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Bilinguals purportedly outperform monolinguals in non-verbal
tasks of cognitive control (the ‘bilingual advantage’). The most
common explanation is that managing two languages during
language production constantly draws upon, and thus
strengthens, domain-general inhibitory mechanisms (Green 1998
Biling. Lang. Cogn. 1, 67–81. (doi:10.1017/S1366728998000133)).
However, this theory cannot explain why a bilingual advantage
has been found in preverbal infants (Kovacs & Mehler 2009
Proc. Natl Acad. Sci. USA 106, 6556–6560. (doi:10.1073/pnas.
0811323106)). An alternative explanation is needed. We propose
that exposure to more varied, less predictable (language)
environments drive infants to sample more by placing less
weight on consolidating familiar information in order to orient
sooner to (and explore) new stimuli. To confirm the bilingual
advantage in infants and test our proposal, we administered
four gaze-contingent eye-tracking tasks to seven- to nine-month-
old infants who were being raised in either bilingual (n=51)
or monolingual (n=51) homes. We could not replicate the
finding by Kovacs and Mehler that bilingual but not
monolingual infants inhibit learned behaviour (experiment 1).
However, we found that infants exposed to bilingual
environments do indeed explore more than those exposed to
monolingual environments, by potentially disengaging attention
faster from one stimulus in order to shift attention to another
(experiment 3) and by switching attention more frequently
between stimuli (experiment 4). These data suggest that
experience-driven adaptations may indeed result in infants
exposed to bilingual environments switching attention more
frequently than infants exposed to a monolingual environment.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.180191&domain=pdf&date_stamp=2020-02-26
mailto:dean.dsouza@aru.ac.uk
http://orcid.org/
http://orcid.org/0000-0002-3053-2484
http://dx.doi.org/10.1017/S1366728998000133
http://dx.doi.org/10.1073/pnas.0811323106
http://dx.doi.org/10.1073/pnas.0811323106
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:180191
2
1. Introduction

Bilinguals often outperform monolinguals in non-verbal tasks of cognitive control. For example, a meta-
analysis of studies that compared the performance of bilinguals and monolinguals on conflict resolution
tasks (e.g. the Stroop task) revealed a moderately significant bilingual advantage [1]. At first blush, this
finding augments our understanding of far-transfer effects (how practice in one domain (language)
results in changes to other (non-language) domains) and may inform educational policies and social
practice. However, close inspection of the empirical data yield inconclusive results. For example, the
effect reported in the above meta-analysis appears to be driven by data from a single study.
Furthermore, the meta-analysis also revealed a large and significant main effect of ‘laboratory’
(research group). The inconsistent results, combined with publication bias [2], have led many scientists
(e.g. [3–5]) to question whether the bilingual advantage is real or merely an artefact of particular
research practices. Moreover, significant bilingual advantages have not been observed in studies with
large sample sizes (see [5] for discussion). To progress beyond the controversy and advance the
science, in addition to carrying out more studies, we must come up with a theory that can account for
the inconsistencies in the literature and explain when, how and why learning two or more languages
improves cognitive control. This is the focus of the current paper.

The most influential explanation for the bilingual advantage is Green’s [6] proposal that managing
two or more languages during language production constantly draws upon, and thus strengthens,
domain-general cognitive control processes that select words in the intended language while inhibiting
the activation of words in the unintended language. Neurophysiological evidence in support of
Green’s [6] inhibitory control model came from a study by Blanco-Elorrieta & Pylkkanen [7], which
demonstrated that whereas switching languages in comprehension draws upon language-specific
control processes (in anterior cingulate cortex), switching languages in production recruits domain-
general cognitive control processes (in dorsolateral prefrontal cortex). However, as D’Souza & D’Souza
[8] pointed out, a more direct test of the inhibitory control model would have probed for a bilingual
advantage in participants who can comprehend but not produce language—i.e. in 6–11-month-old
‘preverbal’ infants. According to the inhibitory control model, preverbal infants raised in bilingual
homes should not show a bilingual advantage. Yet studies suggest that they do [9,10]. For example, in
an eye-tracking study of seven-month-old infants, Kovacs & Mehler [9] found that all infants could
respond to a speech or visual cue to anticipate a reward on one side of a screen, but only infants
raised in bilingual homes could inhibit their learned response and redirect their anticipatory looks
when the cue began signalling the reward on the opposite side. Kovacs & Mehler [9] concluded that
processing representations from two or more languages somehow increases the infant’s ability to learn
a new response and suppress their old one. The inhibitory control model can neither predict nor
explain these data, because seven-month-old infants can only comprehend, not produce, words [11].1

Why do some studies suggest there is a bilingual advantage in preverbal infants? We have argued
that mere exposure to bilingual environments may lead to experience-driven adaptations that confer
both cognitive advantages and disadvantages [8,13]. But what adaptations, how, why and when?
1.1. Adapting to variable environments
All biological systems, including human infants, are driven to minimize uncertainty, the difference
between the infant’s predictions about its sensory inputs (embodied in its models of the world) and
the sensations it encounters [14]. This general adaptive drive helps the infant to better model and
anticipate events in its ever-changing world [14]. The infant minimizes uncertainty by sampling,
selecting and acting on the external world (resulting in different sensory input [13]) and by altering
its models and predictions (often resulting in different perceptions [15]). In other words, development
involves an active process of calibration, whereby the infant learns to sample its econiche and predict
events by modelling its interactions within the econiche. The more variable the environment, however,
the more exploration (sampling) is required to minimize uncertainty and generate more confident
estimates (see [13] for discussion). Consequently, a child’s behaviour, model and predictions are yoked
to its econiche. Exposure to different environments will result in different models and predictions.
1Green’s latest proposal—the adaptive control hypothesis [12]—complements his inhibitory control model by suggesting that the
bilingual advantage arises as domain-general control processes involved in managing two or more languages are altered by the
recurrent demands placed upon them by the interactional context (single language use, dual language use, dense code-switching).
However, like Green [6], this proposal also relies on speech production and thus neither predicts nor explains the infant data.
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One variable in the infant’s environment is the number of languages that the child regularly hears.

Infants who regularly hear two or more languages are necessarily exposed to more varied and less
predictable language input than infants who regularly hear only one language. These ‘bilingual’
infants are also likely to receive less input from each language than ‘monolingual’ infants from their
one language. Because some bilingual mothers make more errors than monolingual mothers [16],
bilingual infants may also receive less accurate input. Given these exogeneous sampling constraints,
how does the bilingual infant keep pace (developmentally) with its monolingual peers? How does the
bilingual infant minimize uncertainty to the same extent as the monolingual infant when it is exposed
to a more variable (language) environment and receives fewer samples? As mentioned above, it can
minimize uncertainty by acting (switching attention) and altering its models and predictions.

According to Mareschal et al. [17], infants acquire and develop multiple, partial representations that
are just sufficient for ‘on-the-fly processing’. D’Souza & D’Souza [8] hypothesized that bilingual infants
adapt to their more varied, less predictable and less accurate language environments by learning to
construct, and get by on, more partial representations or less detailed models of their environment, which
would enable them to redirect their attention sooner to less familiar (but equally important) stimuli
(e.g. their second language).2 In other words, whereas monolingual infants are drawn to familiar
stimuli so they can build detailed representations of their environment and reduce uncertainty,
bilingual infants err on the side of exploration and place more weight on novel stimuli. That is, to collect
more samples from their more varied environments, bilinguals place less weight on familiar
information. If this is the case, then we would expect bilingual infants to show less familiarity
preference (which is something that helps infants to build more detailed models) and more novelty
preference than monolingual controls. Indeed, Singh et al. [10] found that six-month-old bilinguals
look increasingly less at a repeatedly presented visual stimulus than monolinguals. Moreover, if
bilinguals learn to get by on less complete internal models, it would explain why Folke et al. [18]
found that bilingual adults show a disadvantage in metacognition, the ability to evaluate one’s own
cognitive processes. Bilinguals would find it more difficult to evaluate their own cognitive processes
because—according to our hypothesis—they are getting by on more fragmentary models of the
external world.

Why would adaptations to variation in one domain (auditory-verbal) affect other domains (e.g.
visual)? Building models of the external world might be a domain-general process, because it often
involves the integration of action (e.g. shifting visual attention), perception and multisensory
information processing (e.g. matching sounds to lip movements).
1.2. Predictions
We hypothesized that exposure to more varied language environments drive infants to explore (sample)
further by constructing less detailed models of their environments and placing more weight on novel
information.3 Getting by on less detailed models would allow the child to switch faster to novel
stimuli and thus sample more from their environments. We tested our hypothesis by running a series
of experiments that sought to replicate with a larger sample—and thus support—Kovacs & Mehler’s
[9] finding of a bilingual advantage in infants (experiment 1) and probe whether bilingual infants
build, and get by on, less detailed representations of visual stimuli (experiment 2), shift attention
faster to a second visual stimulus (experiment 3), and are (thus) less sensitive to the minute detail of a
visual stimulus (experiment 4).

Specifically, we predicted that bilingual infants would: (i) be better at inhibiting a learned behaviour
(experiment 1); (ii) respond more appropriately to more fragmented—or less detailed—visual stimuli
(experiment 2); (iii) be more likely to abandon the visual processing of a stimulus to shift attention to
a novel stimulus (experiment 3); and (iv) switch more frequently between two visual stimuli, spend
less time visually processing a familiar stimulus, and thus be worse at remembering the details of a
visual stimulus (experiment 4; table 1). Although these infant studies can neither support nor disprove
the theory that a bilingual advantage results from managing two or more languages during production
in older children and adults, if we observe a significant group difference we could argue that it
2Models and representations are similar concepts. A representation is an information state in the brain, expressed through patterns of
neural activity that (to varying extents) reflect states in the world and contribute to adaptive behaviour. A model is a representation of a
selected part of the world (the ‘target system’). In this paper, we use the words model and representations interchangeably.
3More exploration—at the expense of building more detailed representations of familiar stimuli—may also result in prolonged neural
plasticity and functional specialization [13].



Table 1. Hypotheses our experiments tested.

hypotheses:
compared to monolinguals, bilinguals will… experiment no.

be better at inhibiting a learned behaviour 1

respond more appropriately to more fragmented—or less detailed—visual stimuli 2

be more likely to abandon the visual processing of a stimulus to shift attention to a novel stimulus 3

switch more frequently between two visual stimuli 4

spend less time visually processing a familiar stimulus 4

be worse at remembering the details of a visual stimulus 4
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reflects experience-dependent adaptations that occur because of regular exposure to two or more
languages. If we fail to observe a significant group difference, we could argue that there is currently
insufficient evidence to conclude there is a bilingual advantage in preverbal infants.

We focused on the visual domain, because of its relevance to the bilingual advantage and far-transfer
effects (i.e. whether training in the language domain transfers to non-language domains). The present
study is important because if these adaptations do indeed exist, they are likely to constrain learning
and development across multiple neurocognitive domains. This would have immediate implications
for theory, and may impact social practices (e.g. parenting) and education policies.
2. Material and methods
2.1. Participants
We collected data from 102 infants (seven to nine months of age), of whom 51 were raised in ‘bilingual’
homes and 51 in ‘monolingual’ homes.4 In line with previous research (e.g. [10,21]), infants were
considered ‘bilingual’ if they had daily exposure to two or more languages and heard their first
language no more than 75% of the time; they were considered ‘monolingual’ if exposed to their first
language for at least 90% of the time (measured using the Language Exposure Questionnaire (LEQ)—
see §2.2.5). Infants born between 38 and 42 weeks of gestational age were included in this study—as
well as preterm infants born between 36 and 37 weeks if they weighed over 2.38 kg (5 lbs 4 oz) at
birth. Families on our database received a parent report questionnaire (see §2.2.5). We used the
database and questionnaire data to recruit two groups (bilingual and monolingual) that were closely
matched on age, gender and parents’ socioeconomic status (SES). The SES score was a composite of
four weighted scores based on the carers’ (1) postcode (as an index of socioeconomic deprivation),
(2) education attainment, (3) household income and (4) occupation. For details, see the electronic
supplementary material. We checked that the two groups did not significantly differ from each other
on age, gender, or parents’ SES. The age of the bilingual infants (M=254 days, s.d. = 26) was
not significantly different from the age of the monolingual infants (M=260 days, s.d. = 27), t145 = 1.36,
p=0.175. There was no significant association between group and gender (64% of the bilingual infants
were male versus 49% of the monolingual infants), x22 ¼ 4:37, p=0.112. Finally, the SES of the
bilingual families (M= 0.66, s.d. = 0.16) was not significantly different from the SES of the monolingual
families (M=0.64, s.d. = 0.14), t145 = 0.73, p=0.466.

Participants were recruited and tested until, for each task, we had useable data from 51 bilingual and
51 monolingual infants. We defined useable data as eye-tracking data (gaze patterns) from at least 75% of
the trials in the task. So, if an infant provided eye-tracking data (gaze patterns) for 75% of the trials in
experiment 1, but less than 75% of the trials in experiment 2, then the data the infant provided for
experiment 1 was analysed, but not the data for experiment 2, and an extra participant was recruited.
Furthermore, infants had to provide useable data for at least one of the two test trials in experiment 2.
4Kovacs & Mehler [9] found group differences with sample sizes of just 20 per group. However, because a true effect is likely to be
smaller than that indicated by an initial study (see [19] for discussion), we opted for a larger sample size. In the interests of
informing public policy, we sought to detect medium-sized effects (d= 0.50; power = 0.80, α= 0.05) rather than small-sized effects.
For a medium-sized effect of 0.50, the probability that you can guess which group a person is in from their test score is 60% [20].
Where possible, required sample sizes were calculated using power analyses (see below for details).
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Extra participants were recruited only towards the end of the study and partook in as many experiments

as needed. Thus, if towards the end of the study we had useable data for experiments 1–4 from 50, 48, 49
and 50 bilinguals, respectively, then the first extra bilingual participant had to do all four experiments, the
second had to do experiments 2 and 3 only, and the third had to do experiment 2 only. For each
experimental task, we ran an independent t-test to check that the two groups did not significantly
differ on the number of valid trials that they provided.

2.2. Materials and procedure
Four eye-tracking experiments were carried out. Because we may want to look at individual differences,
the order of experiments was fixed: the switch task, the visual memory task, the representations task and
the gap-overlap task. All experiments involved a Tobii Pro TX300 remote eye tracker to capture moment-
to-moment point of gaze at a sampling rate of 120 Hz, with measurement accuracy of 0.4° (screen size:
58.42 cm; aspect ratio: 16 : 9; screen resolution: 1920 × 1080). The tracking equipment and stimulus
presentation were controlled using customized scripts in MATLAB R2013a. A camera mounted
directly above the horizontal midpoint of the screen was used to monitor and record infant behaviour.
Auditory stimuli were delivered via two speakers positioned behind the display monitor and facing
the participant. The infant sat on their carer’s lap, in a dimly lit featureless room, facing the stimulus-
presentation screen with their eyes at approximately 65 cm from the screen. Carers were asked to close
their eyes during the experiment. A 5-point calibration was used. This involved an attractive swirling
shape, which moved across the screen and stopped at the centre and four corners. At each stop-point,
the experimenter—who was observing the child’s face and eye movements via a video camera
attached to the eye tracker—manually re-started the ball moving when the child looked at it. If
calibration was good for at least 3 of the 5 points (e.g. precision and accuracy within 1.5° and 5°,
respectively; Tobii Technology AB, 2011), then the eye-tracking experiments began. If not, then further
attempts at calibration were made unless, or until, the infant became too fussy to participate.

2.2.1. Experiment 1: the switch task

Experiment 1—a replication of Kovacs & Mehler [9] but with a much larger sample size and arguably
more engaging stimuli—was designed to provide evidence in support of, or against, the claim that
bilingual infants are significantly better than monolingual infants at learning a new response by
suppressing an old one. Infants must learn, over nine ‘pre-switch’ trials, to make an anticipatory look
to one side of a screen. They must subsequently—during nine ‘post-switch’ trials—suppress their
learned response and instead make an anticipatory look to the other side of the screen. Infants
succeed on this task if, during the ‘post-switch’ phase, they update their prediction and inhibit their
first learned response—demonstrating the rudiments of cognitive control.

2.2.1.1. Stimuli
The experimental stimuli were 18 visual cues, four visual-auditory attention grabbers and six visual-
auditory rewards. The cues consisted of sequences of three simple geometric shapes, with identical
shapes either at the beginning (forming an AAB structure) or end (ABB). Nine AAB sequences and
nine ABB sequences were constructed from three ‘A’ shapes (arrow, circle, pentagon) and three ‘B’
shapes (star, triangle, moon). The shapes were 7.9 cm wide (300 pixels wide, which subtend at an
angle of 7.0°) and different colours. The (four) attention grabbers and (six) rewards comprised 10
(5.3 cm/200 pixels wide, 4.7°) dynamic colourful pictures (e.g. a rotating flower) paired with one of
six interesting sounds (e.g. ‘beep!’). The rewards appeared within white 5.3 cm squares (4.7°) located
31.7 cm (1200 pixels, 27.4°) apart on the left or right side of a grey screen.

2.2.1.2. Procedure
The experiment consisted of nine pre-switch trials, followed by nine post-switch trials. All trials
comprised four consecutive displays: fixation, cue, anticipation, and reward (figure 1). All trials
started with the fixation display: two white squares (on either side of a grey screen) and, in the middle
of the screen, an attention getter (an interesting visual stimulus accompanied by an interesting sound).
The white squares remained onscreen throughout the entire experiment. The fixation display lasted
0.5 s and was followed by the cue display: three colourful shapes were presented, one after the other,
following one pattern (AAB or ABB) in the ‘pre-switch’ phase and a different pattern (ABB or AAB)



fixation

cue (three shapes)

anticipation

reward

Figure 1. In the switch task (adapted from [9]), a fixation stimulus was presented for 0.5 s to attract the infant’s attention. This was
followed by the cue: three shapes that appeared one after the other. Each shape was onscreen for 0.8 s; the temporal gap between
each shape was 0.3 s. An anticipation display (1 s) preceded presentation of the reward (2 s). The reward was always displayed on
the same side of the screen during nine pre-switch trials and on the other side during nine post-switch trials.
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in the ‘post-switch’ phase. Each shape remained onscreen for 0.8 s and the temporal gap between each
shape was 0.3 s. At the offset of the visual cue, the anticipatory period began and lasted for 1 s; after
which followed the onset of the reward display: a visual reward appeared inside one of the white
boxes, accompanied with an auditory reward. The reward display lasted for 2 s. The reward was
always displayed on the same side of the screen during the pre-switch trials and on the other side
during the post-switch trials. The order of the cue type (AAB, ABB) and reward side (left, right) was
counterbalanced (i.e. each child completed one of four presentation orders). The procedure lasted
around 2 min.
2.2.1.3. Coding and analysis
Two areas-of-interest (AOI) were defined around the white squares that the rewards appeared in. The
predefined AOIs extended 1 cm around the white squares in case the infant focused on the edge of
the visual reward and to account for small deviations in the quality of the calibration. An
‘anticipatory look’ was defined as a saccade to one of the AOIs (left or right) that occurred within a
1 s time window starting 150 ms after cue offset and ending 150 ms after onset of the visual reward
[9]. If, at any point during the 1 s time window, the infant performed an anticipatory look to the AOI
where the reward would appear, the trial was automatically coded as ‘correct’; an anticipatory look to
the other AOI was automatically coded as ‘incorrect’. If the infant looked at both AOIs (left and
right), then the AOI of the longer look was coded [9]. All other onscreen looking behaviour was
automatically coded as ‘invalid’ and discarded. If the infant looked away from the screen during the
time window, the trial was automatically coded as ‘invalid’ and discarded.

If an infant has learnt that the cue predicts the location of the visual reward, then, over the trials, they
should have increased their anticipatory looks to the region of the screen where they expected the reward
to appear. Based on Kovacs & Mehler [9], we predicted that in the post-switch phase only the bilinguals
would learn to correctly anticipate the reward. To test this hypothesis, we carried out two (pre-switch,
post-switch) mixed-effects logistic regressions.5 The outcome variable was anticipatory look (correct
versus incorrect); the predictor variables were trial (1–9) and group (monolingual versus bilingual).
Random coefficients and an autoregressive covariance structure were assumed. If we found a
statistically significant effect of group, then we followed it up with two one-sample t-tests to ascertain
whether the bilingual/monolingual infants anticipated the reward (proportion of correct anticipatory
looks to total anticipatory looks, averaged over the last three trials) greater than expected by chance
(0.50).6 If they did, and if at least 50% of them had contributed anticipatory looks, then we can
conclude that they had inhibited their first learned response and learned the new one.
5There does not appear to be a consensus on how to calculate a priori the required sample size for a mixed-effects logistic regression.
However, simulation studies suggest that nine observations per individual (918 observations in total) should provide sufficient power
(greater than 0.80; [22]).
6To detect a medium-sized effect (d=0.50), we required a sample size of at least 27 per group (G�Power). Our sample size of 51 per
group was sufficient to detect a small-medium effect (d= 0.35; when power= 0.8 and α= 0.05; G�Power).
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2.2.2. Experiment 2: the representations task

Experiment 2 probes whether bilingual infants build, and get by on, less detailed representations of
visual stimuli than monolingual infants. Participants had to learn to respond to relatively detailed
visual cues. Infants succeed on this task if, during the test phase, they respond appropriately to less
detailed visual stimuli.

2.2.2.1. Stimuli
The stimuli were six visual cues, four visual-auditory attention grabbers and six visual-auditory rewards.
The visual cues comprised three fragmented line drawings of an elephant (two ‘training’ cues and one
‘test’ cue) and three fragmented drawings of a snowman (two ‘training’ cues and one ‘test’ cue). Each
drawing consisted of black fragmented lines on a white 7.9 cm wide (7.0°) square (figure 2). The
attention grabbers and rewards comprised 10 dynamic colourful pictures (all 5.3 cm wide; 4.7°) paired
with one of six interesting sounds. Like experiment 1, the rewards appeared within white 5.3 cm
squares (4.7°) located 31.7 cm (27.4°) apart on the left or right side of a grey screen.

2.2.2.2. Procedure
The experiment consisted of 24 training trials, followed by two test trials. Like experiment 1, all trials
comprised four consecutive displays: fixation, cue, anticipation, and reward. All trials started with the
fixation display: two white squares (on either side of a grey screen) and, in the middle of the screen,
an attention getter (an interesting visual stimulus accompanied by an interesting sound). The white
squares remained onscreen throughout the entire experiment. The fixation display lasted 0.5 s and was
followed by the cue display: a visual cue (either a fragmented elephant or a fragmented snowman)
appeared at the centre of the screen for 2.5 s. At the offset of the visual cue, the anticipatory period
began and lasted for 1 s; after which a visual reward appeared inside one of the white boxes,
accompanied by an auditory reward. The reward display lasted for 2 s. Audio was played during the
attention grabber and reward screens: four different ringing sounds for the attention grabber and six
different sounds for the reward.

For half the bilingual/monolingual infants, the elephant cue signalled the appearance of a reward on
the left side of the screen, while the snowman cue signalled the appearance of a reward on the right side.
For the other half, the elephant cued a reward on the right side, while the snowman cued a reward on the
left side. Critically, during the test phase (two test trials: one elephant, one snowman), participants were
presented with an even more fragmented cue than during the training phase. During both training and
test phases, cue order was randomized for each participant. The procedure lasted around 3 min.

2.2.2.3. Coding and analysis
Two AOI were defined around the white squares that the rewards appeared in. The predefined AOIs
extended 1 cm around the white squares in case the infant focused on the edge of the visual reward
and to account for small deviations in the quality of the calibration. An ‘anticipatory look’ was
defined as a saccade to one of the AOIs (left or right) that occurred during a 1 s time window starting
150 ms after cue offset and ending 150 ms after reward onset. If, at any point during the 1 s time
window, the infant performed an anticipatory look to the AOI where the reward would appear, the
trial was automatically coded as ‘correct’; an anticipatory look to the other AOI was automatically
coded as ‘incorrect’. If the infant looked at both AOIs (left and right), then the AOI of the longer look
was coded. All other onscreen looking behaviour was automatically coded as ‘invalid’ and discarded.
If the infant looked away from the screen during the time window, the trial was automatically coded
as ‘invalid’ and discarded.

If an infant has learnt that the cue type (elephant, snowman) predicts the location of a visual reward,
then, over the trials, they should have increased their anticipatory looks to the region of the screen where
they expected the reward to appear. To check whether they had learned to associate a cue with the
location of a reward, we carried out a mixed-effects logistic regression.7 The outcome variable was
anticipatory look (correct versus incorrect); the predictor variables were trial (1–24) and group
(monolingual versus bilingual). Random coefficients and an autoregressive covariance structure were
7Simulation studies suggest that 24 observations per individual (2448 observations in total) should provide sufficient power (greater
than 0.80 [22]).



Figure 2. The two snowmen on the left are training stimuli ( for the representations task). The snowman on the right is a test
stimulus (i.e. a less-detailed representation of the snowmen on the left). The two leftmost elephants are also training stimuli ( for
the representations task). The elephant on the right is a test stimulus (i.e. a less-detailed representation of the elephants on
the left).
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assumed. If we found that correct anticipatory looks increased significantly across trials in both groups,
then we followed up the result with two one-sample t-tests to ascertain whether the bilingual/
monolingual infants correctly anticipated the reward (proportion of correct anticipatory looks to total
anticipatory looks, averaged over the last three trials) greater than expected by chance (0.50).8 If they
did, and if at least 50% of them had contributed anticipatory looks, then we may conclude that they
made an association between a cue and the location of a reward. In the test phase, however, we
predicted that the bilinguals would be more likely to use the more-fragmented ‘test-trial’ cue to
anticipate the side of the reward than the monolinguals. To test this hypothesis, we measured
proportion of correct anticipatory looks averaged across the two test trials. The proportional data were
arcsine transformed and analysed using an independent samples t-test.9 If in the test phase at least
50% of the infants in each group contributed anticipatory looks, and if the bilinguals made more
correct anticipatory looks than the monolinguals, we may conclude that bilinguals respond more
appropriately to more fragmented—or less detailed—visual stimuli.

2.2.3. Experiment 3: the gap-overlap task

The gap-overlap task (adapted from [23–26]) measures the ability to disengage attention from one visual
stimulus and shift it towards a different visual stimulus.

2.2.3.1. Stimuli
Three stimuli types were used: central fixation, peripheral target, and reward. The central fixation
stimulus was a colourful 3 cm wide (2.6° × 2.6°) animated cartoon of a clock. The peripheral target
was a 2.6° × 2.6° animated cartoon of a cloud. The reward was one of six 2.6° × 2.6° animated cartoons
(e.g. a balloon, car, butterfly). All visual stimuli flickered and were accompanied by a non-verbal
sound (beep! or yip!) to attract the infant’s attention.

2.2.3.2. Procedure
Participants were presented with three trial conditions: baseline, gap and overlap. Each trial began with a
centrally presented cartoon (the central fixation stimulus or central stimulus) that expanded and contracted
for 0.8 s to attract the infant’s attention. In the baseline and gap trials, once the child fixated on the
central stimulus, the central stimulus vanished after 0.6–0.7 s. On its disappearance, a peripheral target
was immediately presented in the baseline trials and after a 0.2 s delay in the gap trials. In the overlap
trials, the central stimulus did not disappear; instead it ceased flickering, but remained onscreen and
overlapped with the appearance of the target. It ceased flickering so the dynamic peripheral target was
more interesting to the infant. The target was presented to either the left or the right of the central
fixation stimulus at an eccentricity of 14.9° (17 cm). It remained onscreen until either the child looked at
it, or until 3 s had elapsed. If the child looked at it within 1.2 s, she/he was rewarded by one of six
animated cartoons (which appeared in place of the target). The time it took for the participant to shift
his or her gaze to the peripheral target from the onset of the peripheral target was measured for each
trial. Trials were presented in blocks of 12 until 12 ‘valid’ trials per condition were acquired (see
§2.2.3.3) or a maximum of 60 trials were presented. The whole procedure lasted less than 3 min.
8To detect a medium-sized effect (d=0.50), we required a sample size of at least 27 per group (G�Power). Our sample size of 51 per
group was sufficient to detect a small-medium effect (d= 0.35; when power= 0.80 and α=0.05; G�Power).
9Our sample size of 51 per group was sufficient to detect a medium-sized effect (d= 0.50; when power= 0.8 and α= 0.05; G�Power).
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2.2.3.3. Coding and analysis

Trials were automatically coded ‘valid’ if the infant fixated on the target after 0.2 s and before 1.2 s of its
appearance [26,27]. If the participant failed to shift their gaze away from the central fixation stimulus
within this time window, then the trial was automatically recorded as a ‘failure to disengage’. In
addition, trials were considered invalid if the participant failed to look at the central stimulus prior to
the presentation of the target or if the child blinked or did not gaze towards the target.

To test our prediction that bilinguals are more likely to abandon the visual processing of a stimulus
and thus shift attention faster to a novel stimulus than monolinguals, a ‘disengagement’ score was
calculated by subtracting response times (RTs) in the baseline condition from RTs in the overlap
condition, and compared across groups using an independent samples t-test.9 To rule out the
possibility that bilinguals merely saccade faster than monolinguals, an independent samples t-test was
used to check that there was no significant group difference in RTs in the gap condition.9

2.2.4. Experiment 4: the visual memory task

The visual memory task probes whether bilingual infants shift attention more frequently and are less
sensitive to the minute details of a visual stimulus than monolingual infants.

2.2.4.1. Stimuli
The stimuli included 15 blue line drawings (7.9 cm wide (7.0°)), four visual-auditory attention grabbers
(the same as the ones in experiment 1), and gentle background music.

2.2.4.2. Procedure
The experiment consisted of 15 trials. All trials began with one of four attention grabbers centrally
positioned on a white screen. After 1 s, the attention grabber was replaced with two blue line
drawings, one on either side of the screen (left, right) and 13.2 cm (500 pixels, 11.6°) from the centre.
The drawings remained onscreen for 5 s, after which the trial ended. In the first trial, the two
drawings were identical; they were both line drawings of a man’s head. In every subsequent trial, the
drawing on one of the sides (e.g. the left) was replaced with a slightly different drawing. Over the
course of the 15 trials, the drawing on one side of the screen remained the same, but the drawing on
the other side of the screen gradually changed (in 14 steps) from a man’s head to a woman holding
flowers (see figure 3 for examples). Half the bilingual/monolingual infants saw the changes occur on
the left side of the screen, half saw the changes on the right. Because experiment 4 did not contain
any rewards, gentle background music was played throughout the experiment—to ensure that there
was no silence and to create a ‘warmer’ environment. The procedure lasted about 75 s.

2.2.4.3. Coding and analysis
Two AOI were defined around the line drawings. The predefined AOIs extended 1 cm around the line
drawings in case the infant focused on the outer edges of drawings and to account for small deviations
in the quality of the calibration. Two measures were obtained: (i) number of times the participant
switched visual attention between the two AOIs (divided by the time in seconds the participant spent
looking at both AOIs), and (ii) proportion of time spent looking at the AOI that the novel stimuli
appeared in (e.g. if for participant 1 it was the stimulus on the left side that kept changing over the
course of the experiment, then for participant 1 we obtained proportion of time spent looking at the left
AOI [left AOI/(left AOI+ right AOI])). For each measure, a mixed-effects regression model was carried
out.10 The predictor variables were trial (1–15) and group (monolingual versus bilingual). Random
coefficients and an autoregressive covariance structure were assumed.

Although we expected both groups to switch between stimuli, we hypothesized that bilinguals would
switch more frequently than monolinguals. The first regression model would test this hypothesis. Also,
we argued that to build up detailed representations, infants must focus on one stimulus of interest at a
time. If bilingual infants switch more frequently between stimuli, then they will spend less time focusing
on the internal features of a single stimulus, and thus less time building up a detailed model of any one
stimulus. Therefore, we hypothesized that monolinguals would focus more on the internal features of a
10Simulation studies suggest that 15 observations per individual (1530 observations in total) should provide sufficient power (greater
than 0.80 [22]).



Figure 3. Experiment 4 consisted of 15 trials. In each trial, two stimuli were presented, one on either side of the screen. In the first
trial, the two stimuli were identical (the leftmost drawing). Over the course of the 15 trials, the stimulus on one side of the screen
remained the same, but the stimulus on the other side of the screen changed. For example, in trial 5 the drawing second from the
left was presented with the leftmost drawing; in trial 10, the drawing third from the left was presented with the leftmost drawing;
and in trial 15, the drawing on the far right was presented with the leftmost drawing.
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stimulus (rather than spending time switching between the two stimuli) and thus notice the change
sooner (albeit with fewer switches between stimuli) than bilinguals. The second regression model
would test this hypothesis by ascertaining whether the infants looked at one of the stimuli for
significantly longer than the other (indicating that they discriminated between the two) and whether
this happened sooner for monolinguals than bilinguals. If we found a statistically significant effect of
group, then we followed it up with one-sample t-tests to find out whether time spent looking at the
novel stimulus was greater than expected by chance (0.50).11 That is, we would ascertain whether the
monolingual infants were better than the bilingual infants at remembering that the stimulus on one
side was the same as in previous trials, while the stimulus on the other side had changed.

Moreover, we hypothesized that (even after noticing a change) over the duration of the experimental
task, the monolinguals would spend significantly more time than the bilinguals processing the familiar
(versus novel) stimulus. In other words, monolinguals would err on the side of consolidating their
knowledge, while bilinguals would err on the side of exploration. The second regression model would
also test this hypothesis.
2.2.5. Language and socioeconomic status background information

Proportion of English language input was calculated using the LEQ [28]. The purpose of the LEQ was to
calculate the amount of exposure to English the child was hearing in a typical week. It was
administered in the form of a 10 min interview through discussion with the parent. Information from
the parent was entered into an online assessment tool (www.psy.plymouth.ac.uk/LEQ/) which
automatically yielded an ‘exposure to English’ percentage score. We used this information to assess
exclusion language criteria.

Parents also completed the Oxford CDI (OCDI; [29]) for each language their child was exposed to.
The OCDI is a list of 416 words that are commonly acquired in infancy. For each word, the carer
indicated whether their child can ‘understand’ and/or ‘understand and say’ the word. We used the
OCDI to confirm that their infant was not yet producing words. If there were any group differences,
then we could explore the effect in bilinguals using the receptive language measure (number of words
understood). We would expect that the more words a bilingual child understands from two or more
languages, the more they are ‘embedded’ in bilingualism. It would be interesting to use it as a
continuous measure of bilingualism and find out whether it covaries with the observed effect. We
would do this in a separate ‘exploratory’ section. The OCDI is available to view online and download
from the Oxford Babylab website (https://www.psy.ox.ac.uk/research/oxford-babylab/research-
overview/oxford-cdi).

Infants’ background information, including their parents’ SES, was gathered using a parent-report
questionnaire (electronic supplementary material). We used the information to match participants on SES.
2.3. Statistical analyses
Because we were only interested in group differences, for all experimental trials, individual data points
that lie greater than ±3 s.d. from the group mean were excluded from analyses. Data were analysed and
visualized using R [30].
11To detect a medium-sized effect (d= 0.50), we required a sample size of at least 27 per group (G�Power). Our sample size of 51 per
group was sufficient to detect a small-medium effect (d= 0.35; when power= 0.8 and α= 0.05; G�Power).

http://www.psy.plymouth.ac.uk/LEQ/
https://www.psy.ox.ac.uk/research/oxford-babylab/research-overview/oxford-cdi
https://www.psy.ox.ac.uk/research/oxford-babylab/research-overview/oxford-cdi
https://www.psy.ox.ac.uk/research/oxford-babylab/research-overview/oxford-cdi


Table 2. The relationship between pre-switch trials and correct anticipatory looks. (The ‘interaction’ model fit the data better
than the ‘+ trial’ model, x22 ¼ 6:43, p= 0.040�. �p< 0.05, ���p< 0.001.)

model d.f. AIC BIC logLik deviance χ2 χ2d.f. p

null 2 1195.5 1205.2 −595.76 1191.5

+ trial 3 1174.1 1188.6 −584.06 1168.1 23.40 1 <0.001���

+ group 4 1175.0 1194.3 −583.49 1167.0 1.15 1 0.284

interaction 5 1171.7 1195.8 −580.85 1161.7 5.28 1 0.022�

Table 3. Estimated fixed effects (model: + trial).

effect estimate s.e Z

intercept −1.12 0.19 −5.79
trial 0.14 0.03 4.78
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3. Results
3.1. Experiment 1
To check that the infants could anticipate the appearance of a reward, for the pre-switch trials we fitted a
mixed effects logistic model (the ‘null’ model) with ‘correct anticipatory look’ as the outcome variable
and random intercepts for participants. We assumed random intercepts for participants because it is
likely that baseline ‘anticipatory looking’ varies across infants irrespective of group. We then added a
fixed effect of trial (the ‘+ trial’ model):

model (null): correct anticipatory look � (1jparticipant)þ 1

model (þ trial): correct anticipatory look � (1jparticipant)þ trialþ 1:

If infants learned to anticipate the appearance of the reward, then the addition of ‘trial’ should
significantly improve the ‘null’ model. Comparisons of Akaike’s information criterion (AIC) and
Schwarz’s Bayesian information criterion (BIC), as well as a likelihood ratio test, show a highly
significant effect of trial (table 2). This suggests that the task was working (see table 3 for the
estimated fixed effect of trial).

Adding a fixed effect of group did not improve the model (table 2; see also figure 4a). However, a
comparison of AIC and a likelihood ratio test suggest that adding the possibility of an interaction
between group and trial (the ‘interaction’ model) does improve the ‘+ group’ model ( p= 0.022).
Moreover, the ‘interaction’ model fits the data better than the (no-group) ‘+ trial’ model (table 2). This
hints at the possibility that bilinguals may learn to anticipate rewards at a faster rate than
monolinguals. Interestingly, bilingual infants (M=0.28, s.d. = 0.30) were less likely than monolingual
infants (M=0.42, s.d. = 0.35) to make correct anticipatory looks during the first three trials, t100 = 2.14,
p=0.035, but caught up with the monolinguals by the final three trials (0.52, s.d. = 0.36 (bilinguals)
versus 0.48, s.d. = 0.33 (monolinguals)), t100 = 0.67, p= 0.504.

It is important to note that a comparison of BIC does not favour the ‘interaction’ model over the ‘+
trial’ model. This may be because BIC penalizes additional parameters more heavily than AIC. On the
one hand, the ‘+ trial’ model is more parsimonious than the ‘interaction’ model. On the other hand,
the reality may be complex and require additional parameters. In any case, we advise caution when
interpreting these results.

To replicate the finding by Kovacs & Mehler [9] that bilinguals but not monolinguals learn to inhibit a
learned behaviour, we fitted a linear mixed effects model (the ‘null’ model) to the post-switch trials data,
with ‘correct anticipatory look’ as the outcome variable and random intercepts for participants. We then
added a fixed effect of trial (the ‘+ trial’model). Comparisons of AIC and BIC, as well as a likelihood ratio
test, show a highly significant effect of trial (table 4). However, the addition of a fixed effect of ‘group’ did
not greatly improve the model (table 4). Finally, we predicted an interaction between group and trials,
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Figure 4. (a) In trial 1 of the pre-switch block, 24% of bilingual infants and 37% of monolingual infants made correct anticipatory
looks. By trial 9, 61% of bilingual infants and 55% of monolingual infants made correct anticipatory looks. The increase in
anticipatory looks across trials was statistically significant, indicating learning. (b) In trial 1 of the post-switch block, only 24%
of bilingual infants and 14% of monolingual infants made correct anticipatory looks. By trial 9, this had increased to 51% in
bilinguals and 39% in monolinguals, indicating that both groups were successfully redirecting their anticipatory looks
(experiment 1).

Table 4. The relationship between post-switch trials and correct anticipatory looks. (#p< 0.10, ���p< 0.001.)

model d.f. AIC BIC logLik deviance χ2 χ2d.f. p

null 2 1087.5 1097.1 −541.75 1083.5

+ trial 3 1076.2 1090.7 −535.09 1070.2 13.31 1 <0.001���

+ group 4 1075.3 1094.6 −533.66 1067.3 2.87 1 0.090#

interaction 5 1077.3 1101.4 −533.66 1067.3 <0.01 1 0.988
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with bilinguals (but not monolinguals) learning to inhibit their learned behaviour and make more post-
switch correct anticipatory looks. However, the addition of an interaction did not improve the model
(table 4). In short, our data do not support the claim that bilingual infants but not monolingual
infants can inhibit learned behaviour; proportion of correct anticipatory looks increased in both groups.

3.2. Exploratory analyses
To help interpret the data, we ran similar analyses as before, but this time, we analysed only looks
captured within the anticipatory period (see §2.2.1.2). This is a ‘purer’ measure of anticipatory looking
because the target was not onscreen at any point during the anticipatory period. Also, rather than
analyse ‘correct anticipatory look’, we measured the difference (in seconds) between correct and
incorrect anticipatory looking durations. We thus fitted a linear mixed effects model with ‘difference
in seconds’ as the outcome variable and random intercepts for participants—and then, as before,
added a fixed effect of trial, a fixed effect of group and finally a trial-by-group interaction. For both
pre-switch trials and post-switch trials (tables 5 and 6), the results were similar to those in §3.1.

3.3. Experiment 2
To check that the infants learned to associate the cue (elephant, snowman) with the location of a reward,
we fitted a mixed effects logistic model (the ‘null’ model) with ‘correct anticipatory look’ as the outcome
variable and random intercepts for participants. We then added a fixed effect of trial (the ‘+ trial’ model):

model (null): correct anticipatory look � (1jparticipant)þ 1

model (þ trial): correct anticipatory look � (1jparticipant)þ trialþ 1:



Table 5. The relationship between pre-switch trials and correct anticipatory looks. (The ‘interaction’ model fit the data better
than the ‘+ trial’ model, x22 ¼ 9:94 , p= 0.007��. ��p< 0.01, ���p< 0.001.)

model d.f. AIC BIC logLik deviance χ2 χ2d.f. p

null 3 −2479.2 −2464.8 1242.6 −2485.2
+ trial 4 −2492.5 −2473.2 1250.2 −2500.5 15.25 1 <0.001���

+ group 5 −2491.6 −2467.5 1250.8 −2501.6 1.11 1 0.292

interaction 6 −2498.4 −2469.5 1255.2 −2510.4 8.84 1 0.003��

Table 6. The relationship between post-switch trials and correct anticipatory looks. (#p< 0.10, ���p< 0.001.)

model d.f. AIC BIC logLik deviance χ2 χ2d.f. p

null 3 −2486.5 −2472.0 1246.2 −2492.5
+ trial 4 −2502.6 −2483.3 1255.3 −2510.6 18.16 1 <0.001���

+ group 5 −2503.5 −2479.4 1256.8 −2513.5 2.88 1 0.090#

interaction 6 −2501.9 −2473.0 1257.0 −2513.9 0.39 1 0.534

Table 7. The relationship between trials and correct anticipatory looks.

model d.f. AIC BIC logLik deviance χ2 χ2d.f. p

null 2 1719.2 1729.5 −857.58 1715.2

+ trial 3 1721.0 1736.5 −857.50 1715.0 0.16 1 0.685

+group 4 1723.0 1743.6 −857.48 1715.0 0.03 1 0.873
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If infants learned to anticipate the appearance of the reward, then the addition of ‘trial’ should
significantly improve the ‘null’ model. However, comparisons of AIC and BIC, as well as a likelihood ratio
test, show that this was not the case (table 7). This suggests that the task was too difficult for the infants.
(For sake of completeness, we added a fixed effect of group, but this did not improve the model; table 7.)
3.4. Experiment 3
To test our prediction that bilinguals are more likely to abandon the visual processing of a stimulus and
thus shift attention faster to a novel stimulus than monolinguals, a ‘disengagement’ score was calculated
by subtracting RTs in the baseline condition from RTs in the overlap condition. Each participant provided
at least six valid trials per condition (baseline, overlap). The bilingual infants did not disengage
significantly faster than the monolingual infants, t99 = 1.32, p=0.190.

Because the data were significantly non-normal—especially the monolingual data (ZSkewness = 2.79,
ZKurtosis = 1.91, D100 = 0.15, p= 0.005), we decided to also carry out a non-parametric test, the Mann–
Whitney U-test. This is because we could not satisfactorily logarithmically transform the data as some
of the data contained negative values. The non-parametric test confirmed that the bilingual infants did
not disengage significantly faster than the monolingual infants, U=1563, z= 1.76, p=0.079 (figure 5)—
though it may be important to note that the one-tailed significance value was p= 0.040.

We then checked that the two groups did not significantly differ on gap RT. As expected, they did not,
t97 = 0.62, p=0.540. This was confirmed with a non-parametric test, U=1365, z=0.43, p=0.666. It
suggests that the ocular-motor system is similar in both groups. (Note: two of the monolingual infants
and one of the bilingual infants who provided at least six valid trials in the baseline and overlap
conditions provided only five valid trials in the gap condition; however, when we replaced these
participants with three participants who provided at least six valid trials in the gap condition, the
result was the same: t96 = 0.11, p=0.911; U= 1388, z= 0.59, p= 0.558.)
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Figure 5. The bilingual infants (n= 51) were not significantly faster than the monolingual infants (n= 51) ( p= 0.079, two-tailed).
Error bars represent ±1 standard error of the mean (experiment 3).
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Figure 6. Analysis of the best quality data (at least 12 valid trails in each condition) suggests that bilingual infants (n= 31)
disengage attention significantly faster than monolingual infants (n= 34). Error bars represent ±1 s.e. of the mean
(experiment 3).
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3.4.1. Exploratory analyses

During testing, we realized that the data we were collecting were of lower quality than expected. For
example, trials were presented in blocks of 12 until 12 ‘valid’ trials per condition were acquired or a
maximum of 60 trials were presented (see §2.2.3.2). We expected most infants to provide 12 valid
trials per condition by the fifth and final block of trials, but in a large number of cases (n=49) they
did not. We still obtained at least six valid trials per condition (baseline, overlap) from these children,
but we expected more. We felt that we should reanalyse the data, but this time include only infants
who provided 12 valid trials per condition (31 bilinguals, 34 monolinguals). As expected, the groups
did not significantly differ on gap RT, t63 = 0.26, p= 0.794 (U=544.00, z= 0.22, p= 0.823), indicating
similar ocular-motor systems. But the bilingual infants did disengage attention significantly faster than
the monolingual infants, t63 = 2.10, p=0.040; U=715.00, z=2.47, p=0.014 (figure 6).

Because the result of our exploratory analysis was statistically significant, we decided to look more
closely at the relationship between language exposure and the ability to disengage. Any child who
was even slightly exposed to a second language was included in a linear regression, with language
exposure as the predictor and the disengagement effect as the outcome variable. The data (all positive
values) were logarithmically transformed (base 10). We found that the less exposure to English that a
child had (as measured using the LEQ), the faster the infant was at disengaging attention to shift
attention to a peripheral visual stimulus, F1,34 = 6.35, p=0.017 (table 8 and figure 7; non-transformed
data: B= 0.93, s.e. B= 0.39, β= 0.38; F1,34 = 5.72, p=0.022). Although this analysis is exploratory, it is not
something that has been reported in the literature and is worth investigating in a future study.

We ran the same regression with the untransformed data from the original (larger) sample of
participants and obtained a similar result: F1,55 = 8.42, p=0.005 (table 9; see also figure 8). The data
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Figure 7. The more exposure to English the infant had (as estimated using the LEQ), the slower the infant was at disengaging
attention in order to shift attention to a peripheral stimulus (n= 36) (experiment 3). Any child who was even slightly exposed to a
second language was included in this regression.

Table 8. Regression analysis: the disengagement effect as a function of bilingualism. (� p< 0.05.)

B s.e. B β

intercept 1.67 0.10

bilingualism 0.01 <0.01 0.40�
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included a large negative value, unsuitable for a logarithmic transformation, but non-parametric
correlations confirm the relationship: rs = 0.36, p=0.006; τ= 0.26, p= 0.004.

3.5. Experiment 4
The visual memory task probed whether bilingual infants (i) shift attention more frequently, and (ii) are
less sensitive to the minute details of a visual stimulus than monolingual infants.

3.5.1. Do bilingual infants switch attention more frequently?

To probe whether bilingual infants shift attention more frequently than monolingual infants, we fitted a
linear mixed effects model with number of switches as the outcome variable, a fixed effect of trial, a fixed
effect of group, and random intercepts for participants. We assumed random intercepts for participants
because it is likely that baseline ‘switching’ varies across infants irrespective of group. To isolate any
effect of ‘group’, we compared this (group) model with a reduced no-group (null) model:

model (group): no: of switches � trialsþ (1jparticipant)þ groupþ 1

model (null): no: of switches � trialsþ (1jparticipant)þ 1:

A comparison of AIC and BIC, as well as a likelihood ratio test (table 10), shows that the bilingual
infants shifted attention more often during the task than the monolingual infants (see table 11 for the
estimated fixed effect of bilingualism; see also figure 9).

However, it is possible that the bilingual infants merely spent more time looking at the stimuli—and
thus had more time to shift attention—than the monolingual infants. It was therefore necessary to
analyse ‘number of switches’ relative to ‘total time spent looking at both stimuli’. We fitted a linear
mixed effects model with ‘number of switches divided by total time spent looking at both stimuli’ as
the outcome variable, a fixed effect of trial, and random intercepts for participants (model 0). We then
added ‘group’ as an additional fixed effect (model 1):

model 0 (null): (no: of switches/total looking time) � trialþ (1jparticipant)þ 1

model 1 (group): (no: of switches/total looking time) � trialþ groupþ (1jparticipant)þ 1:



Table 9. Regression analysis: the disengagement effect as a function of bilingualism. (�� p< 0.01.)

B s.e. B β

intercept 68.40 19.45

bilingualism 1.07 0.37 0.37��
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Figure 8. Analysis of the larger dataset (n= 57) supports the exploratory finding that the infant’s exposure to English (as estimated
using the LEQ) is correlated with their ability to disengage attention (experiment 3). Any child who was even slightly exposed to a
second language was included in this regression.

Table 10. The relationship between group (bilingual and monolingual) and number of switches. (��� p< 0.001.)

model d.f. AIC BIC logLik deviance χ2 χ2d.f. p

null 4 4299.4 4320.3 −2145.7 4291.4

+ group 5 4272.9 4299.1 −2131.5 4262.9 28.45 1 <0.0001���

Table 11. Estimated fixed effects (model: group).

effect estimate s.e. t

intercept 2.00 0.09 21.56

bilingualism 0.61 0.11 5.74

trial −0.09 0.01 −13.32
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We compared AIC and BIC, and carried out a likelihood ratio test, between the two models. AIC (but
not BIC) favoured the model with ‘group’. The likelihood ratio test was statistically significant (table 12).
Adding ‘group’ improved the ‘null’ model (see table 13 for the estimated fixed effect of bilingualism).
These data support our hypothesis that bilingual infants switch more than monolingual infants
(figure 10). Because the change in stimulus across trials was not strictly linear, we also tested for any
inter-dependence between trials and group. However, neither comparisons of AIC/BIC nor the
likelihood ratio test favoured the interaction model (table 12).

3.5.2. Do bilinguals spend less time processing familiar stimuli? Are they worse at remembering details?

To check that the infants noticed that the stimulus on one side of the screenwas gradually changing, we fitted
a linear mixed effects model (the ‘null’ model) with ‘proportion of looking to novel stimuli’ as the outcome



Table 12. The relationship between group (bilingual and monolingual) and proportion of switches. (�� p< 0.01.)

model d.f. AIC BIC logLik deviance χ2 χ2d.f. p

null 4 3088.8 3109.6 −1540.4 3080.8

+ group 5 3083.7 3109.7 −1536.8 3073.7 7.12 1 0.008��

interaction 6 3085.3 3116.6 −1536.7 3073.3 0.35 1 0.552

Table 13. Estimated fixed effects (model 1).

effect estimate s.e. t

intercept 1.29 0.07 19.36

monolingual −0.22 0.08 −2.71
trial −0.03 0.005 −6.46
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Figure 9. The relationship between trial and number of switches, by group (bilingual and monolingual; experiment 4).
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variable and random intercepts for participants. We then added a fixed effect of trial (the ‘+ trial’ model):

model (null): proportion of looking to novel stimuli � (1jparticipant)þ 1

model (þ trial): proportion of looking to novel stimuli � (1jparticipant)þ trialþ 1:

If infants learned that the stimulus on one side of the screen was gradually changing, then the
addition of ‘trial’ should significantly improve the ‘null’ model. However, comparisons of AIC and
BIC, as well as a likelihood ratio test, show that this was not the case (table 14). This suggests that the
task was too difficult for the infants. For sake of completeness, we added a fixed effect of group.
Although the monolingual infants spent more time than the bilingual infants looking at the familiar
stimulus (relative to the novel stimuli), which was what we predicted, the addition of ‘group’ did not
improve the model, so we cannot draw firm conclusions from this analysis (table 14).
3.5.3. Exploratory analyses

Our results suggest that infants from bilingual homes switch attention more frequently than infants from
monolingual homes. Experiment 3 suggests that they may also be quicker at disengaging attention from
visual stimuli in order to shift attention to new visual stimuli. This raises the question of whether the
ability to disengage attention is related to number of switches in bilingual infants?
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Figure 10. The relationship between trial and proportion of switches to time spent looking at both stimuli, by group (bilingual and
monolingual; experiment 4).

Table 14. The relationship between trials and proportion of looking to novel stimuli.

model d.f. AIC BIC logLik deviance χ2 χ2d.f. p

null 3 621.14 636.99 −307.57 615.14

+ trial 4 622.80 643.93 −307.40 614.80 0.34 1 0.559

+ group 5 624.39 650.80 −307.19 614.39 0.41 1 0.523
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To test the relationship between attentional disengagement and switching behaviour, we analysed the
data from experiments 3 and 4. Thirty-two bilingual infants and 37 monolingual infants provided good
data for both experiments and were thus included in this exploratory analysis. Data from one bilingual
infant and three monolingual infants were removed for having data points greater than ±2 s.d. from the
mean. Because the disengagement RT data were non-normal in the bilingual group, D31 = 0.20, p=0.003,
non-parametric tests were carried out. We report both Kendall’s and Spearman’s correlation coefficients
because while the former is possibly better for small samples [31], the latter is easier to interpret.
Disengagement RTs were not related to number of switches in the combined group of 65 infants, τ=−
0.16, p=0.066 (rs =−0.23, p=0.064). However, disengagement RTs were negatively correlated with
number of switches in the bilingual infants, τ=−0.30, p= 0.019 (rs =−0.41, p= 0.022), but not in the
monolingual infants, τ= 0.03, p= 0.824 (rs = 0.02, p=0.912) (figure 11).

A similar pattern was observed when the relationship between disengagement RTs and ‘proportion
of switches to face looking’ was analysed. Data from two bilingual infants and five monolingual infants
were removed for having data points greater than ±2 s.d. from the mean. In the single combined group of
62 infants, there was no relationship, τ=−0.03, p=0.775 (rs =−0.02, p= 0.862). However, there was a
relationship in bilingual infants, τ=−0.32, p= 0.013 (rs =−0.41, p=0.025), but not in monolingual
infants, τ=0.20, p= 0.105 (rs = 0.28, p=0.125) (figure 12).

These exploratory data hint that the ability to disengage attention is related to switching behaviour in
infants from bilingual homes but not necessarily in infants from monolingual homes.
4. Conclusion
Our data do not support the claim that infants raised in bilingual homes are better at inhibiting a learned
behaviour than infants raised in monolingual homes (experiment 1). However, our data suggest that
infants raised in bilingual homes are faster at disengaging attention in order to shift attention to a
new stimulus (experiment 3) and switch attention more frequently between two visual stimuli
(experiment 4). Furthermore, exploratory analyses suggest a relationship between speed of visual
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disengagement (experiment 3) and number of switches between two visual stimuli (experiment 4). This
raises the possibility that infants adapt to bilingual environments partly by disengaging attention faster
and switching attention more frequently. It supports our proposal that bilingual infants adapt by placing
more weight on novel information in order to collect more samples from their more varied environments.

Unfortunately, we were unable to ascertain whether bilingual infants respond more appropriately to
more fragmented—or less detailed—visual stimuli. Nor were we able to ascertain whether they spent less
time visually processing a familiar stimulus or whether they were worse at remembering the details of a
visual stimulus. So, we cannot make any claims about how they modelled or represented information.
Our hypothesis that bilingual infants get by on less detailed models of the environment remains
untested.
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5. Discussion

Is mere exposure to bilingual environments enough? We suggest that it is. We found that infants exposed
to bilingual environments switch attention more frequently than infants exposed to monolingual
environments. Exploratory analyses also suggest that switching attention is related to the ability to
disengage attention in order to shift attention to a new visual stimulus—in infants raised in bilingual,
but not monolingual, homes. This tells us that infants adapt to their different language environments.
Also, because the infants had not yet begun to speak, it tells us that mere exposure to a second
language is sufficient to observe a difference. That is, the difference is a result of hearing not
producing two or more languages.

However, the explanation for this difference is not clear. It is likely that infants who regularly hear
two or more languages are exposed to a more variable and less predictable language (and possibly
sociocultural) environment than infants who hear only one language. We therefore speculate that
infants exposed to bilingual environments adapt by exploring (sampling) their environment more, by
placing more weight on information-seeking. This would explain why they might disengage attention
faster and switch attention more frequently than infants from monolingual homes.

How would these behavioural differences come about? Insight may come from two infant studies
which demonstrated that selective attention to a talking mouth (versus eyes) facilitates concurrent
language learning [32] and predicts later expressive language development [33]. These studies support
Lewkowicz & Hansen-Tift’s [34] claim that infants use redundant audiovisual speech cues to learn
words by matching sounds to lip movements. Perhaps, because of their more complex language
environments, bilingual infants actively seek out multiple sources of information. We therefore
speculate that infants raised in more variable language environments collect more samples from their
environment. Perhaps bilingual infants are more likely to disengage the focus of their attention from a
stimulus (e.g. a toy) in order to shift it towards the mouths, facial expressions or bodily movements of
the various speakers in their environment; and maybe they switch more frequently between these
different sources of information. It would be interesting to explore this hypothesis by observing the
infants in their homes.

Further insight may come from our suggestion that bilingual infants outperform monolingual infants
on the gap-overlap task. In our study, saccadic reaction times did not significantly differ across groups in
the gap condition, but they did in the overlap (minus baseline) condition. This difference suggests that
visual orienting may be underpinned by differences in specific neuro-circuitry rather than a function
of whole-brain efficiency. While the generation of saccades—reflected by saccadic reaction times in the
gap condition—is mediated by subcortical processes and the development of corticospinal tracts
connecting brain stem to cerebral cortex [35], the ability to disengage attention—reflected by saccadic
reaction times in the overlap condition—is associated with development of the splenium, the thickest
part of the corpus callosum [36]. Little is known about the development of the splenium in human
infants, but in rhesus monkeys the splenium is the site of rapid axonal elimination during the first few
months of life [37]. This occurs at a time when the rhesus macaque brain is particularly malleable to
external stimuli which help shape large parts of its cerebral cortex [38]. It is therefore conceivable that
changes in the human infant’s language environment could adaptively drive exploratory behaviours
and the early development of the splenium. Indeed, language production at 24 months has been
associated with rate of change in splenium development (but not in other white matter tracts) from
six months of age [39], and variation in word acquisition has been linked to variation in attentional
orienting [40] and visual experience [41], so it is possible that differences in visual orienting and
splenium development reflect interdependent adaptive processes through which an infant’s internal
neuro-circuitry calibrates to the metrics of the external world. This would explain why variation in
early social interaction is associated with attentional disengagement later in development [42] and it
fits with evidence that corpus collosum is better preserved in elderly lifelong bilinguals [43].

However, most studies in the literature explain differences between bilinguals and monolinguals as a
difference in inhibitory control (see [1], for review). This comes from the idea that the purported bilingual
advantage is the result of managing two or more languages during language production. Our data do
not support this hypothesis because our participants were preverbal. But even if the inhibitory control
theory were modified to include any advantage in cognitive control or cognitive flexibility as a result
of greater complexity in the bilingual environment, our data would not support it for this age. This is
because we could not replicate Kovacs & Mehler’s [9] finding that only bilingual infants can inhibit a
learned behaviour (n=20). Although Kovacs & Mehler [9] found that post-switch anticipatory
responses increased in the bilingual, not monolingual, group, they did not report whether the
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bilingual infants made more anticipatory looks than expected by chance. Their results were, however,

partly supported by Comishen et al. [44], who ran a similar study with six-month-old infants (n=20).
Comishen et al. [44] found that post-switch anticipatory looks were not significantly different from
chance in monolinguals but were in bilinguals. However, unlike Kovacs and Mehler, they did not
demonstrate any significant difference in anticipatory looks between the monolinguals and bilinguals.
Their groups’ error bars (which represent one standard error of the mean) overlap, which confirms
that there was no statistically significant difference between the two groups. A more direct replication
attempt was carried out by Tsui & Fennell [45], who tested older bilingual infants (nine months; n=
23) using the same task as Kovacs & Mehler [9] and us. In their study, bilingual infants neither looked
at the correct location more nor learned the new pattern-reward association faster. They found no
evidence that bilingual language processing strengthens inhibitory control mechanisms in preverbal
infants. Why might Comishen et al. find a difference, but not Tsui and Fennell or us? There could be
differences in methods across laboratories. For example, Comishen et al. [44] excluded from analysis
the first 10 trials and the last 10 trials of their study, while Tsui and Fennell excluded no trials but
presented only six trials per block. In our much larger replication, both bilingual and monolingual
infants could inhibit a learned behaviour.

Although neither Comishen et al. [44] nor Tsui & Fennell [45] demonstrated post-switch differences in
anticipatory looks between groups, and thus no direct evidence that bilingual language processing
strengthens inhibitory processes in preverbal infants, Comishen et al. did report a post-switch group
difference in mean ‘reactive’ latencies—eye movements occurring between 133 ms after target onset
and 133 ms after target offset. Reactive latencies were faster in bilingual infants than monolingual
infants. This may reflect expectations that could not quite manifest fast enough into anticipatory looks.
Alternatively, it suggests that infants exposed to bilingual environments become quicker at
disengaging visual attention from one stimulus in order to shift attention to a new one. This would fit
our theory and data. We could not test our hypothesis that bilingual infants construct less detailed
models of their environments (because the task was too difficult for them), but we were able to
investigate whether infants from bilingual homes are faster at abandoning the visual processing of a
stimulus to shift attention to a novel stimulus; and they seemed to. Therefore, our data broadly
support our proposal that exposure to more varied language environments drive infants to explore
(sample) further by placing more weight on new information and switching attention more. This
dovetails with Singh et al.’s [10] finding that six-month-old bilinguals look increasingly less at a
repeatedly presented visual stimulus than age-matched monolingual peers.

In summary, there has been much controversy over claims in the literature that bilinguals outperform
monolinguals on non-verbal tasks of executive function. We could not replicate the finding that only
bilingual infants can inhibit a learned behaviour. But we found that infants exposed to bilingual
environments switch attention more frequently between two visual stimuli than infants exposed to
monolingual environments. Infants exposed to bilingual environments may also be faster at
disengaging visual attention from one stimulus in order to shift it to another. These findings are
consistent with the proposal that greater variation or uncertainty in the language environment drives
infants to sample (explore) more and place greater weight on novel information. However, though we
argue that volatility in the bilingual environment drives infants to explore more, time spent exploring
(seeking new information) may come at the expense of time spent consolidating (or exploiting)
information. Therefore, we do not insist that switching attention more frequently is necessarily an
‘advantage’; rather, we argue that it is an adaptation to a particular set of circumstances. We imagine
that, at a particular time in development, it may benefit bilinguals to switch attention more
frequently. It would be interesting to know whether these adaptations have cascading effects such as
worse metacognition in early adulthood [18] or better mental health in old age [43].
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