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Abstract.  
The Flower Pollination Algorithm (FPA) is a highly efficient optimization algorithm that is inspired by the 

evolution process of flowering plants. In the present study, a modified version of FPA is proposed accounting for 

an additional feature of flower pollination in nature that is the so-called pollinator attraction. Pollinator attraction 

represents the natural tendency of flower species to evolve in order to attract pollinators by using their colour, 

shape and scent as well as nutritious rewards. To reflect this evolution mechanism, the proposed FPA variant with 

Pollinator Attraction (FPAPA) provides fitter flowers of the population with higher probabilities of achieving 

pollen transfer via biotic pollination than other flowers. FPAPA is tested against a set of 28 benchmark 

mathematical functions, defined in IEEE-CEC’13 for real-parameter single-objective optimization problems, as 

well as structural optimization problems. Numerical experiments show that the modified FPA represents a 

statistically significant improvement upon the original FPA and that it can outperform other state-of-the-art 

optimization algorithms offering better and more robust optimal solutions. Additional research is suggested to 

combine FPAPA with other modified and hybridized versions of FPA to further increase its performance in 

challenging optimization problems. 
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1 Introduction 

 

In plenty of challenging optimization problems in industry and engineering, tracking of global 

optimum solutions remains a highly complex task. Conventional optimization methods are 

often not performing satisfactorily in this category of problems, and thereby the application of 

metaheuristic algorithms inspired by nature is required [1]. In the literature, a significant 

number of efficient metaheuristic optimisation algorithms have been proposed, including the 
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Genetic Algorithm (GA) [2], Firefly Algorithm [3], Particle Swarm Optimization (PSO) [4], 

Cuckoo Search (CS) [5], and several others.  

Recently, the Flower Pollination Algorithm (FPA) was developed by Xin-She Yang [6], which 

is a population-based metaheuristic optimization algorithm inspired by the evolution process 

of flowering plants. FPA is characterised by formulation simplicity and flexibility as well as 

high computational performance [7]. Furthermore, many studies show that it can outperform 

other metaheuristic optimization algorithms (e.g. [6, 8-10]). As a result, FPA has been adopted 

by many optimization studies and it has been applied successfully to many optimization 

problems in diverse scientific areas including electrical and power systems (e.g. [11-13]), 

structural design (e.g. [8-10, 14-15]), computer gaming (e.g. [16]), meteorology (e.g. [17]), 

image science (e.g. [18]) and others [7, 19]. 

Following its original development, several studies proposed modified and hybridized versions 

of FPA to improve its performance for different optimization problems [7, 19]. For example, 

Abdel-Raouf et al. [20] developed an improved FPA variant by using chaotic maps instead of 

random numbers and they found significant increase in the computational performance. Zhou 

et al. [21] developed an elite opposition-based FPA version that was tested with 18 benchmark 

functions yielding excellent results. Putra et al. [22], developed a modified version of FPA 

with dynamic switching probability and the use of real-coded GA as mutation for local and 

global search to solve economic load dispatch optimization problems in power generation 

systems. Draa [23] developed a new FPA variant based on the so-called generalized 

opposition-based learning (GOBL). Wang et al. [24] merged the standard FPA with the 

concept of the bee-pollinator to solve the data clustering problem. Al-Betar et al. [25] used the 

island model population technique to restrain premature convergence of FPA. Abdel-Basset et 

al. [26] developed a modified FPA version based on the crossover for solving the 

multidimensional knapsack problems. Zhou et al. [27] developed the discrete greedy flower 

pollination algorithm that is using order-based crossover, pollen discarding behaviour and 

partial behaviours for solving the spherical traveling salesman problem. Fouad and Gao [28] 

developed a novel FPA variant for global optimization by generating a set of global 

orientations for all members of the population and constructing a set of best solution vectors 

relating to all generated global orientations. Khurseed et al. [29] used a modified FPA with 

double exponential based dynamic switch probability and a dynamic step size function for 

model parameter estimation of Photovoltaic cells and modules. Xiao et al. [30] developed a 

modified FPA to solve the problem of robust visual target tracking system. The proposed 

variant, namely GTFPA, is based on the gravitational search algorithm and features an 
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improved local search by a mutation operation based on trigonometric functions. Ozsoydan 

and Baykasoglu [31] introduced a new FPA variant by embedding to the original FPA a chaotic 

switch with irregular motion and an intensifying step size function for a more detailed search. 

Furthermore, Ozsoydan and Baykasoglu [32] developed a new multi-population FPA variant 

for multimodal optimization problems and a modified natural selection based on symmetry. In 

addition to the above, Rodrigues et al. [33] developed a binary version of FPA to address 

combinatorial and discrete optimization problems.  Multi-objective versions of FPA have also 

been developed (e.g. [34-36]) to solve optimization problems with more than one design 

objectives. In addition, hybridized FPA versions have been proposed in literature to achieve 

better balance between local and global search. In these versions, hybridization of FPA is 

achieved using local search algorithms (e.g. [37-38]), population-based algorithms (e.g. [39-

42]) or other components. 

An explanation of the efficiency of FPA is based on the fact that it is imitating the reproduction 

process of flowering plants. The latter has been so successful that flower species dominate the 

landscape of earth [43]. As with other biological systems, the ultimate objective of flowers is 

reproduction via pollination. Flower pollination, which is typically related to the transfer of 

pollen, can be either biotic or abiotic [6, 44]. In the former pollination type, pollen is transferred 

via animals and insects (e.g. bees, butterflies, birds and bats) that are called pollinators. 

Pollinators are able to fly long distances. Hence, biotic pollination can be considered as a global 

pollination mechanism [6]. In addition, the flight behaviour of pollinators has characteristics 

of Lévy flights [1, 45]. In the abiotic pollination type, pollen is transferred by water diffusion 

and/or the wind. A characteristic example of abiotic pollination is the grass [6, 44]. Typically, 

abiotic pollination takes place at short distances. Therefore, it can be considered as a local 

pollination mechanism [6]. Another significant feature of flower pollination is the so-called 

flower constancy. According to this feature, some pollinators prefer to select specific flower 

species and bypass others [6]. In this manner, flowers increase pollen transfer to the same 

species. Furthermore, pollinators ensure guaranteed nectar intake and avoid the risk of 

exploring other flower species.  

All previous characteristics of flower pollination have been considered in the formulation of 

the original FPA [6]. However, an additional important characteristic of the flower pollination 

process in nature is the fact that flower species evolve to attract pollinators and ensure pollen 

transfer via biotic pollination [46-47]. To serve this goal, flowers entice pollinators by 

employing a variety of attractions. For example, they offer pollinators nutritious rewards such 

as pollen and nectar. Pollinators eat pollen to produce their eggs. Furthermore, nectar offers 
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significant amounts of energy to pollinators. Honeybees, in particular, use nectar to produce 

honey. In addition to nutritious rewards, flowers have developed other methods to attract 

pollinators. Many flowers have developed shapes (e.g. bowl-shaped flowers) that facilitate 

unique access of certain types of pollinators [47]. Furthermore, some flowers have developed 

bright colours to attract pollinators with colour vision such as bees and birds [46-47]. In 

addition, flowers attract pollinators by scent. It is interesting to note that flowers relying on 

night pollinators (e.g. bats) focus mainly on scent to entice pollinators and most of them are 

colourless [46-47]. It is such the need of some plants to attract pollinators that they produce 

flowers resembling female pollinators in colour, shape and scent such as the case with orchids 

and bees [47]. It is clear from the above that flower species do evolve to attract pollinators; the 

more successful they are in this evolution process, the more likely it is that they will transfer 

their pollen via biotic pollination [47]. 

In our proposed approach, the well-observed and successful in nature evolution mechanism of 

pollinator attraction will be introduced to the mathematical formulation of the existing FPA 

algorithm by increasing the probability of fitter flowers to conduct biotic pollination as they 

are more attractive to pollinators. The resulting variant, namely FPAPA (Flower Pollination 

Algorithm with Pollinator Attraction), is then compared with the original FPA and other 

efficient optimization algorithms to establish its computational performance against 

benchmark mathematical functions and real-world optimization problems. 

In the following, the original FPA is introduced in §2. In §3, the proposed modifications to the 

formulation of the original FPA are described to account for the pollinator attraction evolution 

mechanism. In §4, the proposed FPAPA is compared with the original FPA and other well-

established optimization algorithms against mathematical and structural optimization problems 

to test its computational efficiency. In §5, the main conclusions of the present study are 

summarized.   

 

2 Original FPA 

 

The types of flower pollination process, the behaviour of pollinators and flower constancy have 

been idealized in the following basic rules of the original version of FPA: 

  

1. Biotic pollination is assumed as a global pollination process with pollinators 

performing Lévy flights. 

2. Abiotic pollination is assumed as a local pollination mechanism. 
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3. Flower constancy is considered by assuming the reproduction probability to be 

proportional of the similarity of flowers involved. 

4. The mechanism of pollination mechanism (global or local) is controlled by a switching 

probability p in [0, 1]. 

 

In the following, for reasons of simplicity, it is assumed that each plant develops one flower, 

which produces only one pollen gamete [6]. Under this assumption, there exists no need to 

differentiate between plants, flowers and pollen gametes. In FPA, a flower i represents a 

candidate solution vector xi. The algorithm employs two separate search procedures or search 

mechanisms. The global and local pollination. Following the first and third rules of FPA, the 

global pollination procedure can be represented mathematically by the following equation: 

 

 𝒙𝒙𝑖𝑖𝑡𝑡+1 = 𝒙𝒙𝑖𝑖𝑡𝑡 + 𝛾𝛾 ∙ 𝐿𝐿(𝜆𝜆) ∙ (𝒈𝒈∗ − 𝒙𝒙𝑖𝑖𝑡𝑡), (1) 

 

where 𝒙𝒙𝑖𝑖𝑡𝑡 stands for flower i at iteration t, g* represents the best flower of the population again 

at iteration t, 𝜆𝜆 is a constant, γ is a scaling factor to set the step size, and 𝐿𝐿(𝜆𝜆) > 0 represents 

the size of the flight step reflecting pollination strength. More particularly, 𝐿𝐿(𝜆𝜆) is taken from 

a Lévy distribution as follows: 

 

 𝐿𝐿~
𝜆𝜆Γ(𝜆𝜆) sin�𝜋𝜋𝜋𝜋2 �

𝜋𝜋
∙ 1
𝑠𝑠1+𝜋𝜋

,    (𝑠𝑠 > 0),  (2) 

 

where Γ(𝜆𝜆) is the standard gamma function and s > 0. In the present study, based on a 

preliminary parametric analysis and recommendations in literature [6], it is assumed that λ = 

3/2 and γ = 0.01 as these values yielded the best performance of the algorithm. 

On the other hand, the local pollination rule (second rule) and flower constancy (third rule) are 

represented by the following equation, where 𝒙𝒙𝑗𝑗𝑡𝑡and 𝒙𝒙𝑘𝑘𝑡𝑡  are different flowers of the same 

population and ε is drawn from a uniform distribution in [0, 1].   

 

 𝒙𝒙𝑖𝑖𝑡𝑡+1 = 𝒙𝒙𝑖𝑖𝑡𝑡 + 𝜀𝜀 ∙ �𝒙𝒙𝑗𝑗𝑡𝑡 − 𝒙𝒙𝑘𝑘𝑡𝑡 �.   (3) 
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Fig. 1: Pseudo-code of the original FPA. 

 

According to the fourth rule, the type of flower pollination (global or local) is controlled by a 

switch probability p in [0, 1]. In §4 of this research, a parametric study is conducted to establish 

the values of p that yield the best performance of FPA algorithm.  

Summarizing the previous information, the pseudo code of FPA is presented in Fig. 1, where 

d is the number of problem dimensions and n the size of flowers population.  

 

3 FPA with Pollinator Attraction (FPAPA) 

 

From the discussion above, it is concluded that the original version of FPA provides all 

flowers with the same switch probability p of transferring pollen by biotic or abiotic 

pollination. However, as discussed in the introduction section, many flower species have 

developed evolution mechanisms to attract pollinators and achieve pollen transfer via biotic 

pollination. Hence, it is expected that the fitter flowers (i.e. the ones that have developed more 

efficient attraction mechanisms) will have higher probabilities of attracting pollinators and 

conducting biotic pollination than the other flowers. 

The simplest, perhaps, way to model this observation in FPAPA is to assume that the switch 

probability 𝑝𝑝𝑖𝑖𝑡𝑡 of flower i at iteration t is not the same for all flowers of the population but it 

depends on the rank of the flower i in the population in terms of the objective function value   

f (xi). For simplicity, it is assumed herein that this probability varies linearly (Fig. 2) between 

two values p1 and p2 in [0, 1], where p1 is the switch probability of the flower with the worst 

objective function value and p2 is the respective probability of the flower with the best 

Set objective min f (x), x = (x1, x2, …, xd) 
Initialize a population of n flowers with random procedures 
Determine the best solution g* of the initial population 
Determine the value of switch probability p ϵ [0, 1] 
while (t < MaxIteration) 
 for i = 1 : n (for all flowers of the population) 
  if rand < p 
   Draw a d-dimensional Lévy distribution step vector L  
   Do global pollination by 𝒙𝒙𝑖𝑖𝑡𝑡+1 = 𝒙𝒙𝑖𝑖𝑡𝑡 + 𝛾𝛾 ∙ 𝐿𝐿(𝜆𝜆) ∙ (𝒈𝒈∗ − 𝒙𝒙𝑖𝑖𝑡𝑡) 
  else 
   Draw ε from a uniform distribution in [0, 1] 
   Select randomly j and k among all flowers of the population 
   Do local pollination by 𝒙𝒙𝑖𝑖𝑡𝑡+1 = 𝒙𝒙𝑖𝑖𝑡𝑡 + 𝜀𝜀 ∙ (𝒙𝒙𝑗𝑗𝑡𝑡 − 𝒙𝒙𝑘𝑘

𝑡𝑡 )   
  end if 
  Evaluate objective function values of new solutions 
  When better, update new solutions in the population 
 end for 
 Determine the best solution g* of the new population 
end while 
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objective function value in the population. Hence, if 𝒇𝒇𝒔𝒔𝒔𝒔 is the sorted, in descending order for 

minimization problems, vector of objective function values of the population and 𝜉𝜉𝑖𝑖𝑡𝑡 is the 

index (location) of flower i in 𝒇𝒇𝒔𝒔𝒔𝒔 at iteration t, then the probability 𝑝𝑝𝑖𝑖𝑡𝑡is given by: 

 

 𝑝𝑝𝑖𝑖𝑡𝑡 = 1
𝑛𝑛−1

[(𝑝𝑝2 − 𝑝𝑝1) ∙ 𝜉𝜉𝑖𝑖𝑡𝑡 + 𝑛𝑛𝑝𝑝1 − 𝑝𝑝2] (4) 

 

 
Fig. 2: Variation of switch probabilities 𝑝𝑝𝑖𝑖𝑡𝑡 for different flowers (i = 1 to n) of the population based on their 
indices 𝜉𝜉𝑖𝑖𝑡𝑡 in the sorted population in the descending order vector fsh (i.e. index 𝜉𝜉𝑖𝑖𝑡𝑡 = 1 is the flower with the 

maximum objective function value and index 𝜉𝜉𝑖𝑖𝑡𝑡 = 𝑛𝑛  is the flower with the minimum respective value). 
 

 
Fig. 3: Pseudo-code of FPAPA 

 

In Eq. (4), to be consistent with the pollinator attraction evolution mechanism, p2 > p1 should 

hold (i.e. maximum probability for the fittest flower). However, the algorithm works for any 

p1 and p2 values in [0, 1]. Furthermore, for p1 = p2 the original FPA is derived. To accommodate 

 

1 n 𝜉𝜉𝑖𝑖𝑡𝑡  

𝑝𝑝1  

𝑝𝑝2  
𝑝𝑝𝑖𝑖𝑡𝑡  

𝜉𝜉𝑖𝑖𝑡𝑡  

𝑝𝑝𝑖𝑖𝑡𝑡  

Set objective min f (x), x = (x1, x2, …, xd) 
Initialize a population of n flowers with random procedures 
Form shorted, in descending order, objective values vector 𝒇𝒇𝒔𝒔𝒔𝒔 of the initial population 
Determine the best solution g* of the initial population 
Determine the values of switch probabilities p1 and p2 in [0, 1] 
while (t < MaxIteration) 
 for i = 1 : n (for all flowers of the population) 
  Find flower indices 𝜉𝜉𝑖𝑖

𝑡𝑡 in 𝒇𝒇𝒔𝒔𝒔𝒔 

  Determine flowers switch probability by  𝑝𝑝𝑖𝑖
𝑡𝑡 = 1

𝑛𝑛−1
��𝑝𝑝2 − 𝑝𝑝1� ∙ 𝜉𝜉𝑖𝑖

𝑡𝑡 + 𝑛𝑛𝑝𝑝1 − 𝑝𝑝2� 
  if  𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 < 𝑝𝑝𝑖𝑖

𝑡𝑡 
   Draw a d-dimensional Lévy distribution step vector L  
   Do global pollination by 𝒙𝒙𝑖𝑖𝑡𝑡+1 = 𝒙𝒙𝑖𝑖𝑡𝑡 + 𝛾𝛾 ∙ 𝐿𝐿(𝜆𝜆) ∙ (𝒈𝒈∗ − 𝒙𝒙𝑖𝑖

𝑡𝑡) 
  else 
   Draw ε from a uniform distribution in [0, 1] 
   Select randomly j and k among all flowers of the population 
   Do local pollination by 𝒙𝒙𝑖𝑖𝑡𝑡+1 = 𝒙𝒙𝑖𝑖𝑡𝑡 + 𝜀𝜀 ∙ (𝒙𝒙𝑗𝑗𝑡𝑡 − 𝒙𝒙𝑘𝑘

𝑡𝑡 )   
  end if 
  Evaluate objective function values of new solutions 
  When better, update new solutions in the population 
 end for 

Form shorted, in descending order, objective values vector 𝒇𝒇𝒔𝒔𝒔𝒔 of the new population 
 Determine the best solution g* of the new population 
end while 
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the aforementioned pollinator attraction rule, the pseudo-code of the FPAPA version is shown 

in Fig. 3.  

 

4 Numerical Simulations 

 

4.1 Mathematical optimization problems 

 

In this section, the proposed FPAPA algorithm is compared with the original FPA and other 

state of the art optimization algorithms in order to validate its numerical efficiency. To serve 

this goal, the set of functions specified in IEEE-CEC’13 [48] for real-parameter single-

objective optimization problems is employed herein. This set is comprised of 28 benchmark 

functions fi (i =1, 2, …, 28) shown in Table 1 [48] together with their global optimum values. 

All fi functions represent minimization problems with variable number of dimensions d. All 

test functions are scalable and shifted to o = [o1, o2, …, od], which is randomly distributed in 

[-80, 80]d. Moreover, the search space for all functions is defined in [-100, 100]d. In addition, 

some functions are rotated by using orthogonal (rotation) matrices that are generated from 

standard normally distributed entries by the Gram-Schmidt orthonormalization. The test 

functions can be classified in three main categories: unimodal, basic multimodal and 

compositions functions that are generated by combinations of the former functions [48]. 

 

Table 1: IEEE-CEC’13 benchmark functions 
 Function No. Function Name Global optimum  

 fi
*  

Unimodal 

1 Sphere Function -1400 

2 Rotated High Conditioned Elliptic Function -1300 

3 Rotated Bent Cigar Function -1200 

4 Rotated Discus Function -1100 

5 Different Powers Function -1000 

Basic 

Multimodal 

6 Rotated Rosenbrock’s Function -900 

7 Rotated Schaffers F7 Function -800 

8 Rotated Ackley’s Function -700 

9 Rotated Weierstrass Function -600 

10 Rotated Griewank’s Function -500 

11 Rastrigin’s Function -400 

12 Rotated Rastrigin’s Function -300 

13 Non-Continuous Rotated Rastrigin’s Function -200 

14 Schwefel's Function -100 

15 Rotated Schwefel's Function 100 

16 Rotated Katsuura Function 200 

17 Lunacek Bi_Rastrigin Function 300 
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18 Rotated Lunacek Bi_Rastrigin Function 400 

19 Expanded Griewank’s plus Rosenbrock’s Function 500 

20 Expanded Scaffer’s F6 Function 600 

Composite 

Multimodal 

21 Composition Function 1 700 

22 Composition Function 2 800 

23 Composition Function 3 900 

24 Composition Function 4 1000 

25 Composition Function 5 1100 

26 Composition Function 6 1200 

27 Composition Function 7 1300 

28 Composition Function 8 1400 

 

For each algorithm, 20 independent runs are conducted for each function with 10000·d 

maximum number of function evaluations MaxFES and by using a population size of 50 

flowers. Furthermore, two different numbers of problem dimensions are examined: d = 10 and 

30. Uniform random initialization within the search space is assumed. For each algorithm run, 

the error value (i.e. the best solution found by the algorithm minus the global optimum of the 

test function shown in Table 1) is recorded when the number of function evaluations becomes 

equal to (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)·MaxFES. In this manner, the speed 

of convergence of the different algorithmic solutions can also be assessed. The solutions are 

terminated when either MaxFES is reached or the error value is smaller than 10-8. For each 

function, algorithm and number of function evaluations, the mean and standard deviation of 

the error values are calculated from the 20 independent runs. The algorithms are subsequently 

ranked according to these mean and standard deviation values. 

To better illustrate this procedure, the example of function f11 (i.e. Rastrigin’s Function) for 

d = 10 is presented in the following. Figs 4a & 4b present, in the form of box plots, the 

minimum, maximum and median (red line) errors obtained by the 20 independent runs by 5 

different FPA options (i.e. FPA with p = 0.2, 0.4 and 0.6 and FPAPA with p1 = 0.2 and p2 = 

0.6 or p1 = 0.6 and p2 = 0.2) after 0.2·MaxFES and 1.0·MaxFES function evaluations 

respectively. Inside the boxes, the 25th to 75th percentile solutions are contained. It is found 

that the proposed FPAPA with p1 = 0.2 and p2 = 0.6 demonstrates the best performance out of 

the 5 FPA variants in terms of both median and minimum errors and for both numbers of 

function evaluations. Furthermore, Fig. 4c presents the progression of the mean prediction 

errors for the same optimization task and algorithms as a function of the computational budget 

as measured by the fraction of the number of function evaluations with respect to MaxFES. It 

is observed that the proposed FPAPA with p1 = 0.2 and p2 = 0.6 offers better mean predictions 

for almost the full range of function evaluations. This is also illustrated in Fig. 4d that shows 



10 

the ranks of the different FPA options for the case of f11 with d = 10 based on the mean 

prediction errors shown in Fig. 4c and in relation to the number of function evaluations. 

 

  

  
Fig. 4: a) Box plots of error predictions after 0.2·MaxFES evaluations; b) box plots of error predictions after 

1.0·MaxFES evaluations; c) mean prediction errors; d) ranks of the original FPA and the proposed FPAPA 

algorithms for the f11 test function with d =10 
 

In the following, the results of FPAPA are compared with the results of the original FPA 

for different switch probability values and across the whole range of CEC’13 functions. To 

serve this goal, parametric analyses are first conducted with the original FPA for switch 

probability values: p = 0, 0.2, 0.4, 0.6, 0.8 and 1. The mean aggregated rank of these p values 

across all 28 CEC’13 test functions is shown in Fig. 5 for both d = 10 and 30 problem 

dimensions in dependence of the number of function evaluations. It is clear that the original 

FPA performs better for probability values p between 0 and 0.4 for d = 10 and between 0.2 and 

0.6 for d = 30. In both cases, the worst performance is obtained for p = 1 that sets the algorithm 

to conduct only global and no local pollination. 
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Fig. 5: Mean aggregated rank of original FPA p values across all 28 CEC’13 test functions for a) d = 10; b) 

d = 30 problem dimensions 

 

Based on the previous results, numerical analyses with the proposed FPAPA are conducted 

assuming p1 = 0 and p2 = 0.4 for d = 10 and p1 = 0.2 and p2 = 0.6 for d = 30. It is recalled that 

this arrangement of switch probabilities (i.e. p2 > p1) supports the pollinator attraction evolution 

mechanism recommended in this study (i.e. higher probability of biotic pollination for better 

flowers in the population). For comparison purposes, it is also examined herein the use of 

FPAPA with p1 = 0.4 and p2 = 0 for d = 10 and p1 = 0.6 and p2 = 0.2 for d = 30. The latter 

probability arrangements with p1 > p2 are opposed to the pollinator attraction rule and therefore 

it is interesting to see how they affect the efficiency of the proposed algorithm. 

Figure 6 presents the mean aggregated ranks of the mean error values of the original FPA and 

the proposed FPAPA algorithms within the same probability ranges and across all 28 test 

functions for d = 10 and 30 problem dimensions in dependence of the number of function 

evaluations. It is obvious that the proposed FPAPA supporting the pollinator attraction rule 

(i.e. p2 > p1) outperforms the original FPA algorithm for all switch probability values and for 

both numbers of problem dimensions. It is also important to note that the proposed FPAPA 

demonstrates better computational performance from the very early stages of function 

evaluations which means that it exhibits higher convergence rates. On the other hand, the 

FPAPA algorithm with switch probability values opposing the pollinator attraction rule (i.e. p1 

> p2) demonstrates one of the worst performances out of the different FPA options. The latter 

represents another strong indication that the proposed pollinator attraction evolution 

mechanism can indeed affect positively the efficiency of the FPA algorithm. 
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Fig. 6: Mean aggregated ranks of the mean error values of the original FPA and the proposed FPAPA algorithms 

across all 28 test functions for a) d =10; b) d = 30 problem dimensions 

 

Furthermore, Fig. 7 shows the mean aggregated ranks of the standard deviations of the error 

values of the original FPA and the proposed FPAPA algorithms. It is evident that the proposed 

FPAPA not only exhibits better mean errors as shown in Fig. 6 but also outperforms or shows 

equivalent performance to the other FPA options in terms of computational robustness. 

 

  
Fig. 7: Mean aggregated ranks of the standard deviations of the error values of the original FPA and the proposed 

FPAPA algorithms across all 28 test functions for a) d =10; b) d =30 problem dimensions 
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with p = 0 conducts only local pollination and therefore may converge faster to the single 

optimum of these functions. 

 

  

  

  
Fig. 8: Mean aggregated ranks of the mean error values of the original FPA and the proposed FPAPA algorithms 

across test functions: a) f1-f5 (unimodal) for d =10; b) f1-f5 (unimodal) for d = 30; c) f6-f20 (basic multimodal) for 

d =10; d) f6-f20 (basic multimodal) for d = 30; e) f21-f28 (composite) for d =10; f) f21-f28 (composite) for d = 30. 
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results are presented in Table 3 for d = 30. As expected, the errors increase with the number of 

problem dimensions and appear to be more significant for the composite functions due to the 

higher degree of complexity involved. 

Furthermore, Tables 4 and 5 present the Sign test pairwise comparisons of the proposed 

FPAPA with the original FPA options for MaxFES function evaluations. This test compares 

the performances of two algorithms by counting the number of wins of one algorithm with 

respect to the other [49]. For a given problem, an algorithm wins when the mean error observed 

is smaller than the other algorithm [49]. For np number of problems, if an algorithm wins np/2 

+ 1.96·√np/2 times or above then the algorithm is considered significantly better than the other 

with level of significance α ≤ 0.05 [49]. The latter is a strong indication against the null 

hypothesis [28, 49]. For the IEEE-CEC’13 set of functions, np = 28 and therefore 19 wins are 

required for an algorithm to be significantly better than its rival. In Tables 4 and 5, the wins of 

the proposed FPAPA against the other FPA formulations are presented. It is noted that 

equivalences are split evenly between two algorithms in this table. It can be observed than in 

all cases the proposed FPAPA has 19 wins and above when compared with the other FPA 

options. Therefore, the proposed FPAPA can be considered as a significant improvement with 

respect to the other options. 

In addition, Tables 6 and 7 show the Wilcoxon signed ranks test for the same algorithms [49]. 

This test calculates the differences of the performances of two algorithms for np problems and 

ranks these differences according to their absolute values. Next, the sum of ranks R+ for the 

problems in which the first algorithm outperforms the second and the sum of ranks R- of the 

opposite cases are calculated. If T is the minimum of R+ and R- and T is smaller or equal than 

the Wilcoxon’s distribution for np degrees of freedom then the winning algorithm outperforms 

the other with the significance level associated [49]. In Tables 6 and 7, the R+, R- and T values 

for the comparisons between the proposed FPAPA and the original FPA options are presented 

for d = 10 and d = 30 respectively. In these tables, ties are split evenly among the sums. Again, 

it can be concluded that the proposed FPAPA offers significant improvement with respect to 

the other options with significance level α ≤ 0.05 since all T values are below the limit value, 

which is 116 for α = 0.05 and np = 28. 

 
Table 2: The mean error values of the original FPA and the proposed FPAPA algorithms of the 28 test 

functions for d = 10 after 10000·d function evaluations 
  FPA FPAPA 

Function p = 0 p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0 p1 = 0.0  
p2 = 0.4 

p1 = 0.4  
p2 = 0.0 

1 1.00E-08 1.00E-08 1.00E-08 1.00E-08 2.15E-07 8.30E-02 1.00E-08 1.00E-08 
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2 1.00E-08 1.00E-08 1.00E-08 2.49E-08 2.75E-02 5.36E+05 1.00E-08 1.00E-08 

3 1.15E+03 2.40E+03 1.75E+04 1.27E+05 7.90E+05 4.57E+07 2.11E+03 3.18E+03 

4 1.00E-08 1.00E-08 1.00E-08 1.55E-08 1.10E-02 1.45E+04 1.00E-08 1.00E-08 

5 1.00E-08 1.00E-08 1.00E-08 4.71E-08 6.50E-05 7.03E-01 1.00E-08 1.00E-08 

6 1.00E-08 1.00E-08 1.00E-08 2.49E-07 1.75E-02 1.68E+00 1.00E-08 1.00E-08 

7 3.15E+00 9.73E+00 1.44E+01 2.62E+01 4.17E+01 7.42E+01 7.81E+00 6.57E+00 

8 2.05E+01 2.04E+01 2.03E+01 2.04E+01 2.04E+01 2.03E+01 2.04E+01 2.03E+01 

9 4.28E+00 4.42E+00 4.96E+00 5.38E+00 5.81E+00 8.18E+00 4.71E+00 4.78E+00 

10 3.44E-02 3.01E-02 2.92E-02 3.84E-02 8.32E-02 2.14E+00 2.72E-02 3.75E-02 

11 7.76E+00 8.81E+00 9.87E+00 1.16E+01 1.56E+01 2.68E+01 7.46E+00 1.02E+01 

12 6.49E+00 1.00E+01 1.13E+01 1.50E+01 2.52E+01 1.12E+02 8.21E+00 9.08E+00 

13 1.25E+01 1.27E+01 1.54E+01 2.22E+01 2.86E+01 1.03E+02 1.16E+01 1.43E+01 

14 9.16E+02 5.56E+02 4.87E+02 4.75E+02 4.64E+02 4.56E+02 4.84E+02 7.97E+02 

15 8.60E+02 7.83E+02 7.73E+02 8.30E+02 8.69E+02 9.67E+02 7.33E+02 8.47E+02 

16 9.73E-01 8.69E-01 8.96E-01 7.85E-01 8.43E-01 8.45E-01 8.88E-01 9.17E-01 

17 3.05E+01 2.62E+01 2.43E+01 2.65E+01 3.17E+01 8.90E+01 2.12E+01 2.89E+01 

18 3.07E+01 2.63E+01 2.75E+01 2.81E+01 3.83E+01 1.49E+02 2.44E+01 3.04E+01 

19 1.13E+00 8.96E-01 8.60E-01 9.78E-01 1.04E+00 4.65E+00 7.37E-01 1.19E+00 

20 3.03E+00 3.16E+00 3.21E+00 3.30E+00 3.50E+00 3.90E+00 3.11E+00 2.98E+00 

21 1.45E+02 1.35E+02 1.45E+02 1.30E+02 1.35E+02 2.84E+02 1.35E+02 1.30E+02 

22 9.06E+02 7.56E+02 6.67E+02 7.09E+02 7.18E+02 6.52E+02 6.69E+02 9.77E+02 

23 9.36E+02 9.20E+02 9.51E+02 1.11E+03 1.21E+03 1.39E+03 9.20E+02 1.06E+03 

24 1.33E+02 1.35E+02 1.51E+02 1.54E+02 1.70E+02 2.25E+02 1.32E+02 1.38E+02 

25 1.96E+02 1.85E+02 1.93E+02 2.09E+02 2.07E+02 2.26E+02 1.94E+02 1.97E+02 

26 1.18E+02 1.19E+02 1.20E+02 1.31E+02 1.37E+02 1.97E+02 1.10E+02 1.20E+02 

27 3.91E+02 3.91E+02 3.97E+02 4.08E+02 4.07E+02 4.02E+02 4.05E+02 4.02E+02 

28 2.10E+02 1.80E+02 1.40E+02 1.50E+02 1.23E+02 6.23E+02 1.70E+02 2.00E+02 
 

Table 3: The mean error values of the original FPA and the proposed FPAPA algorithms of the 28 test 
functions for d = 30 after 10000·d function evaluations 

  FPA FPAPA 

Function p = 0 p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0 p1 = 0.2  
p2 = 0.6 

p1 = 0.6  
p2 = 0.2 

1 7.53E+02 1.50E-07 1.00E-08 1.00E-08 4.96E-08 4.92E-05 1.00E-08 1.03E-08 

2 1.32E+05 1.97E+01 2.31E+00 1.70E-01 6.19E+01 4.81E+06 2.76E+01 2.78E+00 

3 1.22E+09 9.68E+05 1.50E+06 7.98E+06 4.25E+07 4.45E+08 8.07E+05 2.99E+06 

4 2.38E+03 1.32E+02 1.38E+02 9.99E+01 7.05E+02 7.30E+04 1.11E+02 3.22E+01 

5 5.85E+01 2.36E-04 9.40E-06 2.30E-05 5.18E-05 1.21E-02 3.79E-06 6.51E-05 

6 8.91E+01 9.01E+00 9.18E+00 1.18E+01 1.35E+01 2.30E+01 1.07E+01 1.24E+01 

7 6.35E+01 8.33E+01 9.82E+01 1.07E+02 1.11E+02 1.40E+02 9.74E+01 9.75E+01 

8 2.09E+01 2.10E+01 2.10E+01 2.09E+01 2.09E+01 2.09E+01 2.10E+01 2.09E+01 

9 2.43E+01 2.66E+01 2.78E+01 2.95E+01 3.04E+01 3.40E+01 2.63E+01 2.87E+01 

10 7.64E+01 1.07E-02 3.19E-03 5.42E-04 1.10E-03 4.11E-01 6.12E-03 2.22E-03 

11 1.05E+02 6.63E+01 6.85E+01 8.02E+01 8.36E+01 9.20E+01 6.47E+01 8.19E+01 

12 1.38E+02 1.18E+02 1.38E+02 1.60E+02 2.10E+02 6.59E+02 1.32E+02 1.51E+02 

13 1.78E+02 1.98E+02 2.00E+02 2.27E+02 2.41E+02 6.31E+02 2.08E+02 1.98E+02 

14 4.78E+03 3.31E+03 3.07E+03 2.97E+03 2.85E+03 2.81E+03 2.87E+03 3.41E+03 
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15 4.75E+03 4.23E+03 4.10E+03 4.21E+03 4.30E+03 4.55E+03 3.98E+03 4.29E+03 

16 1.86E+00 1.98E+00 1.77E+00 2.18E+00 2.13E+00 2.44E+00 2.00E+00 2.10E+00 

17 2.05E+02 1.98E+02 1.83E+02 1.93E+02 1.96E+02 4.22E+02 1.71E+02 1.82E+02 

18 2.08E+02 1.90E+02 2.08E+02 2.26E+02 2.39E+02 6.95E+02 1.89E+02 1.99E+02 

19 2.95E+01 1.36E+01 1.16E+01 1.14E+01 1.18E+01 2.49E+01 9.96E+00 1.29E+01 

20 1.21E+01 1.21E+01 1.24E+01 1.27E+01 1.31E+01 1.46E+01 1.24E+01 1.27E+01 

21 6.28E+02 2.79E+02 2.67E+02 2.60E+02 2.18E+02 2.26E+02 2.72E+02 2.57E+02 

22 5.39E+03 3.89E+03 3.81E+03 3.64E+03 3.29E+03 3.36E+03 3.30E+03 3.98E+03 

23 5.31E+03 4.66E+03 4.75E+03 5.23E+03 5.20E+03 5.80E+03 4.63E+03 5.05E+03 

24 2.73E+02 2.78E+02 2.79E+02 2.83E+02 2.91E+02 3.15E+02 2.78E+02 2.79E+02 

25 2.91E+02 2.97E+02 3.00E+02 3.04E+02 3.12E+02 3.41E+02 2.99E+02 2.97E+02 

26 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 

27 9.96E+02 1.07E+03 9.93E+02 9.91E+02 9.17E+02 1.03E+03 1.07E+03 1.01E+03 

28 1.30E+03 3.83E+02 3.66E+02 3.66E+02 3.01E+02 4.12E+03 3.00E+02 3.62E+02 

 
Table 4: Sign test pairwise comparisons of the proposed FPAPA with the original FPA options for the 28 

test functions and d = 10 after 10000·d function evaluations 

Proposed FPAPA FPA FPAPA opposing 
pollinator attraction 

p1 = 0.0, p2 = 0.4 p = 0 p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0 p1 = 0.4, p2 = 0.0 

Wins 19.5 19.5 20.5 22.5 24 23 20.5 

Losses 8.5 8.5 7.5 5.5 4 5 7.5 

 
Table 4: Sign test pairwise comparisons of the proposed FPAPA with the original FPA options for the 28 

test functions and d = 30 after 10000·d function evaluations 

Proposed FPAPA FPA FPAPA opposing 
pollinator attraction 

p1 = 0.0, p2 = 0.4 p = 0 p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0 p1 = 0.4, p2 = 0.0 

Wins 19 19 19.5 21.5 22 24 19 

Losses 9 9 8.5 6.5 6 4 9 

 
Table 6: Wilcoxon signed ranks test for pairwise comparisons of the proposed FPAPA with the original FPA 

options for the 28 test functions and d = 10 after 10000·d function evaluations 

Comparison R+ R- T 

Proposed FPAPA versus FPA with p = 0.0 293 104 104 

Proposed FPAPA versus FPA with p = 0.2 308 89 89 

Proposed FPAPA versus FPA with p = 0.4 315 82 82 

Proposed FPAPA versus FPA with p = 0.6 337 70 70 

Proposed FPAPA versus FPA with p = 0.8 352 54 54 

Proposed FPAPA versus FPA with p = 1.0 371 35 35 

Proposed FPAPA versus FPAPA opposing pollinator attraction 329 68 68 
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Table 7: Wilcoxon signed ranks test for pairwise comparisons of the proposed FPAPA with the original FPA 

options for the 28 test functions and d = 10 after 10000·d function evaluations 

Comparison R+ R- T 

Proposed FPAPA versus FPA with p = 0.0 339 67 67 

Proposed FPAPA versus FPA with p = 0.2 291 115 115 

Proposed FPAPA versus FPA with p = 0.4 305 102 102 

Proposed FPAPA versus FPA with p = 0.6 326 81 81 

Proposed FPAPA versus FPA with p = 0.8 323 83 83 

Proposed FPAPA versus FPA with p = 1.0 358 48 48 

Proposed FPAPA versus FPAPA opposing pollinator attraction 292 114 114 

 

In addition to comparing with the original FPA algorithm, the proposed FPAPA is compared 

with three state-of-the art optimization algorithms including the Standard Particle Swarm 

Optimization Algorithm (SPSO-2011) [50], the Global and Local real-coded Genetic 

Algorithm (GL-25) [51], and the Covariance Matrix Adaptation Evolution Strategies (CMA-

ES) [52]. SPSO-2011 represents a major improvement over previous PSO versions with an 

adaptive random topology and rotational invariance being the main advancements. GL-25 was 

developed by Garzia-Martinez et al. in 2008 and it is based on parent-centric real-parameter 

crossover operators to create off-springs. CMA-ES, developed by Hansen and Ostermeier in 

2001, is one of the most successful and cited variants of Evolution Strategies that puts forward 

two useful methods for self-adaptation of the mutation distribution. Furthermore, FPAPA is 

compared with another variant of FPA, namely the Novel Modified FPA (NMFPA), by Fouad 

an Gao [28] that is described in the introduction section of this study and has been found to 

yield superior computational performance when compared with other algorithms and FPA 

variants [28]. 

Tables 8 and 9 show the mean solution errors of 20 independent runs of the afore-described 

optimization algorithms for the 28 CEC’13 test functions after 10000·d function evaluations 

for d =10 and 30 respectively. These results are taken from Fouad and Gao [28] where the 

algorithm settings used are the ones proposed in their original papers. The results of the 

proposed FPAPA are also included in these tables as well as the rankings of the five 

optimization algorithms based on their mean solution errors.  

It can be seen in these tables that the proposed FPAPA is second best for both numbers of 

dimensions with average rankings 2.11 and 2.79 for d = 10 and 30 respectively following the 

NMFPA that exhibits average rankings of 1.43 and 1.61 for the same dimensions. The SPSO-

2011 is the third best with 3.32 average ranking for d = 10 and CMA-ES is the third best for d 

= 30 with average ranking 2.96. 
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The previous results drive to the conclusion that the proposed FPAPA offers a significant 

improvement to the computational performance of the original FPA with only minor 

modifications to its formulation. Furthermore, FPAPA is able to perform better or equal to 

well-established metaheuristic optimization algorithms in literature. There exist in literature 

other FPA variants that seem to demonstrate higher computational performance than FPAPA. 

Therefore, it is worth investigating in the future the combination of FPAPA with other FPA 

variants to achieve even higher numerical efficiency. 
 

Table 8: Mean solution errors and rankings of the proposed FPAPA and the SPSO-2011, GL-25, CMA-ES 

& NMFPA algorithms for the CEC’13 test functions with d = 10 after 10000·d function evaluations 

 Mean errors Rankings 

Function FPAPA SPSO GL-25 CMA-ES NMFPA FPAPA SPSO GL-25 CMA-ES NMFPA 

1 1.00E-08 1.08E+03 1.00E-08 1.00E-08 1.00E-08 1 5 1 1 1 

2 1.00E-08 3.90E+04 4.24E+06 1.00E-08 4.27E+02 1 4 5 1 3 

3 2.11E+03 7.46E+04 3.28E+08 1.55E+01 2.35E+00 3 4 5 2 1 

4 1.00E-08 2.12E+03 1.62E+04 1.00E-08 7.13E+00 1 4 5 1 3 

5 1.00E-08 7.46E+02 1.00E-08 1.00E-08 1.00E-08 1 5 1 1 1 

6 1.00E-08 5.82E+02 2.50E+01 7.35E+00 5.58E-01 1 5 4 3 2 

7 7.81E+00 3.46E+02 2.64E+01 4.26E+02 7.13E-07 2 4 3 5 1 

8 2.04E+01 2.08E+01 2.05E+01 2.03E+01 2.01E+01 3 5 4 2 1 

9 4.71E+00 1.24E+01 5.78E+00 1.24E+01 2.14E+00 2 4 3 4 1 

10 2.72E-02 4.19E+02 8.83E+00 1.74E+02 7.57E-02 1 5 3 4 2 

11 7.46E+00 1.77E+02 9.52E+00 1.33E+02 1.44E+00 2 5 3 4 1 

12 8.21E+00 1.86E+02 2.38E+01 4.00E+02 7.06E+00 2 4 3 5 1 

13 1.16E+01 1.74E+02 2.68E+01 3.43E+02 7.17E+00 2 4 3 5 1 

14 4.84E+02 6.52E+02 6.32E+02 1.61E+03 2.55E+01 2 4 3 5 1 

15 7.33E+02 5.94E+02 1.45E+03 1.74E+03 3.49E+02 3 2 4 5 1 

16 8.88E-01 6.19E-01 1.79E+00 2.37E+01 5.28E-01 3 2 4 5 1 

17 2.12E+01 1.72E+01 2.78E+01 1.07E+03 1.03E+01 3 2 4 5 1 

18 2.44E+01 1.90E+01 4.39E+01 1.01E+03 1.65E+01 3 2 4 5 1 

19 7.37E-01 8.11E-01 1.40E+00 1.12E+00 5.13E-01 2 3 5 4 1 

20 3.11E+00 2.37E+00 3.34E+00 4.05E+00 1.44E+00 3 2 4 5 1 

21 1.35E+02 4.00E+02 4.00E+02 4.00E+02 2.85E+02 1 3 3 3 2 

22 6.69E+02 6.48E+02 8.07E+02 2.29E+03 1.69E+02 3 2 4 5 1 

23 9.20E+02 4.05E+02 1.47E+03 2.17E+03 5.55E+02 3 1 4 5 2 

24 1.32E+02 2.01E+02 2.12E+02 4.63E+02 1.81E+02 1 3 4 5 2 

25 1.94E+02 2.00E+02 2.08E+02 2.53E+02 1.91E+02 2 3 4 5 1 

26 1.10E+02 1.34E+02 1.49E+02 2.73E+02 1.48E+02 1 2 4 5 3 

27 4.05E+02 3.12E+02 3.88E+02 3.62E+02 3.58E+02 5 1 4 3 2 

28 1.70E+02 2.80E+02 3.63E+02 9.03E+02 1.60E+02 2 3 4 5 1 

    
Average 

Rankings: 
 2.11 3.32 3.64 3.86 1.43 
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Table 9: Mean solution errors and rankings of the proposed FPAPA and the SPSO-2011, GL-25, CMA-ES 

& NMFPA algorithms for the CEC’13 test functions with d = 30 after 10000·d function evaluations 

 Mean errors Rankings 

Function FPAPA SPSO GL-25 CMA-ES NMFPA FPAPA SPSO GL-25 CMA-ES NMFPA 

1 1.00E-08 1.28E+03 1.96E-04 1.00E-08 1.00E-08 1 5 4 1 1 

2 2.76E+01 2.45E+05 3.18E+07 1.00E-08 1.26E+04 2 4 5 1 3 

3 8.07E+05 4.46E+07 5.96E+09 1.94E+03 1.70E+05 3 4 5 1 2 

4 1.11E+02 6.23E+03 4.25E+04 1.00E-08 7.88E-01 3 4 5 1 2 

5 3.79E-06 9.62E+02 1.17E-04 1.00E-08 1.00E-08 3 5 4 1 1 

6 1.07E+01 7.76E+02 1.02E+02 1.32E+00 6.59E+00 3 5 4 1 2 

7 9.74E+01 5.03E+02 8.51E+01 1.60E+01 8.04E-01 4 5 3 2 1 

8 2.10E+01 2.12E+01 2.10E+01 2.09E+01 2.08E+01 3 5 4 2 1 

9 2.63E+01 4.77E+01 3.11E+01 4.43E+01 1.55E+01 2 5 3 4 1 

10 6.12E-03 4.76E+02 6.35E+01 1.78E-02 2.90E-01 1 5 4 2 3 

11 6.47E+01 3.80E+02 7.35E+01 1.27E+02 1.55E+01 2 5 3 4 1 

12 1.32E+02 2.87E+02 1.74E+02 6.66E+02 3.51E+01 2 4 3 5 1 

13 2.08E+02 1.94E+02 1.97E+02 2.13E+03 7.21E+01 4 2 3 5 1 

14 2.87E+03 4.80E+03 4.84E+03 5.11E+03 1.35E+03 2 3 4 5 1 

15 3.98E+03 4.31E+03 7.63E+03 5.18E+03 3.27E+03 2 3 5 4 1 

16 2.00E+00 1.41E+00 3.09E+00 1.01E-01 1.78E+00 4 2 5 1 3 

17 1.71E+02 1.26E+02 1.67E+02 3.77E+03 5.15E+01 4 2 3 5 1 

18 1.89E+02 1.07E+02 2.43E+02 4.19E+03 7.72E+01 3 2 4 5 1 

19 9.96E+00 5.77E+00 5.60E+01 3.51E+00 1.86E+00 4 3 5 2 1 

20 1.24E+01 1.07E+01 1.35E+01 1.26E+01 9.70E+00 3 2 5 4 1 

21 2.72E+02 3.18E+02 3.71E+02 2.84E+02 3.28E+02 1 3 5 2 4 

22 3.30E+03 3.85E+03 3.89E+03 7.04E+03 1.07E+03 2 3 4 5 1 

23 4.63E+03 4.19E+03 7.43E+03 6.73E+03 3.39E+03 3 2 5 4 1 

24 2.78E+02 2.28E+02 2.50E+02 9.35E+02 2.31E+02 4 1 3 5 2 

25 2.99E+02 2.62E+02 2.96E+02 2.59E+02 2.63E+02 5 2 4 1 3 

26 2.00E+02 2.31E+02 2.17E+02 4.53E+02 2.00E+02 2 4 3 5 1 

27 1.07E+03 5.78E+02 9.64E+02 5.75E+02 6.32E+02 5 2 4 1 3 

28 3.00E+02 3.00E+02 1.02E+03 9.82E+02 3.00E+02 1 1 5 4 1 

    
Average 

Rankings: 
 2.79 3.32 4.07 2.96 1.61 
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4.2 Structural optimization problems 

 

In this section, the performance of FPAPA is tested against real-world structural optimization 

problems. Two separate structural optimization problems are examined in the following. 

 

4.2.1 Volume optimization of a cantilever beam 

 

A stepped cantilever beam is considered herein carrying a concentrated load P = 50000 N at 

its free end as shown in Fig. 9 [53]. The objective is to minimize the volume of the beam while 

keeping bending stresses below the permissible limit of 14000 N/cm2 and the displacement at 

the free end below 2.7 cm. The ten design variables (d = 10) of the problem are the widths bi 

and heights hi (i = 1 to 5) of the rectangular cross sections of the five beam segments with 

length l = 500 cm. Furthermore, the aspect ratio between the cross sections heights and widths 

cannot exceed the value of 20. It is also considered that sections widths range between 1 cm ≤ 

bi ≤ 5 cm and heights 30 cm ≤ hi ≤ 65 cm (i = 1 to 5). The elastic modulus of the beam is E = 

200 GPa. 

 

 
Fig. 9: Stepped cantilever beam. 

 

For this optimization problem, the PSO and GA algorithms are applied in addition to the 

original FPA algorithm with switch probability values of p = 0 and 0.4 in accordance with the 

findings of §4.1. Furthermore, the proposed FPAPA is applied with one arrangement for the 

switch probabilities supporting the pollinator attraction rule and another one opposing it. 

For each algorithm, 50 independent runs are conducted independently for three different values 

of function evaluations that are 100·d, 300·d and 500·d, respectively. Table 10 presents the 

mean values and standard deviations of the minimum beam volume values obtained by the 

different solutions. It can be seen that for all function evaluation values the proposed algorithm 
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solution provides the best mean beam volumes and standard deviations. In the last row of the 

table, the minimum volumes out of all 50 runs after 500·d evaluations are also presented. It is 

observed that the proposed solution yields again the best result with a value of 63111 cm3, 

which approaches very closely to the optimum value of 63110 cm3 reported in [53]. The PSO 

algorithm is characterised by significant variability and in most of the cases returns the worst 

mean beam volumes. Among the original FPA solutions, the p = 0 option yields the best results 

outperforming also the FPAPA algorithm opposing the pollinator attraction rule. 

 

Table 10: Minimum beam volumes (cm3) 

 PSO GA 
Original FPA 

 p = 0 

Original FPA  

p = 0.4 

Proposed FPAPA   

p1 = 0 & p2 = 0.4 

FPAPA  opposing 

pollinator attraction             

p1 = 0.4 & p2 = 0 

 MaxFES = 100 · d 

Mean 6.4336E+04 6.4733E+04 6.3801E+04 6.4409E+04 6.3773E+04 6.4346E+04 

Standard 

Deviation 
2.0302E+03 6.2398E+02 3.0836E+02 8.3313E+02 2.6377E+02 5.3064E+02 

 MaxFES = 300 · d 

Mean 6.3477E+04 6.3166E+04 6.3139E+04 6.3166E+04 6.3136E+04 6.3155E+04 

Standard 

Deviation 
1.0456E+03 2.0389E+01 2.3375E+01 2.5401E+01 1.2989E+01 1.5431E+01 

 MaxFES = 500 · d 

Mean 6.3403E+04 6.3125E+04 6.3120E+04 6.3132E+04 6.3120E+04 6.3125E+04 

Standard 

Deviation 
1.0130E+03 7.7142E+00 5.2836E+00 1.5689E+01 4.9821E+00 8.3286E+00 

Minimum 6.3115E+04 6.3114E+04 6.3113E+04 6.3114E+04 6.3111E+04 6.3114E+04 

 

4.2.2 Cost optimization of an earthquake-resistant reinforced concrete frame 

 

In this section, the proposed FPAPA variant is applied to the seismic design of a three-storey 

two-bay (Fig. 10) reinforced concrete frame. The design constraints are set according to 

Eurocode 2 (EC2) [54] and Eurocode 8 (EC8) [55] structural design codes for Ductility Class 

Low (DCL). The frame is part of a building of ordinary importance that rests on soil class B. 

Uniform distributed loads of 22.5 kN/m act along beam members of all storeys and point loads 

of 67.5 kN and 135 kN are applied at the exterior and interior joints, respectively, for the quasi-

permanent load combination. A design peak ground acceleration value of 0.40 g is assumed. 

Concrete class C25/30 and reinforcing steel grade B500C are used.  

The objective of the design is to minimize the material cost which is the sum of the costs of 

concrete, reinforcing steel and formwork. The following unit prices are assumed for these 
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materials: concrete 101 (€ / m3), reinforcing steel 1.07 (€ / kg) and formwork 15.7 (€ / m2). 

Eight (d = 8) independent design variables are used in this problem, assuming symmetric 

concrete frame configuration. These are the section heights of the central and exterior square 

columns, respectively, as well as the section heights and widths of the rectangular beams of 

the three storeys. All cross-sectional dimensions range between 0.3 m and 1 m. For 

construction simplicity, steel reinforcement is assumed to be uniform along column and beam 

members. More information on the assumptions and design methodology of this frame can be 

found in Mergos [56]. 

 

 

 

 

Fig. 10: Three-storey two-bay reinforced concrete frame [56] 

 

Table 11: Material costs of the reinforced concrete frame. 
Algorithm Minimum Costs (€) 

PSO 6792.91 ± 46.28 (60%) 

GA 6765.45 ± 22.07 (100%) 

Original FPA (p = 0) 6760.88 ± 26.21 (80%) 

Original FPA (p = 0.4) 6805.49 ± 32.89 (80%) 

Proposed FPAPA 

p1 = 0 & p2 = 0.4 
6752.32 ± 16.29 (100%) 

FPAPA opposing 

pollinator attraction   

 p1 = 0.4 & p2 = 0           

6785.91 ± 29.65 (90%) 

 

Table 11 presents the statistical results of the minimum material costs obtained by 10 

independent runs for each algorithm solution and 800 (= 100·d) function evaluations. The costs 

are provided in the form: mean ± standard deviation (success rate). Successful are the designs 

satisfying all design constraints of EC2 and EC8. It is evident that the proposed FPAPA 

outperforms the other solutions as it exhibits the minimum mean cost (€6752.32) and standard 
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deviation (€16.29). Furthermore, it always drives to successful design solutions. The least 

satisfying performance is obtained by the PSO algorithm and the FPA algorithm for p = 0.4 

considering both costs and success rates. The relatively poor performance of FPAPA opposing 

the pollinator attraction rule is also observed. 

 

5 Conclusions 

 

In this paper, a modified version of the Flower Pollination Algorithm is presented, namely 

Flower Pollination Algorithm with Pollinator Attraction (FPAPA), that accounts for the 

pollinator attraction evolution mechanism. The pollinator attraction mechanism reflects the 

observed natural tendency of flower species to evolve in order to attract pollinators by 

nutritious rewards and attractive shapes, colours and scents. Thereby, it is anticipated that the 

fitter flowers, that develop the most efficient mechanisms to entice pollinators, will be more 

likely to achieve pollen transfer by biotic pollination. 

To model this expectation in FPAPA, the switch probability p that controls the pollination 

mechanism (biotic or abiotic) in FPA is not taken as constant for all flowers of the population, 

but it is varied appropriately in the population so that fitter flowers are provided with higher 

probabilities of conducting biotic pollination. 

The proposed FPAPA has been validated against the set of 28 benchmark functions defined in 

IEEE-CEC’13 for real-parameter single-objective optimization problems as well as structural 

optimization problems. It is found that the proposed FPAPA, whilst maintaining almost the 

same level of simplicity as the original FPA code, outperforms significantly the original FPA. 

Furthermore, it offers superior performance when compared with other state-of-the-art 

metaheuristic algorithms.  

Further research will focus on parameter tuning of the scheme of the variations of the flower 

probabilities to conduct biotic pollination based on their objective function as well as exploring 

additional schemes that may offer higher computational performance. Furthermore, the 

combination of FPAPA with other modified and hybridized versions of FPA will be examined 

to further improve its performance for different optimization problems in engineering and 

industries. 
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