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Abstract: With the continued development and rapid growth of wearable technologies, PPG has
become increasingly common in everyday consumer devices such as smartphones and watches.
There is, however, minimal knowledge on the effect of the contact pressure exerted by the sensor
device on the PPG signal and how it might affect its morphology and the parameters being calculated.
This study explores a controlled in vitro study to investigate the effect of continually applied contact
pressure on PPG signals (signal-to-noise ratio (SNR) and 17 morphological PPG features) from an
artificial tissue-vessel phantom across a range of simulated blood pressure values. This experiment
confirmed that for reflectance PPG signal measurements for a given anatomical model, there exists an
optimum sensor contact pressure (between 35.1 mmHg and 48.1 mmHg). Statistical analysis shows
that temporal morphological features are less affected by contact pressure, lending credit to the
hypothesis that for some physiological parameters, such as heart rate and respiration rate, the contact
pressure of the sensor is of little significance, whereas the amplitude and geometric features can show
significant change, and care must be taken when using morphological analysis for parameters such
as SpO2 and assessing autonomic responses.

Keywords: photoplethysmography (PPG); tissue phantoms; artificial blood vessels; contact pressure;
signal to noise ratio; PPG features

1. Introduction

Photoplethysmography (PPG) is an optical measurement technique used primarily for
detecting volumetric changes of pulsatile blood flow in vascular tissue. It takes advantage
of the fact that light is absorbed by body tissues, such as skin, fat, bone, and blood, in
different amounts for any given wavelength of light. During the systolic phase of the heart,
when blood is pumped from the pulmonary circulation to the systemic circulation via the
left atrium and left ventricle of the heart, there is a momentary increase in the volume of
blood in arteries, and the arteries expand. This increase in volume causes more light to be
absorbed, resulting in less light being transmitted through the tissue. Utilising suitable
sensors and instrumentation, these changes in light intensity can be detected and recorded,
and the “pulses” detected can be used for anything from simple heart rate calculations to
assessing cardiovascular health [1].

There are two modes of sensors used in PPG, transmission and reflectance. In trans-
mission mode, the light source and detector are placed opposite one another inside a finger
clip, and light is transmitted through the finger tissue. This is the most common mode seen
mainly in pulse oximeters. The second type of mode is reflectance, where the source and de-
tector are placed next to each other, and light is backscattered within the tissue. This mode
is most commonly found in wearable devices, watches and armbands, or incorporated
into mobile technology. Irrespective of the type of sensor used, the acquired PPG signal
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exhibits a quasi-periodic pattern consisting of an arterial pulse wave for each heartbeat.
The morphology of this arterial pulse is known to be influenced by several physiological
variations such as heart rate, heart rhythm, stroke volume, arterial stiffness, blood pressure,
respiration, and the autonomic nervous system. This responsivity of the PPG signal to
various physiological processes has helped researchers derive various diagnostic mark-
ers for vascular ageing and arterial compliance, large arterial stiffness, hypertension risk
stratification, total peripheral resistance, atrial fibrillation, stress, endothelial dysfunction,
gingivitis, apnoea, and autonomic nervous system (ANS) responses [2].

However, various other factors that are not physiological, such as sensor geometry,
skin-sensor interface, contact pressure exerted by the sensor clip, photodiode sensitivity,
ambient light, and measurement site, can also exhibit morphological changes in the PPG
signal. In particular, the contact force or contact pressure (CP), the pressure exerted
by a PPG sensor on the measurement location, is thought to influence the quality and
morphology of the PPG signal significantly. Simple morphological features such as the
systolic peak (used to calculate the heart rate), pulse width, pulse area, and the relative
AC/DC amplitudes of red and infrared signals (used for oxygen saturation calculation)
are thought to be adversely affected by an increase in sensor contract pressure [3]. In the
past, several researchers have tried to investigate the effect of sensor contact pressure on
the quality of the PPG signal. A summary of their findings, along with the type of sensor
used and the type of force applied, is presented in Table 1. To make a likewise comparison
between the studies and to underpin their findings, the contact pressure as described in the
papers presented in Table 1, column 3 were converted to millimetres of mercury–mmHg
and reported in Table 1, column 4. Every effort has been made to correctly identify the
experimental setups of the reviewed studies so as to report the correct equivalent contact
pressure. The force to pressure conversion was calculated using Equation (1):

PmmHg =
( F(Newtons)

Sensor Actice Area (m2)

)
/133 (1)

Table 1. Previous PPG force studies performed assessing sensor contact force to the quality of measurements made using
PPG. A Assumption here is that the PPG probe was no larger than the force-sensing probe reported in the study; B Straight
conversion kPa to mmHg (kPa times 7.501); C Straight Conversion hPa to mmhg (hPa divided by 1.333); D Same as
assumption in A, but also assuming researchers used the smallest version of the sensor reported available to account for the
nature of the study (paediatrics, index finger). 1 [4]; 2 [5]; 3 [6]; 4 [7]; 5 [8]; 6 [9].

Study
(1st Author) Sensor Location

Optimum
Pressure/Force

Reported

Conversion to
mmHg

Research
Question Findings

Teng 1 Finger 0.2–1.0 N 21–105 mmHg A

Change in AC/DC
ratio with change
in contact force as

an important
metric when

calculating blood
oxygen saturation

PPG does have an
optimum or “peak”

value for the contact
force applied. Hence
careful sensor design

consideration is
required.

Grabovskis 2
Posterior Tibial A.,

Femoral A.,
Popliteal A.,

10.9, 11.8, 15.2 kPa 81, 88,
114 mmHg B

The effect of probe
contact pressure
(CP) on the PPG

signal for assessing
arterial stiffness

Wrong contact pressure
would adversely affect

the AC PPG 2nd
derivative peak ratio

(known as the b/a ratio),
a measurement index to
assess arterial function.

Also, suggests an
optimal contact

pressure.
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Table 1. Cont.

Study
(1st Author) Sensor Location

Optimum
Pressure/Force

Reported

Conversion to
mmHg

Research
Question Findings

Shimazaki 3 Forearm, Wrist 40–50 hPa at both
locations 30–37 mmHg C

The effect of
fastening or

applying contact
pressure in

wearable devices
such as

wristwatches
which employ PPG

to measure heart
rate. Motion

artefact reduction
during exercise,

elevated
respiration artefact

and accuracy of
heart rate

prediction were the
key parameters

investigated

All these studies
reported that CP has a
significant impact (i)
reducing the noise

introduced by motion
artefact during exercise,

(ii) increasing
respiration related

modulations in PPG,
and (iii) increasing error
in heart rate calculation

up to ±11 beats per
minute. Additionally,

studies confirmed that
further optimisation of

the CP is indeed needed
to reliably calculate

physiological
parameters.

Kasbekar 4 Forehead, Wrist 12 kPa (Forehead) 90 mmHg
(Forehead) B

Lee 5
Index Finger

(Paediatric Study,
mean age = 4.1 y)

0.4–0.6 N 5.9–8.8 mmHg D

Scardulla 6 Wristband 54 mmHg NA

As can be seen from the table, the effect of CP on the PPG signal acquired or the
parameters estimated from the PPG signal is significant. Following these research paths
still leaves a number of research questions viable for investigation. These are:

1. How much is the degree of change in PPG signal features that an increase in sensor
CP can create?

2. What are the PPG signal features that are most affected?
3. Is the change in a particular PPG signal feature significant enough to create misinter-

pretations when deriving diagnostic indices?

These questions and the question of the potential behaviour of arteries located under
the PPG sensor when applied to wearable devices has not been investigated [2]. Other
factors, such as the size of measurement location (e.g., finger diameter), have never been
considered in any of the studies. Moreover, the in vivo studies reported thus far fail
to isolate the sensor contact pressure at known blood pressure states specifically. This
is obviously mostly due to the nature of recruiting volunteers or patients (who would
naturally all vary widely in blood pressures due to physiological differences) and the
known difficulty with trying to induce specific blood pressure states. Although methods
such as the Valsalva Manoeuvre (VM) [10,11] have been used to induce lower pressures
temporarily, this cannot be maintained indefinitely and is difficult to repeat successfully
and concurrently to enable repeated measurements.

All the above factors have led to a growing consensus that external factors that can
affect the PPG signal quality and morphology, such as contact pressure, need to be further
studied rigorously to help standardise PPG sensor design, which will, in turn, facilitate
ideal PPG signal acquisition. This will also help standardise PPG measurements so that
they are useful in not only standard monitoring (pulse oximetry and heart rate) but also
for future and emerging applications such as Pulse Rate Variability (PRV) or Pulse Wave
Velocity (PWV) measurements to assess cardiovascular health.

As a first step towards discovering the optimal PPG sensor design and conditions,
an in vitro investigation was carried out using a relatively simple vessel-tissue phantom
with similar mechanical properties to human anatomy. The developed in vitro vessel-
tissue phantom with a pulsatile fluidic flow was able to maintain and replicate various
blood pressure states whilst under controlled and measurable compressive loads, and was
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simultaneously able to record PPG signals directly at the site of compression. Through this
effort, we aim to determine what sensor-contact pressure is optimum to obtain PPG signals
and explore which morphological PPG features are least or most affected by increasing
contact pressure.

2. Materials and Methods
2.1. Pulsatile Pump and Tissue Phantom

A vessel-tissue phantom was constructed using a previously described method with
a clear silicone elastomer (Sylgard™ 184, DOW, USA) with an altered catalyst ratio to
better mimic the softness of human tissue [12]. The vessel size, embedded within the tissue
phantom, was 24 mm (inner diameter) with a wall thickness of 200 µm. The surrounding
tissue had dimensions of 60 × 12 × 10 mm (L × W × H) with the vessel set at a depth of
3 mm. The phantom was placed on a force-sensing plate on top of an amplified load cell
with a 50 N rating (FC22 series, TE Connectivity, Switzerland). To supply the phantom
with a continuous blood pressure-mimicking waveform, a linear-drive based pulsatile
pump with a dedicated compliance vessel was used (BDC Laboratories, USA). A custom-
made reflectance PPG sensor with a contact area of 1 cm2, incorporating an integrated
optoelectronic sensor (SFH 7050 BIOFY, Osram, Germany), was placed atop the phantom,
directly above the vessel; this was connected to a custom and dedicated PPG monitoring
system [13,14]. The integrated sensor comprised three LEDs (660 nm, 525 nm, and 940 nm)
and a photodiode with a central peak absorbance at 940 nm aligned longitudinally and held
in place by a metal armature attached to a linear actuator able to travel in the orthogonal
direction relative to the bed of the force-sensing plate (see Figures 1 and 2). Only the
red and infrared LEDs of the integrated sensor were utilised and operated in this design;
hence, the final sensor is a dual-wavelength device. The pressure inside the phantom
was monitored with a luer-connected inline blood pressure (IBP) probe at the inlet of the
phantom (BDC Laboratories, USA).

Figure 1. In vitro force-sensing setup. The PPG sensor (dual-wavelength, 660 nm and 940 nm) is
mounted on the end of the linear actuator. The vascular tissue phantom rests on top of a force-sensing
plate with a 50 N load cell (LC) as the force measuring device. A blood-mimicking fluid is pumped
from the artificial vessel network, and the blood pressure is measured at the input of the phantom.
The sensor position is measured from the surface of the phantom, where a positive increase indicates
how much the sensor has descended into the phantom.
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Figure 2. The experimental setup as seen during the continually applied pressure part of the protocol.
The Phantom (A) is resting on a force-sensing plate (B) whilst the linear actuator (C) is descending.
The PPG sensor (D) is seen resting on the phantom in this example during the descending phase of
the protocol. The loadcell (E) can be seen under the force-sensing plate. For illustrative purposes,
this depiction shows the use of a blue dye to highlight the artificial vessel better.

2.2. Experiment Protocol

To investigate the effect of varying contact pressure on the PPG signal quality and
how it may also affect the PPG SNR, morphology, and its features, a blood-mimicking fluid
(distilled water and India ink solution) was continuously pulsed through the phantom
via a branching circuit from a simplified human arterial network. The pulses were timed
at 60 BPM (1 Hz) using a custom bell-pulse profile. Four blood pressure states were
implemented by varying the amount of resistance on a clamp simulating total peripheral
resistance (TPR). These pressures equated to the ranges for hypotensive, normotensive,
stage 1 hypertensive, and stage 2 hypertensive conditions, and were confirmed by reading
the pressure at the input of the phantom for 30 s prior to the main experiment. The systolic
blood pressure (SBP), diastolic blood pressure (DPB), and mean arterial pressure (MAP)
produced are reported for each state in Table 2.

Table 2. Measured pressures in each blood pressure state at the input of the phantom.

In Vitro Blood Pressure (mmHg)

Blood Pressure State SBP DBP MAP

Hypotensive 93 50 64

Normotensive 112 72 85

Stage 1 Hypertensive 143 104 117

Stage 2 Hypertensive 171 132 145

On confirmation that the correct pressure-state had been established, the linear ac-
tuator descended the PPG sensor into the phantom at a rate of 0.03 mms−1, starting just
above the phantom surface. The sensor was withdrawn once it had reached the depth of
the vessel (3 mm), ensuring that the vessel had been completely occluded. PPG signals
were recorded simultaneously with the load cell voltage and repeated 3 times.
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2.3. Analysis Protocol

All signals were sampled at 1 kHz and were processed offline in MATLAB® (The
MathWorks, Natick, MA, USA), using a 4th order Infinite Impulse Response (IIR) low-pass
zero-phase filter with a cut-off at 12 Hz. To preserve fine detail in the temporal domain for
the PPG feature analysis, the signals were not resampled.

2.3.1. PPG SNR Analysis

Unlike Electrocardiology, where the electrocardiogram (ECG) can be assessed quan-
tifiably for quality, the PPG signal is highly dependent on the sensor technology used, the
PPG signal bandwidth, and the sensor location monitored. As a result, there is no consen-
sus on what constitutes adequate PPG signal quality, and instead, it has been discussed
that assessing the PPG signal must be done separately for basic quality, then diagnostic
quality [15]. Basic PPG quality can be determined through the identification of the main
pulse peaks, whereas diagnostic quality would be where the signal has clearly defined
features such as systolic and diastolic morphology. Because of this consideration, this
analysis assumes that all noise filtered out using the IIR filter previously described is true
noise and does not constitute any part of PPG feature identification from this study. The
signal to noise ratio (SNR) is therefore calculated in the standard way for every second of
each PPG signal using the inbuilt SNR function in MATLAB®.

2.3.2. PPG Features Analysis

All signals obtained from the in vitro setup were segmented to analyse the portions
of data in which the sensor was in contact with the tissue phantom and in which there
was still pulsatile activity. These portions were automatically segmented applying the
following process.

First, the signals were segmented from the location in which the load cell voltage was
positive to the location of maximum contact pressure. Then, the envelope of the rectified
PPG signal was obtained using a low-pass FIR filter with a cut-off frequency of 0.5 Hz and
order of 5 times the sampling rate. The resulting envelope signal was also differentiated
and then filtered using a low-pass FIR filter with 0.1 Hz cut-off frequency and order of
10 times the sampling rate. The initial point of the signal of interest was identified as the
location in which the normalised first derivative of the envelope crossed the normalised
envelope. Finally, the endpoint of the signal of interest was determined as the first onset of
the envelope signal occurring after the minimum of the derivative of the envelope.

From the segmented signals, the cardiac cycles were automatically detected using
the algorithm proposed by Li et al. [16]. Since it has been suggested that the point in
which tangent lines from the maximum slope point and the valley of the pulse intersect
(TI points) are more robust for certain PPG-based applications than other points, such
as the systolic peaks [16,17], these points were identified and used for segmenting the
independent cardiac cycles.

From each identified cardiac cycle, 17 PPG morphological features were extracted.
These features are illustrated in Figure 3 and described in Table 3.

The aim of this analysis is to identify those morphological features of the PPG signal
that are less affected by contact force. Therefore, the relationship between the contact force
and the behaviour of each feature was assessed using Spearman correlation coefficients. By
this analysis, the features with coefficients closer to zero will be those that are less affected
by the sensor contact force, since a correlation coefficient closer to zero indicates a low
correlation, and this would mean that the trend of the magnitude of a given feature does
not have a similar trend to the changes in contact pressure.
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Figure 3. Features extracted from cardiac cycles of the photoplethysmograms, as described in Table 3. (a) Features extracted
from the cardiac cycle. (b) Features extracted from the systolic phase of the cycle. (c) Features extracted from the diastolic
phase. Blue circles: Onsets segmenting the pulse. Orange circles: Maximum slope point. Red circles: Systolic peak. Yellow
circles: Centroid of each area of interest.

Table 3. Description of features extracted from the cardiac cycles detected from the photoplethysmo-
grams.

Feature Description (Units of Measurement)

F1 Cycle duration, measured from consecutive TI points (s)

F2 Pulse amplitude, measured as the amplitude difference between the onset of
the pulse and its systolic peak (V)

F3 Amplitude of the maximum slope point, measured from the onset of the
pulse (V)

F4 Area of the pulse, measured from consecutive TI points (V)

F5 Area of the systolic phase, measured from the onset of the pulse and the
location of the systolic peak (V)

F6 Area of the diastolic phase, measured from the location of the systolic peak
and the onset of the next pulse (V)

F7 x-coordinate of the centroid of the pulse (s)

F8 y-coordinate of the centroid of the pulse (V)

F9 x-coordinate of the centroid of the systolic phase of the pulse (s)

F10 y-coordinate of the centroid of the systolic phase of the pulse (V)

F11 x-coordinate of the centroid of the diastolic phase of the pulse (s)

F12 y-coordinate of the centroid of the diastolic phase of the pulse (V)

F13 Pulse width, measured as the difference between F9 and F11 (s)

F14 Rise time, measured as the time between the onset of the pulse and the
location of the systolic peak (s)

F15 Decay time, measured as the time between the location of the systolic peak
and the onset of the next pulse (s)

F16 Upslope angle, measured as the inverse tangent of the triangle formed by F2
and F14 (rad)

F17 Downslope angle, measured as the inverse tangent of the triangle formed by
F2 and F15 (rad)
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3. Results
3.1. PPG SNR vs. Contact Pressure

In total, there were 24 recorded PPG signals (12 red, 12 infrared) with increasing contact
force split into 3 repeated recordings for each blood pressure state. It can be observed
in the example signal recording in Figure 4 that the recorded signal amplitude generally
increases with increasing force up to a point where a maximum SNR value is recorded
before the amplitude begins to decrease, as the vessel in the phantom is slowly becoming
more restricted, until there is a sudden drop off in SNR when the vessel is completely
occluded and the SNR becomes negative (signal noise is dominant). Table 4 reports the
results of the SNR analysis, stating the optimal contact force recorded at maximum SNR
values for each blood pressure state.

Figure 4. Signal Monitoring example from the experiment. Top plot shows the acquired PPG signal (black line) with the
pressure at the probe (orange line). Bottom plot shows the calculated SNR during the pressure increase.

Table 4. Measured Maximum SNR and Pressures at each BP state with the standard deviations in parentheses.

Hypotensive Normotensive Stage 1 Hypertensive Stage 2 Hypertensive

SNR (dB) Pressure
(mmHg) SNR (dB) Pressure

(mmHg) SNR (dB) Pressure
(mmHg) SNR (dB) Pressure

(mmHg)

RED 26.7 (<1) 38.6 (1.9) 26.0 (<1) 39.3 (<1) 25.9 (<1) 35.1 (2.0) 26.9 (<1) 48.2 (1.9)

IR 27.0 (<1) 44.1 (3.5) 27.3 (<1) 43.4 (1.7) 26.0 (<1) 39.0 (2.3) 25.8 (<1) 41.8 (1.8)

3.2. Effect of Contact Pressure on PPG Signal Features

Figure 5 depicts the results of the segmentation algorithm and the detection of the
cycles from the segmented sections of the PPG signals, respectively. As can be seen,
using the proposed methodology, it was possible to automatically detect and segment the
pulsatile portion of the obtained signals. Before the green circle, the signal has a pulsatile
component, but the sensor has not made contact with the vessel phantom yet, which
explains the lower amplitude and low quality of this portion of the signal. After the red
circle, the contact pressure is so high that the vessel is occluded, and there is no more fluid
flowing through the vessel phantom.
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Figure 5. Segmentation of the area of interest for analysis, which is enclosed between the green and
red circles, for each of the replicas of signals obtained from red (R) and infrared (IR) PPG signals.
Dotted signal: Original PPG signal. Black signal: Rectified PPG signal. Purple line: Envelope of the
rectified PPG signal. Yellow line: First derivative of the envelope signal. Blue circle: Minimum point
of the first derivative signal. Orange line: Sensor pressure.

Figures 6–9 show the behaviour of the extracted features when compared to the contact
force in hypotension, normotension, stage 1 and stage 2 hypertension, respectively, from
PPG signals obtained using both red and infrared wavelengths. It can be observed that the
red signals tend to show less variability among repeated runs and that time-related features
are less affected by contact force. In these figures, the contact pressure is plotted against the
magnitude of the extracted features. Those features that exhibit a linear behaviour, rather
than a quasi-exponential one, are found to be less affected by contact pressure, i.e., the
changes in contact pressure do not affect the magnitude of the feature. Also of interest, it
can be observed that the behaviour of the extracted indices is not altered in a significant
manner by the different blood pressure states, although some magnitudes differ in scale,
especially those related to amplitude measurements.

Figure 6. Behaviour of the extracted features during hypotension when compared against contact force. Blue lines: Infrared
PPG-derived features. Red lines: Red PPG-derived features.
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Figure 7. Behaviour of the extracted features during normotension when compared against contact force. Blue lines:
Infrared PPG-derived features. Red lines: Red PPG-derived features.

Figure 8. Behaviour of the extracted features during stage 1 hypertension when compared against contact force. Blue lines:
Infrared PPG-derived features. Red lines: Red PPG-derived features.
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Figure 9. Behaviour of the extracted features during stage 2 hypertension when compared against contact force. Blue lines:
Infrared PPG-derived features. Red lines: Red PPG-derived features.

3.3. Statistical Analysis

Figure 10 shows the correlation coefficients obtained after comparing the behaviour
of the extracted PPG features and sensor contact force, both with red and infrared PPG
signals. The absolute values of the correlation coefficients were organised in ascending
order for each repeated measurement and each blood pressure state. These results are
shown in Tables 5 and 6.
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Figure 10. Correlation coefficients (ρ) obtained using Spearman correlation analysis for comparing features extracted from
infrared and red photoplethysmograms and the contact force of the sensor. The experiment was run three independent
times (replicas).

Table 5. Ordered features from the lowest |ρ| to the highest |ρ| for features (1 to 17) extracted
from infrared PPG signals, in each of the runs of the experiment (R#) and under each blood pressure
condition. Features coloured blue indicate temporal features, features coloured yellow indicate
amplitude features, and those in green are geometric features reported in radians.

Hypotension Normotension Stage 1
Hypertension

Stage 2
Hypertension

R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

1 1 1 7 11 1 13 1 1 1 1 1
13 13 13 9 1 13 11 7 13 7 9 14
11 11 7 1 13 11 7 11 11 9 14 13
15 9 11 14 14 9 14 13 15 11 13 11
7 14 15 15 9 14 1 9 14 13 11 9

14 12 14 13 7 15 15 14 9 14 15 15
9 15 9 11 16 7 9 15 7 15 16 7

16 7 16 12 12 12 12 16 16 6 12 16
3 8 17 16 6 16 6 6 3 8 3 3

17 16 3 17 15 3 16 12 17 12 17 17
12 3 8 6 3 17 8 3 8 4 8 12
8 17 6 3 4 8 4 17 12 16 2 8
6 5 12 8 17 2 5 8 2 5 10 2
4 2 4 4 8 10 3 4 10 2 5 5

10 10 2 5 5 5 17 5 5 3 7 10
2 6 10 2 2 4 2 2 6 17 4 4
5 4 5 10 10 6 10 10 4 10 6 6
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Table 6. Ordered features from the lowest |ρ| to the highest |ρ| for features (1 to 17) extracted
from red PPG signals, in each of the runs of the experiment (R#) and under each blood pressure
condition. Features coloured blue indicate temporal features, features coloured yellow indicate
amplitude features, and those in green are geometric features reported in radians.

Hypotension Normotension Stage 1
Hypertension

Stage 2
Hypertension

R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

1 14 13 1 1 1 1 1 1 1 1 1
15 1 1 12 9 7 13 7 12 9 15 15
9 9 11 13 11 13 7 16 15 13 13 13

14 15 12 11 13 11 11 15 14 11 14 11
12 16 16 14 14 15 12 3 16 14 9 14
8 3 3 16 16 9 14 12 9 7 11 9

13 17 17 7 12 14 15 17 3 12 7 12
11 12 9 9 3 12 9 8 17 16 16 16
16 8 15 3 17 8 16 9 8 3 17 8
3 13 14 17 8 16 8 10 10 17 3 7

17 7 8 15 15 3 3 2 2 15 12 3
2 11 2 8 2 17 17 14 5 8 8 17

10 2 10 10 10 2 10 5 4 10 6 10
5 10 5 2 5 10 2 4 6 2 2 2
4 5 7 5 7 6 5 6 7 5 4 5
6 4 4 4 4 5 4 13 11 4 5 6
7 6 6 6 6 4 6 11 13 6 10 4

In line with the observed behaviour of the features, it is observed here that the time-
related features (highlighted in blue) are less correlated to contact force when compared
to amplitude-related features (highlighted in yellow). Features F1 (cycle duration), F9
(x-coordinate of the centroid of the systolic phase of the pulse), F11 (x-coordinate of the
centroid of the diastolic phase of the pulse), F13 (pulse width), and F14 (rise time) showed
the lower correlations to contact force when measured from infrared signals, whereas F1,
F11, F13, F14, and F15 (decay time) were the features with lower correlations to contact
force when extracted from red PPG signals. There was no observed difference across or
between the BP states either, showing that the blood pressure state in this setup did not
play a role in either the observed time-related or amplitude-related features.

From Tables 5 and 6, it can be seen that there are differences among replicas and
among blood pressure states for the features with a lower correlation to contact pressure.
This fact might be explained by the presence of noise, in the case of the comparison among
replicas, and by the effect of blood pressure values, which affect features from the PPG
in a different manner. Further statistical analyses, with more available data, should be
performed in order to understand how significant these differences among blood pressure
states are and how replicable this experiment is. Nonetheless, the fact that time-related
indices cluster on the top of these tables, regardless of the replica, the blood pressure state,
and the wavelength used (i.e., red or infrared), indicate that these features are more reliable
when contact pressure is not controlled for.

4. Discussion

The quality and morphology of a PPG signal are known to be affected by several
external factors. One such factor that is known to play a significant role is the sensor contact
force or pressure. Several researchers including Teng and Zhang [4]; Grabovskis et al. [5];
Shimazaki et al. [6]; Kasbekar and Mendelson [7]; Lee et al. [8]; and Scardulla et al. [9]
have previously tried to investigate the effect of contact pressure on the quality of the
PPG signal and the basic morphological changes such as pulse amplitude. With more and
more researchers now investigating the use of photoplethysmography (<550 peer-reviewed
publications in 2020) for measuring parameters ranging from PRV to biometric recognition,



Sensors 2021, 21, 8421 14 of 17

it is important to understand the effect of sensor contact pressure on the morphological
features of the PPG signal, particularly since very many of these measurement methods
are based on detecting appropriate changes in the morphological features of the signal.

In an attempt to understand the above, in this work, we investigated the effect of
sensor contact pressure on an in vitro vessel-tissue phantom which mimics the properties
of human tissue. The phantom was built such that the PPG sensor can be placed directly
(3 mm deep) above the vessel, facilitating the investigation of our research questions.

The nature of in vitro investigation, however, is limiting in that some interesting
physiological phenomena and anatomical features are difficult or, at present, impossible
to replicate. In favour of the simplified model presented, however, it does allow the
investigation of simple external stimuli, such as contact pressure, without complicating the
response with factors outside our control, such as vasodilation/contraction or age-related
vessel compliance. The results of the in vitro experiment can therefore be used to further
inform or compare results from future in vivo studies.

4.1. SNR Analysis

It has been shown in previous studies that there exists optimum sensor contact
force/pressure and the reported physiological reading when compared to another or
gold standard recordings [4–9]. In our experiment, the reported SNR values across the
measurements show little variance among either the repeated experiments or between the
blood pressure states, and an optimum sensor pressure is observed that is similar to the
previous in vivo studies. This lends confidence to the in vitro method we have described,
and with further development of our phantoms, a larger set of physiological parameters
may be tested. It must be noted, however, that in the studies by Kasbekar and Mendelson,
Shimazaki et al. and Scardulla et al. [6,7,9], an emphasis was mostly put on reducing
motion artefact during exercise, whereas the study by Lee et al. [8], focused on the subtle
respiratory variations on the PPG. Both of these scenarios (physical exercise and respiratory
artefacts) were not simulated in our study.

The study by Grabvoskis et al. [5] was of particular interest to us, as the effects of CP
on PPG morphology to assess arterial stiffness is an interesting development in the field of
PPG for other physiological monitoring other than HR and SpO2, i.e., vessel compliance or
arterial function monitoring. However, the study protocol did not allow us to make the
same type of analysis as in Grabvoskis’ study, and further experiments would be needed
to make a comparative analysis.

Whilst it is observed that the red PPG signals have lower SNR generally than the
infrared signals, this can be explained by the fact that the infrared PPG monitoring in
this phantom may be more robust either due to the sensor component geometry, the
type of ink used or a combination of the two. It is also interesting to note that this
relationship seems to reverse during the stage 2 hypertensive experiments and might be
explained by some mechanical property of the phantom, though further analysis, and more
rigorous experiments and a review of the phantom construction may be needed to confirm
this. To test the hypothesis that this is related to a mechanical property, a new in vivo
experimentation protocol should be developed to investigate whether the PPG signal can
be used to directly infer a mechanical condition of anatomy, such as vessel compliance.

4.2. PPG Feature Analysis

It has been shown that the morphological features of the PPG are affected by the
contact force induced by the sensor to the tissue [4,5,9]. The obtained results in this in vitro
study show that the contact pressure affects primarily amplitude-related features, such as
the area of the cycle or the pulse amplitude. On the contrary, time-based features, such as
the duration of the cycles or the width of the cycle, are less affected by the contact force
of the sensor, regardless of the blood pressure. Hence, applications that are mainly based
on time-related features, such as pulse rate variability (PRV) analysis, could be performed
regardless of the contact force applied by the sensor in the tissue, as long as the detection



Sensors 2021, 21, 8421 15 of 17

of the pulses does not rely on systolic peaks, as has been suggested in by Mejía-Mejía
et al. [18]. However, in applications where amplitude features (pulse amplitude, area of the
systolic peak and diastolic peak, Y-coordinate of the centroid of the systolic and diastolic
pulses) are key to deriving diagnostic markers while measuring oxygen saturation in pulse
oximetry, assessing vasoconstriction, vasodilation, venous function, measuring the ankle
pressure, genital responses, blood pressure, and cardiac function, contact pressure plays a
major role [19–24]. Physiologically, the PPG amplitude features are a result of a complex
interaction of stroke volume, vascular compliance, and tissue congestion effects [25]. Hence
non-optimal contact pressure could potentially result in incorrect assessments.

Interestingly, the variation among the repeated experiments for each measurement
was less notorious for features extracted from red signals. This could have two different
explanations; the red signals are less affected by noise in the in vitro setup and are more
robust due to the type of dye used (India ink which is absorbed more by the red light
than the infrared light in accordance with the complementary colour chart), or the features
extracted from red PPG signals tend to be less affected by noise. Although it is not possible
to certainly pinpoint the reason from this current study, further studies should aim to
explain these differences, and they should take into account that the red features might be
more repeatable in the face of different contact forces or in scenarios in which the contact
force cannot be controlled.

Furthermore, the behaviour of an arterial blood vessel located directly underneath
the PPG sensor can be derived from this investigation. Physiologically, arteries have two
important functions [26]. The first is a conduit function that allows blood to reach the
periphery of the whole body; the second is a cushioning function that minimises sudden
surges in the pressure of blood vessels by the stroke volume during a systolic cycle of
the heart. For these purposes, arterial walls must be compliant enough to temporarily
store a portion of the blood during systole and release it during diastole. Healthy arteries
are highly distensible and show a nonlinear stress–strain response with an exponential
stiffening effect at higher pressures [27]. This stiffening effect, common to all biological
tissues, is based on the recruitment of the collagen fibrils, which are extremely stiff [28].
The arterial wall in the living body is pre-stretched, under a blood pressure load in the
blood vessel; therefore, they are always in a stressed state. However, when an external
pressure to the outer arterial wall is applied for any reason (such as when using a PPG
sensor), the stress in the arterial wall decreases. When external pressure, for a particular
case, is the same as the mean blood pressure in a vessel, the stress in the arterial wall
becomes minimised. Since the exponential stiffening effect eventually disappears for this
condition [29], the maximum volumetric change of the arterial wall by blood pulsation can
be monitored by PPG [30]. This effect is perfectly exemplified by Figure 4. As can be seen
from Figure 4, the amplitude of the PPG signal in Figure 4 increases with increasing sensor
contact pressure up to a point where the external CP is similar to the internal pumping
pressure, where a maximum SNR value is recorded before the amplitude begins to decrease,
as the vessel in the phantom is slowly becoming more restricted, until there is a sudden
drop off in SNR when the vessel is completely occluded and the SNR becomes negative
(signal noise is dominant). The same effect repeated over several blood pressures should
result in a positive pressure correction between the PPG oscillometry peak and the blood
pressure inside the vessel.

5. Conclusions

This study has shown conclusively that in an in vitro environment, where there is
significant effort to mimic relevant human anatomy and physiological state, the pressure
exerted by the PPG probe (approximately between 10 and about 50 mmHg) does not
significantly affect the ability to detect and measure certain PPG morphological features.
It has also shown that there does exist a point at which the pressure exerted by the PPG
probe on tissue is optimal (between 35.1 mmHg and 48.1 mmHg); moreover, the pressures
reported in this experiment are in line and of similar values to those already reported in the
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literature. Rigorous controlled in vitro experiments utilising customised tissue phantoms
applied in the field of Photoplethysmography could pave the way in exploring further
PPG related research.
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