
              

City, University of London Institutional Repository

Citation: Das, S., Moore, T., Wong, W-K, Stumpf, S., Oberst, I., McIntosh, K. & Burnett, M.

(2013). End-user feature labeling: Supervised and semi-supervised approaches based on 
locally-weighted logistic regression. Artificial Intelligence, 204, pp. 56-74. doi: 
10.1016/j.artint.2013.08.003 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/2741/

Link to published version: https://doi.org/10.1016/j.artint.2013.08.003

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


 
 

End-User Feature Labeling:  

Supervised and Semi-supervised Approaches Based on 

Locally-Weighted Logistic Regression
1
 

 

Shubhomoy Das
†*

, Travis Moore
†
, Weng-Keen Wong

†
,  

Simone Stumpf
‡
, Ian Oberst

†
, Kevin McIntosh

†
, Margaret Burnett

†
 

†
Oregon State University, OR, USA 

‡
City University London, UK 

 
__________________________________________________________________________________ 

Abstract 

 

When intelligent interfaces, such as intelligent desktop assistants, email classifiers, 

and recommender systems, customize themselves to a particular end user, such 

customizations can decrease productivity and increase frustration due to inaccurate 

predictions—especially in early stages when training data is limited. The end user can 

improve the learning algorithm by tediously labeling a substantial amount of additional 

training data, but this takes time and is too ad hoc to target a particular area of 

inaccuracy. To solve this problem, we propose new supervised and semi-supervised 

learning algorithms based on locally weighted logistic regression for feature labeling by 

end users, enabling them to point out which features are important for a class, rather than 

provide new training instances.  

We first evaluate our algorithms against other feature labeling algorithms under 

idealized conditions using feature labels generated by an oracle. In addition, another  of 

our contributions is an evaluation of feature labeling algorithms under real world 

conditions using feature labels harvested from actual end users in our user study. Our 

user study is the first statistical user study for feature labeling involving a large number 

of end users (43 participants), all of whom have no background in machine learning.  

Our supervised and semi-supervised algorithms were among the best performers 

when compared to other feature labeling algorithms in the idealized setting and they are 

also robust to poor quality feature labels provided by ordinary end users in our study. We 

also perform an analysis to investigate the relative gains of incorporating the different 

sources of knowledge available in the labeled training set, the feature labels and the 

unlabeled data. Together, our results strongly suggest that feature labeling by end users is 

both viable and effective for allowing end users to improve the learning algorithm behind 

their customized applications.  

                                                      

 

 

* Corresponding author 

E-mail address: dassh@eecs.oregonstate.edu (Shubhomoy Das, 1148 Kelley Engineering 

Center, Corvallis, OR 97331-5501, USA, Ph: 1-541-908-6949). 

1
 Early versions of portions of this work appeared in [36, 37] 

mailto:wong@eecs.oregonstate.edu


S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

© 2012 Elsevier B.V. All rights reserved. 

Keywords: Feature labeling, locally weighted logistic regression, machine learning, 

intelligent interfaces, semi-supervised learning 

__________________________________________________________________________________________ 

1 Introduction 

Many applications, powered by machine learning, customize themselves to a 

particular end user’s preferences. Such applications include email classifiers, 

recommender systems, intelligent desktop assistants, and other intelligent user 

interfaces. To accomplish this customization, the application must learn from the 

particular end user—which obviously cannot happen until after the system is 

deployed and training data from that specific end user is obtained. 

Customizing to the end user’s preferences is challenging, especially when 

there is limited training data, such as when the application is first deployed. The 

end user could select additional training instances to label, or the learning 

algorithm could ask the user to provide class labels for strategically chosen 

instances that would most inform the learning algorithm, as is done in traditional 

active learning [7, 31]. Labeling instances, however, has its drawbacks. First, 

labeling data instances is a tedious process and a substantial number of instances 

must often be labeled before a change to the learning algorithm is noticeable to 

an end user. Second, in a streaming data setting, such as news filtering or email 

classification, active learning is not applicable as the system has no control over 

which data instance arrives next. Finally, if a rare group of instances is 

incorrectly classified, the learning algorithm cannot be “corrected” until the user 

labels instances with this rare combination of attributes. Since this group is rare, 

the cost, in terms of time or effort, to acquire such data instances could be very 

expensive [1].  

To overcome these problems, in this paper we investigate the possibility of 

end-user feature labeling [29, 10, 33, 1], namely allowing end users to label 

features instead of instances. Here, the term feature refers to an attribute of a data 

instance that is useful for predicting the class label; for example, rather than 

labeling entire documents, an end user could point out which words (features) in 

the document are most indicative of certain class labels. Figure 1 shows this 

approach in our formative research’s user interface [15], which allowed HCI 

 

Fig. 1. The user is pointing out that the feature “let me look” is highly 

indicative of the class “Seeking Info.” (This UI inspired the development of 

the algorithms we present in this paper.) 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

researchers to point out words that were predictive of that transcript segment’s 

label.  Raghavan et al. [28, 29] found that labeling a feature took humans roughly 

a fifth of the time as a document and the benefits of feature labeling were greatest 

when the training set sizes were small. However, their work did not evaluate 

feature labeling in a statistical user study involving a large number of actual end 

users. 

Allowing end users, who are not likely to be educated in machine learning, to 

use feature labeling introduces new challenges to learning algorithms. End users’ 

choices of features may be noisy, inconsistent, and might vary greatly in ability 

to improve the predictive power of the machine learning algorithm. This paper 

therefore investigates algorithms able to stand up to these challenges.  

Our research contributions are as follows. First, we present a new supervised 

learning algorithm for taking end-user feature labels into account, based on 

Locally Weighted Logistic Regression. In order to evaluate our feature labeling 

algorithm, we perform an empirical comparison on multiple data sets under ideal 

conditions, using feature labels obtained from an oracle, and under real-world 

conditions for one particular dataset, using feature labels harvested from actual 

end users. For the latter study, we present a user study in which ordinary end 

users, unfamiliar with machine learning, chose the feature labels themselves—

with no restrictions as to what they could select as features. Our algorithm was 

among the best performing feature labeling algorithms in the idealized setting 

and it was also robust to poor quality feature labels provided by ordinary end 

users in our study.  

Next, we present a semi-supervised version of our feature labeling algorithm 

which assumes that an unlabeled set of instances is present during training. The 

semi-supervised setting for feature labeling incorporates knowledge from three 

sources: a small labeled training set, the feature labels provided by the end user 

and information from the implicit structure of the unlabeled data. We evaluate 

our semi-supervised algorithm using both oracle feature labels and end-user 

feature labels from the user study mentioned above. Our feature labeling 

algorithm is one of the best performing algorithms with oracle feature labels and 

the best performer with lower quality feature labels from end users. With our 

results, we can compare the relative gains using the different sources of 

knowledge available in the training set, the feature labels, and the unlabeled data. 

Our analysis shows that incorporating unlabeled data during learning sometimes 

produces worse performance than just using a purely supervised learning 

approach, both with and without feature labeling. However, adding the 

information from feature labels consistently improves performance over not 

including this information, both in the supervised and semi-supervised settings.  

Together, our results strongly suggest that feature labeling by end users is 

both a viable and an effective solution for allowing end users to improve the 

learning algorithm behind their customized user interface.  



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

2 Related Work 

We divide the approaches for feature labeling into supervised and semi-

supervised feature labeling algorithms. Supervised feature labeling algorithms 

require only a training set of labeled instances. On the other hand, semi-

supervised feature labeling requires both a labeled training set as well as a pool 

of unlabeled data, which is assumed to be relatively easy to obtain. 

Two of the SVM-based methods presented by Raghavan and Allen [29] 

involved supervised feature labeling. Their Method 1 scaled features indicated as 

relevant by the user by a constant a and the rest of the features by a constant d 

(where a ≥ d). In Method 2, the user indicated that the jth feature was relevant for 

a class label l. For each feature-label pair, Method 2 created a pseudo-document 

consisting of a value r in index j, zeroes elsewhere and a class label of l. The r 

parameter controlled the influence of the support vectors of the pseudo-

documents on the separating hyperplane.   

Another group of supervised feature labeling algorithms were based on 

multinomial naïve Bayes. The pooling multinomials approach [25] combined 

parameters from a multinomial naïve Bayes trained on labeled instances and 

another derived from background knowledge, which in this case were feature 

labels. This approach, however, was restricted to Boolean class labels. Settles 

[32] proposed another method based on naïve Bayes in which he changed the 

priors for labeled features. If a feature was labeled with a class, the 

corresponding parameter was given a Dirichlet prior of (   ), where   was a 

tunable parameter, while all unlabeled features were given a uniform Dirichlet 

prior of 1. 

The majority of the work in feature labeling took a semi-supervised approach. 

A common strategy employed by several methods was to use the user feedback 

to label the unlabeled data and then incorporate these soft labels into training.  

Method 3 of [29], following the approach of [38], associated slack variables with 

the soft labeled data to influence the position of the margin for an SVM. The user 

co-training algorithm of Stumpf et al. [35] treated the user’s feature labels like a 

classifier and combined it in the co-training framework [4] with naïve Bayes. The 

MNB approach by Settles could be extended to a semi-supervised approach by 

soft-labeling the unlabeled data and then re-estimating the MNB parameters [11]. 

Finally, the approach by Liu et al. [20] modified the EM algorithm to incorporate 

labels produced by “representative words” for each class selected by the user. 

Another common approach to semi-supervised feature labeling was to treat 

the feature labels as constraints and bias the learned model to respect these 

constraints. Algorithms falling into this framework used an objective function 

during learning that consisted of the maximum likelihood of the training data 

plus an additional term that penalized the model when it failed to satisfy certain 

constraints. This framework was developed to address a more general class of 

problems rather than just feature labeling, and this framework has been used for 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

problems as diverse as multi-view learning [11] and transfer learning [22]. 

Examples of these approaches include Constraint Driven Learning [5], 

Generalized Expectation [22, 10], Learning with Measurements [19] and 

Posterior Regularization [12, 11]. Ganchev et al. [11] described the relationships 

between these approaches and the subtle differences in the approximations these 

algorithms employed for inference.  

 We briefly describe Generalized Expectation (GE) in more detail since it was 

specifically applied to feature labeling [10] and we will be using it in our 

experiments. GE is a framework for incorporating preferences about variable 

expectations during parameter estimation. We can describe GE as trying to 

maximize a score function S between a model’s expectation of      and a target 

value  ̃, as shown below: 

 

    [    ]  ̃   
 

For instance, in Maximum Likelihood Estimation, the score function is the 

negative cross entropy and the target value is the empirical distribution on the 

training data. We can fit our algorithm into the GE framework by using the 

empirical distribution as the target value and a weighted negative cross entropy 

as the score function. Our approach is very different from prior work with GE 

which incorporates feature labels by changing the target value, rather than our 

approach of changing the score function. 

Aside from supervised and semi-supervised feature labeling, other work in 

feature labeling investigated dual supervision [33], which is a term used to 

describe the process of labeling both instances and features. Raghavan and Allen 

[29] combined feature labeling with uncertainty sampling for instance labeling in 

their tandem learning approach. Other dual supervision approaches include a 

graph-based transduction algorithm [33] and an approach using pooled 

multinomials [2]. The focus of these last two papers was on active learning for 

dual supervision, which chose instances and features for labeling. Our work 

differs in that it is the end users, not the active learning algorithm, that choose the 

features for labeling. Furthermore, we are investigating the effects of labeling 

only features, not instances, especially with an eye to the initial training period 

when training data is limited.  

Attenberg et al. [1] investigated feature labeling for budget-sensitive learning 

under extreme class skew and found that it was a promising alternative for data 

acquisition. When humans had difficulty finding instances from the minority 

class, Attenberg et al. suggested that a less costly form of data acquisition would 

be for humans to describe distinguishing features of the minority class. Our work 

is not specifically intended for datasets with extreme class skew but for more 

balanced datasets. Nevertheless, both our work and the work by Attenberg et al. 

point to feature labeling being extremely beneficial in either setting. 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

All of the above methods dealt with labeling existing features. Roth and Small 

[30] allowed users to create new features by replacing features corresponding to 

semantically related words with a Semantically Related Word List (SWRL) 

feature. Their focus, however, was on creating SWRLs to improve classifiers 

rather than feature labeling. In our user study, we allow end users to construct 

new features and label them. 

Finally, most of the prior work in feature labeling evaluated algorithms under 

ideal conditions, such as feature labels obtained from an oracle [2, 33].  Some 

prior work [28, 32] has evaluated feature labeling algorithms using both oracle 

feature labels and labels obtained from user experiments. However, these 

experiments were on a small scale with only a handful of users and a subset of 

these users were knowledgeable about machine learning. In contrast, we perform 

a large scale statistical study involving 43 participants, all of whom have no 

background in machine learning or human computer interaction. These non-

expert end-users can introduce noisy and inconsistent feature labels. Our study 

investigates both the use of ideal oracle feature labels and feature labels provided 

by real world end users. 

 

3 Theory / Calculation 

Our approach, which we call LWLR-FL, incorporates feature labeling into 

Locally Weighted Logistic Regression (LWLR). LWLR-SS-FL then extends 

LWLR-FL further for semi-supervised learning. To provide context for LWLR-

FL, we first describe (global) Logistic Regression and LWLR. 

3.1 Background 

Logistic Regression (LR) [13] is a well-known method in statistics for 

predicting a discrete class label yi given a data instance xi=(xi
1
,…,xi

D
) with D 

features; we refer to the dth feature, without reference to a specific data instance, 

using the superscript notation i.e. x
d
. LR models the conditional probability 

P(yi|xi) by fitting a logistic function to the training data. Figure 2 (left) illustrates 

the s-shaped logistic function fit to training data from two classes (squares and 

circles). Notice that the data is perfectly separable, in the sense that data to the 

left of the bend in the “S” is classified as a square and data to the right as a circle.  

The conditional probability for an M-class problem is: 

 

  (        )  
   (  

  ∑   
   

  
   )

∑    (  
  ∑   

   
  

   ) 
   

 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

In the equation above, the notation cj refers to the jth class. The parameters  

= (1, …, M) are computed by maximizing the conditional log likelihood, which 

cannot be solved in closed form but must be done numerically. 

LR assumes that the parameters  are the same across all data points. 

Although this approach works reasonably well when the classes are linearly 

separable, it fails when the actual decision boundaries are more complex and 

when the data is noisy [9], which is often the case with real-world data. For 

instance, Figure 2 (top right) illustrates a problematic case for LR when the data 

is not cleanly separable by the logistic function. Here, the s-shaped logistic 

function fits the data poorly, resulting in the two squares on the right to be 

classified as circles. 

One solution for dealing with the difficult case in Figure 2 is to use Locally 

Weighted Logistic Regression (LWLR) [6, 9], in which the logistic function is fit 

locally to a small neighborhood around a query point xq to be classified. Figure 2 

(bottom) illustrates LWLR fit to the data points. Intuitively, LWLR gives more 

weight to training points that are “closer” to the query point than those farther 

away. A common function used to determine the closeness of text documents is 

cosine similarity. Since we want the distance to increase when a training instance 

   

 

Fig. 2. (top left) The Logistic Function fit to two classes: squares (y=0) and 

circles (y=1). (top right) A non-separable case where (global) Logistic 

Regression will have difficulty separating the circle class (y=1) from the 

square class (y=0), resulting in a poor fit. Note that the square data points to 

the right will be classified as circles. (bottom) A non-separable case where 

Locally Weighted Logistic Regression will be effective in separating the 

circle class from the square class. 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

xi is less similar to the query instance xq, we use cosim(xq,xi) = 1 – cos(xq,xi) as 

the baseline distance function for LWLR. In Section 3.2, we will describe how 

we extend this reweighting of training instances to perform feature labeling.  

The log-likelihood of data in LWLR is computed with respect to the query 

instance xq as 

        ∑  (     )   (         )
 
      (1) 

 

where, 

 (     )     ( 
 (     )

 

  )    (2) 

 

The weight w(xq, xi) is a kernel function which decays with the distance f(xq, xi). 

The parameter k is the kernel width, which smoothes out more noise as the value 

of k increases. As a consequence of having to fit the logistic function locally to a 

query point, LWLR is considered a lazy algorithm and we now need to train the 

classifier each time it receives a query point. However, in many cases, we gain a 

much higher accuracy with this tradeoff in efficiency. 

Maximizing lw() with respect to the parameters   cannot be done in closed 

form. In our experiments, we solve it using L-BFGS [26] for which we need to 

compute the partial derivative of lw() with respect to the   parameters.  The 

partial derivative below computes the gradient for the log-likelihood. In the 

formula below, the expression [yi =cj] takes the value of 1 if the expression in the 

brackets is true, and 0 otherwise. 

 
 

   
        

∑ (     )(  
 [     ]  

  
 

     
   (  

  ∑   
  
  
  

 

    

))

 

   

 

(3) 

where,  

      ∑   (  
  ∑   

  
  
  

 

    

)

 

   

 

 

3.2 Adding Feature Labeling to Locally Weighted Logistic Regression  

(LWLR-FL) 

Our approach, named LWLR-FL, incorporates feature labeling into LWLR. 

Our decision to modify LWLR for feature labeling is due to LWLR’s ability to 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

weight training instances differently, rather than its ability to handle non-linear 

decision boundaries. Intuitively, we use feature labels provided by the end user to 

define the local neighborhood surrounding the query point. Training instances 

that are more similar to the query point according to the feature label information 

are considered to be closer and hence assigned higher weight. We modify the 

baseline cosim(xq, xi) distance function to incorporate feature labels. Our 

modified distance function between xq and xi has two distinct components – one 

based only on their features (satisfied by the baseline distance cosim(xq, xi)), and 

the other based on class labels. Since xq does not have an associated class label, 

we use the class label of xi and the feature label information for computing the 

label similarity.  

The label similarity between xq and xi is based on the difference between the 

class-relevant and class-irrelevant feature contributions. A class-relevant feature 

is a feature that is labeled with the class label yi of instance xi as specified by the 

feature labels. The class-relevant feature contribution is the sum of the values of 

all class-relevant features in xq, where xq is represented as an L2-normalized 

TFIDF vector. Similarly, a class-irrelevant feature is a feature that is labeled 

with a class label other than yi. The class-irrelevant feature contribution refers to 

the sum of values of all class-irrelevant features in xq.  

We now define the user feature label matrix R as: 

 

 [   ]  [
    

         
   

    
         

] 

 

where rj(x
d
) = 1 if the dth feature is labeled to be important for class label cj and 0 

otherwise. We will denote the jth column of R by R(j). Let U be a (D × 1) 

column vector in which the ith entry is 1 if the ith feature has been marked 

important in any class. All other entries are zero. 

On the basis of the above definitions, the difference between the class-

relevant and class-irrelevant feature weights is computed as: 

 

     
    (

(       )
 
  

   
) 

 

The term R(yi)
T
 xq is sum of class-relevant feature values for class yi and (U – 

R(yi))
T
 xq is the sum of class-irrelevant feature values. Since we have (M-1) class 

labels excluding yi, we divide the class-irrelevant feature contributions by (M – 1) 

to appropriately balance the difference. 

We want the distance between similar instances to be smaller. Hence, the 

label similarity component of the distance function is defined as: 

 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

       
    (

(       )
 
  

   
) 

 

The complete distance function now becomes: 

 

 (     )       (     ) [       
    (

(       )
 
  

   
)] 

 
 

The above function could turn out negative in some cases. Hence, we introduce a 

max term in the weight computation to handle this scenario. 

 (     )     ( 
   (   (     ))

 

  )    (4) 

 

Putting these pieces together, we now have a distance function that incorporates 

the feature labels into LWLR. 

Since LWLR-FL and LWLR are lazy algorithms, meaning that they do not 

perform training until a query is made, each query has a computational 

complexity of O(n), where n is the number of instances in the training set. 

Although the computational cost can be expensive with a large training set, the 

LWLR-FL algorithm is intended to be applied to small training sets during the 

initial period when a learning algorithm is first deployed. With small training 

sets, such as those in our experiments, each query only takes milliseconds on a 

standard desktop computer, making the LWLR-FL algorithm viable in an 

interactive setting. 

3.3 Extending LWLR-FL to Semi-supervised Learning 

The notion of locality around an unlabeled query instance xq (in LWLR and 

LWLR-FL) has so far been based on a similarity measure between only labeled 

instances and xq. We now extend the similarity measure to include information 

from other unlabeled instances as well using label diffusion [39, 41]. We refer to 

our semi-supervised algorithm which uses no feature labeling information as 

LWLR-SS and the one using feature labeling information as LWLR-SS-FL. 

We first describe label diffusion without feature labeling, as it is commonly 

used in semi-supervised learning. All instances (labeled and unlabeled) are 

represented as points in the feature space. We build a connected graph by joining 

each instance to its #nn nearest neighbors with undirected edges. The labeled 

training instances may now be considered as sources from which the labels 

propagate to unlabeled instances along the edges. There are several techniques 

for label propagation – one of which ([39]) is by an iterative Markov process 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

until a stationary state is reached. At this stationary state we have at a pairwise 

similarity matrix   which takes into account the distance the labels had to diffuse 

through rather than just the Euclidean distances. 

Let   be the set of unlabeled instances,   be the set of labeled instances, and 

  be the total number of instances (|      ). Let  [   ] be an initial affinity 

matrix, prior to label diffusion, that captures the similarity between two data 

instances. When    ,        otherwise for    , LWLR-SS uses the 

following similarity measure between any two instances xi and xj: 

       ( 
            

 

  ). 

 

Define  [   ] as a diagonal matrix where     ∑      and let   

           . The matrix  [   ]           will contain all pairwise 

similarities when label diffusion reaches the stationary state. Here the parameter 

        controls the rate of label propagation and  [   ] is an identity matrix. 

We can consider   as being the distance matrix defined within a transformed 

space (referred to as the manifold space.) 

The likelihood function for the query instance xq for LWLR-SS is now 

modified to be       ∑       (         )
 
    where we have replaced 

 (     ) by     in Eq. (1) and Eq. (3). 

The LWLR-SS-FL algorithm incorporates feature labeling into LWLR-SS by 

using the following similarity measure: 

 ̂   

{
 
 
 

 
 
 
   ( 

   (   (     ))
 

  
)                             

                        

   ( 
            

 

  
)            

 

 

Apart from this modification to the similarity measure, the LWLR-SS-FL 

algorithm is identical to the LWLR-SS algorithm.  

The algorithm for the semi-supervised learning can be summarized in the 

following steps. 

 

Algorithm 3.1: Semi-supervised LWLR-FL (LWLR-SS-FL) 

1. Setup matrices  ̂     as defined above. 

2. Compute             

3. Normalize all values of   into range [0,1] by dividing row    by the 

diagonal element    . Since the diagonal elements are self-similarities, 

these are the highest values in the corresponding rows and columns. 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

4. For each unlabeled instance     , train a locally weighted logistic 

regression classifier with instance weights set to normalized    , where 

     and classify   . 

4 Material and Methods 

To evaluate the LWLR-FL and LWLR-SS-FL algorithms, we applied them to 

six real-world text data sets, with two kinds of studies. First, to avoid the 

prohibitive expense of performing a separate user study on each data set, we 

followed the usual machine learning convention [29, 33], and simulated end-user 

feature labeling on multiple data sets using a feature label oracle. Second, we 

then performed a study with real users on one particular data set to investigate the 

effectiveness of using feature labels from end users. 

4.1 Oracle Study 

In our oracle-based experiments, we used six common text classification 

datasets: 20 Newsgroups [16], the Modapte split of the Reuters dataset [17], the 

Reuters Corpus Volume 1 (RCV1) dataset [18], WebKb [8], the Industry Sector 

dataset [24], and the Movie Review dataset [27].  As a pre-processing step, the 

text documents were converted into TF-IDF representation then L2-normalized. 

We used a vocabulary consisting of unigrams with stopwords removed. 

Dataset Number of 

instances 
Classes used 

20 Newsgroups  2750 comp.sys.ibm.pc.hardware(953), 

misc.forsale(759), sci.med(557), and 

sci.space(481). 

Modapte  1100 earn(300), acq(300), 

negative_topic(250), and money-fx(250) 

RCV1  6300 C15(1260), CCAT(1260), ECAT(1260), 

GCAT(1260), and MCAT(1260) 

WebKb  3695 Course(930), faculty(1124), and 

student(1641) 

Industry Sectors 3311 basic.materials(950), energy(355), 

financial(290), healthcare(400), 

technology(500), transportation(515), 

and utilities(301) 

Movie Review  2000 pos(1000) and neg(1000) 

Table 1.  The classes of the data sets used in the oracle study, along with the 

number of instances in each class shown in parentheses. 

 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

Table 1 summarizes the number of instances and the classes used from each 

of these datasets. Class imbalance, however, can be a problem in some of these 

datasets. For instance, in WebKb, the smallest class is approximately 1/16
th
 the 

size of the largest class. In order to avoid class imbalance issues, we chose the 

largest classes with roughly the same number of data instances in each class and 

avoided classes with an extremely small number of data instances.   

For 20 Newsgroups, we chose four classes of newsgroups that end users in 

our user study could understand easily without the need for specialized 

knowledge. Since we would also present articles from these newsgroups to end 

users in our user study (Section 4.2), we wanted to preserve the topical coherence 

of articles by choosing articles that fell within a relatively short date range that 

included a large number of articles from these newsgroups. As a result, we chose 

2750 articles from these four newsgroups within the date range April 1, 1993-

April 23, 1993. 

4.1.1 Oracle Study: Supervised Learning 

We compared LWLR-FL against three SVM-based algorithms from [29], 

which are competitive supervised feature labeling methods. Specifically, these 

SVM-based algorithms are Method 1, Method 2 and a combination of both 

Methods 1 and 2.  We abbreviate these variants as SVM-M1, SVM-M2, and 

SVM-M1M2 respectively. For these SVM-based methods, we tried linear, RBF 

and polynomial kernels and found the linear kernel to give the best accuracy. As 

a result, we only report SVM results with linear kernels. 

In addition, we compared LWLR-FL against the Multinomial Naïve Bayes 

algorithm from [32]. Since all but one of the datasets used in our experiments 

were multi-class, we did not evaluate against the pooling multinomials approach 

[25] which was specifically for binary class data. We refer to the MNB-based 

algorithm as MNB/Priors.  

Since we were interested in the benefits due solely to feature labeling, we did 

not compare against methods such as Tandem Learning [29] and dual supervision 

[2, 33] which allow users to label both features and data instances after the 

algorithm has been trained. Other techniques for feature labeling are semi-

supervised methods, which leverage information from a pool of unlabeled data in 

addition to the information in feature labels. We will compare the semi-

supervised version of LWLR-FL against semi-supervised methods in Section 

4.1.2. 

To simulate end users for each dataset, the feature oracle selected the ten most 

predictive features for each class. This was done by computing the multi-class 

information gain for each feature over the entire corpus, and then assigning its 

class label based on the most frequent class in which it appeared. We then picked 

the top information gain features for each class. This resulted in 40, 40, 50, 70, 

30, and 20 oracle feature labels for 20 Newsgroups, Modapte, RCV1, Industry 

Sectors, WebKb, and Movie Review respectively. We experimented with adding 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

one oracle feature label per class, two oracle feature labels per class, and so on 

until a total of ten per class were added. These oracle feature labels were added in 

the order of highest information gain.  Therefore the oracle study provides an 

optimistic estimate on the potential gains of using these feature labeling 

algorithms by providing enough ideal feature labels to benefit the algorithm and 

by carefully tuning the parameters of the feature labeling algorithms over a large 

validation set. 

Each dataset was split into training, validation and testing sets. Since past 

work [29] has shown that feature labeling is most effective when the training set 

sizes are small, we created training sets consisting of six instances per class. 

Most of our experiments dealt with a multiclass classification problem with 

between four and seven classes (rather than binary classification as in [29]), so 

the total training set sizes at six per class were 24 for 20 Newsgroups, 24 for the 

Modapte split, 30 for RCV1, 42 for Industry Sectors, 18 for WebKb, and 12 for 

the binary Movie Review dataset. The training set consisted of an equal number 

of data instances from each class in order to avoid biases due to class imbalance. 

The validation set, which was used to tune algorithm parameters, was composed 

of 100 data points for all datasets. All validation set were equally distributed 

among all the classes. For all datasets, we created 30 different random splits for 

training, validation and testing. The results were averaged over these 30 splits.  

4.1.2 Oracle Study: Semi-supervised Learning 

In order to evaluate the semi-supervised learning algorithms, which assume a 

pool of unlabeled data instances is available during training, we used the same 6 

datasets as those used for supervised learning as well as the same oracle feature 

labels. Furthermore, we used the same training/validation/test splits, but unlike in 

supervised learning, we made the unlabeled data instances from the test set 

available during training. We used the same oracle feature labels from the 

previous section and present results when 10 oracle feature labels per class were 

provided to the semi-supervised algorithms. 

 We compared LWLR-SS-FL against SVM-M3, GE, and MNB/Priors+EM, 

which are representative algorithms from the two general strategies used for 

semi-supervised feature labeling. For the SVM-based methods, we experimented 

with different combinations of Method 1 and Method 2 with Method 3, but found 

that SVM-M3 worked the best. To avoid clutter, our results only show the results 

from SVM-M3. We chose GE because it was specifically used for feature 

labeling in [10] and because the GE code was readily available in the Mallet 

package [23]. GE has also been shown to perform better empirically than other 

algorithms (eg. learning with measurements) with small training data sets [19], 

which was our particular problem setting. 

For LWLR-SS-FL, as suggested in [39], we set the rate parameter α to 0.99. 

We did not tune the k parameter over the validation set due to the computational 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

expense of tuning LWLR-SS-FL, but set   √     for all datasets. This value 

was determined empirically and was found to give good results. The number of 

nearest neighbors was fixed to 100 for all datasets. 

We used GE with Schapire distributions as in Druck et al. [10] where the 

majority class was assigned a weight 0.9. The Gaussian prior in GE was tuned 

within the range of values from 0.2 to 1.0 at steps of 0.2 using the validation set. 

The GE objective function can be modified to weight the GE term and the 

likelihood of the data in order to balance the effects of feature labels with training 

data. Since the training sets in our experiments were very small, the likelihood 

term had neglible effect and we found that using only the GE term produced the 

best results.   

For all SVM methods, including SVM-M3, the parameters C, a, and r were 

tuned using a validation set. The parameter d was fixed to 1.0. For MNB/Prior 

and MNB/Prior+EM we tuned the prior α using the validation set. We also tuned 

the soft-labeling weight for unlabeled instances in MNB/Prior+EM using the 

validation set. 

4.2 User Study 

The strength of oracle studies is the ability to evaluate a variety of data sets, 

but their weakness is that they may not be realistic as to the choices real users 

might make. Therefore, for our second experiment, we conducted a user study to 

harvest feature labels from actual end users on the same 20 Newsgroups classes 

as used in Section 4.1.  We then used the end users’ data to compare the 

performance of the same algorithms as in our oracle study, but with smaller 

validation sets of size 24 (six instances for each class) to simulate a realistic 

scenario in which end users were able to label only a limited amount of training 

instances for both a training and a validation set. 

A starting point for our experiment’s design was the user study by Raghavan 

et al. [28].   However, an important difference was that we chose to remove 

constraints on features end users were allowed to pick.  Specifically, rather than 

having end users select features from a pre-computed list, we allowed them to 

identify features by freely highlighting text directly in the documents. This gave 

our participants complete freedom to choose any features that they thought were 

predictive.  Consequently, not only were these end users allowed to select 

existing features in the algorithm’s representation, but also to create and label 

new features, such as through combinations of words or punctuation.  

4.2.1 Participants and Procedures 

Our user study had 43 participants: 24 males and 19 females. Of these 

participants, 39 were students currently pursuing an undergraduate or masters 

degree in a variety of majors. Computer science students and people with 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

background in machine learning or human computer interaction were not allowed 

to participate.   

Participants attended the study in parallel, with up to five participants to a 

session. At the start of a session, we familiarized the participants with the 

application to create feature labels, described in Section 4.2.2, through a brief, 

hands-on tutorial and self-directed exploration.  All participants used the same 

document set during the tutorial, which was different from the main task data set 

(the training set). After the session they filled out a post session questionnaire 

asking their thoughts and suggestions for the interface, for our later use in follow-

up research. 

For the main experiment, the application displayed 24 previously labeled 

documents in four topics: Computers, Things For Sale, Medicine, and Outer 

Space (corresponding to the four newsgroups comp.sys.ibm.pc.hardware, 

misc.forsale, sci.med, and sci.space, respectively). Each of the four topics had six 

documents assigned to it, which were randomly selected from a pool of 200 

training instances. The order of the documents was randomized for each 

participant. Participants were asked to teach the machine “suggestions” by 

identifying features that they believed would help it label future documents.  

Within a time limit of twelve minutes, participants were asked to provide at least 

two suggestions per topic, with an emphasis placed on selecting the best features 

for each newsgroup. 

4.2.2 Environment 

For the study, we created a software prototype allowing participants to 

flexibly provide feature labels within a message reader interface. The prototype 

window had two main areas (Figure 3): the document display and the feature 

display. The document display area, which was the participants’ main interface 

for labeling features, showed the list of documents, each with its newsgroup 

label, in a scrollable panel.  Participants could highlight portions of the document 

text with the cursor (as in Figure 3) that they thought were characteristic of the 

document’s newsgroup. Participants could create multiple suggestions for each 

document, and could also delete or modify their suggestions. Participants were 

given great flexibility in identifying features: they were allowed to highlight 

anything in the document text, including single words, punctuation, continuous 

phrases, and non-contiguous words or phrases.   

The feature display at the bottom was a quick reference, to remind 

participants of features they had already identified, along with a clickable link to 

the context in which they highlighted it. Participants’ selections of non-

continuous words or phrases were shown as blocks separated by “with”. 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

4.2.3 Algorithm Evaluation 

We used participant-provided feature labels instead of the oracle feature 

labels to compare the performance of LWLR-FL and LWLR-SS-FL against the 

other supervised and semi-supervised methods described in Section 4.1.1 and 

4.1.2. Participants could label features by highlighting any text—they did not 

have to know whether their feature existed before (recall that we used a 

vocabulary of unigrams with stopwords removed for the original representation). 

If a participant created a new feature, we added it to the document representation 

used for that participant’s data and created a corresponding feature label for it. 

Using these data, we analyzed two variants of this experiment: one variant used 

participants’ labels on existing features only, and the other used all features that 

participants provided.  

4.2.4 Feature Characteristics Analysis 

In addition to information gain, we computed relatedness as a measure 

between the features and their associated class labels that participants provided. 

Informally, relatedness of a feature to a topic is how closely it represents a 

topic’s subject matter.  

We used ConceptNet to provide us with a measure of relatedness. ConceptNet 

[21] is a commonsense knowledgebase, generated automatically from sentences 

 

Fig. 3.  (Top): The document display allows highlighting any text, e.g. 

“hard disk” in a message labeled Computers (message label cropped off for 

space, would be to right of text). (Bottom): The feature display shows 

suggestions enumerated below the message. The currently selected 

suggestion is bolded in the feature panel at the bottom of the screen. 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

entered by users of the Open Mind Common Sense Project. ConceptNet can 

support textual reasoning such as topic-jisting and analogy-making by providing 

relationships between words and phrases. AnalogySpace [34], which is based on 

ConceptNet, provides a similarity score (-1 to 1) between two features e.g. 

“horse” and “cow” are similar to a degree of 0.89 yet “pencil” and “cow” are not 

very related with a similarity score of -0.01. We used this similarity score as a 

measure of relatedness between features and topics. 

To obtain similarity scores, we used the following process. We excluded 

punctuation or symbols e.g. “$”, “?”, etc, as ConceptNet does not contain 

information on punctuation. We then normalized the features by using the in-

built ConceptNet function which takes a string and converts it into its most 

“natural” state, removing modifiers, inflections, and stop words.  For example 

“asking”, when normalized, is “ask”. If the function call produced no normalized 

output, it was entered into ConceptNet in its unmodified form. For non-

continuous words, we calculated a similarity score for each individual word, then 

we used the maximum score of all words in the feature. When participants 

provided compound words (e.g. “diet/exercise”) and phrases (e.g. “hard disk”), 

we calculated a similarity score for each individual word and the original given 

feature, again using the maximum as the final score. 

5 Results and Discussion 

5.1 Supervised Learning 

In this section, we present results on the effectiveness of the LWLR-FL 

algorithm, first for simulated, ideal circumstances with features provided by a 

feature oracle, and, second, when feature labels were provided by participants. 

Also, with an eye toward eventual use in real settings, we investigated the 

characteristics of end-user feature labels and the algorithm’s sensitivity to 

parameter settings. 

5.1.1 Oracle Feature Labels 

Figure 4 presents the effects of incrementally adding the top ten oracle feature 

labels per class over a variety of algorithms and data sets. We evaluated the 

algorithms in terms of the average macro-average F1 score (abbreviated to 

macro-F1), where the average was computed over the 30 random 

training/validation/testing splits.  As more oracle feature labels were added, the 

average macro-F1 scores generally increased for all algorithms.   

In order to evaluate the effectiveness of feature labels, we compared against 

three baseline algorithms that do not take feature labels into account (Figure 4, 

dashed and solid lines without markers). To reduce clutter, we have only plotted 

the comparisons between the two best performing algorithms and their respective 

baselines. We used LWLR with cosine similarity as a distance metric as a 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

baseline for LWLR-FL. A “plain” linear SVM was used as a baseline algorithm 

for the SVM-based algorithms while a “plain” Naïve Bayes (NB) was used as a 

baseline for MNB/Priors.  

The benefit of incorporating feature labeling can be expressed as the 

improvement in macro-F1 score over the feature labeling algorithm’s baseline 

when ten oracle feature labels were added. We denote this improvement as 

baseline and show the average baseline at the bottom of Table 2. The average 

baseline over the 30 runs was a statistically significant improvement for LWLR-

FL, MNB/Priors, and the best SVM-based methods in all cases (Wilcoxon 

signed-rank test, p < 0.05), indicating that feature labeling does indeed improve 

performance.  The MNB algorithm had the lowest Macro-F1 score out of the 

baseline algorithms in four of the six datasets, but with feature labeling, the 

MNB/Priors algorithm produced the largest average baseline out of all the feature 

labeling algorithms.  

 

 

 

 

Fig. 4. Average Macro-F1 after adding 1-10 oracle feature labels per 

class for each dataset. 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

Table 2 also summarizes the macro-F1 scores for the different algorithms over 

the six datasets when ten oracle feature labels per class were added. Table 2 also 

includes the performance of global Logistic Regression (LR) for comparison. LR 

outperformed or came close to matching the performance of LWLR on four 

datasets (Modapte, RCV1, IndustrySectors, WebKb), indicating that a global fit 

was sometimes better than a local one, but with feature labeling, LWLR-FL 

ultimately outperformed LR on these four datasets. Overall, LWLR-FL was the 

best performing feature labeling algorithm on three (Modapte, RCV1 and Movie 

Review) of the six datasets, although the results were not statistically significant 

from the next closest feature labeling algorithm in all cases and it tied SVM-

M1M2 on RCV1.  MNB/Priors was the best performing algorithm on the 20 

Newsgroups dataset while SVM-M1M2 was the best performing algorithm on 

the WebKb and Industry Sectors datasets.  

Macro-F1, Adding 10 oracle feature labels per class (supervised) 

Algorithm 20 

Newsgroups 

Modapte RCV1 Industry 

Sectors 

WebKb Movie 

Review 

LR 0.628 0.773 0.582 0.396 0.712 0.586 

SVM 0.635 0.747 0.559 0.391 0.715 0.597 

MNB 0.643 0.665 0.540 0.386 0.604 0.583 

LWLR 0.652 0.774 0.554 0.396 0.670 0.628 

SVM-M1 0.667* 0.792* 0.573* 0.469* 0.830* 0.649* 

SVM-M2 0.745* 0.820* 0.660* 0.595* 0.839* 0.703* 

SVM-M1M2 0.749* 0.830* 0.656* 0.608* 0.868*
†
 0.731* 

LWLR-FL 0.777* 0.844*
†
 0.660* 0.603* 0.815* 0.747* 

MNB/Priors 0.817*
†
 0.776* 0.651* 0.524* 0.812* 0.742* 

Average baseline (Average Improvement in Macro-F1 over Baseline) 
SVM-M1 0.032 0.045 0.014 0.078 0.115 0.052 

SVM-M2 0.110 0.073 0.101 0.204 0.124 0.106 

SVM-M1M2 0.114 0.083 0.097 0.217 0.153 0.134 

LWLR-FL 0.125 0.070 0.106 0.207 0.145 0.119 

MNB/Priors 0.174 0.111 0.111 0.138 0.208 0.159 

Table 2. Results of supervised feature labeling algorithms incorporating 10 

oracle feature labels per class.  The symbol * denotes values that are 

significantly greater than baseline algorithms and 
†
 denotes values that are 

significantly greater than all other algorithms at the 0.05 level (Wilcoxon 

signed-rank test, p < 0.05). The best F1 score and baseline for each data set 

is bolded.  



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

5.1.2 User Study Results 

The results in Section 5.1.1 indicate that with ideal feature labels, 

incorporating feature label information improved the classifier, especially when 

the LWLR-FL algorithm was used. We now turn our attention to the effects of 

feature labels provided by actual end users, which we expected to have less of a 

gain than the idealized oracle feature labels. 

5.1.2.1 End-user Feature Labels 

Figure 5 illustrates the performance of the feature labeling algorithms on end-

user feature labels. In our analysis, SVM-M1M2 consistently outperformed 

SVM-M1 and SVM-M2. Therefore, to avoid clutter in the graphs, the only SVM-

variant we show results for is SVM-M1M2. For reference, the leftmost group 

duplicates the eight oracle feature labels per class results from Section 5.1. We 

chose eight oracle feature labels per class as a reference because on average, 

participants provided this many feature labels per class. The middle group 

presents results when only feature labels on existing features were considered 

(i.e. feature labels on features created by participants were ignored). Finally, the 

rightmost group of results illustrates the macro-F1 scores when all feature labels 

were considered, including the new features created by the participant. 

As we expected, gains from labels entered by the end users did not match 

those of the oracle feature labels. Some differences were as large as 

approximately 10% in average macro F1-score. These differences point out the 

importance of including evaluations with real end users for this type of problem. 

 

Fig. 5. Average macro-F1 scores for the 20 Newsgroups dataset when 

incorporating end user feature labels through supervised feature 

labeling: (left) incorporating 8 oracle feature labels per class from 

Section 5.1, (middle)  incorporating end-user feature labels only for 

existing features, (right) incorporating all end-user feature labels.  



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

Evaluations in idealized conditions produced results about an algorithm’s 

potential, and hence were overly optimistic, as seen by comparing Figure 5’s 

leftmost bars with the bars to the right. 

Participants were able to provide useful feature labels in our experiments, as 

can be seen in Figure 5. All algorithms outperformed their baselines by a 

statistically significant margin (Wilcoxon signed-rank test, p < 0.05) for the “all” 

features case, but only LWLR-FL and MNB/Priors were significantly better with 

“existing” features (Wilcoxon signed-rank test, p < 0.05). The best performing 

algorithm overall was MNB/Priors. Both MNB/Priors and LWLR-FL produced 

larger improvements over their baselines than SVM.M1M2, indicating that they 

were more robust to lower quality feature labels supplied by end users. 

Feature labels were useful when labels were incorporated for existing features 

only (Figure 5 middle) and also when labels were incorporated for all features, 

including those created by end users (Figure 5 right). In fact, there was a slight 

increase in average macro-F1 when we included features created by end users, 

indicating that end users could indeed create predictive features for the 20 

Newsgroups dataset. This result is encouraging for the deployment of feature 

labeling algorithms with ordinary end users but further investigation is needed to 

determine how beneficial end-user feature engineering will be on other real-

world datasets. 

 

5.1.2.2 Supervised-Learning: Sensitivity Analysis 

Most of the algorithms that incorporate feature labels are sensitive to key 

parameters that control the influence of the feature labels, but these parameters 

are difficult to set prior to deployment due to the uniqueness of each end user’s 

data distribution. Therefore, some algorithms that perform well in idealized 

situations may perform poorly in real-world circumstances. Although the user 

could label more data for a more representative validation set, this could require 

an unrealistic time investment by the user. Ideally then, the algorithm’s 

performance should not be overly sensitive to the values of these parameters. We 

performed a sensitivity analysis to investigate the robustness of LWLR-FL to its 

parameter settings. 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

The sensitivity of LWLR-FL depends primarily on the kernel width k, which 

defines the neighborhood around a query point. The best k
2
 for a training set was 

found using grid search in the range 0.1 - 1.0 (values larger than 1.0 generally 

reduced macro-F1). Figure 6 (top) illustrates the variation in macro-F1 score for 

LWLR-FL for three participants when we vary k. In this analysis, we kept the 

regularization parameter in LWLR set to 1.0.  The participants were chosen to 

represent extreme conditions, one having highest, one having average, and one 

having lowest gains in macro-F1. The macro-F1 score was computed on each 

participant’s holdout test set. The variation of macro-F1 scores for LWLR-FL 

was smooth with varying k and tended to be within a narrower range. We found 

empirically that a “default” value of   √    yielded reasonably good macro-F1 

scores. 

For comparison, we include a sensitivity analysis of the SVM-M1M2 

algorithm. Figure 6 (bottom) illustrates the variation of macro-F1 scores on the 

same three participants when we varied the r parameter for the SVM-M1M2 

method, which was the most sensitive parameter. In this graph, we held the a, d, 

 

 

Fig. 6. Variation of macro-F1 with k for LWLR-FL (top) and with r for 

SVM-M1M2 (bottom). Data is plotted for the same three participants.  The 

parameter value chosen after tuning on a validation set of size 24 (as 

described in Section 4.2) is shown for each participant in brackets in the plot 

legend. 

 

 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

and C parameters fixed to their values tuned on the validation set. Although the 

scales of the parameters are difficult to compare head-to-head, Figures 6 (top) 

and (bottom) show that SVM-M1M2 was more sensitive to the r parameter than 

LWLR-FL was with the k parameter. Even within a small radius around the tuned 

value, the variation in macro-F1 for SVM-M1M2 covered a larger range. These 

results suggest that LWLR-FL is robust to changes in the k parameter and 

suitable for real-world deployments in which a large number of training instances 

may not be available. 

 

5.1.2.3 Characteristics of End-user Feature Labels 

Our results showed that features provided by end users could improve the 

accuracy of feature labeling algorithms. To understand what kinds of features an 

algorithm should expect from end users, we investigated the types of features our 

participants provided, the amount of gain each type contributed, and a possible 

basis on which participants may have chosen these features. 

Using word clouds, Figure 7 illustrates the features from each newsgroup that 

were most commonly labeled by participants as a whole. These word clouds give 

an indication as to how participants collectively viewed the features that were 

indicative of the content of the newsgroup. Figure 7 shows that participants 

focused on a much smaller set of words to label for misc.forsale and sci.space 

than for comp.sys.ibm.pc.hardware and sci.med. The more diffuse word clouds 

consisted of technical jargon, as participants felt these specific terms were more 

predictive as to the content of the newsgroup. Despite the variety in the nature of 

these newsgroups, participants in our study were able to provide informative 

feature labels and ultimately improve the classifiers.  

Table 3 shows the frequencies of the types of features participants chose. The 

most common type, accounting for about 60% of the features, was features that 

the algorithm already knew existed, in the form of unigrams (row 1 in the table). 

Some of these had information gains comparable to features chosen by the oracle 

(for example, 10 of the 43 participants chose the top oracle feature “sale”), 

although overall, participants’ features had a somewhat lower average 

information gain (0.035) than the oracle’s (0.078).  

However, quite often participants’ choices were different from the oracle’s, 

across all feature types. For example, the top oracle choice for the Medicine topic 

(high information gain) was “writes”. This feature was never chosen by a 

participant. To understand the difference between participants’ feature choices 

and the oracle’s, we turned to ConceptNet, computing relatedness as described in 

Section 4.2.4. 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

These computations showed that participants chose features with higher 

relatedness (average 0.308) than those chosen by the oracle (average 0.231). In 

general, the participants’ choices of features with high relatedness helped as 

relatedness has a relationship with information gain (linear regression, R
2
=0.04, 

p<0.001). This suggests possible directions for designers of interactive intelligent 

systems to use in encouraging end users to usefully label features. For example, 

relatedness could be used to suggest relevant predictive features for end users to 

label, thereby helping them overcome their known difficulty of knowing where to 

look when trying to provide guidance to the system (e.g., “What kind of words 

should we tell the computer [relating] to Systems?” [14].) 

Finally, note that 40% of participants’ feature choices were not known to the 

algorithm previously, as rows 2-5 in Table 3 show. Some of these features, such 

as stopwords and punctuation, had previously been removed from the vocabulary 

but were partially reintroduced by participants. Features such as multiple word 

phrases (n-grams) and non-continuous words (feature combinations) cannot be 

addressed by simply adding all possibilities (e.g., all n-grams) as features to the 

learning algorithm, because doing so would explode the feature representation, 

making learning infeasible. In addition, for applications that customize 

themselves to the end user, these specific features may be unique to those end 

users and thus not foreseeable by the algorithm designer prior to deployment. 

Thus, allowing end users to provide features not originally in the learning 

algorithm’s data representation is an important benefit, which we have only 

begun to investigate in end-user feature labeling. 

 

 
Fig. 7. Top Features Selected by Participants for 

comp.sys.ibm.pc.hardware (Top Left), misc.forsale (Top Right), sci.med 

(Bottom Left), and sci.space (Bottom Right). 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

5.2 Semi-supervised Learning 

Having presented results for the supervised feature labeling setting, we now 

present results for the semi-supervised setting when an unlabeled pool of data 

was available during training. As before, we will first show results for the oracle 

study and then show results for feature labels harvested from real users during 

the user study.  

5.2.1 Oracle Feature Labels 

Figure 8 and Table 4 depict the results of adding 10 oracle feature labels per 

class to the semi-supervised feature labeling algorithms. LWLR-SS-FL 

outperformed the other algorithms on the 20 Newsgroups, Modapte, and Industry 

Sectors datasets, with statistically significant improvements over GE and SVM-

M3 (Wilcoxon signed-rank test, p < 0.05). GE, however, had the best macro-F1 

on the WebKb and Movie Review datasets with statistically significant 

improvements over the second best algorithm (Wilcoxon signed-rank test, p< 

0.05). For the RCV1 dataset, SVM-M3 had the best macro-F1. 

Past work in semi-supervised learning (eg. [3]) has indicated that the label 

diffusion approach to semi-supervised learning was successful if the data had a 

smooth underlying manifold structure in which instances from the same class 

were close enough to each other to allow labels from labeled training instances to 

propagate to unlabeled instances that were of the same class. Label diffusion 

performed poorly if the “islands” of data instances from one class fell in between 

“islands” of data instances from another class on the manifold structure. We 

believe that the poor behavior of LWLR-SS-FL on WebKb and Movie Review 

Feature Types  

(Examples from Participants’ 

Data) 

Mean 

number per 

participant  

Mean  

information 

gain 

Mean  

ConceptNet 

similarity  

Existing feature (“sale”) 19.419 0.040 0.280 

Reintroduced stopword (“asking”) 0.140 0.036 0.412 

Continuous phrase (“space 

shuttle”)  
5.977 0.048 0.394 

Non-continuous words (“cold” 

with “flu”) 
4.116 0.011 0.359 

Features involving punctuation 

(“for sale” with “$”)  
2.651 0.056 0.243 

Means overall 32.302 0.035 0.308 

Table 3. Labeled features per participant by type.  All types are disjoint.  

Only 6 of the 43 users re-introduced removed stopwords, and each re-

introduced only one.   



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

datasets was due to these datasets having an underlying structure that did not 

satisfy this particular assumption of label diffusion. 

Having investigated both supervised and semi-supervised learning for Oracle 

feature labeling, we can now compare the relative benefits of augmenting 

learning from labeled training instances using feature labeling, unlabeled data, 

and a combination of the two. Table 5 and Figure 9 show the change in macro-F1 

over the baseline LWLR algorithm when feature labeling, semi-supervised 

learning, and both feature labeling and semi-supervised learning were added. In 

general, information from feature labels helped learning more than information 

from unlabeled data. In fact, in four datasets (Modapte, RCV1, WebKb, and 

Macro F1, Adding 10 Oracle Feature Labels per class (Semi-supervised) 

Algorithm 20 

Newsgroups 
Modapte RCV1 Industry 

Sectors 
WebKb Movie 

Review 

SVM 0.635 0.747 0.559 0.391 0.715 0.597 

MNB 0.643 0.665 0.540 0.386 0.604 0.583 

LWLR 0.652 0.774 0.554 0.396 0.670 0.628 

LWLR-SS-FL 0.900
†
 0.844

†
 0.643 0.703

†
 0.745 0.708 

SVM-M3 0.809 0.827 0.649 0.659 0.851 0.758 

GE 0.823 0.766 0.556 0.663 0.876
†
 0.782

†
 

MNB/Prior+EM 0.806 0.431 0.535 0.460 0.601 0.744 

Table 4. Results of incorporating 10 oracle features per class through semi-

supervised feature labeling for all six datasets.  The symbol  
† 
denotes values 

that are significantly greater than all other algorithms at the 0.05 level 

(Wilcoxon signed-rank test, p < 0.05). Results for the baseline SVM and 

LWLR algorithms are included for reference. 

 

 

Fig. 8. Average macro-F1 scores for incorporating 10 Oracle feature labels 

through semi-supervised feature labeling for the six datasets used in our 

experiments.  

 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

Movie), the unlabeled data caused the performance of LWLR-SS to degrade 

below that of the baseline supervised learning LWLR algorithm. Surprisingly, 

combining feature labeling with semi-supervised learning overcame this deficit, 

resulting in better performance than the baseline. Semi-supervised feature 

labeling, however, did not necessarily outperform supervised feature labeling. On 

three datasets (RCV1, WebKb, Movie Review), LWLR-SS-FL performed worse 

than LWLR-FL. Overall, however, incorporating information from feature labels 

always improved performance in both the supervised and semi-supervised  

settings, as one can see by the improvement of LWLR-FL over LWLR and the 

improvement of LWLR-SS-FL over LWLR-SS. 

We repeated this experiment using feature labeling algorithms based on the 

MNB algorithm as illustrated in Figure 10. Supervised feature labeling was the 

best performing algorithm, consistently producing large improvements over the 

Macro F1, Adding 10 Oracle Features per class (Semi-supervised) 

Algorithm 20 

Newsgroups 

Modapte RCV1 Industry 

Sectors 

WebKb Movie 

Review 

LR 0.623 0.773 0.582 0.396 0.712 0.586 

LWLR 0.652 0.774 0.554 0.396 0.670 0.628 

LWLR-FL 0.777* 0.844* 0.660* 0.603* 0.815* 0.747* 

LWLR-SS 0.789* 0.723 0.512 0.430* 0.452 0.468 

LWLR-SS-FL 0.900* 0.840* 0.644* 0.703* 0.745* 0.691* 

Table 5. Results of adding 10 oracle features per class for all six datasets for 

algorithms that are variants of logistic regression.  The symbol * denotes 

values that are significantly greater than the baseline LWLR algorithm at 

the 0.05 level 

(Wilcoxon signed-rank test, p < 0.05) 

 

 

Fig. 9. A comparison of the relative benefits of feature labeling and 

unlabeled data for the various variants of LWLR-FL.   



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

baseline MNB algorithm in all cases. Semi-supervised learning (without feature 

labeling), on the other hand, resulted in worse performance than the baseline 

algorithm for four datasets (Modapte, RCV1, Industry Sectors and WebKb). 

Unlike LWLR, semi-supervised learning with feature labeling only outperformed 

the baseline algorithm in three datasets (20 Newsgroups, Industry Sectors and 

Movie Review) and performance degraded below the baseline in the other three 

datasets, including a large drop in macro-F1 of 0.23 for Modapte.  

Overall, the results for feature labeling using the LWLR and MNB variants 

clearly demonstrate that feature labeling is the more reliable alternative to 

augment the learning process than using unlabeled data in a semi-supervised 

setting, which can degrade learning. Using a combination of semi-supervised 

learning and feature labeling can overcome the degradation in performance from 

the unlabeled examples if LWLR-SS-FL is used, but the results are mixed using 

MNB/Prior+EM. 

 

Macro F1, Adding 10 Oracle Features per class (Semi-supervised) 

Algorithm 20 

Newsgroups 

Modapte RCV1 Industry 

Sectors 

WebKb Movie 

Review 

MNB 0.643 0.665 0.54 0.386 0.604 0.583 

MNB/Priors 0.817* 0.776* 0.651* 0.524* 0.812* 0.742* 

MNB+EM 0.663 0.403 0.427 0.333 0.518 0.607 

MNB/Prior+EM 0.806* 0.431 0.535 0.46 0.601 0.744* 

Table 6. Results of adding 10 oracle features per class for all six datasets.  

The symbol * denotes values that are significantly greater than the baseline 

MNB algorithm at the 0.05 level 

(Wilcoxon signed-rank test, p < 0.05) 

 

 

Fig. 10. A comparison of the relative benefits of feature labeling and 

unlabeled data for the various variants of MNB.   



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

5.2.2 End-User Feature Labels 

As before, we would like to evaluate the semi-supervised feature labeling 

algorithms using feature labels provided by actual end users rather than using 

idealized feature labels generated by an oracle. Using feature labels harvested 

from end users in the study from Section 4.2, we evaluated LWLR-SS-FL against 

SVM-M3, GE and MNB/Priors+EM. 

Figure 11 summarizes the results from this experiment. We also plot the 

results using the LWLR and SVM baselines (from Section 5.1.1) as a reference. 

Results with 8 oracle feature labels per class are shown in the leftmost group. As 

before, we divide the results into the “existing” features group, in which feature 

labels were only permitted on existing features, and the “all” features group, in 

which new features that participants created were added to the data 

representation and then labeled. Results for “existing” and “all” features are 

shown in the middle and rightmost groups respectively.  

For SVM-M3, end-user feature labels degraded the performance of the 

algorithm below the SVM baseline in this semi-supervised setting, while LWLR 

was more robust. GE performed the worst out of all the other algorithms with 

end- user feature labels, indicating that it was very sensitive to the quality of 

feature labels. The poor performance of GE was due to the lower quality end-user 

feature labels being the only source of supervision for GE’s learning process. 

Furthermore, in past work, GE performed very well when users were guided to 

provide feedback on features selected by topic models or by active-learning [10], 

unlike in our setup where the users had no guidance at all as to which features to 

label. Both LWLR-SS-FL and MNB/Priors+EM improved upon their respective 

 

Fig. 11. Results of Semi-supervised Algorithms with User Feature Labels: 

(Left) incorporating 8 oracle feature labels per class from Section 5.2.1, 

(Middle) incorporating end-user feature labels only for existing features, 

(Right) incorporating all end-user feature labels. 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

baseline algorithms with end user feature labels. LWLR-SS-FL significantly 

outperformed other algorithms on the “all” feature cases (Wilcoxon signed-rank 

test, p < 0.05).  

When compared against the gains from supervised feature labeling (Figure 5), 

SVM-M3 was more sensitive to lower quality feature labels from participants 

than its supervised learning counterpart (SVM-M1M2); SVM-M1M2 performed 

better than SVM-M3 and resulted in an improvement over the SVM baseline. 

Similarly, MNB/Priors+EM performed slightly worse than its supervised 

learning counterpart (MNB/Priors). Unlike the former two algorithms, LWLR-

SS-FL outperformed its supervised learning counterpart (LWLR-FL) in all cases. 

5.2.3 Sensitivity Analysis 

 

LWLR-SS-FL introduces two new parameters – the label diffusion kernel 

width (k), and the number of nearest neighbors (#nn). In our experiments, we set 

k to √     and #nn to 100 for all datasets in LWLR-SS and LWLR-SS-FL. Here, 

we present the sensitivity plots for k and #nn on three datasets – 20 Newsgroups, 

ModApte, and WebKB. In the sensitivity analysis of parameter k, we kept #nn 

 

 
 

Fig. 12. Sensitivity of LWLR-SS-FL to number of nearest neighbors #nn 

(Top), Sensitivity of LWLR-SS-FL to diffusion kernel width k (Bottom). 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

constant at 100 and varied k in the range [0-1]. In the sensitivity analysis of 

parameter #nn, we kept k constant at √     and varied #nn in the range [5-100]. 

Figure 12 (top) shows that the algorithm was not very sensitive to the number 

of nearest neighbors (#nn). However, the algorithm was more sensitive to k as 

can be seen in Figure 12 (bottom). Since we used TFIDF-L2 normalization, a 

kernel of width 1.0 spanned across all instances resulting in a “global” fit. We 

can see that these datasets had similar localized regions where label diffusion 

helped. The performance of the algorithm on 20 Newsgroups hardly improved 

beyond k=0.5 which might suggest that instances in this dataset formed very few 

compact clusters in the feature space and the seed (labeled training) instances 

managed to cover most of them. In WebKB on the other hand, performance 

degraded till k=0.4 and then recovered as k increased to 1 and beyond. This 

suggests that the WebKB categories might have formed a large number of small 

clusters that were intermingled and the seed instances had not been able to cover 

all small clusters. ModApte showed similar characteristics as WebKB, but 

managed to avoid the steep degradation in performance as observed in WebKB at 

around k=0.4. This could have been because ModApte had fewer instances than 

WebKb and hence was sparser in the feature space. 

5.2.4 Discussion and Future Work 

With oracle feature labels, the semi-supervised feature labeling algorithms 

produced a dramatic increase over their respective baselines, which was similar 

to results reported in previous work [29, 10]. However, with the lower quality 

features that came from real users, some semi-supervised feature labeling 

algorithms performed worse than algorithms that ignore the feature labels eg. 

SVM-M3 performed worse than its SVM baseline. Past work in semi-supervised 

learning [42, 40] has shown that semi-supervised learning does not always 

produce an improvement in performance over supervised learning. In his survey 

on semi-supervised learning [40], Zhu pointed out that a mismatch between 

model assumptions and the problem structure could produce worse performance 

than supervised learning, but “detecting this mismatch in advance is hard and 

remains an open problem”.  

In semi-supervised feature labeling, the oracle feature labels were generated 

using the entire labeled data set and thus fit the structure of the data. On the other 

hand, end user feature labels could exacerbate the mismatch between the model 

assumptions and the problem structure. Much of the past work on semi-

supervised feature labeling had evaluated algorithms against oracle feature labels. 

Although oracle feature labels provide an informative “upper bound”, for semi-

supervised feature labeling, it is also extremely important to evaluate against 

lower quality feature labels from real users, which can cause dramatically 

different behavior for these algorithms.  



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

In section 3.2 we mentioned that LWLR-FL is suitable for small datasets 

because it needs to be trained separately for each test instance. This is also true 

for LWLR-SS-FL. Apart from this, there are two other issues with the LWLR-

SS-FL algorithm that need to be addressed in future work. First, the algorithm 

involves a matrix inversion, where the number of rows in the matrix is the total 

number of labeled and unlabeled instances. A naïve implementation of matrix 

inversion does not scale well to large datasets since the complexity is O(n
3
) for n 

instances (where n is the number of training and test instances) and is a roadblock 

to allowing LWLR-SS-FL to be applied to large datasets in an interactive setting, 

which is an important requirement of feature labeling [32]. However, we have 

two advantages here over the general case of matrix inversion, which we plan to 

leverage in future work. First, our matrix is sparse and symmetric, thus reducing 

the actual number of computations, and we only need the rows in the inverted 

matrix that correspond to the training instances, which can also significantly 

reduce the computational complexity. Second, the LWLR-SS-FL algorithm is 

more sensitive to the value of k than LWLR-FL. In our experiments, we set  

  √     for all the datasets. Although this value worked well, we plan to 

investigate on how to make the algorithm more robust to parameter settings of k. 

Overall, semi-supervised feature labeling algorithms can produce large 

improvements in performance if feature labels cause the resulting model to match 

the problem structure and its key parameters are set correctly. This is precisely 

the case with oracle feature labels, which consistently produced improvements 

over the baseline algorithms. In the case of lower quality feature labels from end 

users, our results showed that LWLR-SS-FL was more robust to lower quality 

feature labels than other algorithms, but it must be more computationally 

efficient to be applicable in an interactive setting. 

6 Conclusions 

This work has investigated the viability of both supervised and semi-

supervised feature labeling in real circumstances, with end users freely choosing 

features to label directly from text documents.  

Our new supervised LWLR-FL algorithm expands LWLR to take feature 

labeling into account. Our results show that LWLR-FL was among the best 

performing supervised feature labeling algorithms under ideal conditions in an 

oracle study. In our user study, we allowed ordinary end users to select any 

features for labeling directly from text documents. LWLR-FL and MNB/Priors 

both were robust against lower quality feature labels in this more realistic setting, 

with MNB/Priors being the best performing algorithm overall. Furthermore, our 

sensitivity analysis showed that LWLR-FL was robust to different parameter 

settings.  

As to the end-user labels themselves, we showed that real end users’ feature 

labels helped on average for all algorithms, with the features end users chose for 

labeling to be conceptually related to the class labels, although with moderately 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

lower information gains compared to those of the oracle’s. These results are 

promising, as they show that end users with no background in machine learning 

can use feature labeling to significantly improve machine learning algorithms 

trained on small data sets. 

We also proposed a new semi-supervised LWLR-SS-FL algorithm, which 

extends LWLR-FL to incorporate information from a pool of unlabeled data. 

With oracle feature labels, LWLR-SS-FL and GE were the best performing 

algorithms over the six datasets in our evaluation. With end user feature labels, 

LWLR-SS-FL outperformed all other algorithms. Even in situations where the 

unlabeled data (without feature labeling) degraded performance below the 

supervised learning LWLR baseline, semi-supervised learning in combination 

with feature labeling was able to overcome this deficit and outperform this 

baseline. 

Finally, our results point to promising future research. First, we intend to 

design suitable user interfaces to help end users choose and create features to 

label. Second, we would like to improve the LWLR-SS-FL algorithm by making 

it more scalable to large datasets and more robust to its diffusion kernel width 

parameter setting.  

Taken together, these results demonstrate that feature labeling by end users, 

especially in the supervised learning setting, is an overall effective solution for 

augmenting the learning process to use knowledge beyond labeled training 

instances. Semi-supervised feature labeling can be effective in some cases, but 

the unlabeled data may degrade performance if it does not match the algorithm’s 

assumptions.  

Acknowledgements 

This work was supported in part by NSF grant 0803487.  

References 

[1] J.Attenberg, P. Melville, F. Provost. Guided Feature Labeling for Budget-Sensitive Learning Under 

Extreme Class Imbalance, in: Proceedings of the ICML 2010 Workshop on Budgeted Learning, 2010. 

[2] J. Attenberg, P. Melville, F.A. Provost, Unified Approach to Active Dual Supervision for Labeling 
Features and Examples, in: Proceedings of the European Conference on Machine Learning, 2010.  

[3] Y. Bengio, O. Delalleau, N.L. Roux, The curse of highly variable functions for local kernel machines, in: 

Proceedings of the Advances in Neural Information Processing Systems 18, MIT Press, 2006 

[4] A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the 

Eleventh annual conference on Computational Learning Theory, ACM Press, 1998, pp. 92-100. 

[5] M-W. Chang, L. Ratinov, D. Roth, Guiding Semi-Supervision with Constraint-Driven Learning, in: 
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, 2007, pp. 280-

287. 

[6] W. Cleveland, S. Devlin, Locally-Weighted Regression: An Approach to Regression Analysis by Local 

Fitting, Journal of the American Statistical Association, 83, (403) (1988) 596–610. 

[7] D.A. Cohn, Z. Ghahramani, M.I. Jordan, Active learning with statistical models. Journal of Artificial 
Intelligence Research, 4 (1996), 129-145. 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

[8] M. Craven, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, C.Y. Quek, Learning to extract symbolic 

knowledge from the World Wide Web, in: Proceedings of AAAI, 1998, pp. 509-516. 

[9] K. Deng, Omega: On-line Memory-Based General Purpose System Classifier, Ph.D. Thesis, Carnegie 
Mellon University, Pittsburgh, PA, 1998. 

[10] G. Druck, G. Mann, A. McCallum, Learning from labeled features using generalized expectation criteria, 

in: Proceedings of SIGIR, ACM Press, 2008, pp. 595-602. 

[11] K. Ganchev, J. Graça, J. Gillenwater, B. Taskar, Posterior Regularization for Structured Latent Variable 

Models, Journal of Machine Learning Research, 11 (2010) 2001-2049.  

[12] J. Graça, K. Ganchev, B. Taskar, Expectation maximization and posterior constraints, Advances in Neural 
Information Processing Systems, 20 (2008) 569-576. 

[13] T. Hastie, R. Tibshirani, J.H. Friedman, The Elements of Statistical Learning, Springer, 2003. 

[14] T. Kulesza, W-K. Wong, S. Stumpf, S. Perona, S. White, M. Burnett, I. Oberst, A. Ko, Fixing the program 

my computer learned: Barriers for end users, challenges for the machine, in: Proceedings of IUI, ACM 

Press, 2009, pp. 187-196. 

[15] T. Kulesza, S. Stumpf, M. Burnett, W-K. Wong, Y. Riche, T. Moore, I. Oberst, A. Shinsel, K. McIntosh, 
Explanatory debugging: supporting end-user debugging of machine-learned programs, in: IEEE 

Symposium on Visual Languages and Human-Centric Computing, Madrid, Spain, September 2010. 

[16] K. Lang, Newsweeder: Learning to filter netnews, in: Proceedings of ICML, 1995, pp. 331-339. 

[17] D. Lewis, Reuters-21578. Available at 

http://www.daviddlewis.com/resoursce/testcollections/reuters21578. 

[18] D. Lewis, Y. Yang, T. Rose, F. Li, RCV1: A new benchmark collection for text categorization research, 

JMLR, 5 (2004) 361-397. 

[19] P. Liang, M.I. Jordan, D. Klein, Learning from measurements in exponential families, in: Proceedings of 

the 26th International Conference on Machine Learning, ACM Press, 2009, pp. 641-648. 

[20] B. Liu, X. Li, W.S. Lee, P.S. Yu, Text classification by labeling words, in: Proceedings of the 19th 

National Conference on Artificial Intelligence, AAAI Press, 2004, pp. 425-430. 

[21] H. Liu, P. Singh, ConceptNet—a practical commonsense reasoning tool-kit, BT Technology Journal 22 
(4) (2004) 211-226.  

[22] A. McCallum, G. Mann, G. Druck, Generalized Expectation Criteria, Technical Report UM-CS-2007-60, 

University of Massachusetts, Amherst, MA, 2007. 

[23] A. McCallum, MALLET: A Machine Learning for Language Toolkit. http://mallet.cs.umass.edu. 2002.  

[24] A. McCallum, R. Rosenfeld, T. Mitchell, A. Ng, Improving text classification by shrinkage in a hierarchy 

of classes, in: Proceedings of ICML, 1998. 

[25] P. Melville, W. Gryc, and R. D. Lawrence. Sentiment analysis of blogs by combining lexical knowledge 
with text classification, in: Proceedings of the International Conference on Knowledge Discovery and 

Data Mining (KDD), ACM Press, 2009, pp. 1275-1284. 

[26] J. Nocedal, Updating Quasi-Newton Matrices with Limited Storage, Mathematics of Computation, 35 

(1980) 773-782. 

[27] B. Pang, L. Lee, A sentimental education: sentiment analysis using subjectivity summarization based on 
minimum cuts, Proceedings of the ACL, 2004. 

[28] H. Raghavan, O. Madani, R. Jones, Active Learning with Feedback on Both Features and Instances, 

JMLR 7 (2006) 1655-1686.  

[29] H. Raghavan, J. Allan, An interactive algorithm for asking and incorporating feature feedback into support 

vector machines, in: Proceedings of SIGIR, ACM Press, 2007, pp. 79-86.  

[30] D. Roth, K. Small, Interactive feature space construction using semantic information, in: Proceedings of 
CoNLL, 2009, pp. 66-74. 

[31] B. Settles, Active learning literature survey, Technical Report 1648, University of Wisconsin-Madison, 

Madison, WI, 2009. 

[32] B. Settles, Closing the Loop: Fast, Interactive Semi-Supervised Annotation With Queries on Features and 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 
 

Instances, in: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, 

2011, pp. 1467-1478. 

[33] V. Sindhwani, P. Melville, R. Lawrence, Uncertainty sampling and transductive experimental design for 
active dual supervision, in: Proceedings of the 26th International Conference on Machine Learning, 2009, 

pp. 953-960. 

[34] R. Speer, C. Havasi, H. Lieberman, AnalogySpace: Reducing the dimensionality of common sense 

knowledge, in: Proceedings of AAAI, 2008. 

[35] S. Stumpf, V. Rajaram, L. Li, W-K. Wong, M. Burnett, T. Dietterich, E. Sullivan, and J. Herlocker, 
Interacting meaningfully with machine learning systems: Three experiments, Int. J. Human-Computer 

Studies 67 (8) (2009) 639-662. 

[36] W-K. Wong, I. Oberst, S. Das, T. Moore, S. Stumpf, K. McIntosh, and M. Burnett, End-User Feature 

Labeling: A Locally-Weighted Regression Approach, in: Proceedings of the ACM International 
Conference on Intelligent User Interfaces, ACM Press, 2011, pp. 115-124. 

[37] W-K. Wong, I. Oberst, S. Das, T. Moore, S. Stumpf, K. McIntosh, and M. Burnett, End-User Feature 

Labeling via Locally Weighted Logistic Regression, in: Proceedings of the Twenty-Fifth AAAI 

Conference on Artificial Intelligence, Special Track on New Scientific and Technical Advances in 
ResearchNew Scientific and Technical Advances in Research, AAAI Press, 2011. 

[38] X. Wu and R. Srihari. Incorporating prior knowledge with weighted margin support vector machines, in: 

Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discvoery and Data 

Mining, ACM Press, 2004, pp. 326-333. 

[39] D. Zhou, O. Bousquet, T.N. Lal, J. Weston, B. Schlkopf, Learning with local and global consistency, in: 
NIPS, MIT Press, 2004, 321-328.  

[40] X. Zhu, Semi-Supervised Learning Literature Survey, 2006. 

[41] X. Zhu, Z. Ghahramani, J.D. Lafferty, Semi-Supervised Learning Using Gaussian Fields and Harmonic 

Functions, in: ICML, AAAI Press, 2003, pp. 912-919. 

[42] X. Zhu, A.B. Goldberg, Introduction to Semi-Supervised Learning, Morgan & Claypool Publishers, 2009. 

 

 

Shubhomoy Das is a Ph.D. student in Computer Science at 

Oregon State University. His research area is Machine Learning. 

After receiving his Bachelors in Electrical Engineering (2000) 

from Government Engineering College, Jabalpur, India, he 

worked in the IT industry across multiple domains 

(Media/Publishing, Shipping and Logistics, Retail.) 

 

Travis Moore is a Ph.D. student in Computer Science at Oregon 

State University.  He received a B.Sc. in Computer Science and a 

B.Sc. in Mathematical Science from Oregon State in 2010.  His 

research area is machine learning, with specific interest in 

structured learning and human-in-the-loop learning. 

 

Weng-Keen Wong is an Associate Professor in Computer 

Science at Oregon State University. He received his Ph.D. (2004) 

and M.S. (2001) in Computer Science at Carnegie Mellon 

University, and his B.Sc. (1997) from the University of British 

Columbia.  His research areas are in data mining and machine 

learning, with specific interests in human-in-the-loop learning, 



S. Das, T. Moore, W-K. Wong et. al./Artificial Intelligence 
 

 

 

 

anomaly detection and Ecosystem Informatics. 

 

Simone Stumpf is a Lecturer in the Centre for Human-Computer 

Interaction Design at City University London, UK. She received 

her Ph.D. in Computer Science (2001) and her B.Sc. in Computer 

Science with Cognitive Science (1996) from University College 

London. Her research interests focus on end-user interactions 

with intelligent systems and information systems. 

 

Ian Oberst received his M.S. (2010) and his B.Sc. (2007) in 

Computer Science from Oregon State University. He currently 

works as a Products Analyst at Huron Healthcare. 

 

Kevin McIntosh received his B. Sc. (2011) in Computer Science 

from Oregon State University. He currently works for Intel in 

California as a Graphics Validation Engineer. 

 

Margaret Burnett is a Professor of Computer Science at Oregon 

State University. She is interested in how to empower ordinary 

end users to have real understanding of and control over complex 

systems such as intelligent agents. She has served on committees 

and in organization roles in conferences where humans’ 

understanding of and control over complex systems are of 

interest, co-founded the area of end-user software engineering, 

and was the founding project director of the EUSES Consortium, 

a collaboration on end-user programming and end-user software 

engineering that now involves 12 institutions.    
 

 

 


