

City, University of London Institutional Repository

Citation: Bishop, P. G. & Povyakalo, A. A. (2022). Optimising the reliability that can be

claimed for a software-based system based on failure-free tests of its components. .

This is the draft version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/27560/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Optimising the reliability that can be claimed for a

software-based system based on failure-free tests of

its components

Peter Bishop, Andrey Povyakalo
City, University of London

Abstract

This short paper describes a numerical method for optimising the
conservative confidence bound on the reliability of a system based on
tests of its individual components. This is an alternative to the al-
gorithmic approaches identified in [1]. For a given maximum number
of component tests, the numerical method can derive an optimal test
plan for any arbitrary system structure.

The optimisation method is based on linear programming which is
more efficient that the alternative integer programming. In addition,
the optimisation process need only be performed once for any given
system structure as the solution can be re-used to compute an optimal
integer test plan for a different maximum number of component tests.

This approach might have broader application to other optimisation
problems that are normally implemented using integer programming
methods.

Keywords: Statistical testing, Confidence bounds, Software reliabili-
ty, Fault tolerance, Linear programming

1 Introduction

Statistical testing [2, 3, 4] provides a direct estimate of the software probabil-
ity of failure on demand (pfd) of a demand-based system to some confidence
bound, and it is recommended in functional safety standards such as IEC
61508 [5]. The standard approach to deriving a confidence bound on the
pfd of a software-based system is to perform statistical testing on the whole
system as a “black-box”. In practice, performing tests on the entire system

1

may be infeasible for logistical reasons, such as lack of availability of all
component subsystems at the same time during implementation.

To address this issue, a general method was developed for deriving a con-
servative confidence bound based on independent statistical tests applied to
individual software-based components within the system [1]. The approach
is completely general – it can be used to derive a conservative pfd bound
for any system architecture (represented by a structure function) for a given
component test plan.

The choice of component test plan affects the pfd bound that can be
achieved. The paper showed that for symmetrical architectures (like n out
of m vote structures), an even split of tests between components always pro-
duces the optimal pfd bound (regardless of whether the software components
are diverse or identical).

Deriving an optimal test plan for arbitrary, asymmetric structures proved
to be more of a challenge. Two sub-optimal test plan strategies were iden-
tified that are optimal for some asymmetric structures – but not in general.

This paper presents an alternative to the test plan algorithms described
in to [1] that derives an optimal test plan using linear programming. We
first summarize the main elements of the theory presented in [1], and then
present our alternative method for generating an optimal test plan using
numerical methods.

2 Confidence Bounds from Component Tests

Failure-free testing over m individual components can be characterized by
a test plan vector

n = (n1, n2, . . . , nm)′ (1)

where m is a number of components, nj is the number of (failure-free) tests
for component j, and the total number of tests is

N =
m∑
j=1

nj . (2)

To characterize the fault tolerance capability of a system architecture,
we define x = (x1, x2, . . . , xm)′ as a random binary vector of indicators of
component failure. If component j fails, xj = 1 and xj = 0 otherwise.

The failure-proneness of the overall system is represented by a structure
function ϕ(x), where ϕ(x) = 1 if the system fails for a given combination

2

of component failures and successes x. Such a system state is known as a
cutset.

Table 1 shows the states for a 2 out of 3 (2oo3) vote structure where two
or more component failures will result in system failure (i.e. where ϕ(x) = 1),
e.g. in state x4, failure of components c1 and c2 causes system failure.

Table 1: Example 2oo3 vote structure function

Component c1 c2 c3
State x x1 x2 x3 ϕ(x)

x0 0 0 0 0

x1 1 0 0 0

x2 0 1 0 0

x3 0 0 1 0

x4 1 1 0 1

x5 1 0 1 1

x6 0 1 1 1

x7 1 1 1 1

A general proof given in [1] shows that, for any structure ϕ(·), the upper
confidence bound, qs, for the system pfd can be conservatively approximated
as

qs ≤ min

(
ln(1/α)

Nmin
, 1

)
(3)

where Nmin is the smallest total number of component tests in a cutset, i.e.

Nmin = min
∀x:ϕ(x)=1

(n · x) (4)

where n · x is the scalar product of the two vectors, i.e.
∑m

j=1 njxj . For
example, for the case where x = x4 in Table 1, the scalar product will be

1.n1 + 1.n2 + 0.n3 = n1 + n2

For symmetrical structures, the optimal test plan is simple – the N tests
are apportioned equally between the m components, e.g., in the 2oo3 vote
structure, each component is assigned N/3 tests so Nmin = 2N/3.

3

It proved to be more difficult to identify the optimal test plan for arbi-
trary asymmetric structures. It was shown in [1], that for any structure, the
optimum test plan would always be able to achieve:

Nmin ≥
N

P
(5)

where P is the length (number of operational components) of the shortest
success path. For example, in a 2oo3 vote structure, P = 2 because we need
at least two working components for correct system operation.

Two test plan strategies were identified in [1] that are optimal for some
asymmetric structures – but not in general. For example, one strategy
assigned the N tests equally to the P components on a single shortest path.
In the 2oo3 example, where P = 2, this would mean assigning N/2 tests to,
say, c2 and c3, and zero to c1. This allocation results in Nmin = N/2 which
is clearly worse than the optimal value of Nmin = 2N/3.

While further test plan allocation algorithms were examined, it was al-
ways possible to identify a counter-example structure where the allocation
would be sub-optimal.

The alternative approach is to derive an exact optimal test plan using
integer programming, but this solution approach is NP hard [6]. We have
developed a less computationally expensive approach by treating the num-
ber of component tests as non-negative real numbers rather than discrete
integers.

In our alternative solution method, we maximize Nmin in the continuous
domain using linear programming, then convert the continuous test plan
values back to discrete integers. The approach is described in more detail in
the section below, and an example R script implementation of the method
is given in Appendix A.

3 Test Plan Optimization using Linear Program-
ming

Let us denote

m is the number of components;

f = (f1, f2, . . . , fm)′ ∈ Rm is the fraction of tests allocated to each com-
ponent, i.e. fj = nj/N, j = 1..m;

s is the number of minimal cutsets

4

1s = (1, 1, . . . , 1)′ is a unit vector of size s

Y is a s×m incidence matrix for minimal cutsets where yij = 1 if com-
ponent cj belongs to minimal cutset i, yij = 0 otherwise.

In order to maximize the minimum number of tests across all minimal
cutsets, we are looking for the best among (sub-optimal) test plans that
allocate the same fraction of tests g to all minimal cutsets in Y , by solving
the following linear programming (LP) problem:

g → max (6)

given

Y · f = g.1s; (7)
m∑
j=1

fj = 1; (8)

fj ≥ 0, j = 1..m, (9)

where Y · f is the matrix product of a matrix and a vector that computes
sum of the component test fractions for every cutset, hence constraint (7)
requires that

∑
j(yij .fj) = g, i = 1..s.

We can now eliminate variable g by defining the following terms:

h = f/g (10)

H = 1/g. (11)

Rewriting the LP problem in these terms, g is maximized when H is
minimized, i.e.:

m∑
j=1

hj = H → min (12)

given

Y · h = 1s; (13)

hj ≥ 0, j = 1..m. (14)

The R simplex() LP solver function can be used to derive the solution
to this problem. In practice however, this function can sometimes fail to
find a solution when equality constraints are used – probably because it
fails to generate an initial feasible point. To resolve the issue, we noted that
H reaches its unconstrained minimum when hj = 0, j = 1..m. Therefore,

5

equality constraint (13) can be replaced with the inequality constraint Y ·h ≥
1, resulting in the following LP problem∑

j

hj = H → min (15)

given

Y · h ≥ 1s; (16)

hj ≥ 0, j = 1..m. (17)

This optimization problem can solved with an R script that calls the LP
solver simplex() as shown in Appendix A.

The resultant optimal test allocation fractions for the components are:

fop = hop/Hop (18)

and the optimal minimal cutset fraction gop is:

gop = 1/Hop. (19)

As in general these fractions are continuous real values, the optimal appor-
tionment of component tests i.e. n = fopN can be non-integer. An optimal
integer component test allocation can be derived by first finding the smallest
test multiple, N0, where all component test fractions scale to integer values,
i.e.

bfopN0c = fopN0. (20)

N0 can be found by incrementing an integer number k by 1 until all the
products k · fj , j = 1..m become integer.

The optimal plan for a total number of tests

N− = N − (N mod N0) (21)

is always integer. The remaining (N mod N0) tests can be allocated ar-
bitrarily to any of the components (or not allocated at all) because they
cannot increase the value of Nmin.

If there is an option to add small number of tests to the plan, one can
consider a test plan for N+ tests where

N+ = N− +N0. (22)

6

Figure 1: Example asymmetric RBD

4 Example

Let us consider an example asymmetric structure with the reliability block
diagram (RBD) given in Figure 1.

Its minimal cutsets are:

C1, C2

C2, C3

C1, C3, C4

C5 (23)

and its minimal cutset matrix Y is shown in Table 2.

Table 2: Minmal cutset incidence matrix

cutset component j

i 1 2 3 4 5

1 1 1 0 0 0

2 0 1 1 0 0

3 1 0 1 1 0

4 0 0 0 0 1

For this minimal cutset incidence matrix, the R script generates the
following optimal test allocation fractions:

f1 f2 f3 f4 f5 gop

0.2 0.2 0.2 0.0 0.4 0.4

7

where zero tests are allocated to component c4.
For this plan, sequential search gives N0 = 5. Therefore, for a test

campaign with a total number of tests, N = 20003, we have

N− = 20003− (20003 mod 5) = 20000 (24)

with the test allocation

n1 n2 n3 n4 n5 N−

4000 4000 4000 0 8000 20000

and the least number of tests allocated to any minimal cutset is Nmin =
gop ·N− = 8000.

By comparison, if we use the strategy proposed in [1] of allocating
N/P tests equally to components on a single shortest success path, such
as (c1, c2, c5), then P = 3. This is clearly sub-optimal as the least tested
cutsets only have bN/P c = Nmin = 6667 tests.

5 Concluding Remarks

It can be observed that the fractions generated in the continuous domain
are independent of the number of tests, so they only need to be generated
once for any given structure. It is only the integer test plan that needs to
be recalculated for a given test budget – reducing the computing resources
needed for a new plan.

In principle, it would be possible to create a library of optimal test plan
solutions for different structures that can be converted to integer test plans
for any specified number of component tests.

This strategy of solving in the continuous domain and then efficiently
deriving optimal (or near optimal) solutions in the integer domain might be
applicable to other problem areas.

A Test Plan Optimization R Script

The test plan optimization approach was implemented using the standard
simplex solver available in the R statistical analysis library.

The use of the test plan optimizer is illustrated using non-symmetric
structure shown in Figure 1.

library("boot")

8

#--

lptplan_example <- function(N, alpha)

N - total number of tests (default 20003)

alpha = 1 - confidence level (default 0.05)

#--

lptplan_example <- function(

N=20003,

alpha = 0.05

)

{

minimal cutset matrix

cutsets <- matrix(

c(

1,1,0,0,0, # cutset: C1, C2

0,1,1,0,0, # cutset: C2, C3

1,0,1,1,0, # cutset: C1, C3, C4

0,0,0,0,1 # cutset: C5

), 4, 5,

byrow=TRUE

)

Generate optimized test plan

print (lptestplan(cutsets, N, alpha))

}

#---

lptestplan <- function(cutsets, N, alpha)

cutsets

incidence matrix for the minimal cutsets

columns represent components

rows represent cutsets

N total number of tests

alpha = 1 - confidence level

#---

lptestplan <- function(cutsets, N, alpha)

{

Number of components

m <- ncol(cutsets)

9

Number of minimal cutsets

s <- nrow(cutsets)

Unit vectors

uvm <- rep(1,m)

uvs <- rep(1,s)

Solve LP

lp0 <- simplex(

a = uvm,

A3 = cutsets,

b3 = uvs

)

H = as.numeric(lp0$value)

h = lp0$soln

Optimal cutset test fraction

g <- 1/H

Optimal component test fractions

f <- h * g

Find minimal integer test plan

k <- 1

r <- 1

while(r>0){

r <- sum ((f*k)%%1)

if(r>0) k <- k+1

}

N0 <- k

N_minus <- N - (N%%N0)

Generate integer test plan

N_min <- N_minus * g

lptest_plan <- N_minus * f

Calculate upper confidence bound

q_u <- log(1/alpha)/N_min

10

Return optimized result

return

(

list(

cutsets=cutsets,

alpha = alpha,

component_fractions = f,

cutset_fraction = g,

N = N,

N0 = N0,

N_minus = N_minus,

lptest_plan = lptest_plan,

N_min = N_min,

q_u = q_u

)

)

}

References

[1] P. Bishop and A. Povyakalo, “A conservative confidence bound for the
probability of failure on demand of a software-based system based on
failure-free tests of its components,” Reliability Engineering & System
Safety, p. 107060, 2020.

[2] W. Ehrenberger, “Statistical testing of real time software,” in Verifica-
tion and Validation of Real-Time Software, pp. 147–178, Springer, 1985.

[3] D. L. Parnas, G. Asmis, and J. Madey, “Assessment of safety-critical
software in nuclear power plants.,” Nuclear Safety, vol. 32, no. 2, pp. 189–
198, 1991.

[4] J. May, G. Hughes, and A. Lunn, “Reliability estimation from appropri-
ate testing of plant protection software,” Software Engineering Journal,
vol. 10, no. 6, pp. 206–218, 1995.

[5] IEC, Functional safety of electrical/electronical/programmable electronic
safety-related systems, ed. 2, IEC 61508:2010, 2010.

[6] A. Schrijver, Theory of linear and integer programming. John Wiley &
Sons, 1998.

11

