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Abstract 

Based on past earthquake events, bridges are the most critical and usually the most vulnera-

ble components of road and rail transport systems, while bridge damage is related to substan-

tial direct and indirect losses. In view of this, the need for direct and reliable assessment of 

bridge vulnerability has emerged, and several methodologies have been developed using 

probabilistic analysis for the derivation of fragility curves. A new framework for the deriva-

tion of bridge-specific fragility curves is proposed herein, introducing machine learning tech-

niques for a reliable estimation of limit state thresholds of the most critical component of the 

bridge system (which in standard -ductility based- design is the piers), in terms of a widely 

used engineering demand parameter, i.e. displacement of control point. A set of parameters 

affecting the seismic capacity and the failure modes of bridge piers is selected, including ge-

ometry, material properties, and reinforcement ratios for cylindrical piers. Training and test 

sets are generated from multiple inelastic pushover analyses of the pier component, and Arti-

ficial Neural Networks (ANN) analysis is performed to derive closed-form relationships for 

the estimation of limit state thresholds. The latter are compared with closed-form relation-

ships available in the literature, highlighting the effect of machine learning techniques on the 

reliable estimation of bridge fragility curves for all damage states.  
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1 INTRODUCTION 

There is an increasing trend for assessment and retrofit prioritization of existing infrastruc-

ture in earthquake-prone areas, as well as investment planning, to be based on reliability anal-

ysis results. In this context, numerous methodologies have been proposed during the last 30 

years for the derivation of bridge fragility curves, with increasing accuracy and efficiency 

over the years, introducing the use of advanced computational methods and probabilistic 

framework for the estimation of the probability of damage for different levels of earthquake 

intensity and limit states. The majority of the methodologies proposed are analytical, differing 

mainly in the quantitative definition of limit states (LS), i.e., the threshold values of LS con-

sidered, the type of analysis, the uncertainty treatment, and the probabilistic model used for 

the fragility analysis (probabilistic seismic demand model, response surface models, meta-

models) [1, 2]. Both generic and bridge-specific fragility curves have been proposed, account-

ing for the various uncertainties in seismic capacity and demand estimation of critical 

components, and a few of them for the effect of case-specific properties on the results.  

Very recently [3], the potential exploitation of Artificial Intelligence algorithms and Ma-

chine Learning (ML) techniques in earthquake engineering, (i.e., seismic hazard analysis, sys-

tem identification and damage detection, seismic fragility assessment, and structural control 

for earthquake mitigation) has been explored; it is still at a rather early stage, but a promising 

development. ML algorithms can be classified into supervised learning and unsupervised 

learning type. Supervised learning uses prior knowledge of the labeled data set to learn a 

function that best approximates the relationship between input and labeled output in the data. 

In contrast, unsupervised learning aims to infer the natural structure from a set of data points 

that have no target labels [3]. 

Several machine learning tools (i.e., classification-based tools like random forest, neural 

networks, etc.) have been proposed and applied to assess bridges and derive fragility curves.  

The efficiency of ML techniques for the derivation of fragility curves for different bridge 

classes and the identification of the effect of parameter uncertainties on the results have been 

studied for different bridge types and structural systems  [4], [5]. Furthermore, the capabilities 

of machine learning techniques have been used to check the validity of assumptions during 

fragility analysis of bridges (e.g., the assumption of lognormal distribution of the demand 

model, etc.) [6]. Rapid damage assessment of bridges has been proposed based on analysis of 

selected bridge classes using the prediction model established via the training set and evaluat-

ing the performance of the model using the test set, as proposed in [5]. Based on the above, it 

is clear that the use of ML algorithms in the frame of fragility analysis of bridges is a new, 

promising approach that could eventually drastically reduce the computational effort and in-

crease the accuracy and the efficiency of fragility analysis. However, since fragility analysis 

includes multiple steps and calculations (i.e., capacity, demand, uncertainty, etc.), the use of 

ML techniques at several stages should be properly addressed.  

In view of the above, a methodology for the derivation of bridge-specific fragility curves 

that has recently been proposed by the authors [7], and is applicable to bridge stocks will 

serve as the starting point for setting up a ML procedure. The aim of this paper is to develop 

and apply ML algorithms (Artificial Neural Networks (ANN)) for a more reliable estimation 

of bridge pier capacity and limit state thresholds for all limit states (minor damage to collapse)  

considered in fragility analysis. A set of parameters affecting the seismic capacity and the 

failure modes of cylindrical bridge piers is initially selected, including geometry, material 

properties, axial load and reinforcement ratios. The range of parameters is selected with a 

view to representing realistic cases and resulting in training and tests of sufficient size. Analy-

sis at local level (pier section) and global level (inelastic pushover analysis of bridge compo-
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nents) is performed and the results in terms of a widely used engineering demand parameter 

(EDP: displacement of control point/drift) are recorded. Test and training sets are generated 

from the results of numerous inelastic pushover analyses, and Artificial Neural Networks 

(ANN) analysis is performed, resulting in closed-form relationships for the estimation of limit 

state thresholds. The latter are compared with closed-form relationships derived through 

‘standard’ regression analysis, in the frame of the methodology described in [7], to study the 

effect of ML techniques on the accuracy of the limit state threshold definition and, eventually, 

its potential for estimating bridge fragility curves for all limit states.  

2 COMPONENT-SPECIFIC LIMIT STATE THRESHOLDS AND PROPOSED 

CLOSED-FORM RELATIONSHIPS 

Utilising the methodology described in [7], component-specific limit state thresholds are 

estimated for bridge piers in terms of displacement at the component control point (pier top). 

Closed-form relationships relating d/h to the parameters affecting the seismic performance 

and ductility of bridge piers, namely geometry, material properties, longitudinal and trans-

verse reinforcement ratios, and axial load, are derived for all limit states (minor damage to 

collapse). Limit state thresholds are initially defined qualitatively and subsequently quanti-

tively at local (section) and global (component) level.  

               

 

Parameters Values for Parametric Analysis NoPar. 

D (m) 1.5 1.6 1.8 2 2.25 − [5] 

ρl 0.005 0.01 0.015 0.02 0.025 0.030 [6] 

ρw 0.0025 0.008 0.010 0.015 − − [4] 

fc (MPa) 16 20 25 30 35 − [5] 

fy (MPa) 220 400 500 − − − [3] 

ν 0.15 0.2 0.25 0.35 − − [4] 

H (m) 2.5 5.0 10.0 15.0 20  [5] 

Inelastic Pushover Analyses Performed 36,000 

Table 1: Cylindrical pier section and component parameters considered.  

A broad range of different pier section properties described in Table 1 are considered, and 

section analysis is performed using an in-house developed software that provides bilinearised 

moment-curvature (M-φ) curves [8]. Damage is initially quantified in terms of material strain 

limit values, namely εc and εs corresponding to experimentally observed crack widths, and 

moment corresponding to loss of bearing capacity for limit state 4 (post-peak M=0.9∙Mmax). 

More details regarding local limit state definition are available in [7]. Based on cross section 

analysis, moment-curvature curves are derived (and bilinearised) and curvature values corre-

sponding to the aforementioned material strains are defined. Hence, damage is initially quan-
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tified in curvature terms (local EDPs φ1, φ2, φ3, φ4), and M-φ curves, as well as effective 

stiffnesses EIeff (My/φy , needed for pushover analysis) are defined. Section analysis results for 

all possible parameter combinations (7,200 section analyses), are obtained; a sufficiently 

broad range of heights is considered, and parametric setup of an inelastic cantilever model 

(Fig.1) is performed in order to perform inelastic pushover component analysis (36,000 push-

over analyses, see Table 1). Plastic hinge formation is considered at the pier base (lumped 

plasticity model), while the bilinear M-φ curve is used as input. Inelastic pushover analysis is 

performed for all sections considered paired with all different pier heights, and the global en-

gineering demand parameter values (d1, d2, d3, d4) are recorded at the analysis step that the 

relevant local values (φ1, φ2, φ3, φ4) are exceeded. Check for shear failure, calculating the dis-

placement (dV) when shear strength Vu is exceeded is performed, considering reduced con-

crete contribution in the inelastic range [1]; dV is compared to the displacement at flexural 

failure (dfl) and the minimum value is considered as threshold value for the limit state (Fig.1).   

 

 

Figure 1: – Inelastic Pushover Analysis of the cantilever model and limit state threshold estimation 
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2
H  -6.016 -0.674 -0.265 -0.076 +0.030 -0.072 

3
H  -3.872 -0.572 -0.238 -0.470 +0.505 -0.108 

4
H  -3.663 -0.542 -0.381 -0.518 +0.439 +0.001 

Table 2: Closed-form relationships based on regression of analysis results.  

The pushover analysis results (d1/h ~ d4/h) of the extensive parametric study are obtained, and 

regression analysis (considering the parameters in logarithmic form and performing nonlinear 
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fit) is carried out to derive closed-form relationships for cylindrical piers. The proposed 

closed-form relationships for the estimation of limit state thresholds (d1~d4) and, eventually, 

of seismic capacity, are provided in Table 2. 

3 METHODOLOGY FOR THE DERIVATION OF LIMIT STATE THRESHOLDS 

USING ML TECHNIQUES (ANN)  

An alternative method for the estimation of pier LS threshold values in the context of 

bridge-specific fragility analysis is introduced herein, entailing the use of ML techniques, 

i.e.,Artificial Neural Networks (ANNs), trained to predict d1~d4 values calculated from inelas-

tic pushover component analysis. The use of ANNs in engineering problems is common; 

however issues like high bias (i.e.,  not enough complexity to describe the input data) and 

high variance (i.e., overfitting), should be avoided, as described in [9], where additional in-

formation regarding ANNs is provided. 

The first part of the methodology is the same as the one proposed in [7] and described in 

§2, i.e. a range of parameters is selected and paired in order to perform section and component 

analyses and estimate limit state thresholds in displacement terms. The range of parameters, 

selected in order to represent realistic cases and result in training and tests of sufficient size, is 

presented in Table 3.  

 

Parameters 
Training & Test Sets Number of 

Param. Range  Step 

D (m) 1.5 - 2.3 0.1 [9] 

ρl 0.005 - 0.03 0.0025 [11] 

ρw 0.0025 - 0.015 0.0025 [6] 

ν 0.1 - 0.3 0.02 [11] 

fc (MPa) 16 , 20 , 25 , 30 [4] 

fy (MPa) 220 , 400 , 500 [3] 

H (m) 2.5 , 5 , 10 , 15 [4] 

  Analyses Performed 313,632 

Table 3: Parameters considered for section and inelastic pushover analyses for training and test of ANNs  
 

 

Figure 2: Function code (python) for d1 closed-form relationship 

 



Sotiria P. Stefanidou, Vassilis K. Papanikolaou, Elias A. Paraskevopoulos and Andreas J. Kappos 

A total of 313,632 pushover analyses were performed and used for training and testing of 

ANNs (half of the total set size used for training and the other half for testing). Different 

ANN sizes were examined (i.e. 5-5-5-1, 5-5-5-5, 5-10-10-1, 5-15-15-1) to select the most ef-

ficient in terms of recorded MAE (mean absolute error) and MPE/MNE (maximum positive 

and negative errors). The 5-10-10-1 (two inner layers of 10 nodes each) was found the most ap-

propriate ANN size, since the recorded errors did not differ significantly from the ones of 5-15-

15-1 size and were apparently lower than those recorded when 5-5-5-5 was applied. The train-

ing procedure produced four closed-form relationships (functions) for the considered pier type 

(cylindrical pier) and all limit states. All analyses presented herein have been carried out using 

Python / TensorFlow 2.5 and a typical format of the relationship proposed for d1 is provided in 

Figure 2. Testing of the relationships for d1~ d4 was performed using the test set described above, 

estimating the errors to establish the accuracy of the proposed relationships and their efficiency 

towards limit state thresholds estimation. 

4 COMPARISON 

To evaluate and compare the closed-form relationships proposed herein based on the train-

ing/testing of ANNs, with those proposed in [7], derived from regression analysis, the diagrams of 

drift (d/h)analysis values and the error resulting from the proposed relationships ((d/h)predicted- 

(d/h)analysis) are calculated for both cases, providing the relevant plots and the fit indicators, i.e. the 

MAE, MPE, MNE and the RMSE (Root Mean Squared Error) and R2 (Root Mean Squared Error). 

Closed-form relationships calculated from ANN Closed-form relationships [7] 

 

 

 
 

 
 

Figure 3: Comparison of d1 prediction error of the closed-form relationships proposed in [7] and application of 

ML techniques (ANN) 

Closed-form relationships calculated from ANN Closed-form relationships [7] 

 

 

 
 

 
 

MAE :  0.00095 
MPE : 0.00508 
MNE : -0.00844 

MAE :  0.00110 
MPE : 0.00456 
MNE : -0.00851 
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Figure 4: Comparison of d2 prediction error of the closed-form relationships proposed in [7] and application of 

ML techniques (ANN) 

Closed-form relationships calculated from ANN Closed-form relationships [7] 

 

 

 
 

 
 

 

Figure 5: Comparison of d3 prediction error of the closed-form relationships proposed in [7] and application of 

ML techniques (ANN) 

Closed-form relationships calculated from ANN Closed-form relationships [7] 

 

 

 
 

 
 

Figure 6: Comparison of d4 prediction error of the closed-form relationships proposed in [7] and application of 

ML techniques (ANN) 

From Figures 3 to 6 it is clear that the values of MAE, MPE, MNE are lower in the case of 

the relationships proposed herein based on ANN training, compared to the ones proposed in 

[7]. The new relationships show a better fit of data, on the basis of the low RMSE and high R2 

values (0.987~0.996 instead of 0.75~0.80 of the new relationships), i.e. better prediction of 

the LS thresholds for all LS. The reduction of the prediction to analysis mean absolute error 

(MAE) ranges from 2 to 2.85 times, while it is obvious that the error reduction is larger for 

the higher limit states (d3 & d4), wherein the data fit based on regression analysis proposed in 

[7] was found inadequate. 

5 CONCLUSIONS  

The effectiveness of ML algorithms (ANN) for the quantitative estimation of limit state 

thresholds and the derivation of closed-form relationships (functions) used for seismic capaci-

ty estimation in the frame of a bridge-specific methodology proposed by the authors [7] was 

investigated herein. The closed-form relationships proposed within the methodology de-

scribed in [7] which are based on regression of parametric inelastic analysis results of bridge 

piers are compared with those estimated based on extensive parametric analysis results used 

MAE :  0.00345 
MPE : 0.09057 
MNE : -0.01808 

MAE :  0.00795 
MPE : 0.13163 
MNE : -0.07202 
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for training and testing of ANNs. The parameters considered for both cases are the same (ge-

ometry, material properties, axial load and reinforcement ratios), however the approach pro-

posed herein is differentiated regarding the number of parametric analysis performed for the 

development of training and test sets and the application of ANNs, instead of typical regres-

sion analysis. The most important findings related to the effectiveness of ML techniques and 

the increased accuracy achieved during the quantitative limit state threshold definition and, 

eventually, the estimation of bridge fragility curves for all damage states, are: 

• The relationships derived herein based on ANN training, have lower error (MAE, MPE, 

MNE) and high R2 values, indicating better fit of data; i.e. better prediction of the LS 

thresholds for all LS, compared to those proposed in [7] derived from regression analysis. 

• The reduction of the prediction to analysis mean absolute error (MAE) ranges from 50% 

to 65% when ANNs are used for closed-form relationship estimation.  

• The error reduction is larger for the higher limit states (d3 & d4), where the data fit based 

on regression analysis proposed in [7] was found inadequate. The latter is due to the in-

creased sample size used and the training/testing of ANNs. 

• The relationships proposed herein for the estimation of limit state thresholds for cylindri-

cal piers (d1 ~ d4) indicate in general better fit to analysis data, hence providing more ac-

curate and reliable prediction of component capacity and, eventually, seismic fragility. 
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