to explain empirical data that standard linear models do not easily

describe, and our network model describes a parsimonious model of trading in OTC

markets.

Real markets, however, are generally not precisely represented by one-shot games

but by multi-period transactions, where future relationships and learning become an

essential consideration. The network structure in this model does not change - clients

still prefer specific dealers and have a small number of links that drive the topology,

but clients and dealers can learn from the traded prices and possibly change their

network links.

The standard model of rational learning in a network maintains that individuals

use Bayes’ rule to incorporate any new piece of information into their beliefs (Molavi,

P., Tahbaz-Salehi, A. and Jadbabaie, A. (2018)) and involves each agent forming a

prior belief updated by information on each trade observed. Even in simple networks,

this is an onerous task as it requires updating beliefs on all other agents’ information

sets in the network at every time period. Other heuristic methods of learning have

been devised and the leading behavioral model here is the DeGroot heuristic model,

deGroot (1974), which is a simple method whose results have been empirically tested

and shown to outperform Bayesian learning in experimental work, (Chandrasekhar,

A.G., Larreguy, H. and Xandri, J.P. (2020)). This method involves simple averaging

of one’s own and one’s neighbors’ beliefs as new data is revealed. Similarly, the dealers’

strategic nature means that the multi-period game alters the pricing strategy, since

the dealers’ objective function is now the sum of transactions over a long period. For

example, a dealer may price below equilibrium levels to win new customers (network

links) in a dynamic network, drive out competitors, and exploit their superior network

position at a later stage of the game. This predatory pricing phenomena was examined

by Milgrom (1991). In addition, any agent with a superior estimate of the true value

might disguise this fact to retain a competitive advantage because of learning by other

agents.
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Other avenues for future work include applying this model to the other types

of bipartite market networks, such as the client-client network, where boundedly

rational clients trade with other clients without intermediation, similar to an eBay or

other peer-to-peer network type structure. In the dealer-dealer networks, this is more

complicated as the strategic dealers fall foul of various no-trade theorems, for example,

the seminal no-trade theorem of Myerson, Roger B.; Mark A. Satterthwaite (1983).

The common prior assumption ensures that in equilibrium, entirely strategic dealers

with knowledge of the probability distribution of signals will have no pure financial

incentive to trade with each other, (Milgrom, Paul; Stokey, Nancy (1982)), so an

inventory management element would need to be introduced in order to incentivize

trade.
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Appendix To Chapter 3

A.0.1 Derivation of Monopoly Dealer Payoff Function

This can be solved in 2 ways: from first principles and from the general payoff integral.

Here is the first principles derivation: Let M be the total number of clients and let

there be an equal number of buyers and sellers. Let δ be the bid ask spread chosen

by the monopoly dealer and let each client and the dealer receive a signal as to the

true value of the asset which is normally distributed with mean V, the true value,

and standard deviation σM for the dealer and σT for the clients.

E[Π]=E[profits from buys] + E[profits from sells]

E[Π] = M
2 E[( δ2 + ε)(1− Φ[2ε+δ

2σT
]) + ( δ2 − ε)(Φ[2ε−δ

2σT
])]

E[Π] = M
2 ( δ2E[1− Φ[2ε+δ

2σT
])] + δ

2E[Φ[2ε−δ
2σT

]])− M
2 cov(ε,Φ[2ε+δ
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])− M
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by Steins’ Lemma, where ε ∼ N(0, σM )
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let b = δ
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This is expressed in terms of the bid ask spread, so as a function of the semi bid ask

spread:

E[Π(δ, σT , σM )] = Mδ(Φ[ −δ√
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B.0.1 Formal Specification of Static Bayesian Games

In a Bayesian game, we specify strategy spaces, type spaces, payoff functions and

beliefs for every player. As in perfect information games, a strategy is a complete

plan of action that covers every possibility that might occur for every player type

that might occur. A type space is the set of all possible types for a player

Like a game of complete information, a game of incomplete information has (i) a

set of players and (ii) their action spaces. These are complemented with preferences

and information components: (iii) a probability distribution over players’ types which

determine their preferences, (iv) each player knows his own type but not the other

players’ types; (v) the probability distribution over types is common knowledge, which

is itself common knowledge; (vi) Payoffs associated with each action space and type

space.

Before the game is played, Nature chooses the different player types. Each type

ti can represent information about player i’s own payoffs, or more generally, other

game attributes in particular, network structure. Thus there is a type space Ti for

each player i ∈ N , representing the range from which Nature chooses i’s type. We

introduce a commonly known prior probability distribution p(·)on
N∏
i=1

Ti to describe

how Nature chooses a type profile (ti)
N
i=1

The normal form representation of a n-player static Bayesian game is:

G = 〈N, (Ai)
n
i=1, (Ti)

n
i=1, ((ui(·; ti))ti∈Ti , (pi)

n
i=1〉

whereN = {1, 2, ..., n} is the set of playersAi is player i’s action set Ti = {t1i , t2i , ..., t
ki
i }
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is player i’s type space, and ui : A × Ti → < is player i’s type dependent utility or

payoff function, where A := A1 ×A2 × ...×An =
n∏
i=1

Ai

Timing of the Bayesian game:

1. Nature chooses a type profile (ti)
N
i=1 ∈

n∏
i=1

Ti

2. Each player i ∈ N learns his own type ti ∈ Ti which is his private information,

and uses his prior pi to form beliefs pi(t−i|ti) over the other player types

3. Players move simulataneosly and choose actions ai ∈ Ai and payoffs ui(a, t) for

i ∈ N are realized

A pure strategy for player i is a function fi : Ti → Ai that specifies a pure action

fi(ti) that i will choose when his type is ti

Types may also be derived from continuous distributions, with the random type

space Ti with a CDF Fi(ti) and density fi(ti)

In the static Bayesian game, G = 〈N, (Ai)
n
i=1, (Ti)

n
i=1, ((ui(·; ti))ti∈Ti , (pi)

n
i=1〉 a

pure strategy profile s∗ = (s∗1(·), s∗2(·), ..., s∗n(·)) is a pure strategy Bayesian Nash

Equilibrium if for every player i ∈ N , and for each realization ti ∈ Ti of player i’s

type, the action ai = s∗i (ti) is a best response because it solves:

max
ai∈Ai

Et−i [ui(ai, s
∗
−i(t−i); ti)|ti]

We take player i’s conditional expectations over the random realizations of other

player types t−i , given that player i knows his own type ti

All finite Bayesian games have a Nash equilibrium.

B.0.2 Convergence with an Agent Based Model (ABM)

As a second check, we recreated the OTC auction game in an ABM, where each of

the clients quotes and trades with a set of dealers, and the dealers attempt to max-

imize their individual payoffs. It uses a modified version of the relaxation algorithm

where dealers do not know their payoff function but can measure the effect on their

own payoff by changing spreads. The results are in line with Relaxation algorithm

solutions to the simultaneous dealer payoff functions.

An ABM was created and each dealer tries a higher or lower spread and compares

the average payoff. If the high or lower spreads produce a higher average, then that
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Figure B.1: convergence of dealers’ equilibrium spreads in ABM

spread is adopted instead. All agents perform this operation in turn, similar to the

methodology of the relaxation algorithm. Figure B.1 shows the convergence of the

bid ask spreads in an Agent Based Model producing a mean spread 0.7525 with sd

of 0.0071 vs theoretical Nash equilibrium level of 0.75. Dealers find the equilibrium

after approximately 50 rounds of trading auctions with no knowledge of the payoff

functions
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