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Abstract— Traumatic brain injury (TBI) is one of the leading 

causes of death worldwide, yet there is no systematic approach 

to monitor TBI non-invasively. To the aim of developing a novel 

optical sensor for TBI monitoring, this paper presents a Monte 

Carlo model of optical interaction with healthy human head to 

optimize the sensor geometry. Investigation with a range of 

source-detector separations at a near-infrared optical window 

reveals that maximum light is absorbed in the skull and the 

minimum interaction takes place in the subarachnoidal space. 

Such information will be helpful to the next step of modelling 

with neurocritical brain tissue followed by the sensor 

development. 

I. INTRODUCTION 

Traumatic brain injury (TBI) is, as its name indicates, an 

acquired head injury caused by an external force that disturbs 

the brain’s function [1], [2]. TBI is among the most severe 

types of injury in terms of fatality and lifelong disability for 

survivors [3], [4]. Reported TBI incidence and mortality rates 

across the world vary considerably, yet there have been 

estimated 50 to 60 million new cases per year worldwide, of 

which over 80% occurred in low-middle income countries [5]. 

Nowadays, TBI assessment involves non-continuous imaging 

techniques which are not accessible in every situation and 

invasive monitoring methods which are risky and requires 

neurosurgical expertise for insertion. Both involve potential 

delays before the information is available for clinical use [6] 

[7]. Furthermore, studies have shown that 60–80% of TBI 

patients go through an initial phase of cerebral hypoperfusion 

during the early post-traumatic period [7], contributing to 

increased mortality and a worse neurological outcome, 

especially if it cannot be assessed and treated on time [8]. In 

consequence, it is needed the development of a non-invasive 

sensor for TBI continuous monitoring, especially to assess 

brain’s hemodynamic during the first hours after trauma, when 

secondary injury takes place [6]. 
 
Different types of near-infrared (NIR) spectroscopy 

systems and other multi-distance optical sensors have been 
developed since Jöbsis demonstrated that cerebral oxygen 
sufficiency can be monitored in vivo, non-invasively using 
NIR light [9]–[12]. Precise modelling of light propagation in 
the head to deduce the spatial sensitivity profile is crucial to 
improve optical technologies that aim to assess cerebral 
haemodynamic [13],[14]. The latter defines how deep the light 
travels into the tissue, where a large penetration depth carries 
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to more accurate monitoring of the brain [13].  Also, the spatial 
sensitivity profile, so-called banana-shaped photon 
distribution, investigate the absolute absorption and scattering 
coefficients of the multiple tissue-layers of the head, which can 
be used to quantify chromophores’ concentrations within the 
tissues [15].  

Several theoretical and experimental studies have been 
performed to investigate the propagation of light in various 
head models, based on diffusion theory and Monte Carlo (MC) 
calculations. Except for a few studies, most approaches rely on 
homogeneous semi-infinite models of the head because of its 
simplicity [16]. However, the lack of realism might introduce 
bias in the measured optical properties [16]. In consequence, 
novel approaches based on heterogeneous structures have been 
considered [16]–[22]. These models consist of multiple layers, 
such as the scalp, the skull, cerebrospinal fluid (CSF) and the 
brain, which can be divided into grey and white matters.  For 
instance, Okada et al. employed models consisting of three and 
four-layers to analyse photon propagation [23]. Although a 
few theoretical and experimental investigations on light 
propagation in the human head have been performed, 
knowledge of which layers in the brain are sampled by light at 
different source-detector distances remains incomplete. Such 
information is of the utmost importance to optimize the design 
and determine the sensitivity of the sensor.  

 In order to investigate the efficacy of an optical sensor to 
monitor the range of physiological changes related to TBI, the 
foremost step is to characterize the sensor on a healthy brain 
model. To this aim, in this work, a multilayered tissue model 
is developed and explored to analyze the optical interactions at 
the near-infrared wavelength.  

II. METHODS 

The light-tissue interaction model simulated in this work 

followed the Monte Carlo (MC) computational method. MC 

is a stochastic process to simulate the photon paths through a 

tissue volume based on the probabilities of scattering and 

absorption. The MC model has a range of proven advantages 

over other available modelling methods such as diffusion 

approximation, random walk theory or finite element method 

in terms of its straightforward approach, ability to incorporate 

random anisotropic scattering, inclusiveness of tissue 

heterogeneity and structural complexity, and flexibility 

regarding the sensor design and location [25]. Available MC 

models of brain-optics are either too complex and resource-

Dr. S. C. Author is with the Research Centre of Biomedical Engineering, 

City University of London, EC1V 0HB UK.  

Dr. P.A.K. Author is with the Research Centre of Biomedical 
Engineering, City University of London, EC1V 0HB UK.  

 

Light-Tissue Interaction Modelling of Human Brain towards the 

Optical Sensing of Traumatic Brain Injury 

M. Roldan, S. Chatterjee, and P. A. Kyriacou, Senior Member, IEEE 



  

consuming to replicate, or inadequately simplified. In the 

current work, a simple yet realistic multilayer brain-tissue 

model was developed and evaluated in a reflectance optical 

sensing geometry through a range the source-detection 

separations of 1, 2, 3 4 and 5 cm.  

A. Opto-anatomical parameters 

The layer stratification of the Monte Carlo tissue-model is 
illustrated in Fig1. The full anatomical structure presented in 
Fig 1(a) was represented by a 12 layered semi-infinite slab-
tissue model as shown in Fig 2(b) [31]. Healthy head layers 
thickness have been adopted from the literature as presented 
on Fig.1 [26], [27].  

The tissue layers were characterized by their optical 
properties, namely, absorption coefficient (𝜇𝑎), scattering 
coefficient (𝜇𝑠), anisotropy function (𝑔) and refractive index 
(𝑛). The ideal wavelength for the sensor is the isosbestic point, 
i.e., 810nm since the absorption properties of the oxy- and 
deoxyhemoglobin are the same at this wavelength, therefore, 
an optical signal independent of blood oxygenation can be 
recorded [24]. However, due to lack of adequate published 
information, the tissue-layer optical parameters through a 
near-infrared optical wavelength window (between 650-
800nm) were adapted from literature and are illustrated in 
Table 1 [28].     

B. Monte Carlo simulation strategy 

The details of the MC simulation steps and algorithm are 
discussed in our previous publications [29], [30]. In the current 
work, a 109 number of photons were simulated through the 
brain tissue volume at each source-detector separation. 
Reflection loss at the air-tissue boundary and the interface 
between two tissue layers were considered in the model. In 

order to replicate a laser source, a Gaussian beam of a radius 
of 0.6mm was simulated. Photons were detected through a 
circular photodetector having an effective area of 5𝑚𝑚2.  

The two simulated quantities discussed in this paper are -
1) layer-specific absorbance and 2) fractional optical 
pathlength. The absorbance and optical path through tissue are 
likely to vary with the sensor geometry according to the 
modified Beer-Lambert law [32]. Such information is 
important to optimize the source-detector separation for TBI 
monitoring. The relative absorbance (presented in a percentage 
form) was calculated by recording the absorbance of each 
photon packet in each layer concerning the total absorbance of 
the photon packet within the entire head. Similarly, the 
fractional optical pathlength was calculated as the fraction of 
the pathlength of each photon concerning its total pathlength 
between the source and the detector. The absorbance and 
pathlength are the manifestations of the absorption and 
scattering properties of the tissue, respectively. Therefore, an 
analysis of both quantities leads to a comprehensive 

 
Fig.1. Stratification of brain tissue layers: real (a) and simulated (b). The simulated tissue volume is presented in a 3D Cartesian co-ordinate system. 

A linear slab-geometry was chosen for the simulation due to simplicity. 

Table 1. Optical coefficients of the simulated tissue layers. 

Layer 𝝁𝒂(𝒎𝒎−𝟏) 𝝁𝒔(𝒎𝒎−𝟏) g n 

Scalp 0.016 19 0.9 1.60 

Skull 0.018 16 0.9 1.56 

Subarachnoid space 0.004 0.3 0.0 1.33 

Grey matter 0.090 21.5 0.9 1.40 

White matter 

 

 

0.090 38.4 0.9 1.47 

Ventricles 

 

0.004 0.3 0.0 1.33 

 



  

assessment of the sensor-tissue optical profile towards TBI 
investigation. 

III. RESULTS AND DISCUSSION 

Monte Carlo investigated sensor-tissue optical profiles at 
the reflectance sensor geometry having source-detector 
separations 1-5cm at the near-infrared optical window are 
shown in Fig.2. The sampled thickness and width are 
presented at the y- and x-axes of the 2D projections of the 3D 
simulated distributions. The number density of the interaction 
events between the light and tissue are shown in the colour bar. 
An accumulation of the interaction events is found near the 
source and the detector, and the number density decreases 
along with the depth interrogated by the sensor. Through the 
head tissue-layers, the interaction events are the lowest within 
the subarachnoid space (SAS) which has the lowest scattering 
coefficient and exhibits isotropic scattering (𝑔 = 0), as shown 
in Table 1. The changes in the x-axes limit show the spatial 
distribution of light with the increasing source-detector 
separation, for example, the spatial distribution of light at 1cm 
and 4cm separations are about 20mm and 45mm, respectively. 
The mean depth of penetration at 𝑑 =1, 2, 3, 4 and 5cm 
separation distances are about 6mm (scalp), 8mm (skull), 
11mm (subarachnoid space), 13mm (grey matter) and 15mm 
(white matter). 

The relative absorbance at each tissue layer is shown in 
Fig. 3. Utilising the current sensor design, the maximum 
tissue-layer can be interrogated is grey matter. The maximum 
and minimum absorbances are found in the skull and the 
subarachnoidal space, respectively, at all source-detector 
separations. Interestingly, at the superficial tissue layers such 
as scalp and skull, the relative absorbance decreases with the 
increasing source-detector separations whereas, at the deeper 
layers such as grey and white matter, the reverse incident takes 
place. This is a combined effect of the sensor geometry and the 
optical wavelength that will be helpful to assess brain tissue 
with less interference of extracerebral tissues, especially at 
source-detector distances above 3cm. 

The fractional optical pathlength at different tissue layers 
are presented in Table 2. Optical pathlength depends on (a) the 
scattering coefficient and (b) the number of photons scattered 
in the tissue layer. The highest fractional optical pathlength at 
skull is the result of the maximum photon scatter density at this 
layer as shown in Fig.2. Even though the scattering 
coefficients of the grey and white matter are relatively high, 
the numbers of photon scatter at these tissue layers are lesser 
since a fewer number of photons can penetrate to this depth. 
The fractional optical pathlength information is invaluable to 
calculate the differential pathlength factors of the tissue at the 
TBI sensor geometry to quantify the tissue perfusion [33]. 

One of the key aspects to carry out the present Monte Carlo 
simulation was to determine the source-detector separation for 
the TBI sensor. From the investigation, it is inferred that with 
a source-detector separation as high as 5cm, light can 
interrogate through white matter and no light reaches the 
ventricles. Several serious TBI conditions including 
haemorrhage (subdural, epidural, subarachnoid and 
intracerebral) and oedema (vasogenic and cytotoxic) are 
mostly found within or around the tissue layers such as the  
subarachnoid space, grey matter and white matter which can 

Table 2 Simulated fractional optical path at different tissue layers at 
source-detector separations d =1-5cm. 

Fractional optical pathlength 

d (cm) Scalp Skull Subarachnoid 

space 

Grey 

matter 

White 

matter 

1 0.41 0.54 0.01 0.027 0.008 

2 0.28 0.63 0.014 0.061 0.016 

3 0.23 0.65 0.017 0.082 0.020 

4 0.21 0.64 0.022 0.095 0.023 

5 0.18 0.65 0.0278 0.112 0.023 

 

 

 

Fig. 2. Monte Carlo simulated photon path through normal brain tissue at 
different source-detector separations: 10, 20, 30, 40 and 50mm as shown 
in (a), (b), (c), (d), and (e), respectively. The x- and y-axis represent the 
sampled width and thickness of the tissue volume. The downward and 
upward arrows are the locations of the source and the detector, 
respectively. The y-axes are presented in the same scale. The x-axes 
scales are different due to the semi-infinite width of the simulated tissue 
volume. The color bar represents the distribution of the number of 
photon-tissue interactions (N) between its minimum and maximum 
values 

 

 

Fig. 3. Relative absorbance at different head tissue layers at the source-
detector separations 𝑑 = 1, 2, 3, 4 & 5cm. The absorbance of the head 
tissue layers scalp, skull, subarachnoidal space (SAS), grey matter and 
white matter are presented. No photons could reach beyond the white 
matter, so rest of the simulated tissue layers are not shown. The maximum 
and minimum relative absorbances are shown in the skull and 
subarachnoidal spaces, respectively. 



  

be accessed utilizing one of the simulated sensor geometries. 
TBI conditions such as hydrocephalus involve changes in the 
subarachnoid space physiology and ventricles size, then a 
sensor design to accessing this will require further 
investigation. 

Conclusion 

A robust yet simplistic Monte Carlo model of multilayered 
human head has been explored for evaluating the sensor design 
of Traumatic Brain Injury. The investigations with near-
infrared optical wavelength and a range of source-detector 
separations demonstrated the feasibility of an optical sensor 
for TBI monitoring for the first time. Future work will aim to 
model the physiological changes associated with TBI and to 
determine the sensitivity of the proposed sensor to those 
changes. The simulated information will be implemented into 
the sensor design for TBI patient monitoring in clinical setting. 
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