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Abstract—We introduce a new research area in Visual Analytics (VA) aiming to bridge existing 

gaps between methods of interactive Machine Learning (ML) and eXplainable Artificial Intelligence 

(XAI), on one side, and human minds, on the other side. The gaps are, first, a conceptual mismatch 

between ML/XAI outputs and human mental models and ways of reasoning, second, a mismatch 

between the information quantity and level of detail and human capabilities to perceive and 

understand. A grand challenge is to adapt ML and XAI to human goals, concepts, values, and ways of 

thinking. Complementing the current efforts in XAI towards solving this challenge, VA can 

contribute by exploiting the potential of visualization as an effective way of communicating 

information to humans and a strong trigger of human abstractive perception and thinking. We 

propose a cross-disciplinary research framework and formulate research directions for VA. 

 

 THE IMPORTANCE of involving humans in 

the process of creating and training Machine Learning 

(ML) models is currently widely recognized in the 

ML community [1]. It is argued that humans involved 

in this process need to understand what the machine is 

doing and how it uses human inputs; hence, the 

machine must be able to explain its behavior to the 

users. Understanding of ML models has also critical 

importance for deciding whether they can be adopted 

for practical use. Explainability of models may even 

be more important than their performance, especially 

in high-stake domains.  In response to the need to 

explain untransparent ML models (“black boxes”) to 

users, the research field of eXplainable Artificial 

Intelligence (XAI) has emerged recently [8]. The 

work in this field was boosted by the European 

Parliament’s adoption of the General Data Protection 

Regulation (GDPR), which introduces the right of 
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individuals to receive explanations of automatically 

made decisions relevant to them. 

However, there is a tendency to admit that model 

“explainability” does not necessarily mean that the 

model is indeed properly explained to humans and 

understood by them [9,12]. In this paper, we discuss 

the deficiencies of the common approaches to 

explaining ML models, mention current efforts 

towards overcoming these deficiencies, argue why 

Visual Analytics (VA) [11] should be involved in 

such efforts, and consider its possible role in helping 

humans to understand models.   

 

Figure 1. Schematic representation of the 
research framework for human-centered ML 
supported by VA.  

Based on our considerations, we propose a research 

framework for developing VA approaches supporting 

human-centered ML. The basic idea is schematically 

represented in Fig. 1. Here, the term “informed ML” 

means involving prior knowledge in the process of 

deriving models from data, and “informed XAI” 

means involving knowledge in the process of 

explaining models to humans. While informed ML 

uses knowledge that is explicitly represented in a 

machine-processable form, VA can support acquiring 

knowledge from a human expert, including expert’s 

prior knowledge and new knowledge that the expert 

has obtained through interactive visual data analysis. 

The knowledge of the expert is externalized through 

interactive visual interfaces and supplied to the ML 

and XAI components. Please note that “informed 

XAI” is a new term that we introduce by analogy with 

“informed ML”. The contents of Fig. 1 will be 

explained in more detail later. 

We shall begin with providing background 

information concerning explainability of ML models 

and deficiencies of common approaches in XAI. After 

an overview of the relevant research in ML, XAI, and 

VA, we present the general idea of how VA can 

contribute to human-centered ML and propose 

research directions towards realizing this idea. 

BACKGROUND 

The following definitions and statements are based 

on a recent survey of the XAI research [8] unless 

another reference is specified. 

In the ML and XAI literature, the terms 

“explainability” and “interpretability” are used 

interchangeably. Interpretability is defined as the 

ability to explain or to provide the meaning of 

something in terms understandable to a human. The 

definition assumes implicitly that an explanation is 

self-contained and does not need further explanations. 

An important distinction is made between global 

and local interpretability. Global interpretability 

means that humans can understand the whole logic of 

a model and follow the reasoning leading to all 

possible outcomes. Local interpretability means the 

possibility to understand the reasons for a specific 

decision. 

Among the existing types of ML models, a few are 

recognized as interpretable and easily understandable 

for humans, namely, decision tree, rules, and linear 

(regression) models. A decision tree can be 

represented graphically, and a human can trace its 

branches and read logical conditions in the nodes. 

Rules have the form of logical statements “if … then 

…”, which are familiar and understandable to humans. 

Linear models can be interpreted by considering the 

sign and magnitude of the contribution of each 

attribute to a prediction. 

These model types are considered interpretable by 

their nature and needing no explanations. The research 

in XAI is concerned with explaining other types of 

models that are untransparent to humans. The research 

addresses three distinct problems. The black box 

explanation problem consists in providing a globally 

interpretable model which is able to mimic the 

behavior of the black box. The black box outcome 

explanation problem consists in providing 

explanations of the reasons for predictions or 

decisions made by a black box. It is not required to 

explain the whole logic behind the black box. The 

black box inspection problem consists in providing a 

representation (visual or textual) for understanding 

either how the black box model works or why the 

black box returns certain predictions more likely than 

others.  

The content of this paper partly refers to the first 

problem, i.e., black box explanation, which is being 
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solved by creating interpretable mimic models. 

However, the problem we consider here is different. 

We share the doubts of ML researchers who question 

the common belief that certain model types are easily 

understood by humans just because they can be 

represented in a human-readable form. 

DEFICIENCIES OF CURRENT XAI 

Some ML researchers argue that the current XAI 

approaches fail to provide satisfactory explanations 

that can be well understood by humans, i.e., linked to 

their mental models. The term “explainability” is 

contrasted with “explanation” [12] and “causability” 

[9]. According to Kovalerchuk et al. [12], a model is 

truly explained if a domain expert accepts it based on 

both empirical evidence of satisfactory accuracy and 

the domain knowledge/theory/reasoning, which is 

beyond a given dataset. Instead, XAI methods 

generate “quasi-explanations”, which refer to 

components and properties of data and specifics of the 

modelling algorithm but do not explain models in 

terms of domain knowledge and concepts that humans 

use in their reasoning. “Causability” [9] is defined as 

the extent to which an explanation achieves a 

specified level of causal understanding. 

The authors of [12] give the following example. 

Consider a branch of a decision tree or a logical rule 

“If (x1 > 5) and (x2 < 7) and (x3 > 10) then x belongs to 

class 1”. It may be quite accurate in classifying data 

instances, and a domain expert can understand what it 

says if attributes x1 to x3 are meaningful in the 

domain where the data are taken from. However, the 

domain expert can say that, despite its high empirical 

confirmation, it is not clear why this model should 

work. The model is not explained in the terms of the 

domain knowledge such as causal relations known in 

the domain. This is a quite common situation in ML. 

Another example given in [12] refers to linear 

models, which are also commonly recognized as 

interpretable. It is typical that linear models involve 

heterogeneous attributes, such as blood pressure, 

cholesterol level, temperature, and so on. The 

weighted summation of such heterogeneous attributes 

does not have physical meaning. Even when attributes 

are homogeneous it is still not necessary that the 

regression models will be meaningful. For instance, 

what is the meaning of a weighted sum of systolic and 

diastolic blood pressure measurements?  

Additionally, a theoretically interpretable model, 

similarly to a deep learning model, may involve 

highly engineered features, such as a cube root of 

several indicators, which may not have a domain 

interpretation. 

The problem that these examples refer to can be 

characterized as conceptual mismatch between 

ML/XAI outcomes and human mental models. 

Another problem, also discussed in [12], is that a 

model interpretable in theory may be 

incomprehensible in practice due to its size and 

complexity. Consider, for example, a decision tree 

containing hundreds of nodes, as in Fig. 2. A human 

can trace and understand any small part of it, but the 

whole tree is beyond the human capabilities for 

tracing and understanding. Hence, there is a mismatch 

between the information quantity and the human 

perceptual and cognitive capabilities. 

 

Figure 2. The structure of a decision tree 
meant to “explain” the logics of an ML model 
(an example).  

There exists research in XAI aimed at making 

models easier to comprehend. A few representative 

works are mentioned in the Sidebar 1. However, XAI 

researchers strive to develop purely algorithmic 

approaches. VA researchers can complement these 

efforts by supporting involvement of human 

knowledge and reasoning. 

STATE OF THE ART 

Here we briefly overview the state of the art and 

open problems in ML and VA concerning two sides of 

human-computer collaboration in development of ML 

models. One side can be called “Humans for ML”: 

how to make better use of human intellectual 

capabilities in developing ML models? The other side 

is “ML for humans”: how to ensure that ML results 

are properly explained to humans in terms of human-
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relevant concepts rather than machine-specific objects 

and structures? 

Interactive ML 

ML acknowledges the value of human feedback in 

the process of deriving models from data [1]. Most of 

all, ML researchers are concerned with eliciting 

training data from human experts [14]. In the ML 

paradigm known as active learning, an algorithm 

applies some strategy to choose from a pool of 

unlabeled examples and queries a human “oracle” to 

provide labels. Apart from practical difficulties in 

finding suitable strategies [5,6], this approach can 

cause such problems as human’s frustration and 

unwillingness to repeatedly perform a routine task [1]. 

Visual-interactive labeling provides users an active 

role and possibility to apply different strategies [6].  

The concept of interactive machine learning [10] 

acknowledges the fact that people may be capable and 

willing to do much more for development of a good 

model than just provide data labels. Interactive ML 

engages human users in a tight interaction loop of 

iterative modification of data and/or features to 

improve model performance [2,10]. However, to play 

such an active role, the users need to understand what 

the machine is doing and how it uses their inputs. 

Hence, the machine must be able to explain its 

behavior to the users. 

Informed ML 

While traditional ML develops methods to derive 

models purely from data, more and more researchers 

call for combining data- and knowledge-based 

approaches, which can reduce the required amount of 

training data and, at the same time, lead to better 

model quality, explainability, and trustworthiness. A 

research field called informed ML [16] works on 

integrating machine learning techniques with 

processing of conceptual and contextual knowledge. 

Researchers mostly focus on utilizing knowledge that 

has been previously prepared and represented in a 

machine-readable form, such as logic rules, algebraic 

equations, or concept graphs.  

The survey [16] refers to many works on involving 

knowledge of human experts into the ML pipeline. 

Expert knowledge may be provided in the form of 

algebraic equations, probabilistic relations (often 

represented by Bayesian network structures), or 

human feedback. The first two forms can be directly 

used in an ML algorithm. Examples of human 

feedback are setting preferences, judging relevance, 

editing algorithm outcomes, and pre-specifying 

learning targets, such as topics in text documents or 

data patterns and hierarchies. For obtaining different 

forms of human feedback, machine learning is 

increasingly combined with visual analytics [15]. 

Granular Computing (GC) 

Granular computing [15,17] is a paradigm in 

computer science and applied mathematics that strives 

to reflect the human ability to perceive the world at 

different levels of granularity and to switch between 

these levels. According to [17], there are three basic 

concepts that underlie human cognition: granulation, 

organization and causation. Informally, granulation 

involves decomposition of whole into parts; 

organization involves integration of parts into whole; 

and causation involves association of causes with 

effects. The central concept of GC is an information 

granule, which is a construct composed of data or 

information items based on their similarity, adjacency, 

or other relationships. The ultimate objective of 

information granules is to describe phenomena in an 

easily understood way and at a certain level of 

abstraction. Therefore, the ideas of GC align very well 

with the need of explaining ML models in human-

friendly ways [15]. 

Acknowledging that information granules created 

and used by humans are fuzzy rather than crisp, the 

founder of GC L. Zadeh proposed the theory of fuzzy 

information granulation supported by fuzzy logic [17]. 

There are also research works in GC applying the 

theory of rough sets. 

Granular computing does not consist of specific 

methods; it is rather a set of ideas and a way of 

thinking. The book [15] contains some examples of 

involving the ideas of GC in building ML models for 

specific applications. One of the book chapters calls 

for combining GC with visual analytics. 

Visual Analytics (VA) 

VA is a natural partner of ML and AI in the 

research both on involving users in ML processes and 

on explaining ML to users. Combining human and 

machine intelligence is the central idea of VA [2]. 

Sidebar 2 points out the research areas in VA related 

to ML and refers to representative works.  

Most of the research dealing with ML models has 

been related so far to different aspects of the problem 

“humans for ML”. The area of VA for XAI can be, in 

principle, categorized as “ML for humans”, but the 

current research in it addresses mostly the needs of 

model developers rather than domain experts. The 

visualization of classification rules in RuleMatrix [13] 
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is meant for users with little competence in ML; 

however, the authors do not consider the problem of 

comprehensibility of large rule sets with rules 

involving many conditions. 

A series of VISxAI workshops (Visualization for 

AI Explainability, http://visxai.io/) promotes the 

creation of interactive visual "explainables" or 

"explorables" explaining how ML/AI techniques work 

using visualization. AI explorables are also being 

created and published by the Google team PAIR 

(People + AI Research, 

https://pair.withgoogle.com/explorables/). There are 

many interesting works allowing users to experiment 

with models by changing parameters or supplying 

different inputs. Such experiments, however, do not 

explain the internal logic of the models. Other works 

focus on explaining ML concepts and methods rather 

than models created for specific applications. Both 

groups of work are more oriented to students and 

curious public than to domain experts going to use the 

models in practice. 

It can be seen that different research communities 

are concerned with making ML models understood by 

users. These communities focus on different aspects 

of the model explanation problem, such as model 

complexity, form of representation, level of 

abstraction, and “what-if” explorability. It seems, 

however, that satisfactory solutions can only be 

achieved when the communities join their efforts in 

tackling the problem. Therefore, we propose an 

interdisciplinary research framework for human-

centered ML. 

RESEARCH FRAMEWORK 

The idea of the proposed research framework is 

schematically represented in Fig. 1. It is interpreted as 

follows. Following the paradigms of interactive ML 

and informed ML, models are developed in tight 

interaction of ML algorithms with humans, so that 

human knowledge and human-defined concepts are 

transferred to the algorithms and used in building 

computer models. This process is supported by 

interactive visual interfaces provided by VA. The 

knowledge and concepts that have been acquired from 

the human experts are involved not only in model 

building but also in generating explanations of the 

models. The methods for doing this, which still need 

to be developed, can be called “informed XAI”, by 

analogy with informed ML. It can be expected that 

such methods will soon be developed in the XAI area. 

When they appear, it will be the task of VA to 

represent their outcomes to users. VA researchers 

should also think about possible visual and interactive 

ways of organizing outputs of current XAI methods 

based on human knowledge. 

This research framework refers simultaneously to 

both perspectives of human-computer collaboration in 

the creation of computer models, i.e., “humans for 

ML” and “ML for humans”. These two perspectives 

are united through the involvement of human expert 

knowledge. The role of VA is to support acquisition 

of knowledge from experts and use of the expert 

knowledge in providing model explanations to the end 

users. 

The research on human-centered ML can built on 

the achievements and current developments in the 

areas of interactive ML, informed ML, XAI, and VA. 

Since VA is interdisciplinary by its nature, it will be 

the task of VA researchers to design and develop 

integrated VA-ML-XAI workflows implementing 

the conceptual view of visual analytics activity as the 

process of model building [4]. 

Integrated VA-ML-XAI workflows  

Two complementary directions for integration can 

be envisaged. The first direction involves applying 

VA to the data that will be used for model building. 

The idea is that VA supports the human analyst in 

organizing the data and defining meaningful concepts 

at an appropriate level of abstraction. There is a 

special ML component that learns the concepts and 

the ways of organizing data items into instances of 

these concepts. The knowledge thus gained from the 

human is then used in an ML algorithm that derives a 

model from the data, which means that the algorithm 

is designed to utilize this expert knowledge for 

directing the data-driven learning process, according 

to the ideas and approaches of informed ML. 

Additionally to this, the knowledge is used by an XAI 

component, which generates and organizes 

explanations according to the human-defined concepts 

thereby implementing the idea of “informed XAI”.  

There exist multiple VA solutions for supporting 

transfer of knowledge from humans to ML algorithms, 

e.g., [7]. However, we are not aware of works 

implementing the next step, in which the knowledge 

obtained is used for generation of human-oriented 

explanations. 

The second direction is interplay of VA and XAI 

components. The XAI component initially generates 

detailed low-level explanations. The human analyst 

uses VA techniques to organize subsets of these 

explanations into meaningful information granules, in 

terms of granular computing, and thereby define 

relevant concepts at suitable levels of abstraction. The 
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XAI component learns the concepts and the ways of 

organizing explanations from the analyst and applies 

this knowledge to other subsets of “raw” explanations 

under the expert’s supervision. Being trained in this 

way, the XAI component will later be able to use the 

learned principles of structuring and abstracting in 

explaining other ML models of the same type (e.g., 

classification or regression) in the same domain. This 

is another way of implementing the idea of “informed 

XAI”. VA techniques are used to present the resulting 

explanations to users in effective ways.  

To create a theoretical basis underpinning these 

practical developments, we propose to work on 

combining the ideas and frameworks of visual 

analytics and granular computing. 

Theoretical research 

GC aims to model the human ability to organize 

and perceive information at different levels of 

abstraction. VA, in turn, is concerned with supporting 

abstractive perception of data and information from 

visual displays. The central concept in VA is a 

pattern, which is a combination of multiple items 

perceived and considered together as a single entity 

due to relationships existing between the items [3]. 

Patterns themselves may also be linked by 

relationships and on this basis integrated into patterns 

of a higher level of abstraction. 

There is a semantic similarity between the concepts 

of information granule in GC and pattern in VA. The 

ultimate goal of VA is similar to that of GC: enable 

humans to understand phenomena at appropriate 

levels of abstraction. Therefore, it appears reasonable 

to link these two research fields. It needs to be 

investigated what theories and methods of GC can be 

integrated with techniques of VA, how different types 

of information granules can be represented visually, 

and how these types of granules can be formed 

through human-computer discourse using visual and 

interactive techniques. 

Particularly, GC is concerned with modelling the 

approximate, fuzzy way of human conceptualization 

and reasoning. As mathematical apparatuses for this, 

GC proposes to use fuzzy sets and rough sets theories. 

These formalisms appear suitable for representing 

data patterns, such as a cluster or a trend, which 

usually have an approximate character.  

Based on the definition of a data pattern as a 

system of type-specific relationships between data 

items [3], it may be possible to generate formal 

representations of data patterns discovered in the 

process of visual analysis and roughly outlined or 

otherwise marked by the analysts. These formal 

representations can be processed by computers and 

used in model building. To find suitable ways of 

representing data patterns, it is also reasonable to 

consult the literature on knowledge representation in 

the classical AI. 

To provide theoretical foundation to organization 

and abstraction of low-level XAI outputs, it is 

necessary to elaborate the pattern theory in more 

detail for defining possible patterns in such a complex 

type of information as XAI-generated explanations, 

e.g., having the form of decision rules or trees. In the 

next section, we describe some preliminary ideas 

concerning patterns in a set of rules and possibilities 

for uniting and generalizing related rules. Please note 

that these ideas and examples refer to the second 

direction in the work on implementing integrated VA-

ML-XAI workflows. 

EXAMPLE: GRANULATION OF RULES 

Let us consider decision rules with conditions 

involving numeric attributes (features). Such rules 

may be components of an original ML model or of a 

mimic model constructed by some XAI method to 

explain a black box model. Each condition of a rule 

refers to one feature and states that the feature value 

must be lower or higher than a certain constant, or that 

it must be within a certain interval. A rule usually 

contains several conditions connected by the logical 

operator AND. The outcome, or consequent, of a rule 

is one element from a finite set of possible classes, 

decisions, or actions. 
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To see rules in a visual form, we can use a table 

view like the one shown in Fig. 3. Each table row 

corresponds to one rule. For each feature, there is a 

column. Conditions, i.e., intervals of feature values, 

are represented by horizontal bars, which show the 

relative positions of the intervals between the minimal 

and maximal feature values. If a feature is not used in 

a rule, the corresponding cell is empty. 

A single rule can also be represented by a glyph, as 

shown in Fig. 4. Based on the idea of parallel 

coordinate axes, a glyph includes vertical axes 

corresponding to all features occurring in a rule set. 

Vertical bars represent the value intervals of the 

features used in the rule. The color of the glyph frame 

encodes the rule outcome.  

 

Figure 4. One rule represented by a glyph.  

According to the definition of a pattern [3], 

patterns in a set of rules emerge due to relationships 

between rules. Relationships between rules are 

composed from relationships between their conditions 

and between the outcomes. For the outcomes, two 

relationships are possible: same or distinct. 

Relationships between two conditions involving the 

same feature are relationships between the value 

intervals specified in the conditions. The intervals can 

be disjoint, overlapping, coinciding, or one can lie 

inside the other. Relationships between intervals can 

be expressed numerically as distances between them. 

For this purpose, we can use an adapted version of the 

Hausdorff distance between two subsets of a metric 

space.  

Figure 5 demonstrates a possible visual 

representation of relationships between rule 

conditions. Three rules are represented by glyphs. The 

outcome of the first rule differs from the outcomes of 

the two others. The first rule is selected. Its conditions 

are represented in all three glyphs by bars shaded in 

light blue and drawn on the right of the corresponding 

feature axes. The relative positions of the framed 

hollow bars and the shaded bars represent the 

relationships between the feature value intervals in the 

conditions of the selected rule and in the other rules. 

 

Figure 5. Representation of relationships 
between rule conditions.  

To understand the possible relationships between 

rule antecedents composed of multiple conditions, let 

us imagine the multidimensional space of all features 

involved in all rules. The antecedent of a rule can be 

imagined as a shape (a hyper-parallelepiped) in this 

space. When some feature is not used in a rule 

explicitly, it can be treated as implicitly present with 

the value interval covering the whole range of feature 

values from the smallest to the largest. In such a view, 

relationships between rule antecedents translate to 

relationships between such multidimensional shapes. 

Possible types of relationships are set relationships 

(disjoint, intersect, include, coincide) and metric 

distance relationships between the shapes. As a 

numerical expression of these distances, we can use, 

 

Figure 3. A fragment of a table representing rules.  



 

8 IEEE Computer Graphics & Applications 

 

 

for example, the mean of the distances in all 

individual dimensions. This numeric measure of rule 

similarity can be used to algorithmically find groups 

(clusters) of close rules, as well as for ordering of 

rules. Thus, adjacent table rows in Fig. 3 correspond 

to close rules. 

 

Figure 6. A union of a group of close rules. 

An important rule pattern is a cluster of close rules 

having the same outcome. Such a cluster can be 

abstracted into a multidimensional shape enclosing it. 

This envelope shape, in turn, corresponds to a rule that 

is more general than each member rule of the cluster; 

we shall call it a union rule. We say that the union rule 

covers each original rule of the cluster that has been 

abstracted. In terms of rule conditions, it means that 

each interval of feature values of the union rule covers 

(i.e., coincides with or includes) the value intervals of 

the same feature of all original rules. Hence, a union 

rule can be derived from a group of rules by obtaining 

the unions of the value intervals of the same features. 

When a union of two or more intervals equals the full 

range of the feature values, the condition referring to 

this feature can be omitted from the union rule. Fig. 6 

shows an example of a union rule abstracting a cluster 

of five close rules.  

In terms of granular computing, a union rule is an 

information granule. Union rules can be derived by 

iterative joining of pairs of close rules. This creates 

rule hierarchies involving information granules of 

different degrees of abstraction.  

A union rule covering a cluster of close rules with 

the same outcome may occasionally also cover some 

other rules with different outcomes. This is similar to 

enclosing a cluster of points of the same class on a 

scatterplot by a bounding box: some points of another 

class may also fit into the box. Hence, a union rule can 

be an approximate, rough representation of a cluster of 

similar rules. We shall use the term rough rule for a 

rule covering two or more rules with the same 

outcome as in this rule and at least one rule with a 

different outcome. The accuracy of a rule can be 

numerically expressed as the ratio of the number of 

covered rules with the same outcome as in this rule to 

the total number of the rules covered by this rule. The 

accuracy of a rough rule will thus be less than 1. 

Obviously, a rough union rule is less suitable for 

making predictions than the original group of rules 

that has been abstracted. However, it may be quite 

well suitable for explanation of the model logic to a 

human, since it is normal for human cognition to deal 

with rough concepts and approximations. A user of an 

ML model can agree to accept some inaccuracies in 

exchange for a simper description of the model logic, 

and the user can choose the minimal accuracy that is 

still acceptable. Hence, by finding and abstracting 

clusters of rules with same outcomes, we aim to 

derive a simpler model that is descriptive but not 

necessarily predictive. 

We have conducted multiple experiments on 

granulation of different ML models consisting of rules 

or decision trees (a decision tree can be transformed to 

a set of rules by representing each path from the root 

to a leaf by one rule). The models were created based 

on several benchmark datasets using state-of-the-art 

ML methods. Our goal was to find out how much a 

model can be simplified by means of rule granulation. 

We varied the minimal accuracy threshold from 1 to 

0.6. Interestingly, even with the threshold equal to 1 

some compression is achieved. For example, a 3-class 

classification model with 109 rules and 818 conditions 

in total has been reduced to 103 rules with 762 

conditions. With the threshold of 0.75 for the same 

model, we obtained 84 rules with 594 conditions, and 

the threshold 0.6 gave us 54 rules with 342 conditions. 

A model with 10 classes containing 202 rules (1739 

conditions) was abstracted to 167 rules (1357 

conditions) taking the threshold 0.75 and to 139 rules 

(1062 conditions) taking the threshold 0.6. Similar 

degrees of compression were achieved in the other 

experiments.  

Based on our experiments, we can conclude that 

rule granulation is a viable approach to simplification 

of rule sets. However, its power is limited: the 

simplified models still contain too many rules and 

conditions to be treated as easily comprehendible. The 

reason for this inadequacy is that abstracted rules 

involve the same low-level features taken from 

training data as the original rules. A model can be 

better understood by a domain expert if it refers to 

higher-level domain-relevant concepts. Such concepts 

cannot be automatically derived from data but need to 
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be taken from other sources, as it is supposed in the 

paradigm of informed machine learning [16]. One of 

the possible sources may be a human expert 

interacting with a model building algorithm, as shown 

schematically in Fig. 1. The expert may define 

concepts based on groups of features, which can be 

seen as “feature granulation”. 

As a simple example of feature granulation, let us 

imagine creation of a model for diagnosing various 

allergies. Elementary features may be symptoms like 

sneezing, runny nose, blocked nose, red eyes, itchy 

eyes, watery eyes, itchy skin, red rash, and many 

others. A domain experts may organize the symptoms 

in groups, such as nasal symptoms, eye symptoms, 

skin symptoms, etc., and tell the learning algorithm 

which groups of symptoms are related to respiratory 

allergies, skin allergies, food allergies, and so on. 

When the groups of symptoms and groups of allergies 

defined by the expert are involved in the model or at 

least used in generating explanations of the model, it 

can be expected that the explanations will be more 

structured, more meaningful for domain users, and 

better understood by them. 

CONCLUSION 

With this paper, we aim to motivate and trigger 

research on bridging gaps between machine learning 

and human mental models using a synergy of 

approaches from informed machine learning, artificial 

intelligence, and visual analytics. While substantial 

amount of research is being conducted in several areas 

of computer science, the contribution from visual 

analytics is still low. We believe that VA researchers 

should take a lead in these efforts, since the goal of 

combining human and computer intelligence lies at 

the core of VA. Interactive visual interfaces serve as 

means of human-computer communication and as 

facilitators of human abstractive perception of 

information and derivation of new knowledge, which 

refines and enriches human mental models [4]. Since 

human knowledge plays the key role in the proposed 

framework (Fig. 1), visual analytics researchers are 

supposed to care about capturing this knowledge and 

transferring it to computers. 

We have outlined several lines of research in VA 

that fit in the proposed research framework. These 

include theoretical developments, such as models and 

methods of information granulation and 

transformation of data patterns into knowledge 

structures, and practice-oriented design of workflows 

involving cross-disciplinary approaches. Progress in 

these directions will result in methods and systems for 

building models enhanced by the power of human 

intelligence and readily accepted by humans as 

extensions of their mental models and enhancers of 

their reasoning. 
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SIDEBAR 1: XAI EFFORTS FOR IMPROVING 

MODEL COMPREHENSIBILITY 

A so-called “user-centric XAI framework” [3] aims 

to link XAI approaches to theories describing human 

reasoning and decision making, which have been 

developed in psychology and philosophy. The 

framework is intended to inform XAI researchers 

about human cognitive patterns that should be taken 

into account in designing XAI methods. The authors 

care most of all about the use of XAI for mitigation of 

human cognitive biases and improvement of human 

reasoning and decision making rather than about the 

improvement of XAI itself. 

There exist research works on structuring and 

abstracting information for increasing model 

comprehensibility. One example is an approach to 

identifying the contribution of groups of features to 

the predictive accuracy of a model [1]. It uses a 

predefined hierarchy of features and tries to ascertain 

the level of resolution at which the importance of the 

features and feature groups can be determined. 

Another example is integration of multiple decision 

tree models into a more general model [2]. The 

proposed approaches are purely algorithmic. VA 

researchers can complement these efforts by 

supporting involvement of human knowledge and 

reasoning. 
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SIDEBAR 2: VA RESEARCH ON COMBINING 

VA AND ML 

There are several research areas in VA related to 

ML: 

• ML in VA: incorporation of ML methods in VA 

systems and workflows to complement human 

reasoning and advance data analysis [1]. 

• Predictive VA: synergistic use of ML and VA 

techniques for development of predictive models 

[4]. 

• VA-assisted ML: leveraging VA techniques in 

ML workflows [5,7].  

• VA of ML models: VA support to model 

inspection, i.e., the process of understanding, 

diagnosing, and refining an ML model [2,3]. 

• VA for XAI: interactive visual interfaces to XAI 

methods [6]. 
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