
This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/27413/

Link to published version: https://doi.org/10.1016/j.chemosphere.2022.133542

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Original draft writing: S.S.S., K., K.M., H.K.

Supervision: S.S.S., V.K.T.

All authors have read and agreed to the published version of the manuscript.
Novel synthesis methods and applications of MXene-based nanomaterials (MBNs) for hazardous pollutants degradation: Future Perspectives

Samarjeet Singh Siwal a*, Karamveer Sheoran a, Kirti Mishra a, Harjot Kaur a, Adesh Kumar Saini b, Vipin Saini c, Dai-Viet N. Vo d, Hamed Yazdani Nezhad e, and Vijay Kumar Thakur f,g*

a Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
b Department of Biotechnology, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
c Department of Pharmacy, Maharishi Markandeshwar University, Kumarhatti, Solan, Himachal Pradesh, 173229, India
d Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
e Department of Mechanical Engineering and Aeronautics, City University of London, London EC1V0HB, UK
f Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK
g School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India

*Corresponding authors: samarjeet6j1@gmail.com (Samarjeet Singh Siwal), Vijay.Thakur@sruc.ac.uk (Vijay Kumar Thakur)

Abstract:
MXenes are a quickly growing and extended group of two-dimensional (2D) substances that have earned unbelievable analysis credits for various application areas within different manufacturing areas. Due to novel essential architectural and physicochemical properties shows good properties, such as elevated exterior area, living adaptability, strong electrochemistry, and great hydrophilicity. Given the fast progress within the structure and synthesis of MBNs for water treatment, quick updates on this research field are required to remove toxic substances, such as production approaches and characterization methods for the advantages and constraints of MXenes for pollutant degradation. MXenes are
determined as a proposed road toward atmosphere-clean-up machinery to identify and decrease a pattern of hazardous resistant pollutants from environmental forms. Here, in this review article, we have been focused on describing the overview, novel synthesis methods, and characteristics of the MXene-based nanomaterials (MBNs) in the field for removing hazardous contaminants from environmental conditions. In the last, the utilizations of MBNs in water sanitization, organic solvent filtration, antibiotics degradation, pesticide degradation, heavy metals degradation, ions removal, bacterial pathogens degradation, along with the conclusion, challenges, and prospects in this field, have been discussed.

Keywords: MXene-based nanomaterials; electrical properties; water purification; pesticide degradation; bacterial pathogens degradation.

Graphical abstract:
Abbreviations:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Two-dimensional</td>
</tr>
<tr>
<td>TMCs</td>
<td>Transition metal carbides</td>
</tr>
<tr>
<td>MBNs</td>
<td>MXene-based nanomaterials</td>
</tr>
<tr>
<td>TM</td>
<td>Transition metal</td>
</tr>
<tr>
<td>Gr</td>
<td>Graphene</td>
</tr>
<tr>
<td>CNTs</td>
<td>Carbon nanotubes</td>
</tr>
<tr>
<td>MOFs</td>
<td>Metal-organic frameworks</td>
</tr>
<tr>
<td>Ti$_4$N$_3$</td>
<td>Titanium nitride</td>
</tr>
<tr>
<td>TBAOH</td>
<td>Tetrabutylammonium hydroxide</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical vapour deposition</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>Methane</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>WF$_3$</td>
<td>Work functions</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>QDs</td>
<td>Quantum dots</td>
</tr>
<tr>
<td>PEI</td>
<td>Polyethyleneimine</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>GO</td>
<td>Graphene oxide</td>
</tr>
<tr>
<td>RhB</td>
<td>Rhodamine B</td>
</tr>
<tr>
<td>MB</td>
<td>Methyl blue</td>
</tr>
<tr>
<td>MO</td>
<td>Methyl orange</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>4-NA</td>
<td>4-nitroaniline</td>
</tr>
<tr>
<td>h-BN</td>
<td>Hexagonal boron nitride</td>
</tr>
<tr>
<td>LDHs</td>
<td>Layered double hydroxides</td>
</tr>
<tr>
<td>gC₃N₄</td>
<td>Graphitic carbon nitride</td>
</tr>
<tr>
<td>AV</td>
<td>Avermectin</td>
</tr>
<tr>
<td>S. aureus</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>H&E</td>
<td>Hematoxylin and eosin</td>
</tr>
<tr>
<td>HF</td>
<td>Hydrofluoric acid</td>
</tr>
<tr>
<td>PDSs</td>
<td>Pesticide delivery systems</td>
</tr>
<tr>
<td>CAs</td>
<td>Contrast agents</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>MBNs</td>
<td>MXene-based nanomaterials</td>
</tr>
</tbody>
</table>
1. Introduction

To minimize the environmental impact, the advancement of the latest developing nanomaterials and polymers in particular for dangerous pollutants degradation has brought more innumerable attention recently (Ashvinder K. Rana et al., 2021a, 2021b; Ashvinder Kumar Rana et al., 2021; Siwal et al., 2021; Usmani et al., 2020). MXenes is a general name for a group of new two-dimensional (2D) transition metal carbides (TMCs) and carbonitrides substances with graphene-similar arrangements (Siwal et al., 2020a; Siwal et al., 2020b). Being a novel class of 2D lamellar nanocomposite, various researchers have concentrated on designing and synthesizing MBNs due to their sizeable inter-layer annulled by the 2D loading arrangement and a high surface area rich adaptable surface functional group, and great hydrophilicity. Regarding their unusual characteristics, relevant analysis and latent of 2D MXenes nanocomposite for pollutants parting and water processing purposes are implemented (Li et al., 2021a; Li et al., 2021c; Wang et al., 2021).

MXenes is a novel, and a large group of 2D elements that occur below initial TMCs and carbonitrides have earned particular investigation concerns in current years (Siwal et al., 2018). Due to their different architectural, physical, chemical, and practical properties, MXenes are recognized as architect nanomaterials for several manufacturing utilization e.g., water purification (such as; flux and removal) and organic solvent filtration (Al-Hamadani et al., 2020). The accelerated progress during global industrialization has proposed strict environmental attention (Shao and Chen, 2013; Jasper et al., 2017). At this point, the liberation of industrial scrap in the absence of the usual method is one of the main reasons for ecological contamination. The high volume of polluted effluent comprises a blend of toxic azo colorants, insecticides, and heavy metals of different applications
associated with coloring, printing, plastics, leather, diet, and drugs (Robinson et al., 2001; Islam et al., 2021; Rathi et al., 2021; Siwal et al., 2021b; Siwal et al., 2021c). In broad, ecological contaminants would be categorized as biological and inorganic, while poisonous heavy metals and colorants are the prime causes of water pollution (Sharma et al., 2020; Thakur et al., 2022, 2018; Verma et al., 2020).

Also, MXenes have a typical description of $M_{n+1}X_nT_x$, while "M" indicates a transition metal (TM), "X" may be a carbon (C)/nitride (N), $n = 1 \sim 3$, and T_x denotes the related exterior functionalities (similar to -OH, -F and -O) (Siwal et al., 2019b; Xu and Gogotsi, 2020; Zhu et al., 2021). These exterior functionalities have a meaningful connection toward the physical and chemical characteristics of MXene substances that will further impact their latent within surface-cooperative utilization, for example, adsorption or film separation. MXenes give higher hydrophilicity and performance to ion exchange and oxidation-reduction owing to their surface functionalities with different graphene (Gr), such as lower hydrophilicity. Besides, the 2D composition, united by solid redox property, has identified MXenes’ potential to manufacture photocatalyst and electrocatalytic devices toward the degeneration and signal of ecological pollutants (Schultz et al., 2019; Kumar et al., 2022; Rasheed et al., 2022). The accelerated evolution of MXenes into environmental remedy and discovery machinery asks for an impartial conclusion of the importance of their surface relevant characteristics upon the conclusive activity of MXene-dependent composites (Tunesi et al., 2021). Young-Kyu and his coworkers (Ranjith et al., 2021; Ranjith et al., 2022) based their studies on 1D-2D MBNs as a better-performance electrochemical detection stage toward the sensitive recognition of dihydroxybenzene isomers and rutin within wastewater specimens.
Here, in our study we have tried to summarize all the insight view on history, synthesis routes of MBNs and all the possible aspects in this regard. As per our knowledge this is first review where readers can go through overview of novel synthesis methods, and characteristics of the MXene-based nanomaterials (MBNs) in the field for removing hazardous contaminants from environmental conditions. In the last, the utilizations of MBNs in water sanitization, organic solvent filtration, antibiotics degradation, pesticide degradation, heavy metals degradation, ions removal, bacterial pathogens degradation and other applications (such as, biosensing, biosafety, therapy, antimicrobial and diagnostic imaging), along with the conclusion, the existing challenges, and future direction in this field, have been discussed.

2. History and overview of MXene-based nanomaterials

Hexagonal panel structured ternary TMCs or nitrides, including the architectural description of M_nAX_n has been identified as a MAX segment (Barsoum and Radovic, 2011; Sun, 2011). At this juncture, M is the initial TM (Such as Ti, Cr, V, Mo, Zr, Nb, Sc and W), where X is the C and/or N, while A is the enclosed component of covered M_{n+1}X_n, that is chosen by 13 or 14 groups within the periodic table (Naguib et al., 2011; Anasori et al., 2017). Expressly, “n” may be changed from 1 to 3. Therefore, the MAX segment is especially possible within the 413, 312, and 211 arrangements. The 312 (Ti_3AlC_2) assembly was identified as a generally studied MXene arrangement. Fig. 1 shows the MAX stage elements and the attainable 413, 312, and 211 MAX segment configurations. See that the M-X tie is chemically durable associated with the M-A connection within the $\text{M}_{n+1}\text{AX}_n$. Therefore, “A” elements are very chemically in heat or etching methods (Sreedhar and Noh,
2021). Furthermore, the M-A connection is metallic. Hence, the MAX phase shows novel thermal and electrically conductive characteristics.

![Periodic Table](image)

Fig. 1. The probable MAX segment components within the periodic table by (a) (3 1 2) (b) (2 1 1), and (c) (4 1 3) MAX stage element compartments. Reprinted with permission from Ref. (Sreedhar and Noh, 2021).

Various new researches have studied the construction of multi-faceted MXene flakes and nanocomposites (Anasori et al., 2017) through wet etching with HF (Ren et al., 2016), HCl-LiF (Chen et al., 2018; Couly et al., 2018), or HCl-NaF (Liu et al., 2017a). **Fig. 2** displays a timeframe of MXene incorporation since 2011 to 2019 (Al-Hamadani et al., 2020). Generally, nanomaterial-based films, which comprise carbon nanotubes (CNTs) (Siwal et al., 2021a), graphene oxides (GO) (Samarjeet et al., 2017; Siwal et al., 2019a), and/or metal-organic frameworks (MOFs), there are three invention techniques toward films:

1. MXenes are utilized as support substances toward the invention of a lamellar composition.
2. Various extracts or other nanomaterials are combined to incorporate composite medium films beside MXenes.

3. MXenes are used as covering substances to transform a membrane backing sheet.

![Fig. 2. Timeframe of MXenes: after Ti$_3$C$_2$ discovery to methodical divacancies adapted from Ref. (Al-Hamadani et al., 2020).](image)

After 2011, numerous research articles (Fig. 3) and a book were proclaimed, and many licenses were registered based MBNs. In this regard, Naguib et al. (Naguib et al., 2021) reviewed significantly than the number of patents registered and allotted is the broad range of probable applications, varying from electronics to drug, sensing, communication, optoelectronics, and tribology between many other.
Fig. 3. Sequential displays of development within the area of MXenes. (a) The papers and (b) credentials data get by Web of Science. (c) Listing the direct integration and processing discoveries past the initial 10 years of MXenes’ investigation. Reprinted with permission from Ref. (Naguib et al., 2021).

δ Compact solution MXenes; ☉ MXene by non-MAX segment reactants; § out-of-plane well-organized dual TM MXene; ♡ MXene by in-plane well-organized dual TM MAX segment equivalents; * 2D carbides and nitrides shaped through bottom-up methods; ε nitride MXene shaped through post-processing of carbide MXene; □ position; and ^ miscellaneous ends.

3. Synthesis route of MXene-based nanomaterials
There is a big group of triple carbides and nitrides MAX phases by fixed double TM constructions. The ball-milling and elevated heat sintering process makes MAX phases (Zhang et al., 2018b). Contrasting the amalgamation of Gr or MoS₂, MXenes are broadly formed through discerning etching of specific atomic films of their coated antecedents, like MAX phases. The mechanical depilation process is complicated because of the solid metallic interactions among the “A” and “M” elements into the MAX states. Though “M-A” bonds are further chemically dynamic compared to the more robust “M-X” interactions, therefore, it is probable to prepare a particular etching of “A” films to develop MAX phases. Extremely discerning etching is the critical requirement for building MXenes through remarkable operating techniques, for example, the HF approach (Wang et al., 2015; Zhang et al., 2015; Xiao et al., 2016), fluoride-comprising acid solution processing and heating (Horlait et al., 2016; Lukatskaya et al., 2017; Zhang et al., 2017). Following this profoundly selective etching, the compact MAX phase is changed to the sluggish accordion-similar MXene (Augustyn and Gogotsi, 2017). This unique etching of the “M-A” interaction in $M_{n+1}AX_n$ segments may be reviewed as given (Yang et al., 2019):

$$M_{n+1}AX_n + 3HF \rightarrow M_{n+1}X_n + AF_3 + \frac{3}{2}H_2 \rightarrow (1)$$

$$M_{n+1}X_n + 2H_2O \rightarrow M_{n+1}X_n(OH)_2 + H_2 \rightarrow (2)$$

$$M_{n+1}X_n + 2HF \rightarrow M_{n+1}X_nF_2 + H_2 \rightarrow (3)$$

Subsequent etching of the A sheet (1), the bulk of received $M_{n+1}X_n$ will proceed to combine by Water (2) and HF (3) to develop a functional group-comprising exterior. Furthermore, **Table 1** shows the different synthesis protocols of MBNs.
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Types of MXene-based electrodes</th>
<th>Surface area (m²g⁻¹)</th>
<th>Cell voltage (V)</th>
<th>Salt adsorption capacity (mg/g)</th>
<th>Synthesis protocol</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ti₃C₂</td>
<td></td>
<td>1.2</td>
<td>13</td>
<td>HF</td>
<td>(Srimuk et al., 2016)</td>
</tr>
<tr>
<td>2</td>
<td>Ar plasma modified Ti₃C₂Tx</td>
<td></td>
<td>1.2</td>
<td>26.8</td>
<td>HF</td>
<td>(Guo et al., 2018)</td>
</tr>
<tr>
<td>3</td>
<td>Porous Ti₃C₂Tx</td>
<td></td>
<td>1.2</td>
<td>45</td>
<td>HF</td>
<td>(Bao et al., 2018)</td>
</tr>
<tr>
<td>4</td>
<td>LiF/HCL-etched Ti₃C₂Tx MXene</td>
<td>2.1</td>
<td>1.2</td>
<td>68</td>
<td>LiF/HCL-etching process</td>
<td>(Ma et al., 2020)</td>
</tr>
<tr>
<td>5</td>
<td>Mn₃O₄/RGO nanoarchitecture</td>
<td>160</td>
<td>1.2</td>
<td>15</td>
<td>Hydrothermal synthesis method</td>
<td>(Bharath et al., 2020)</td>
</tr>
<tr>
<td>6</td>
<td>Ti₃C₂ MXene</td>
<td>6</td>
<td>1.2</td>
<td>13 ± 2</td>
<td>Traditional etching method</td>
<td>(Srimuk et al., 2016)</td>
</tr>
<tr>
<td></td>
<td>Porous Ti$_3$C$_2$T$_x$ MXene</td>
<td>293</td>
<td>1.2</td>
<td>45</td>
<td>Ti$_2$AlC ball milling</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>NTP/MXene (NTP/M) nanohybrid of Ti$_3$C$_2$ MXene</td>
<td>24.3</td>
<td>1.8</td>
<td>128.6</td>
<td>Lower electrical conductivity under solvothermal conditions</td>
<td>(Chen et al., 2021)</td>
<td></td>
</tr>
</tbody>
</table>
3.1. HF etching

Additionally, in the usual HF acid system, the A atom films may be discriminating extracted through MAX forms' elevated heat etching process (Urbankowski et al., 2016; Li et al., 2018b). Recently, Yang et al. (Yang et al., 2019) strongly built 2D titanium nitride (Ti₄N₃) utilizing the elevated-heat etching technique. Fig. 4 (a) Constructions of MAX states and similar MXenes and, In the improved method (Fig. 4b), they heated Ti₄AlN₃ in hot fluoride salt to select the Al element on 550 °C. The single or multi-faceted Ti₄N₃Tₓ MXene was decorticated through the organic salt tetrabutylammonium hydroxide (TBAOH) method. As exhibited within Fig. 4(d), the Ti₄N₃Tₓ structure achieved through the elevated heat etching process has the identical organ-similar composition as HF etching. As recorded in Fig. 4(c), (I), the Al removal method is limited by aluminium hydroxides under low-temperature circumstances. (II) Following high heat and low NaOH absorptions, the aluminium hydroxides Al(OH)₃ are slightly disappeared, but the Ti₃C₂Tₓ is oxidated, and (III) elevated heat and higher NaOH absorptions will assist terminate the Al(OH)₃ and limit Ti₃C₂Tₓ from essentially oxidated. As shown in Fig. 4(e), the Ti₃C₂Tₓ structure achieved applying 27.5 m NaOH below 270 °C has the identical organ-similar composition as through HF etching. It is clear about the Ti₃C₂Tₓ; if it were operated on 550 °C in the presence of an oxygen environment, it would be oxidized toward TiO₂ and oxides of C.
Fig. 4. (a) Structures of MAX states and similar MXenes. (b) Graphic of the construction of Ti$_4$N$_3$T$_x$ with heating below Ar, into molten salt at 550 °C. (c) Diagram of the reaction among Ti$_3$AlC$_2$ and NaOH below distinct situations. (d) SEM picture of Ti$_4$N$_3$T$_x$. (e) SEM picture of Ti$_3$C$_2$T$_x$ attained with 27.5 m NaOH below 270 °C. Reprinted with permission from Ref. (Yang et al., 2019).

Mostly, the outcomes afterwards HF etching are accordion-similar bits, preferably than the actual 2D substances. Solitary or multi-sheet MXene sheets can be achieved through sonication; though, the yield is restricted due to the solid communicating strength of the built MXene films. A kind of immense cations (Wang et al., 2016) or giant organic particles (Mashtalir et al., 2013; Osti et al., 2016) could be interpolated within multilayer MXene compositions, growing the c-lattice constraint and reducing the synergy strengths among multi-layer MXenes sheets. Simultaneously, the interpolated multilayer MXenes may quickly be delaminated within water through staggering to make a steady colloidal
suspension holding of multilayer MXene flakes (Wang et al., 2017). This method changed and explained the aforementioned arduous embolism methods, permitted the larger-range generation of MXenes and supported this field's studies. **Fig. 5(a)** exhibits the architectural development from Ti₃AlC₂ to d-Ti₃C₂Tx, showing the removal of the Al from Ti₃AlC₂ and generation of 2D Ti₃C₂Tx, after the intercalation of LiOH in Ti₃C₂Tx layers. **Fig. 5(b)** displays a representative SEM picture for the stacks of the new Ti₃C₂Tx multilayers. Later exfoliation through sonication into IPA by LiOH as intercalator, the d-Ti₃C₂Tx shows 2D flakes among few-layer coating upon silicon support (Fig. 4c), showing large Ti₃C₂Tx nanosheets may be readily incorporated through such liquid-phase moulting process. An AFM photograph further proves the delamination of Ti₃C₂Tx from multilayer to few-layer in **Fig. 5(d)**. As explained under the corresponding height outline (**Fig. 5e**), the medium thickness of d-Ti₃C₂Tx nanosheets is around 5 nm, corresponding to 3-4 sheets Ti₃C₂Tx, as the layer spacing with the c-axis is approximately 1.36 nm.
Fig. 5. (a) XRD spectra of the Ti$_3$AlC$_2$, the pure Ti$_3$C$_2$Tx and ultrasonication flaked Ti$_3$C$_2$Tx with and in the absence of LiOH in IPA; (b) SEM of the pure Ti$_3$C$_2$Tx; (c) SEM of the decorticate Ti$_3$C$_2$Tx; (d) AFM picture and (e) the similar line examination of the d-Ti$_3$C$_2$Tx nanosheet on SiO$_2$/Si support. Reprinted with permission from Ref. (Wang et al., 2017).

3.2. Modified fluoride-based acid etching

To approach the high poisonousness connected by HF etching, scientists have completed numerous attempts to selectively investigate benign approaches to eliminate A atom films by MAX precursors. Besides HF, a hybrid suspension of a fluoride salt (e.g., LiF, NaF, KF, and NH$_4$F) and a great acid may also be utilized to etch MAX indications (Ghidiu et al., 2014). This is observed that fluoride salts and sturdy acids may act and develop facile HF to etch A atoms and start the embolism of positive ion selectively (for example, Li$^+$, Na$^+$, K$^+$, and NH$_4^+$) and water among MXene sheets through improving the interlayer layout of
MXene and reducing the synergy of MXene sheets. Remarkably, both the absorption of concentrated acid and fluoride salt may affect the character and dimension of the concluding MXene cells. The synthesized multilayered Ti₃C₂ generated through the clay process (5 M LiF/6 M HCl) requires additional sonication chosen delaminated within individual flakes, making incomplete and small MXene layers (Alhabeb et al., 2017).

3.3. Molten salts etching

As well as HF/fluoride-related acid etching, MXene may be formed by elevated heat processing of MAX forms, for example, employing Ti₄AlN₃ within a blend of molten fluoride salt 550°C below argon shield to give Ti₄N₃ (Urbankowski et al., 2016). The etching method may be made in a comparatively short time, about 30 minutes, because of the more profound durability of TiₙNₙ₋₁ than the TiₙCₙ₋₁. TiₙNₙ₋₁ may be dissociated while utilizing HF or fluoride-related acid as an etchant. Hence, a comparatively fast analysis time is the success of this heated salts etching process. Despite this, an extra wash method (through H₂SO₄ and DI water) and additional delamination (within TBAOH suspension) are essential.

The X-ray diffraction (XRD) analysis showed that the excorticate Ti₄N₃Tₘ showed lower crystallinity than the other HF-etched Ti₃C₂Tₘ (Alhabeb et al., 2017). It might recommend that there are still some problems synthesizing nitride MXenes via the melted fluoride salt etching process. Usually, the wet chemistry methods are yet the utmost suitable optimal for the amalgamation of MXene substances.

3.4. Fluoride-free etching
Though various etching situations have been established toward integrating MXenes, HF or fluoride-dependent composites are needed within most assembly techniques, which may prompt -F and -O termini upon the interface MXenes (Naguib et al., 2011). Remarkably, -F ends to harm the electrochemical activity of MXenes-based energy storage applications (Yu et al., 2019). Here, fluoride-free synthesis methods are required to develop a suitable electrochemical appearance. Zhang et al. (Li et al., 2018b) produced an alkali-supported hydrothermal etching technique to develop Ti$_3$C$_2$ MXene through utilizing NaOH solution as the etchant. Generally, for the Ti$_3$AlC$_2$ MAX phase, alkali is probably possible as an etchant owing to the significant connection between alkali and elemental Al. Usually, the Ti$_3$C$_2$ design is weak within the alkaline media, in that the deterioration of Ti$_3$C$_2$ design will coincide in the elimination of A atoms. Hence, retaining the Ti$_3$C$_2$ film unimpaired during the selective etching from Ti$_3$AlC$_2$ is a hurdle. Here, an elevated (270 °C), higher alkaline distillate (27.5 m) circumstance was utilized to stop the destruction of the Ti$_3$C$_2$ frame, that is recognized as the Bayer method.

Usually, the acquired MXenes are independent of -F ends when generated through the fluoride-free etching process. NaOH etching is less dangerous associated with HF and transformed fluoride-dependent acid etching but needs elevated heat and density of etchant (Bai et al., 2021; Song et al., 2021a). Furthermore, TMAOH etching is effective in excorticate; nonetheless, the captured Al(OH)$_4^-$ closes within MXenes can negatively affect their possible purposes.

3.5. Chemical vapour deposition

The “A” element may be assigned through an electrochemical approach. Although, this approach may not selectively remove the “A” film while grasping the “M” element. The
electrochemical method used to MAX phases could probably produce vague carbon. Hence, the yield acquired through this approach will not be an MXene. Behind the above-preparation processes, chemical vapour deposition (CVD) may instantly incorporate the 2D TMCs. In 2015, the crystalline α-Mo₂C was favorably manufactured with CVD with a super-tinny composition and extended range (Gogotsi, 2015; Xu et al., 2015; Liu et al., 2016b).

Aside from the as-mentioned etching techniques, CVD gives a possible path to manufacture superior MXene. During 2015, Ren's organization used a CVD technique to produce ultrathin α-Mo₂C 2D crystalline with an adjacent dimension of 100 μm through utilizing CH₄ as the carbon reservoir and double metallic foils (a Cu foil over a Mo foil) as the support (Xu et al., 2015). The CVD-developed MXene individual quartzes have larger sphere size and lower deficits than those manufactured through wet-chemical etching techniques. The CVD technique may be practiced to make different ultrathin TMC, for example, WC and TaC crystals. However, a limited article about the CVD assembly of MXene single layer shows that further advancement is still required. While the wet-chemistry etching process, CVD-developed MXene has a significantly lower concentration of deficiencies and disarrays and lower pollutants concentrations, allowing researchers to study the fundamental physical, chemical, electrical, and optical characteristics MXene. Lastly, the Scanning electron microscopy (SEM) pictures of powder surface structure taken through various etching techniques are displayed within Fig. 6(a-j) (Yu et al., 2019).
Fig. 6. SEM pictures of MBNs precipitates gained through diverse etching approaches. (a) Ti$_3$AlC$_2$ precipitate and multifaceted Ti$_3$C$_2$T$_m$ precipitate manufactured by (b) 30, (c) 10, and (d) 5 wt% HF. (e) Multi-faceted NH$_4$-Ti$_3$C$_2$T$_m$ precipitate made by NH$_4$F and HCl and (f) MILD-Ti$_3$C$_2$T$_m$ precipitate etched by 10 m LiF within 9 m HCl. (g) Molten salt preserved Ti$_4$AlN$_3$ at 550 °C for 0.5 h below Ar flow. (h) Ti$_3$C$_2$T$_m$ powder gained with 27.5 m NaOH below 270 °C. (i) Ti$_3$C$_2$T$_m$ precipitate got by aqueous TMAOH. (j) The electrochemical etched Ti$_3$C$_2$T$_m$ precipitate. Reprinted with permission from Ref. (Yu et al., 2019).

3.6. Delamination method

Delamination is brought out with exclamation and sonication. Exclamation involves multiple ions or molecules (different cross-substances such as big organic blends and ions) among the scooped MXene coatings. It raises the interlayer distance among layering and increases the exterior area and apparent dissociation of films within a 2D configuration (Alhabeb et al., 2017).

To open the coatings and develop the space among the non-laminated MXene films, pretreatment before sonication intercalation is committed to absorbing ions or organic blends (Maleski et al., 2017; Li et al., 2019). Following HF etching, the OH and F operating groups form the resultant multilayer MXene exterior and evolve region. Another side, the net selectivity of mark contaminants improves after embolism owing to replacing other cations from interplants in the position of some preliminary functional clusters (Lukatskaya Maria et al., 2013).
Sonication is a substitutional set utilised if a straightforward concentration or volume of the resultant MXene fragment is chosen, where the divided MXene is sonication to assemble the needed volume of fragment or 2D MXene absorption (Liu et al., 2018; Malaki et al., 2019). The production of MXene finishes via sonication that permits the control of the fragments' dimensions and the concentration of MXene. It may be accomplished through centrifugation that divides the massive MXene particles by a solution containing shorter colloidal MXene. However, centrifugation in the absence of sonication stays a restricted preference, while, in the presence of the sonication method, the concentration of MXene colloid may be grown within solution via exfoliating undissociated atoms (VahidMohammadi et al., 2019; Berkani et al., 2022).

In the meantime, numerous hurdles must be evaluated, like raising the MXenes materials via examining synthesizing MXenes from other possible MAX coatings. Substituting HF with green or slightly poisonous chemicals as the synthesis of MXenes utilizing HF is related to severe healthiness and environmental concerns and optimizing the manufacturing method to acquire MXenes in more significant amounts. Some recent investigators have been brought out to receive acceptable consequences in this regard.

4. Properties of MXene-based nanomaterials
MXenes have a novel hybrid of characteristics, such as the great electrical performance and mechanical characterisites of TMCs/nitrides; functionalized shells which assemble MXenes hydrophilic and prepared to interaction with different classes; allowing steady colloidal solutions within water; and effective captivation of electromagnetic waves, that has guided to a huge numeral of implementations. Additionly, **Table 2** exhibit the different properties of MBNs.
Table 2. shows the different properties of MXene-based nanomaterials.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>MXene-based nanomaterials</th>
<th>Properties</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ti_{n+1}C_n n= 1, 2, and 3</td>
<td>• Considerably enhanced mechanical properties by enlarging critical strains and lessens the Young’s modulus</td>
<td>(Guo et al., 2015)</td>
</tr>
<tr>
<td>2</td>
<td>Ti_2CT_2 and Ti_3C_2T_2 (T=F, O and OH)</td>
<td>• Lattice constant of Ti_2CT_2 shrinks while in case of Ti_3C_2T_2 it expands as a result of surface termination • High transmittance • Electronic conductors and semiconductors</td>
<td>(Bai et al., 2016)</td>
</tr>
<tr>
<td>3</td>
<td>Ti_3C_2 QDs/Cu_2O Nano-wires/Cu 0-D</td>
<td>• Shows 8.25 times more methanol production as compared to Cu_2O Nanowires/Cu • Significantly improved photocatalytic performance • Higher light adsorption, charge transfer and charge recombination</td>
<td>(Zeng et al., 2019)</td>
</tr>
<tr>
<td>4</td>
<td>Ti_3C_2T_X/polyvinyl alcohol (PVA)</td>
<td>• 34% improvement in tensile strength • Nearly 80% improvement in capacitance when PVA combined with KOH</td>
<td>(Ling et al., 2014)</td>
</tr>
<tr>
<td>5</td>
<td>MXene-Carbon nano-tubes (CNTs)</td>
<td>• Gradual decrease in swelling from 0.09nm to 0.03nm to 0.02nm at 180°C • Show attractive anti-swelling property and remains stable for 50 h</td>
<td>(Sun et al., 2021)</td>
</tr>
<tr>
<td>6</td>
<td>Dopamine-functionalized graphene oxide (DO)/MXene (Ti_3C_2T_X)</td>
<td>• Exhibit water flux of (63.5 Lm^2 h^-1) 98.1% and 96.1% dye rejection ratios for direct red 28 and direct black 38 respectively</td>
<td>(Zeng et al., 2021)</td>
</tr>
<tr>
<td>7</td>
<td>MXene/Al_2O_3</td>
<td>• Excellent water permeability (88.8 LMH/bar) • Greater than 99.5% rejection ratio for rhodamine B and methyl blue</td>
<td>(Long et al., 2021)</td>
</tr>
</tbody>
</table>
4.1. Electrical properties of MXene-based nanomaterials

Typical natural MXenes are metallic and, therefore, are similar to MAX conditions. With close functional clusters across their exteriors, some MXenes may take semiconducting characteristics. Their band gaps equal the solar band by allowing bandgap arrangement into heterostructures toward optoelectronics. Following this, various semiconducting MXenes with fit bandgaps will be presented.

MXenes cover different electronic characteristics owing to their wide compositional variety, different surface functionalization probabilities, and adjustable width controllability (Khazaei et al., 2015; Liu et al., 2016a). Amidst them, entire the bare MXenes and the bulk of surface-functionalized MXenes are metallic. This is understood that the work functions (WFs) of MXenes are sensible to their exterior interaction: for a relaxed MXene, associated with the bare exterior, the OH (O) design continuously reduces (raises) it is WF, where the F design represents either tendency depend on the specific substance. The OH-ended MXenes exhibit ultralow WFs (<2.8 eV), lower than Sc, which is approximately the lowest with elemental metals. In contrast, the WFs of a few O-ended MXenes are even more significant than Pt, with the highest WF of all elements. The WFs of F-ended MXenes constantly fall among those of OH- and O-terminated equivalents. The development of WF after exterior functionalization arises from the transformation of surface dipole moment caused by functionalization. The OH (O) end constantly points to

| 8 | Partially reduced graphite oxide/Ti$_3$C$_2$Tx | • Outstanding absorption capacity for organic solvents as well as for water-based corrosives
• Exhibits flame retardance property up to 1300°C | (Shi et al., 2022) |
exterior dipole moment and therefore reduces (raises) WF, while F can include each a negative or positive exterior dipole moment reliant upon the specific MBN. Though, it is remarked that in current investigations, the blend of F, O, and OH groups at the MXene surfaces typically draws the WFs of MXenes back in an intermediary rate. Such as, with operating Kelvin probe force microscopy investigation, Xu and coworkers (Xu et al., 2016) define the WF of Ti$_2$C(OH)$_x$F$_y$, which is expected to be ≈4.98 eV. Hence, for obtaining the ultralow WF of OH (or O)-ended MXenes, subtle command of the varieties of the exterior functional clusters is essential.

4.2. Mechanical properties of MXene-based nanomaterials

MXenes’ mechanical characteristics greatly depend upon their surface ends. It is divined that the O ended MXenes have very excellent toughness. Still, MXenes completed with different clusters (F and OH) exhibit lower elastic toughness than their O-ended equivalents (Bai et al., 2016). It can be compared to the distinct lattice coefficients of MXenes, including several terminations: typically, the O-ended MXenes have more miniature lattice limits than the F or OH eliminated MXenes (Zha et al., 2015). Associated with simple MXenes, the exterior-functionalized MXenes have more considerable versatility. Employing Ti$_2$C as a standard, Guo et al. (Guo et al., 2015) observe that the functionalization would overcome Young’s modulus of Ti$_2$C, nonetheless, the functionalized Ti$_2$C may endure a more considerable strain than simple Ti$_2$C and graphene as well. The surface eliminated groups function as a buffer film for Ti$_2$C below tensile distortion, quieting down the destruction of Ti films and improving the rate of significant strain where Ti$_2$C breakages.
Computational techniques were utilized to investigate the mechanical characteristics of MXenes as per the width, surface functionalization, and compound structure. The Young's moduli of the natural MXenes were planned from the inclinations of the strain-stress graphs. Sequentially, the standards were 597, 502, and 534 GPa for Ti$_2$C, Ti$_3$C$_2$, and Ti$_4$C$_3$, exhibiting that the minor Ti$_2$C 2D single-layer film holds the most eminent Young's modulus. The higher ductile stress and bond wreckage within Ti$_2$C and Ti$_3$C$_2$ began near the exterior surface of the films on the point, including the maximum local stress and created to the midpoint of the carbon films. Though, for Ti$_4$C$_3$, wreckage mounted within the filmfilm's midpoint and developed until a complete break commenced to trim particle configuration (Ling et al., 2014; Borysiuk et al., 2015).

MXene/PVA catalyst films exhibit high elasticity and support 5000 folds of their load (Fig. 7). The micrographs of MXene-layered constructions and the mixture of MXene nanofilms along with polymers are shown in Fig. 7. A 40% MXene weight proportion may give Young's modulus surpassing that recognized toward PVA polymers (Pang et al., 2019).
Fig. 7. MXene polymer catalyst and its mechanical characteristics. (a and b) Transmission electron microscopy (TEM) and SEM images of prepared MXene fragments. (c) Synthetic methods towards MXene sheets and MXene/polymer compound sheets. (d) Stress-strain graph of Ti$_3$C$_2$Tx/PVA composite sheets contingent upon the Ti$_3$C$_2$Tx mass proportion. (e) Picture of a new MXene film holding 4000 folds its mass. (f) Images of a 90 wt% MXene/PVA composite sheet carrying 15 000 folds its mass. Reprinted with permission from Ref. (Pang et al., 2019).

4.3. Morphological properties of MXene-based nanomaterials
The crystal composition of MXenes via selective etching typically receives their MAX parents' hexagonal atomic lattice P63/mmc. The M atoms are hexagonally crammed wherever the X atoms pack the octahedral interstitial positions (Jiang et al., 2020). The lattice parameter of surface-functionalized Ti3C2 improvements the following inclusion and desquamate. Nonetheless, their performance was distributed MXenes sheets of 20-50 nm stiffness and length 44-90 µm. In addition, after ultrasonication into Dimethyl sulfoxide (DMSO), these MXenes were dispersed within DI water to form an aqueous media including colloidal characteristic, later refined to remove MXene (Mashtalir et al., 2013).

Additionally, Ti3C2 Quantum Dots (QDs)/ Cu2O NWs catalysts were developed. Incorporation through Ti3C2 QDs does not transform the entire surface structure of Cu2O NWs but resists the spongy exteriors. As exhibited with SEM, Cu2O NWs have a spongy covering and a width of ≈500 nm (Fig. 8a, b). As the processing with poly (sodium 4-styrene sulfonate) (PSS) to produce a anion charged surface upon Cu2O NWs, Ti3C2 QDs grafted with cation energized Polyethyleneimine (PEI) are electrostatically self-decorated on Cu2O NWs building hierarchical Ti3C2 QDs/Cu2O NWs/Cu heterostructure. PSS and PEI particles are entirely obliterated in the argon environment through the succeeding calcination method, transmitting Ti3C2 QDs and Cu2O NWs within the close connection. Covering with Ti3C2 QD does not change the whole surface structure of Cu2O NWs but includes their spongy exteriors (Fig. 8c,d). (Zeng et al., 2019).
Fig. 8. Field emission SEM pictures of (a, b) Cu$_2$O NWs/Cu, (c, d) Ti$_3$C$_2$ QDs/Cu$_2$O NWs/Cu, and (e, f) Ti$_3$C$_2$ layers/Cu$_2$O NWs/Cu hetero- assemblies. Reprinted with permission from Ref. (Zeng et al., 2019).

Additionally, by examining the absorption of the MXene solutions, a slanted towards lamellar sheet construction with distinct lamellae layout from 150 to 20 μm has been achieved. While an attachment composition of hollow covered (Fig. 9a, d) to interlayer
coupling (Fig. 9b, e) or links (Fig. 9c, f) straight up sustained parallel sheet structure was built. The lightweight aerogel shows outstanding EMI shielding activity and a tunable proportion of electromagnetic heat observation to reflection. An ultrahigh explicit SE of 8818.2 dB cm3 g$^{-1}$, rising as the ultralow concentration (0.0055 g cm$^{-3}$) and higher EMI SE (48.5 dB) of miniature sheets, was obtained, which conferred the finest value between the described EMI shielding substances on the same time. The EMI shielding tool toward the 3D MXene aerogels may be assumed as (Fig. 9g):

1. a more substantial resistance match given with the 3D spongy arrangement led to more effective absorption to the occurrence of electromagnetic waves,

2. the abundance of cellular systems found within the novel 3D assembly of horizontally-situated MXene lamellae and perpendicular scaffolds improved the various observations and smattering of the occurrence of electromagnetic heat inside the bulk substance,

3. the time-changing electromagnetic currents produced in the long-array arranged MXene lamellae structure produces conductive damage and transform in temperature,

4. MXene fragments with various surface finishes and innate deficiencies occurred within the electromagnetic wave emission depending upon the dipole polarization, then recreated into a changing electromagnetic field.

3D MXene foam gathers MXene films by a vacuum filter method developed through a hydrazine-induced system (Fig. 9h-o). The 3D MXene foam, with self-decorated,
hydrophobic, lightweight, and supple, exhibited outstanding better electrical performance and EMI shielding activity (Lu et al., 2021b).

Fig. 9. (a) Graphic of the formation method of 3D MXene foam. (b) Hydrazine-tempted foaming device. (c) SEM photograph of the T\textsubscript{13}C\textsubscript{2}T\textsubscript{x} MXene films. (d-e) Construction. Cross-sectioned SEM pictures of (d, e) the MXene sheet, (f, g) the 3D MXene foam. (h-m) SEM pictures of 3D cross-allied MXene aerogels, including distinct concentrations. (n) Representation of three types of compositions with enhanced MXene absorption. (o) The device line toward the 3D MXene EMI shielding substance. Reprinted with permission from Ref. (Lu et al., 2021b).

5. Applications of MXene-based nanomaterials for hazardous pollutants degradation
Regarding the utilization activity of MXenes on the steady growth to development, here, we explain the broad-spectrum suitability of different MBNs within the ecological remedy. Concise information associated with environmental contaminants, structural characteristics, chemical capabilities, and construction way of MXenes is described toward the source. Later, the adsorption and deterioration sturdiness of MBNs for different pollutants, such as organic colourants, poisonous heavy metals, pesticide deposits, antibiotics, and many more, are entirely examined to determine their ability within the field of sewer water redemption and remedy (Mazari et al., 2021). Fig. 10. Different applications of MBNs for hazardous pollutants degradation. Also, Table 3 shows the applications of MBNs in different pollutant degradation.
Fig. 10. Different applications of MBNs for hazardous pollutants degradation.
Table 3. The applications of MBNs in different pollutant degradation.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>MBNs</th>
<th>Uses</th>
<th>Performance</th>
<th>Uptake capacity (mg/g)</th>
<th>Efficiency (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ti$_3$C$_2$T$_x$</td>
<td>Heavy metal (Pb(II)) removal</td>
<td>High adsorption capacity than graphene</td>
<td>36.6</td>
<td>-</td>
<td>(Jun et al., 2020a)</td>
</tr>
<tr>
<td>2</td>
<td>Ti$_3$C$_2$T$_x$</td>
<td>Removal of Ba(II), Sr(II)</td>
<td>Adsorb metals by ion-exchange and inner sphere complex formation</td>
<td>180,225</td>
<td>-</td>
<td>(Jun et al., 2020b)</td>
</tr>
<tr>
<td>3</td>
<td>Graphene oxide- Ti$_3$C$_2$T$_x$</td>
<td>Organic and inorganic pollutant removal(NaCl, Na$_2$SO$_4$, RhB, CV, MB, NR)</td>
<td>Shows nearly 7.5 and 2.5 high water permeance as compared to pure graphene-oxide and GO/TiO$_2$ respectively</td>
<td>-</td>
<td>NaCl= 23, Na$_2$SO$_4$=61, RhB=98, CV=97.5, MB=99, NR=98.9</td>
<td>(Han and Wu, 2019)</td>
</tr>
<tr>
<td>No</td>
<td>Material</td>
<td>Process Description</td>
<td>Performance</td>
<td>References</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------------------</td>
<td>--</td>
<td>---</td>
<td>------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Magnetic-(\text{Ti}_3\text{C}_2\text{T}_X)</td>
<td>Photocatalytic degradation of Diclofenac</td>
<td>superior stability for seven successive cycles</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 100 within 30 minutes</td>
<td>(Jang et al., 2020)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(\text{Ti}_3\text{C}_2/\text{gC}_3\text{N}_4)</td>
<td>Photocatalytic degradation of phenol</td>
<td>32.1% phenol was degraded under dark conditions</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 98 within 180 minutes</td>
<td>(Liu et al., 2020)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(\text{Ti}_3\text{C}_2\text{T}_X)</td>
<td>Organic dye (MB) removal</td>
<td>Excellent adsorption for cationic dyes</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>(Mashtalir et al., 2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(\text{Ti}_3\text{C}_2(\text{OH})_2)</td>
<td>Removal of radionuclide U(VI)</td>
<td>Chemical adsorption and formation of hydrogen bonds was the driving force</td>
<td>595.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>(Zhang et al., 2016)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(\text{Ti}_3\text{C}_2-\text{Co}_3\text{O}_4)</td>
<td>Removal of Organic dye (MB)</td>
<td>Enhanced adsorption performance</td>
<td>MB=136.24, RhB=47.687</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>(Luo et al., 2019)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Material</td>
<td>Application</td>
<td>Effect</td>
<td>Efficiency</td>
<td>Selectivity</td>
<td>Reference</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>9</td>
<td>Ti$_3$C$_2$T$_x$</td>
<td>Removal of Urea</td>
<td>No cyto-toxicity, hydrogen bond formation with functional group</td>
<td>21.7, 6.6, 8.4</td>
<td>-</td>
<td>(Meng et al., 2018)</td>
</tr>
<tr>
<td></td>
<td>Ti$_3$CT$_x$ Mo$_2$TiC$_2$T$_x$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CuFe$_2$O$_4$/Ti$_3$C$_2$</td>
<td>Photocatalytic degradation of Sulfamethazine (SMZ)</td>
<td>Enhanced synergistic degradation under visible light</td>
<td>-</td>
<td>59.4</td>
<td>(Cao et al., 2020)</td>
</tr>
<tr>
<td>11</td>
<td>CeO$_2$/Ti$_3$C$_2$-Mxene</td>
<td>Photocatalytic degradation of tetracycline</td>
<td>6.3 times better performance than bare CeO$_2$</td>
<td>-</td>
<td>80.2</td>
<td>(Shen et al., 2019)</td>
</tr>
<tr>
<td>12</td>
<td>Ti$_3$C$_2$T$_x$ core-shell spheres with alginate</td>
<td>Removal of Hg(II) ions</td>
<td>Exhibit unique structure and act as excellent adsorbent</td>
<td>932.84, 100</td>
<td></td>
<td>(Shahzad et al., 2019)</td>
</tr>
<tr>
<td>13</td>
<td>Ag-Ti$_3$C$_2$Tx</td>
<td>Removal of RhB MG</td>
<td>Exhibit excellent water flux</td>
<td>-</td>
<td>RhB=82% MG=94.6%</td>
<td>(Pandey et al., 2018b)</td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>----</td>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>14</td>
<td>g-C$_3$N$_4$/Ti$_3$C$_2$</td>
<td>Removal of ciprofloxacin</td>
<td>Schottky junction inhibit the electron hole</td>
<td>-</td>
<td>100 within 2 hours</td>
<td>(Liu et al., 2019a)</td>
</tr>
<tr>
<td>15</td>
<td>TiO$_2$-Ti$_3$C$_2$Tx</td>
<td>Elimination of dextran</td>
<td>Short the manufacturing process and reduce membrane cost</td>
<td>-</td>
<td>Molecular weight >30kDa= >95</td>
<td>(Xu et al., 2018)</td>
</tr>
</tbody>
</table>
5.1. Water purification by MXene-based nanomaterials

Recently, the growth of new NMs toward water processing has drawn more and more attention (Ahmed et al., 2021)(Patial et al., 2021). MXenes is a universal name for various 2D TMCs and carbonitrides substances with graphene-like constructions (Abbasi et al., 2021). As a novel 2D lamellar nanomaterial, numerous investigations have concentrated on designing and synthesizing MBNs due to their sizeable inter-layer annulled by the 2D stacking composition and a sizeable definite surface area rich adaptable surface working group, and durable hydrophilicity. Regarding their different characteristics, the associated analysis and potential of 2D MBNs toward layer detachment and water processing utilization are presented. Sequentially, a GO-MXene-TiO$_2$ film showed around 7.5- and 2.5-times more excellent water penetrability (90 L/m2 h bar) than a pure GO film and a GO-TiO$_2$ layer. Successively scattered laminar-arrangement TiO$_2$ nanocrystals were utilized as inlay that provided consistent nanochannels in the GO film for H$_2$O particle carrier, while MXene storing also contributed more nanochannels to the water carrier. High extraction speeds of different colourants (for example, Rhodamine B (RhB) and methyl blue (MB)) were completed by the GO-MXene-TiO$_2$ film; though, the elimination speeds of inorganic salts were comparatively low. Extraction of the colourants with adsorption was very quiet (around <10%), indicating that different tools, for example, size separation and/or electrostatic synergy were imperative during the transport of organic colourants. By the way, a graphic of the fig of Fig. 11(a) the synthesized membranes were expressed as HGMX membrane, while X is the mass proportion of MXene Fig. 11(b) GO/TiO$_2$ membrane developed through a conventional approach. Pure water penetrability and denunciation of RhB of Fig. 11(c) HGMX film and Fig. 11(d) GO/TiO$_2$ film.
Water penetrability of HGM30 toward separate colourants, Fig. 11(f) common rejection and adsorption rejection through the HGM30 film toward organic colourants (Han and Wu, 2019).

Fig. 11. Graphic of the assembly of (a) HGMX film, (b) GO/TiO$_2$ film arranged through a conventional technique. Clean water penetrability and refusal of RhB of (c) HGMX film and (d) GO/TiO$_2$ membrane. (e) Water penetrability of HGM30 towards distinct colorants, (f) overall refusal and adsorption refusal through the HGM30 film towards organic colorants. Reprinted with permission from Ref. (Han and Wu, 2019).
5.2. Organic solvent filtration by MXene-based nanomaterials

The practice of MXenes has also been recognized within the catalytic elimination/degeneration of ecological contaminants in the absence of radiation. In this regard, the catalytic operation is organized to enhance the oxidants complete activity or reductant to obtain the entire degeneration or mineralization of the contaminants. Table 4 compiles the MBNs published toward the photodegradation of the ecological contaminants.

Table 4 Shows the photodegradation activity toward the organic dyes by utilizing Mxene-based materials photocatalysts.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Mxene-based nanomaterials</th>
<th>Dyes</th>
<th>Absorption (mg L⁻¹) and volume (mL)</th>
<th>Degradation efficiency with time</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ti₃C₂Tx</td>
<td>MB</td>
<td>1.2×10² and 40</td>
<td>81% within 5 h</td>
<td>(Mashtalir et al., 2014)</td>
</tr>
<tr>
<td>2</td>
<td>Bi₂WO₆/Nb₂CTₓ</td>
<td>RhB</td>
<td>15 and 100</td>
<td>99.8% within 90 min</td>
<td>(Cui et al., 2020)</td>
</tr>
<tr>
<td>3</td>
<td>TiO₂/Ti₃C₂</td>
<td>MO</td>
<td>20 and 100</td>
<td>98% within 30 min</td>
<td>(Gao et al., 2015)</td>
</tr>
<tr>
<td>4</td>
<td>Ti₃C₂/TiO₂/CuO</td>
<td>MO</td>
<td>20 and 100</td>
<td>99% within 80 min</td>
<td>(Liu et al., 2017b)</td>
</tr>
<tr>
<td>5</td>
<td>Ag₃PO₄/Ti₃C₂</td>
<td>MO</td>
<td>20 and 50</td>
<td>-</td>
<td>(Cai et al., 2018)</td>
</tr>
<tr>
<td>6</td>
<td>TiO₂@C</td>
<td>MB</td>
<td>20 and 50</td>
<td>85.7% within 6 h</td>
<td>(Li et al., 2018a)</td>
</tr>
<tr>
<td>7</td>
<td>In₂S₃/TiO₂@Ti₃C₂Tx</td>
<td>MO</td>
<td>20 and 100</td>
<td>92.1% within 1 h</td>
<td>(Wang et al., 2018)</td>
</tr>
<tr>
<td>8</td>
<td>CdS@Ti₃C₂@TiO₂</td>
<td>RhB</td>
<td>20 and 200</td>
<td>100% within 1 h</td>
<td>(Liu et al., 2019b)</td>
</tr>
<tr>
<td></td>
<td>Catalyst Type</td>
<td>Dye</td>
<td>Concentration</td>
<td>Degradation Efficiency (%)</td>
<td>Time</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
<td>--------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>9</td>
<td>Ag$_3$PO$_4$/Ti$_3$C$_2$</td>
<td>Aniline</td>
<td>-</td>
<td>81.8% within 8 h</td>
<td>(Ding et al., 2019)</td>
</tr>
<tr>
<td>10</td>
<td>CeO$_2$/Ti$_3$C$_2$</td>
<td>RhB</td>
<td>20 and 50</td>
<td>75% within 90 min</td>
<td>(Zhou et al., 2017)</td>
</tr>
<tr>
<td>11</td>
<td>Fe$_2$O$_3$/Ti$_3$C$_2$</td>
<td>RhB</td>
<td>10 and 100</td>
<td>98% within 2 h</td>
<td>(Zhang et al., 2018a)</td>
</tr>
<tr>
<td>12</td>
<td>Ti$_3$C$_2$T$_x$/GO/EY</td>
<td>4-NA</td>
<td>10 and 20</td>
<td>97% within 5 min</td>
<td>(Chen et al., 2019)</td>
</tr>
<tr>
<td>13</td>
<td>BiOBr${0.5}$I${0.5}$/Ti$_3$C$_2$T$_x$</td>
<td>RhB</td>
<td>20 and 100</td>
<td>100% within 40 min</td>
<td>(Shi et al., 2019)</td>
</tr>
</tbody>
</table>

MO—methyl orange, 4-NA—4-nitroaniline

GO-MXene catalysts films have been estimated toward their possibility towards organic solvent nanofiltration purposes (Wei et al., 2019). Alike to a previous investigation (Yang et al., 2017), films that fabricated only GO exhibited very unproductive saturation toward usually utilized organic solvents, for example, acetone and low molecular weight of alcohols. Though, membranes that included only MXene revealed better permeance toward absolute organic solvents. While reasonably comparable penetration was recognized even among MB dismissal within these solvents, lower MB elimination (<2%) was perceived to the MXene-only film (Wei et al., 2019).

Based upon the overextended studies, (i) nature of the interfacial synergy among 2D Ti$_3$C$_2$ nanofilms and TiO$_2$ nanostructures, (ii) improved TiO$_2$ contended at Ti$_3$C$_2$ (below ignition and hydrothermal process), (iii) manifold heterojunction production, (iv) necessary oxygen vacancy production within the TiO$_2$ and (v) substitute of functional combinations exceptionally advanced the various dye degeneration, drug dissolution, CO$_2$ mitigation and
N$\textsubscript{2}$ photo obsession. In this way, Fig. 12 exhibits the multi-faceted TiO$_2$/Ti$_3$C$_2$ composite use toward photocatalytic performance (Sreedhar and Noh, 2021).

Fig. 12. Graphic design of Ti$_3$C$_2$/TiO$_2$ compound towards different dye deprivation activities. Reprinted with permission from Ref. (Sreedhar and Noh, 2021).

GO-MXene material films have been assessed concerning their latent towards organic solvent nanofiltration purposes. **Fig. 13(a)** GO/MXene composite lamellar films used for effective solvent penetration and molecular detachment. **Fig. 13(b)** Flux of MB organic solutions by GM-70% films as converse thickness to solvent. **Fig. 13(c)** shows the correlation graph of MB solubility into different solvents and the MB refusal rate of GM-
70% films. Fig. 13(d) XRD patterns of GM films moistened with different solvents. Fig. 13(e) Detachment appearance of GM-70% films for different dyes demise in CH₃CH₂OH and CH₃OH (Wei et al., 2019). Compared to a previous investigation (Yang et al., 2017), films combined only GO confirmed very inefficient penetration for generally applied organic solvents, for example, CH₃COCH₃, CH₃CHOHCH₃, CH₃CH₂OH, and CH₃OH. Though, films that included only MXene conferred better permeance toward natural organic solvents.
Fig. 13. (a) GO/MXene catalyst lamellar films toward effective solvent penetration and molecular detachment. (b) The flux of MB organic dyes by GM-70% layers as a function of reverse thickness concerning solvent. (c) Correlation graph of MB dissociation into different solvents and the MB
dismissal rate of GM-70% films. (d) XRD graphs of GM films moistened through different solvents. (e) Severance exhibition of GM-70% films toward different dyes extinction within CH₃CH₂OH and CH₃OH. Reprinted with permission from Ref. (Wei et al., 2019).

5.3. Antibiotics degradation by MXene-based nanomaterials

Antibiotics are infiltrating the actual circumstances global due to their widespread adoption, and this increase pretends important warnings to human well-being and environmental protection. Simultaneously, more effective strategies toward antibiotic discovery and elimination are crucially required. The extensive utilization of antibiotics has been advanced within defending humans and cattle from pathogens and encouraging the advancement of drugs, farming, aquaculture, and other areas (Rehman et al., 2015). This large-scale application of antibiotics has commenced their infiltration within the eco-friendly atmosphere (Martinez, 2009). Few antibiotics, for example, tetracycline and oxytetracycline, are incredibly determined, and their consumption within the atmosphere increases. These tenacious antibiotic deposits have a notable negative influence on human well-being and environmental protection. Therefore, the misuse of antibiotics executes it frequently essential to explore available, cost-effective, practical, and environmentally benign approaches toward their discovery and elimination (Lu et al., 2021a). The number of articles within Scopus articles with keywords, like MoS₂, hexagonal boron nitride (h-BN), layered double hydroxides (LDHs), g-C₃N₄, TMCs and nitrides (MXenes) + antibiotics + discovery, degeneration, and adsorption has grown significantly during the latest five years (Fig. 14a-d). As per their chemical construction, generally utilized antibiotics can be categorized as b-lactams, fluoroquinolones, macrolides, sulfonamides, tetracyclines, and aminoglycosides (Fig. 14e).
Fig. 14. (a, c) Numbers of papers describing 2DMs-bg-based techniques toward the discovery (a) and elimination (c) of antibiotics; (b, d) Percentages of various 2DMs-bg practiced within the discovery (b) and elimination (d) of antibiotics. (e) Distribution and chemical compositions of few typical antibiotics identified inside soil. Reprinted with permission from Ref. (Lu et al., 2021a).

To overwhelm the antibiotics issues, (Cao et al., 2020) created a novel CuFe$_2$O$_4$/MXene (CFO/Ti$_3$C$_2$) heterojunction material toward visible radiation supported photocatalytic degeneration of sulfamethazine. They increased the photoinduced transporters’ existence by incorporating Ti$_3$C$_2$ and intervening, including the photogenerated electron holes rearrangement. Outcomes showed intense synergistic degeneration of as-incorporated photocatalyst, transferring around 60% elimination of sulfamethazine (Zhang et al., 2021).

5.4. Pesticides degradation by MXene-based nanomaterials

Pesticides are chemicals employed to prevent and eradicate pests and weeds and defend agricultural manufacture. Currently, the exogenous stimuli active controlled-release pesticide delivery system (PDS) has attracted growing recognition (Feng et al., 2021). A well-arranged exact liberation PDS can decrease the direct connection of insecticides and atmospheric conditions, overwhelming the rupture discharge mode of available pesticides. Moreover, it may also reduce the atmospheric hazard of pesticides by lessening pesticides' amount and spray regularity. Amongst several stimuli-active PDSs, pH is the commonly applied inducement. Similarly, Hao et al. (Hao et al., 2020) published a pH-active exact discharge operation utilizing boron nitride (BN) as the messenger. They discovered that by electrostatic synergies, π-π assembling, and the hydrophobic force, the insecticide would be efficiently placed. The liberation function of the pesticide from BN would be influenced by pH value. Lin and his coworkers received a double-layer insecticide transporter utilizing MOFs and sodium lignosulfonate (Huang et al., 2021). The prior investigations have made
several practical examinations; however, developing more facile, effective, multifunctional, and reliable carriers is yet required. Although pesticide quantification techniques have been broadly defined within the research, only a rare study have accompanied on-site pesticide residue investigations. Therefore, Umapathi et al. (Umapathi et al., 2021) provide a thorough summary of the colourimetric-based on-site sensing approaches for rapidly detecting pesticides within agricultural feeds.

The 2D Ti₃C₂ nanofilms were made by HF etching of MAX stage Ti₃AlC₂ and liquid-phase shedding (Fig. 15a). Ere HF processing, the Ti₃AlC₂ offers compact stacking sheets (Fig. 15b). After removing the Al sheet from Ti₃AlC₂, the construction Ti₃C₂ bulk becomes fluffy, comparable to an exposed accordion (Fig. 15c). Also, the avermectin (AV) content of AV@Ti₃C₂ displays no noticeable variation (Fig. 15d), which meets practical product and purpose requirements. To verify the photostability of AV@Ti₃C₂, the degeneration speed of AV and AV@Ti₃C₂ on different periods. Free AV is sensitive when revealed below UV light, including a degeneration flow of about 94.07% during the initial 8 h (Fig. 15e). At the same time, the degeneration speed of AV@Ti₃C₂ is just 19.35% subsequent 48 h radiation (Fig. 15f). By outfitting the investigational results by the kinetic degeneration pattern, the half-life of AV@Ti₃C₂ (176 h) is 102.3-times compared to free AV (1.72 h) (Fig. 15g) (Song et al., 2021b).
Fig. 15. (a) Construction of MXene facet Ti$_3$C$_2$ and its utilization for AV control and Insect controller. SEM pictures of (b) Ti$_3$AlC$_2$, (c) bulk Ti$_3$C$_2$. (d) AV content of AV@Ti$_3$C$_2$ after collecting on 0 °C around 7 d and 54 °C around 14 d. (e) The degeneration rate of AV and AV@Ti$_3$C$_2$ below UV radiation toward 48 h. (f) Degradation kinetics of AV@Ti$_3$C$_2$. (g) Degeneration kinetic of AV. Reprinted with permission from Ref. (Song et al., 2021b).

5.5. Heavy metals degradation by MXene-based nanomaterials

Effectual approaches for terminating harmful metals from wastewater have significantly reduced freshwater lack. Because of its outstanding removal efficacy, simplicity and economical at ambient circumstances, adsorption is one of the utmost capable purifying methods. MBNs have been proven to be suitable adsorbents in various toxic metal removal applications. Commonly, heavy metals ought atomic weights varied within 63.5 and 200.6 by a density superior to 5 g/cm3 (Srivastava and Majumder, 2008). Removing several manufacturing wastewaters into water forms is one of the leading causes of heavy metal discharge within the atmosphere. Like organic contaminants, heavy ores are non-biodegradable that serve to expand within existing bodies. Industrial wastewater usually includes many heavy metals, for example, Cu, As, Ni, Hg, Zn, Pb, Cd and Cr (Ihsanullah et al., 2016).
In addition, the MXene surface-functionalized characteristics also performed an essential part in improving the adsorption performance. Titanium-based MXenes (i.e., Ti$_3$C$_2$Tx) nanofilms were the commonly published adsorbent concerning heavy metal ions. MXene nanocomposite also showed exceptional performance upon different heavy metal ions elimination employing the adsorption method (Fard et al., 2017). As revealed in Fig. 16(a, b), the barium adsorption mode of MXene is pH-responsive. The dependence may be associated with both elements existing within the adsorbent and the chemistry of the suspension. Shahzad et al. (Shahzad et al., 2018) developed composite Fe$_2$O$_3$/Ti$_3$C$_2$Tx catalysts and used them to eliminate Hg (II) ions. After consolidating Fe$_2$O$_3$ at the Ti$_3$C$_2$Tx exterior, the particular surface area was improved by 56.5 to 68.89 m2/g. The compounds showed a much-rectified adsorption acceptance execution of 1128.41 mg/g next 20 min of adsorption. To assess the impact of pH upon the adsorption performance of the magnetic Ti$_3$C$_2$Tx MXene (MGMX) composite toward Hg(II) with a combination of tests was conducted within an extent of pH 2-9 on ambient condition utilizing 0.025 g L$^{-1}$ of the nanomaterials within a 10 mg L$^{-1}$ Hg(II) suspension inside the fig. 16(c, d).
Fig. 16. Impact of pH on adsorption potential (a) and elimination ability (b) of barium employing MXene. Change within Hg(II) elimination potential caused through variations in (c) suspension pH and (d) heat. Reprinted with permission from Ref. (Shahzad et al., 2018).

Further, Zou et al. (Zou et al., 2016) compared the acceptance capabilities of urchin-similar rutile titania carbon (C-TiO$_2$) catalyst (u-RTC) and Ti$_3$C$_2$(OH)$_{0.8}$F$_{1.2}$ MXene opposite the elimination of Cr (VI) ions. The nanomaterials showed about 4.2 folds greater adsorption appearance compared to those of the absolute Ti$_3$C$_2$T$_x$ MXene under the appearance of different anions, for example, Cl$^-$, NO$_3^-$ and SO$_4^{2-}$. Furthermore, the levodopa-incorporated Ti$_3$C$_2$T$_x$ MXenes also exhibited developed Cu(II) ions elimination from sewer water, and MBNs were also capable of extracting Cr(VI), Ag(I), Pd(II) and Au(III) ions by an aqueous suspension. All sheets were reconstructed, including HCl and NaOH solution and reprocessed (Xie et al., 2019; Jaffari et al., 2021).
5.6. Ions removal by MXene-based nanomaterials

Different organic contaminants, heavy element ions do not degenerate into existing organisms but grow over the period, causing more critical harm to bodies (Chandel et al., 2020; Raizada et al., 2020; Thakur and Thakur, 2015, 2014, 2014; Thakur and Voicu, 2016). Hence, it is essential to separate heavy metal ions from pure water (Cui et al., 2015; Gu et al., 2018). MXenes and their byproducts with high O$_2$-comprising assemblies and substantial surface areas have drawn massive recognition as suitable adsorbents toward heavy metal positive ion replacement (Fu et al., 2018; Wu et al., 2019). Significantly, investigation shows that TM ingredients included in MXenes have a great adsorption connection toward several heavy element ions (Hua et al., 2012). Newly, Peng and his coworkers (Peng et al., 2014) summarized that an alk-MXene form (Ti$_3$C$_2$(OH/ONa)$_x$F$_{2-x}$), including alkalization intercalation, exhibits novel adsorption performance to Pb(II). A range of group adsorption investigations showed that alk-MXenes control unique head adsorption capability (140 mg g$^{-1}$); ideally, the highest hypothetical adsorption potential is approximately 2800 mg g$^{-1}$. Furthermore, the fancied particular adsorption characteristics of Pb(II) were affirmed. The outcomes reveal that its coexistence hardly influenced the elimination ability of Pb(II) with typical contending positive ions, with Mg(ii) and Ca(II). These outcomes explained that MXenes had noted the potential for functional application into Pb(II) elimination after aqueous media. Motivated with this investigation and ongoing theoretical analysis at the adsorption machinery of Pb(ii) were summarized depending upon the research of the first-principles computations (Chen et al., 2020).

Lately, Ti$_3$C$_2$T$_x$ was initially published to overcome BrO$_3^-$ to Br$^-$ in an aqueous media efficiently. The lessening characteristics of MXenes for BrO$_3$ were estimated; Fig. 17(a)...
explains that the decreasing ability rises with the addition into the Ti$_3$C$_2$T$_x$ absorption till it moves capable of 15 mg L$^{-1}$ the elimination ability ultimately ends 321.8 mg g$^{-1}$ in 50 min. As recorded within (Fig. 17b), up to \sim37.5 μmol/L of bromate were decreased near \sim100%. Following this density, the performance started to decline and attained a 45% decline on 67.5 μmol/L. As recorded under Fig. 17(c), \sim100% conversion of BrO$_3^-$ was seen without coexisting ions, while nearly 92% loss of BrO$_3^-$ was obtained; this slight reduction was observed slightly decreased shows a minimum influence opposing ion. It exhibited the remarkable selectivity of MXene approaching BrO$_3^-$ decrease. Fig. 17(d) shows the XRD pattern before and after conversion; TiO$_2$ and amorphous carbon formation were affirmed during the reduction method, indicating that the decrease presents an advanced performance after the adsorption upon the exterior Ti$_3$C$_2$T$_x$. Fig. 17(e, f) confers the SEM micrographs, describing the lamellar MXene's morphology before and after converting BrO$_3^-$ within an aqueous solution (Pandey et al., 2018a).
Fig. 17. (a) Impact of the absorption of Ti$_3$C$_2$T$_x$ upon the conversion of BrO$_3^-$.
(b) Conversion (%) of various bromate concentrations utilizing 15 mg L$^{-1}$ Ti$_3$C$_2$T$_x$ on pH 7 and 25 °C.
(c) Influence of synchronized negative ion upon the decrease of bromate through Ti$_3$C$_2$T$_x$.
(d) XRD graph of Ti$_3$C$_2$T$_x$ previously and afterward the modification of BrO$_3^-$ to Br$^-$. SEM pictures of flakes Ti$_3$C$_2$T$_x$: (e) before modification of BrO$_3^-$ and (f) after modification of BrO$_3^-$. Reprinted with permission from Ref. (Pandey et al., 2018a).

5.7. Bacterial pathogens degradation by MXene-based nanomaterials
2D Ti$_3$C$_2$T$_x$ has been newly investigated for utilization in water desalination/purifying films. A significant progress symbol toward any water processing membrane is the protection over biofouling. To confirm this and adequately recognize the well-being and ecological consequences of the novel 2D carbides, Kashif et al. (Rasool et al., 2016) studied the antiseptic characteristics of individual and multi-faceted Ti$_3$C$_2$T$_x$ MXene sheets into colloidal media. The antiseptic performance of Ti$_3$C$_2$T$_x$, including GO, both bacterial strains were used with distinct collections of GO below the corresponding laboratory circumstances. **Fig. 18(a)** Regular show antibacterial performance of Ti$_3$C$_2$T$_x$, MXene. **Fig. 18(b-c)** confirms the feasibility of each *Escherichia coli* (*E. coli*) and *B. subtilis* microbes under command, occupied as 100%, and revealed to 0-200 μg/mL of GO. There were significant variations within bacteria groups upon agar plates toward both bacterial forces, intimating that the Ti$_3$C$_2$T$_x$ MXene has a more potent antibacterial venture than GO within the laboratory setup. Unlike absorptions of Ti$_3$C$_2$T$_x$ used bacteria for 4 h, refined upon agar dishes, and assessed utilizing the microbe’s numeration process. **Fig. 18(d-o)** exhibits the standard images of *E. coli* or *B. subtilis* bacteria groups after processing by different concentrations of bacteria. As observed from equal boards, the quantity of groups suggestively declines with the growing density of Ti$_3$C$_2$T$_x$. The achieved outcomes show the dose-based antimicrobial performance of Ti$_3$C$_2$T$_x$.
Fig. 18. (a) Systematic exhibition antibacterial action of Ti$_3$C$_2$Tx MXene. Cell feasibility analyses of (b) *E. coli* and (c) *B. subtilis* used by Ti$_3$C$_2$Tx and GO in aqueous solution. Microbial solution (10^7 CFU/mL) were produced beside distinct Ti$_3$C$_2$T$_x$ and GO absorptions (0-200 μg/mL) about 35 °C for 4 h at 150 rpm agitating pace. Concentration-based antiseptic performance of the Ti$_3$C$_2$T$_x$ in aqueous solution: Images of agar dishes over which *E. coli* (top sheet) and *B. subtilis* (base sheet) microbial cells were refined subsequent processing for 4 h by 0 to 200 μg/mL (d-o) of Ti$_3$C$_2$T$_x$, sequentially. Reprinted with permission from Ref. (Rasool et al., 2016).

Two common pathogenic microorganisms, *Staphylococcus aureus* (*S. aureus*) and *E. coli*, were taken to estimate the antiseptic activity of the substances. Following 10 min of NIR radiation, 200 ppm of Bi$_2$S$_3$/Ti$_3$C$_2$T$_x$-5 showed functional microbes-terminating capabilities around 99.86 and 99.92% versus *S. aureus* and *E. coli*, sequentially. The investigations were carried with feast dish, live/inert fluorescence discolouration (Jastrzębska et al., 2019; Lim et al., 2020). The absorptivity of the microbial cell film included through ortho-nitrophenyl-β-galactoside (ONPG) alkylation exhibited the antiseptic tool versus *S. aureus* and *E. coli*. As presented in Fig. 20(a,b), no notable development was recognized toward the optical denseness on 420 nm (OD$_{420}$) standards of
S. aureus and *E. coli* toward Ti$_3$C$_2$Tx associated with the resistor assembly, showing consistent bacterial film penetrability.

Based upon the above stated in vitro outcomes and a rat injury pattern by *S. aureus* (1 × 108 CFU mL$^{-1}$) was developed to estimate the in vivo healing effectiveness amidst dressing, a 3 M wound bandaging, Bi$_2$S$_3$/Ti$_3$C$_2$Tx-5, and an essential assortment. The estimated measurable kin injury sections were exhibited within Fig. 19(c); the injuries of the Bi$_2$S$_3$/Ti$_3$C$_2$Tx-5 group improved, showing a sharp scar healing inclination. Besides, hematoxylin and eosin (H&E) discolouration of scar tissues obtained at 2, 4, 8, and 12 d verified the remedial injury movement (Fig. 19(d)). Consequently, the antiseptic tool is sequentially shown within Fig. 19(e). The improved Bi$_2$S$_3$/Ti$_3$C$_2$Tx Schottky coupling generated more electrons and efficiently parted negative ion carrier and holes, inducing immutable loss to microbes. The photothermal impact of the specimens reduced the feasibility of the microorganisms. The synergetic influences of the ROS and the photothermal impact eliminated the bacteria quickly and efficiently (Li et al., 2021b).
Fig. 19. ONPG alkylation of *S. aureus* (a) and *E. coli* (b) following 10 min lightning of different MBNs in vitro. (c) The Quantifiable determination of relevant injury section at 2, 4, 8, and 12 d of resistor, 3 M wound bandaging upon *S. aureus* (10 μL, 1 × 10^8 CFU/mL) to infectious injury remedial in vivo. Grey rings show the combination of control; black rings show the combination of 3 M, brown rings show the combination of Ti_3C_2Tx, pink rings show the combination of Bi_2S_3, and green rings show the combination Bi_2S_3/Ti_3C_2Tx-5. (d) Histologic pictures of injury muscle obtained at 2, 4, 8, and 12 d, including H&E discolouration. (e) The Graphic representation of Bi_2S_3/Ti_3C_2Tx Schottky synergist and antiseptic tool description of Bi_2S_3/Ti_3C_2Tx below 808 nm radiation. Reprinted with permission from Ref. (Li et al., 2021b).

6. Other applications of MXene-based nanomaterials

The novel transformable 2D in-layer nanostructure and controllable chemical arrangements support 2D MXenes with universal characteristics in profiting biomedical utilizations. These 2D multifunctional MBNs have been designed for theranostic applications, such as standard phototherapy of photothermal treatment (PTT),
photodynamic/chemo synergistic therapy, diagnostic imaging, antimicrobial, and biosensing (Lin et al., 2018).

The universal physicochemical effects of 2D nanofilms facilitate significant prospects for diagnostic imaging, signifying that they would work as contrast agents (CAs) to improve the diagnostic-imaging interpretation (Yang et al., 2013). Further, the universal applications of 2D nanomaterials towards therapeutics and diagnostic imaging would also be utilised as unique biosensing systems to detect biomacromolecules and bio-effects. Single-layer MoS2 nanofilms have been employed as biosensors for DNA detection based on their fluorescence-quenching solid performance (Zhu et al., 2013).

Different 2D nanomaterials have been investigated following various possible antibacterial actions. For example, after the accumulation of Zn-Ti layered double hydroxides (LDHs) to bacteria solution beneath visible light, the development of microbial species like S. cerevisiae, S. aureus, or Escherichia coli was significantly hindered because of the LDH dimension effect and generation of reactive oxygen species (ROS) by Ti$^{3+}$ beneath visible rays (Zhao et al., 2013). Standard organic substances with good biocompatibility/biodegradation have been studied towards biomedical implementations. Inappropriately, their inadequate chemical/thermal durability and single functionality are the disadvantages restricting their clinical outcome (Song et al., 2017). Inorganic 2D MBNs exhibit fairly heightened clinical translation prospects, emanating from their intrinsic properties, for example, facile functionalization, tunable surface/structure and required biocompatibility.

7. **Summary, challenges and outlook**
In conclusion, MXene and MXene-related nanomaterials have appeared as upcoming competitors toward the adsorptive reduction of an assemblage of ecologically associated contaminants of water and sewer water. Targeted contaminating factors considered toward elimination involve organic colourants, poisonous heavy elements, pesticide residuals, antibiotics, and many more. MBNs are growing uninterruptedly to determine their probability within the field of wastewater disinfection and remedy. Given broader functionality, high surface area, and surface tunability, MBNs are considered to decrease inorganic contaminants through interfacial chemical conversion and sorption. In contrast, three different technologies, such as (i) exterior complexation and sorption (ii) catalytic initiation and extraction and (iii) radical’s-dependent photocatalytic degeneration, are included within the replacement of organic pollutants. Though, significant consideration must be paid to designing and producing innovative laboratory-dependent MBNs with flexible surface chemistry, various TM ions, and strong characteristics to catch contaminants. The distinctive characteristics of MXene films induce them to promising nominees as alternates to noble metal substances for various electrochemical responses and wastewater treatment. This strategy outlines the novel outcome within the investigation of MXene and indicates the rapid development of the MXene analysis clusters. The results achieved into groundwork and characteristics, together with the uncovered application of MXene, produce a solid momentum for the most outlying outcome within the report and synthesis routes of these most delinquent 2D substances.

The effective elimination of different contaminants from the atmosphere is a hurdle, and the adsorption and catalytic degeneration methods are customarily considered the typical simple and efficient approaches. The quickly increasing interest toward practising MXene-
based substances concerning environmental applicability has been excited with the exciting findings of rare features and activity of GO-related nanocomposites, TM dichalcogenides (especially MoS$_2$), LDHs, etc. Their natural issues are also revealed, for example, the high price and hydrophobicity of Gr, the hydrophobicity of MoS$_2$ and the complexity of the large-range generation of single-layer MoS$_2$ with high-class, low resistance of LDHs in mixed suspensions. Though the efforts of researchers have mitigated these challenges, it is a hurdle to resolve them essentially.

Hence, additional studies are required to profoundly examine the utilization of MBNs in decreasing a large number of poisonous pollutants from identical wastewater specimens. Furthermore, a similar investigation should be imposed among MXenes and a series of different nano adsorbents, like GO, MOFs, CNTs, U; unquestionably, MBNs are expected to arrive quickly in the profitable business toward different utilization. Regarding strengthening results in many articles, it may be assumed that MBNs would be recognized as the next-generation competitors toward water purification.

Acknowledgement: The authors acknowledge the support from the Department of Chemistry and Research & Development Cell of Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India.
References:

Guo, Z., Zhou, J., Si, C., Sun, Z., 2015. Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Physical Chemistry Chemical Physics 17, 15348-15354.

Zhang, H., Li, M., Cao, J., Tang, Q., Kang, P., Zhu, C., Ma, M., 2018a. 2D a-Fe2O3 doped Ti3C2 MXene composite with enhanced visible light photocatalytic activity for degradation of Rhodamine B. Ceramics International 44, 19958-19962.
Highlights:

- MXene-based nanomaterials (MBNs) for hazardous pollutants degradation.
- MXenes-based nanomaterials as nano-adsorbents to refine environmentally hazardous pollutants.
- Novel synthesis route, characteristics, and applications of MXenes-based nanomaterials.
- Recent challenges and prospects of MXene-based nanomaterials are highlighted.
Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: