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Abstract 

This paper studies the energy futures risk premia that can be extracted through long-short 

portfolios that exploit heterogeneities across contracts as regards various characteristics or 

signals and integrations thereof. Investors can earn a sizeable premium of about 8% and 12% 

per annum by exploiting the energy futures contract risk associated with the hedgers’ net 

positions and roll-yield characteristics, respectively, in line with predictions from the hedging 

pressure hypothesis and theory of storage. Simultaneously exploiting various signals towards 

style-integration with alternative weighting schemes further enhances the premium. In 

particular, the style-integrated portfolio that equally weights all signals stands out as the most 

effective. The findings are robust to transaction costs, data mining and sub-period analyses.  
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1. Introduction 

The hedging pressure hypothesis of Cootner (1960) and Hirshleifer (1988, 1990) asserts that 

energy futures markets exist to enable the transfer of price risk from hedgers, that is, energy 

producers and consumers, to speculators. In other words, well-functioning energy futures 

markets ought to reward speculators for absorbing the risk that hedgers seek to avoid: 

speculators shall earn a positive risk premium by taking long positions in relatively cheap (or 

backwardated) contracts on which hedgers are net short, and by taking short positions in 

relatively expensive (or contangoed) contracts on which hedgers are net long.1 Evidence for 

energy futures contracts of the pricing role of hedging pressure signals (or the extent to which 

hedgers are net short) and speculative pressure signals (or the extent to which speculators are 

net long) can be found in Sanders et al. (2004), Dewally et al. (2013) and Fattouh et al. (2013).   

The theory of storage of Kaldor (1939), Working (1949) and Brennan (1958) serves as an 

alternative framework for the pricing of futures contracts on storable energies. It asserts that 

the term structure of energy futures prices (that is, the futures prices of different maturity 

contracts at a given point in time) reflects supply and demand levels. In particular, a downward-

sloping term structure (and thus a positive roll-yield2) for a specific energy commodity 

                                                           

1 Backwardation is the market state where the current price of an asset in the spot market is 

higher than its current price in the futures market, whereas contango is the opposite state where 

the spot price is lower than the futures price. The hedging pressure hypothesis rationalizes the 

backwardation versus contango dynamics with reference to the net positions of hedgers. When 

hedgers are net short, futures prices are set low relative to their expected values at maturity to 

entice net long speculation (backwardation). When hedgers are net long, futures prices are set 

high relative to their expected values at maturity to induce net short speculation (contango). 

2 Roll yield, also called basis, is the difference between the spot price of an asset and that of 

the corresponding futures contract at a particular point in time. A branch of the empirical 

finance literature measures the commodity futures roll yield using the front-end contract price 

as proxy for the spot price. This approach is vindicated by the fact that the futures prices 

converge upon maturity to the spot price (see e.g., Fama and French, 1987; Gorton et al., 2013; 

Szymanowska et al., 2014; Fernandez-Perez et al., 2017; Boons and Prado, 2019). 
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indicates that the front-end price (that proxies the spot price) is high relative to the prices of 

more distant contracts, suggesting that the energy commodity is currently under-supplied 

relative to demand or that inventories are low; the market is backwardated and thus, futures 

prices are expected to increase. Vice versa, an upward-sloping term structure (negative roll-

yield) for a given energy commodity indicates that the front-end price is low relative to the 

prices of more distant contracts, or that the energy commodity is over-supplied (high 

inventory); the market is contangoed and thus, futures prices are expected to fall. Supportive 

evidence on the futures pricing role of inventory and roll-yield for storable energies can be 

found in e.g., Cho and Douglas (1990), Serletis and Hulleman (1994), Pindyck (2001), Alquist 

and Kilian (2010), Dewally et al. (2013), Byun (2017), and Ederington et al. (2020).3  

The present paper departs from the above studies in that we do not seek to measure the risk 

premium associated with a specific energy futures contract (e.g., crude oil, electricity or natural 

gas futures) but rather our goal is to compare different long-short portfolio strategies to 

effectively extract the risk premium in the energy futures sector as a whole. Therefore, for this 

purpose we exploit the heterogeneity in the cross-section of energy futures contracts as regards 

various characteristics. Put differently, our paper adopts the perspective of a futures market 

investor that contemplates the whole energy sector as a source of risk premia. We consider 

characteristics that signal the phases of backwardation and contango (roll-yield, hedging 

                                                           
3 For electricity which is non-storable, the theory of storage does not apply and thus the risk 

premium has been linked to other factors such as: i) the expected variance and skewness of the 

wholesale prices, ii) the uncertainty in the spot price, demand for electricity and revenues 

generated within the Pennsylvania, New Jersey and Maryland (PJM) system, iii) unexpected 

variation in hydro-energy capacity and in the demand for hydro-energy and iv) past risk premia 

and basis (Bessembinder and Lemmon, 2002; Longstaff and Wang, 2004; Furió and Meneu, 

2010; Lucia and Torró, 2011; Furió and Torró, 2020). The empirical analysis of Longstaff and 

Wang (2004) is extended by Martínez and Torró (2018) to natural gas. 
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pressure, speculative pressure and momentum4), as well as characteristics that have been shown 

to play a pricing role across asset classes (value, liquidity and skewness).5 To capture the risk 

premium associated with a specific energy commodity characteristic or signal, at each month 

end we form a long-short portfolio by allocating 50% of the total investor’s mandate to long 

positions on the energy futures contracts that are expected to appreciate the most or depreciate 

the least according to the characteristic or signal (e.g., roll-yield), and the remaining 50% to 

short positions on the energy futures contracts that are expected to depreciate the most or 

appreciate the least. The long-short positions are held for one month on a fully-collateralized 

basis, and this portfolio formation-and-holding process is rolled forward. As in the asset pricing 

branch of the broad commodity futures markets literature, the risk premium is defined as the 

expected excess return of characteristics-based long-short portfolios and represents the 

compensation that investors obtain for exposure to the risk associated with a given 

characteristic such as roll-yield or hedging pressure (see e.g., Gorton and Rouwenhorst, 2006; 

Erb and Harvey, 2006; Asness et al., 2013; Szymanowska et al., 2014; Boons and Prado, 2019). 

Following a recent literature initiated with the seminal contribution of Brandt et al. (2009), we 

further test whether jointly exploiting many energy commodity characteristics into a unique 

style-integrated portfolio generates a better performance than exploiting them in isolation. The 

style-integration idea is simple and intuitive: the long leg of the portfolio comprises the energy 

futures contracts that most signals recommend to buy, and the short leg those contracts that 

                                                           
4 The trend in prices or momentum is able to capture the phases of backwardation and contango 

in commodity futures markets; winning (losing) contracts have backwardated (contangoed) 

characteristics such as positive (negative) roll-yields, net short (long) hedging, net long (short) 

speculation, and low (high) inventories (Miffre and Rallis, 2007; Gorton et al., 2013). 

5 There is pervasive evidence across different asset classes that under(over)priced assets vis-à-

vis their far past values, with low (high) liquidity and negative (positive) skewness are expected 

to subsequently outperform (underperform); see e.g., Asness et al. (2013), Amihud et al. 

(2005), Koijen et al. (2018), Amaya et al. (2015), Chiang (2016), Fernandez-Perez et al. (2018). 
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most signals recommend to sell. We test the ability of various integration methods (that differ 

in their weighting scheme for the different characteristics) at capturing the energy risk premia.  

The empirical findings reveal a hedging pressure risk premium of 7.58% a year (t-statistic of 

2.22) which represents the compensation that speculators require for meeting the hedgers’ 

demand for futures contracts, namely, for bearing hedgers’ risk of price fluctuations. 

Furthermore, we find a term structure risk premium of 11.70% a year (t-statistic 2.79) that 

represents the compensation demanded by futures investors for taking on the risk of energy 

inventory risk fluctuations. These two particular results endorse both the hedging pressure 

hypothesis and the theory of storage for the pricing of energy futures contracts. Jointly 

exploiting all seven signals into style-integrated portfolios increases the premium up to 12.4% 

a year (t-statistic 4.05). The simplest style-integration approach that ascribes equal weights to 

the different signals stands out as the most effective. The findings are robust to trading costs, 

alternative designs of the integrated portfolio, data snooping tests and sub-periods.  

The present research agenda is relevant for three reasons. First, the paper provides novel 

empirical evidence from the specific energy futures sector that endorses the theory of storage 

of Kaldor (1939), Working (1949) and Brennan (1958) and the hedging pressure hypothesis of 

Cootner (1960) and Hirshleifer (1988, 1990). It shows that when hedgers are net short (long) 

and the term structure of futures prices is downward (upward) sloped, energy futures contracts 

tend to appreciate (depreciate). As a byproduct, our empirical results from the specific energy 

sector refute the normal backwardation theory of Keynes (1930) by showing that a long-only 

portfolio of all energy futures contracts is not able to capture any risk premium. 

Second, our empirical findings regarding the presence of a sizeable hedging pressure risk 

premium in energy futures markets suggest that a risk transfer mechanism is at play between 

hedgers such as producers, refiners or consumers of energy who wish to shun the risk of energy 
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price fluctuations, and speculators who are willing to take on risk with the expectation of 

earning a return. This is important because it confirms the efficient functioning of energy 

futures markets in the sense that they are serving the originally-intended risk transfer purpose. 

It is reassuring from a regulatory perspective – if speculators act as important providers of 

liquidity and risk-transfer facility to hedgers, calls to further regulate speculative activity in 

energy futures markets are at this stage unwarranted. Therefore, our research indirectly speaks 

to the literature on the “financialization” of futures markets by suggesting, from the energy 

futures sector perspective, that speculators fulfil the important role of providing price insurance 

to hedgers (see also e.g., Till, 2009; Tang and Xiong, 2012; Fattouh et al., 2013; Byun, 2017).   

Finally, the present exercise of comparing portfolio methods to extract energy futures risk 

premia is worthy also from the perspective of practitioners (e.g., investment banks, managed 

futures and commodity trading advisors6) that design long-short profitable investments for their 

clients. Specifically, our paper provides a comparative analysis of alternative risk premia 

strategies in energy futures markets and highlights the effectiveness of an integrated portfolio 

that gives equal importance to all the energy commodity characteristics at hand. As such, it 

extends to the energy futures markets context a more general literature across asset classes that 

endorses style-integration (e.g., Brandt et al., 2009; Kroencke et al., 2014; Barroso and Santa-

Clara, 2015; Fischer and Gallmeyer, 2016; Fernandez-Perez et al., 2019).  

Section 2 presents the portfolio methods to capture energy risk premia. Section 3 describes the 

data. Sections 4 and 5 discuss the empirical results and robustness tests. Section 6 concludes. 

                                                           

6 A commodity trading advisor (CTA) is a registered individual (trader or firm) that advices 

investors as regards commodity trading and manages commodity portfolios on their behalf. 

CTAs are regulated by the U.S. federal government through the Commodity Futures Trading 

Commission (CFTC) and the National Futures Association (NFA). 



 

7 
 

2. Methodology  

2.1. Individual risk premia 

We first consider long-short portfolios that define the investor’s asset allocation based on a 

single style or signal. Some of these styles capture the fundamentals of backwardation and 

contango (term structure, hedging pressure, speculative pressure and past performance). Other 

styles are associated with asset pricing factors that are pervasive across markets and that could 

likewise matter to the pricing of energy futures contracts (value, liquidity7 and skewness). 

Table 1 summarizes the relevant literature and defines the different predictive signals 𝑥𝑖,𝑘,𝑡 

corresponding to investment styles 𝑘 = 1,… , 𝐾 where 𝑖 = 1,… ,𝑁 denotes the cross-section of 

energy futures contracts being sorted and allocated into long-short portfolios, and 𝑡 = 1,… , 𝑇 

represents the sequential month-end days when the portfolios are rebalanced. To simplify the 

exposition, the signals 𝑥𝑖,𝑘,𝑡 are defined in such a way that higher (lower) values indicate a 

higher expectation that the ith energy futures price will rise (fall). Prior to sorting, the kth signal 

is standardized across the N futures contracts, 𝜃𝑖,𝑘,𝑡 ≡ (𝑥𝑖,𝑘,𝑡 − �̅�𝑘,𝑡)/𝜎𝑘,𝑡
𝑥  where �̅�𝑘,𝑡 (𝜎𝑘,𝑡

𝑥 ) is 

the cross-sectional mean (standard deviation) of the signal at time t; thus, all of the signals 𝑘 =

1, … , 𝐾 have zero mean and unit standard deviation across futures contracts at each time t.  

[Insert Table 1 around here] 

At each month end t, the single-style portfolio is long the energy futures with positive 

standardized signals and short the energy futures with negative standardized signals. The 

                                                           

7 The Amivest liquidity proxy (Amihud et al., 1997) captures the transaction volume associated 

with a unit change in the price or absolute return. The intuition behind this proxy is that if a 

security is liquid, the price impact of a given volume of trading is small. It follows that more 

liquid assets present higher Amivest measures. Like Marshall et al. (2012) and Szymanowska 

et al. (2014) inter alia, we deem the Amivest measure as a reasonable proxy for liquidity 

because it has been shown (see e.g. Marshall et al, 2012) to correlate very strongly with 

liquidity measures based on high-frequency price data which are more tedious to obtain.   
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weight allocated to a given asset depends on the strength of the signal for that asset; and thus 

we take longer positions in the energy contracts that are expected to appreciate the most and 

shorter positions in the energy contracts that are expected to depreciate the most.  The long-

short portfolio is held for a month on a fully-collateralized basis �̃�𝑖,𝑘,𝑡 = 𝜃𝑖,𝑘,𝑡 ∑ |𝜃𝑖,𝑘,𝑡|
𝑁
𝑖=1⁄  with 

half of the mandate invested in the longs (L) and half in the shorts (S), ∑ �̃�𝑖,𝑘,𝑡
𝐿𝑁𝐿

𝑖=1 =

∑ |�̃�𝑖,𝑘,𝑡
𝑆 |

𝑁𝑆
𝑖=1 = 0.5 (𝑖 ≠ 𝑗) with 𝑁𝐿 + 𝑁𝑆 = 𝑁, and so on sequentially until the sample end. This 

out-of-sample approach seeks to mimic the energy futures investor’s decisions in real time.  

2.2. Integrated risk premia 

Would the approach of integration of the separate styles into a unique portfolio be more 

effective at capturing energy futures market risk premia? We answer this question by deploying 

integrated portfolios that allocate wealth across the various single-style portfolios as follows: 

𝛟𝑡 ≡ 𝚯𝑡 ×𝛚𝑡 = (

𝜃1,1,𝑡 … 𝜃1,𝐾,𝑡
⋮ ⋱ ⋮
𝜃𝑁,1,𝑡 … 𝜃𝑁,𝐾,𝑡

)(

𝜔1,𝑡
⋮
𝜔𝐾,𝑡
) = (

𝜙1,𝑡
⋮
𝜙𝑁,𝑡

) ,  (1) 

where 𝚯𝑡 is an 𝑁 × 𝐾 matrix that defines the asset allocation of the K single-style strategies to 

the N assets (in other words, 𝚯𝑡 is populated with 𝜃𝑖,𝑘,𝑡 as detailed above for the K single-style 

strategies) and 𝛚𝑡 is a 𝐾 × 1 vector that defines the exposures of the integrated portfolio to the 

K individual styles or risk factors . In total, we consider three main formulations of 𝛚𝑡. The 

first one, called equal-weight integration, simply allocates time-invariant equal weights to the 

K commodity characteristics. The latter two approaches, called optimized and volatility-timing 

integrations, are more sophisticated in the sense that they allow for time-varying, 

heterogeneous style exposures of the integrated portfolio to the K individual risk factors. 
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Equal-weight integration (EWI): In its simplest form and following Barroso and Santa-Clara 

(2015), Fitzgibbons et al. (2016) and Fernandez-Perez et al. (2019), 𝜔𝑘,𝑡 = 1/𝐾. Namely, the 

integrated portfolio simply gives equal weights to the K style portfolios.  

Optimized integration (OI): This alternative specification of 𝛚𝑡 follows from Brandt et al. 

(2009), Fischer and Gallmeyer (2016), Ghysels et al. (2016) and DeMiguel et al. (2020). The 

weights assigned to each of the individual style portfolios are obtained by maximizing at time 

t the expected utility of the excess returns of the integrated portfolio P at time t+1 with respect 

to the weights assigned to the K single-style portfolios. Formally, 

max
𝛚𝑡
𝐸[𝑢(𝑟𝑃,𝑡+1)] = max

𝛚𝑡

1

𝑇
[∑ 𝑢(∑ ω𝑘,𝑡𝑟𝑘,𝑡+1

𝐾
𝑘=1 )𝑇−1

𝑡=0 ],                     (2)  

where 𝑟𝑘,𝑡+1 is the excess return of the kth single-style portfolio at time t+1.  

We entertain various utility functions that are widely-used in the literature such as:  

Power utility: 𝑢(𝑟𝑃,𝑡+1) =
(1+𝑟𝑃,𝑡+1)

1−𝛾
−1

1−𝛾
 with 𝛾 the coefficient of relative risk aversion (𝛾 = 5), 

Exponential utility: 𝑢(𝑟𝑃,𝑡+1) =
−𝑒
−𝜂(1+𝑟𝑃,𝑡+1)

𝜂
 with 𝜂 the coefficient of absolute risk aversion (𝜂 = 5), 

Mean variance utility: 𝑢(𝑟𝑃,𝑡+1) = 𝐸𝑡(𝑟𝑃,𝑡+1) −
𝛾

2
𝑉𝑎𝑟𝑡(𝑟𝑃,𝑡+1). 

The style weights can also be obtained by minimizing the variance of the integrated portfolio’s 

excess returns; namely, 𝑚𝑖𝑛
𝛚
 [𝑉𝑎𝑟𝑡(𝑟𝑃,𝑡+1)] subject to ∑ 𝜔𝑘

𝐾
𝑘=1 = 1 (where this restriction is 

imposed to avoid the trivial solution 𝜔𝑘 = 0). All optimized integration settings constrain the 

weights to be non-negative; namely, 𝛚𝒕 ≥ 0. 

Volatility-timing integration (VTI): Following Kirby and Ostdiek (2012), this technique assigns 

higher (lower) weights to the styles with lower (higher) variance. Formally, for 𝑘 = 1,… , 𝐾, 
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𝜔𝑘,𝑡 =
1 𝜎𝑘,𝑡
2⁄

∑ 1 𝜎𝑘,𝑡
2⁄𝐾

𝑘=1

                                                             (3) 

For both OI and VTI, a window of 60 monthly observations is used to estimate 𝛚𝑡 and 𝛟𝒕 

where 𝛟𝒕 is obtained by post-multiplying 𝚯𝑡 by 𝛚𝑡 as in Equation (1). 𝛟𝒕 is subsequently 

normalized; namely, �̃�𝑖,𝑡 =
𝜙𝑖,𝑡

∑ |𝜙𝑖,𝑡|
𝑁
𝑖=1

 to ensure full collateralization (∑ |�̃�𝑖,𝑡|
𝑁
𝑖=1 = 1). Thus 

�̃�𝑡 ≡ (�̃�1,𝑡, . . , �̃�𝑁,𝑡) defines the fully-collateralized allocation of the integrated portfolio 

towards the N energy contracts at portfolio formation time t (month end). That portfolio is held 

for a month and the process is subsequently repeated until the sample ends.  

2.3. Evaluating the risk and the risk-adjusted performance of the various portfolios 

We assess the risk profile of the portfolios by measuring (i) the downside volatility defined as 

the annualized standard deviation of negative excess returns, (ii) the 95% Cornish-Fisher 

Value-at-Risk (VaR) which represents the maximum loss that the portfolio can incur with 95% 

probability after accounting for possible departures of its excess returns from normality, and 

(iii) the maximum drawdown or the portfolio’s maximum loss from any peak to the subsequent 

trough over the sample period.   

The risk-adjusted performance of the portfolios is assessed using various measures such as the 

Sharpe ratio (defined as the annualized mean of the portfolio’s excess returns over its 

annualized total volatility), the Sortino ratio (defined as annualized mean excess return over 

annualized downside volatility) and the Omega ratio (defined as the probability of gains 

divided by the probability of losses using 0% as threshold). Finally and assuming a power 

utility function, we measure the certainty equivalent excess return of the portfolio as 𝐶𝐸𝑅 =

(
12

𝑇
)∑

(1+𝑟𝑃,𝑡+1)
1−𝛾
−1

1−𝛾
𝑇−1
𝑡=0  where 𝑟𝑃,𝑡+1 is the portfolio excess return on month t+1, T is the 

number of out-of-sample months and 𝛾 is the relative risk aversion of the representative 
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investor (we employ 𝛾 = 5). 𝐶𝐸𝑅 > 0 indicates that, after taking into account the investor’s 

aversion to risk, she still has a preference for the risky portfolio over the risk-free asset. 

3. Data  

The main data for the analysis are the daily front-end, second- and third-nearest prices of US-

exchanged futures contracts on oil (Brent crude oil, heating oil, light sweet crude oil, WTI 

crude oil), gas (natural gas, ethanol, RBOB gasoline and unleaded gas), electricity PJM and 

coal, obtained from Refinitiv Datastream. Table 2 indicates the futures exchange where each 

contract is traded and the start and end of the sample for each contract, as dictated by data 

availability. In order to entertain a minimum of four energy commodities in the cross-section, 

the sample start is December 1990. All portfolios are made up of front-end futures contracts 

which we roll to second nearest contracts at the end of the month prior to the maturity month; 

this rolling procedure is common in the literature and mimics the usual practice by investors of 

rolling their contracts prior to maturity to mitigate liquidity problems and avoid physical 

delivery (see e.g., Gorton and Rouwenhorst, 2006; Miffre and Rallis, 2007; Fernandez-Perez 

et al., 2017). Excess returns are measured as the difference in the natural log of the futures 

prices, i.e., 𝑟𝑖,𝑡 = ln (
𝐹𝑖,𝑡

𝐹𝑖,𝑡−1
) where 𝐹𝑖,𝑡 is the settlement price of the futures contract on 

commodity i at time t. It can be shown that the excess return 𝑟𝑖,𝑡 represents the total return of a 

fully-collateralized futures position in excess of the risk-free rate (Erb and Harvey, 2006).  

We also obtain from Refinitiv Datastream the daily traded volume of each contract and from 

the Commodity Futures Trading Commission (CFTC) archive the weekly positions of large 

commercial (hedgers) and non-commercial (speculators) participants as provided in the 

Futures-Only Legacy Commitments of Traders (CoT) report from September 30, 1992 
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onwards.8 These weekly positions of futures traders are used to calculate the hedging pressure 

and speculative pressure signals for each commodity as defined in Table 1. In order to make 

the comparison of performance across strategies as informative as possible, it is focused on the 

period July 2001 to March 2019 that is common to all (single-style and integrated) strategies.  

Table 2, Panel A presents summary statistics for the excess returns of the futures contracts. The 

annualized mean excess return averaged across contracts merely stands at -3.06% a year. The 

risk profile of the contracts is high with, for example, annualized standard deviation and 

maximum drawdown that average 35.2% and -77% across assets. With the noticeable 

exception of ethanol and corroborating the evidence from 12 individual commodity futures 

markets of e.g., Erb and Harvey (2006), the results confirm the poor risk-adjusted performance 

of energy futures contracts when treated as stand-alone investments. Indirectly, this finding 

serves to highlight the need to adopt a long-short signal-sorted portfolio construction approach 

in energy markets, which is precisely the methodology that this paper advocates. 

[Insert Table 2 around here] 

Table 2, Panel B reports averages for the sorting signals. As expected, we note a propensity for 

the futures with higher annualized mean returns (e.g., ethanol) to present backwardated 

characteristics such as higher roll-yields, higher hedging pressure (HP), higher speculative 

                                                           

8 Although the CoT dataset is widely used (e.g., Bessembinder, 1992; Hirshleifer, 1988; Basu 

and Miffre, 2013; Kang et al., 2020), it has limitations. The classification of traders into 

commercials (hedgers) and non-commercials (speculators) is based on information provided 

by the traders themselves; large traders ought to declare the nature of their positions and any 

association with the physical market activities. One cannot rule out that some speculators might 

self-classify their activity as commercial to circumvent position limits, although the CFTC 

supervises the declarations seeking to correct any misclassifications. Moreover, futures market 

pundits have criticized the CFTC taxonomy of swap dealers (such as index trackers) as 

commercials. Swap dealers usually have no position in the physical commodity but instead 

their hedging is associated with over-the-counter (OTC) derivative positions. For further 

discussion see e.g., Ederington and Lee (2002) and Irwin and Sanders (2012). 
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pressure (SP) and higher momentum signals. Vice versa, futures with lower annualized mean 

returns (e.g., natural gas) show signs of contango as demonstrated by lower roll-yields, lower 

HP, lower SP and lower momentum signals. This provides preliminary evidence that the signals 

employed are key to the pricing of energy contracts and thus potentially useful for asset 

allocation. The descriptive statistics confirm the stylized fact of the energy sector that crude oil 

futures by far lead the pack as the most liquid contracts. This may have some effect on the 

performance of the strategies via transaction costs (TC), which we investigate below. For the 

TC analysis, we will employ information on the contract multiplier and minimum tick size per 

commodity futures contract, as shown in the Panel C of Table 2, from Refinitiv Datastream.9 

4. Empirical Results 

4.1. Single-style portfolios 

Figure 1 plots the evolution of $1 invested in the single-style and AVG portfolios where AVG 

is a long-only equally-weighted and monthly-rebalanced portfolio of all energy contracts. The 

plot covers the period June 2001 to March 2019 that is common to all portfolios and is based 

on total returns; that is, excess returns plus the 1-month U.S. Treasury bill rate. The figure 

shows the attractive performance of long-short portfolios (Momentum (Mom), Term structure 

(TS), Speculative Pressure (SP) and Hedging pressure (HP)) versus the negative excess returns 

associated with long-only positions (AVG portfolio).  

[Insert Figure 1 around here] 

                                                           

9 The contract multiplier (𝐶𝑀; also called contract size) is the total number of commodity units 

specified in each futures contract. The minimum tick (𝑇𝑖𝑐𝑘) is the minimum price fluctuation 

of the futures contract per unit of the underlying commodity. Both are set by the corresponding 

futures exchange (e.g., NYMEX for light sweet crude oil) and vary by contract. For instance, 

a light sweet crude oil futures contract commits the holder to buy or sell 1,000 barrels of oil so 

the contract multiplier is 1,000 while the minimum tick is $0.01 per barrel. Accordingly, the 

dollar value of one tick of a light sweet futures contract is 𝑇𝑖𝑐𝑘 ∙ 𝐶𝑀 = $10. 
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Table 3, Panel A summarizes the performance of the single-style and AVG portfolios over the 

full period. The reported statistics center around various measures of performance (annualized 

mean excess return), risk (annualized standard deviation, annualized downside volatility, 

departure from normality, 99% Cornish-Fisher VaR and maximum drawdown) and risk-

adjusted performance (Sharpe, Sortino and Omega ratios and certainty equivalent return, CER).  

[Insert Table 3 around here] 

Aligned with the predictions of the theory of storage of Kaldor (1939) and Working (1949), 

the TS risk premium is positive at 11.70% a year and statistically significant (t-statistic of 2.79). 

The corresponding Sharpe, Sortino and Omega ratios all confirm the superior performance of 

the TS strategy relative to many competing portfolios and stand-alone energy contracts. This 

indicates that backwardated contracts characterized by positive roll-yields and thus presumably 

low inventory levels outperform contangoed contracts characterized by negative roll-yields and 

thus presumably high inventory levels.   

Likewise, corroborating the predictions of the hedging pressure hypothesis of Cootner (1960) 

and Hirshleifer (1988, 1990), the HP and SP risk premia are positive at the 5% significance 

level or better, ranging from 7.58% a year for HP (t-statistic of 2.22) to 8.16% a year for SP (t-

statistic of 2.79).10 The corresponding Sharpe ratios stand at 0.57 and 0.65, respectively. This 

shows that backwardated energy futures contracts characterized by net short hedgers tend to 

appreciate in value to entice net long speculation, while contangoed energy futures contracts 

                                                           

10 The risk premia captured by the HP and SP strategies needs not be identical since the hedgers 

and speculators’ open positions used to construct the underlying signals, obtained from the 

Commitment of Traders (CoT) report of the Commodity Futures Trading Commission (CFTC), 

do not represent the total of open positions but only those of large traders that ought to report 

their positions to the CFTC (referred to as reportables). If large traders covered the 100% of 

the open interest instead, the HP and SP signal would be perfectly positively correlated because 

for every long position there is a matching short position, and the HP and SP premia would 

then be identical as the commodities ranking (by the HP and SP signals) would coincide. 
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characterized by net long hedgers tend to depreciate in value to entice net short speculation. To 

state this differently, hedgers in energy futures markets are willing to pay a premium of 7.58% 

a year to invite speculators to take on the price risk that they would like to get rid of. Speculators 

in turn demand a similarly sized premium of 8.16% as reward for the risk born. 

The momentum portfolio generates a positive mean excess return equal to 13.28% a year with 

a t-statistic of 3.53 or a Sharpe ratio of 0.75. This remarkable performance reflects the fact that 

the momentum portfolio, like the TS, HP and SP portfolios, captures the phases of 

backwardation and contango (Miffre and Rallis, 2007; Gorton et al., 2013). The value strategy 

earns an interesting Sharpe ratio at 0.32; yet, its mean excess return is statistically insignificant 

and its CER is negative at -3.19% a year. The risk premia associated with liquidity and 

skewness are insignificant, both statistically and economically.  

The Keynesian hypothesis assumes that futures markets are normally backwardated. In the 

setting of Keynes (1930), energy producers are long the physical asset and willing to take a 

short hedge to reduce their exposure to potentially declining oil prices. To get rid of their price 

risk, they need to entice speculators to take the long side of the futures market and thus, futures 

prices have to rise with maturity. In other words, if the normal backwardation theory holds, 

long speculators shall earn a positive risk premium as compensation for bearing hedgers’ price 

risk. In our setting, the AVG portfolio earns a mean excess return of -2.20% a year (t-statistic 

of -0.29) or a Sharpe ratio at -0.08, a poor performance that is reminiscent of that of individual 

energy contracts (c.f., Table 2). This poor performance reveals that the actual pricing of energy 

futures contracts does not support the normal backwardation theory of Keynes (1930). Instead 

of long-only portfolios, investors ought to take simultaneous long and short positions in the 

cross-section of energy futures contracts to capture a sizeable risk premium.  
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Table 3, Panel B reports the Sharpe ratios of the long-short single-style and AVG portfolios 

over four non-overlapping subsamples of equal size, alongside relative rankings of 

performance ranging from 1 (for the best performing strategy) to 8 (for the worst performing 

strategy). We note some instability in the relative rankings over time. For example, the HP and 

value strategies rank both amongst the worst and best strategies depending on the sub-sample 

considered. This instability in relative rankings motivates style integration as a way to diversify 

risk by preempting the difficult choice of one signal over another one.  

Table 4 provides pairwise Pearson correlations across the excess returns of the K single-sort 

styles. The excess returns of the TS, HP, SP and Mom portfolios have relatively high 

correlations ranging from 0.25 to 0.79 with an average at 0.44; this is expected as these 

individual styles are all deemed to capture the fundamentals of backwardation and contango. 

The average correlations across individual-style portfolio returns is, however, low at 0.09 

suggesting that integration could help achieve diversification benefits. The value portfolio, 

which is contrarian in nature, and the liquidity portfolio present negative return correlation with 

the other portfolios. This low dependence in the excess returns of the single-style portfolios 

motivates an integrated portfolio approach as a way of managing risk.  

[Insert Table 4 around here] 

4.2. Integrated portfolios 

Figure 2 plots the future value of $1 invested in June 2001 in various fully-collateralized 

integrated portfolios. It provides preliminary evidence of the benefits of integration and of the 

possible superiority of the naïve EWI approach over the sophisticated OI and VTI alternatives. 

Table 5 complements this analysis by summarizing the performance of the integrated portfolios 

over the whole sample (Panel A) and over four non-overlapping subsamples of equal size 

(Panel B). Aligned with the first impression provided by Figure 2, Table 5 shows that 
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integration works: all integration techniques deliver positive mean excess returns that are 

significant at the 1% level. The corresponding Sharpe ratios range from 0.74 to 0.90 and are 

thus at worst equal to those obtained in Table 3 for the single-style portfolios. This serves to 

highlight the benefits of integration: by relying on a composite signal that aggregates 

information from various styles, the investor predicts more reliably subsequent price changes 

and is thus better able to capture the risk premium present in energy futures markets.  

[Insert Table 5 and Figure 2 around here] 

EWI stands out among all the integration methods deployed with the highest mean excess 

return at 12.4% a year, the highest Sharpe and Omega ratios at 0.90 and 2.04, respectively, the 

second highest Sortino ratio at 1.28 and the highest CER at 7.36% a year. The efficacy of EWI 

to capture risk premia may be due to the fact that, unlike OI and VTI, it incurs no estimation 

uncertainty (the style-weight parameter is preset) and also it sidesteps representativeness 

heuristic bias (it does not rely on the persistence of the performance of the single styles).11  

To assess the statistical superiority of EWI relative to OI and VTI, we calculate the Opdyke 

(2007) p-value for the null hypothesis 𝐻01: 𝑆𝑅𝐸𝑊𝐼 ≥ 𝑆𝑅𝑗 versus 𝐻𝐴1: 𝑆𝑅𝐸𝑊𝐼 < 𝑆𝑅𝑗 where j 

denotes an integrated portfolio other than EWI. In order to account for higher order moments 

of the return distribution, we also test the null hypothesis 𝐻02: 𝐶𝐸𝑅𝐸𝑊𝐼 ≥ 𝐶𝐸𝑅𝑗 versus 

𝐻𝐴2: 𝐶𝐸𝑅𝐸𝑊𝐼 < 𝐶𝐸𝑅𝑗. The p-values, reported in Table 5, Panel A, fail to reject the null 

hypothesis at conventional levels.12 Statistically, the Sharpe ratio and CER of the EWI portfolio 

are at least as attractive as those of the OI and VTI portfolios.  

                                                           

11 Tversky and Kahneman (1974) define representative heuristic as a behavioral tendency to 

wrongly overstate the importance of an observation. In the present context, the bias amounts 

to thinking that the best (worst) styles will keep outperforming (underperforming).   

12 We use the bootstrap method of Politis and Romano (1994) to test the statistical significance 

of the difference in CER. The p-values are obtained by resampling blocks of random length 
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Table 5, Panel B presents the Sharpe ratios of each integrated portfolio over four consecutive 

subsamples of equal size. It reports in parentheses the rank assigned to a given integrated 

portfolio in relation to the other 13 portfolios (AVG, 7 single-style portfolios and 5 alternative 

integrated portfolios). A rank of 1 (14) is assigned to the strategy with the highest (lowest) 

Sharpe ratio over a given sub-sample. These period-specific ranks are subsequently averaged 

across periods. The lower the average rank, the better the performance of the strategy under 

review. With an average rank at 3.5, EWI beats all competing integration approaches. 

Unreported results show that EWI also beats AVG and the single-style strategies of Table 3.  

5. Robustness Tests 

For the sake of completeness, we subject our key findings on the presence of an energy futures 

risk premium and on the superior performance of EWI to various robustness tests. 

5.1. Turnover and transaction costs 

Trading intensity erodes performance and could even potentially wipe out the profits of 

seemingly lucrative strategies. It is thus important to measure the turnover of the single-style 

and integrated portfolios; higher turnover indeed comes hand-in-hand with worse performance 

net of reasonable transaction costs. Bearing this in mind, we define the turnover of strategy j, 

𝑇𝑂𝑗, as the time average of all the trades incurred 

𝑇𝑂𝑗 =
1

𝑇−1
∑ ∑ (|�̃�𝑖,𝑗,𝑡+1 − �̃�𝑖,𝑗,𝑡+|)

𝑁
𝑖=1

𝑇−1
𝑡=1 ,                              (4) 

where �̃�𝑖,𝑗,𝑡 is the weight assigned to the ith energy contract by the jth portfolio at time t (in the 

case of a single-style portfolio, �̃�𝑖,𝑗,𝑡 = �̃�𝑖,𝑗,𝑡),  �̃�𝑖,𝑗,𝑡+ ≡ �̃�𝑖,𝑗,𝑡 × 𝑒
𝑟𝑖,𝑡+1 is the weight of the ith 

                                                           

from the actual time-series {𝑟𝐸𝑊𝐼,𝑡, 𝑟𝑗,𝑡} using B=10,000 bootstrapped excess returns 

{𝑟𝐸𝑊𝐼,𝑡
∗ , 𝑟𝑗,𝑡

∗ } of length T=213. The block-length is a geometrically distributed variable with 

expected value 1/𝑝 for p=0.2. Similar results were obtained with p=0.5.  
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contract before the next rebalancing at t+1, and 𝑟𝑖,𝑡+1 is the excess return of the ith energy 

contract from 𝑡 to 𝑡 + 1. Thus 𝑇𝑂𝑗 measures the natural evolution of the weights within the 

month as driven by the performance of the contract. Theoretically, the turnover measure ranges 

from 0 (should no trading occurs) to 2 (should all the long positions be reversed every month 

and likewise for the shorts). The results, reported in Table 6, show that with turnover ranging 

from 0.0972 (HP) to 0.3915 (Value), the strategies considered are not highly trading intensive 

and thus, it is unlikely that transaction costs will wipe out performance.  

We then calculate the excess returns of each strategy after transaction costs as follows  

�̃�𝑃,𝑡+1 = ∑ �̃�𝑖,𝑗,𝑡𝑟𝑖,𝑡+1 − 𝑇𝐶 ∑ |�̃�𝑖,𝑗,𝑡 − �̃�𝑖,𝑗,𝑡−1+|
𝑁
𝑖=1

𝑁
𝑖=1     (5) 

with TC denoting a round-trip trading cost. While relatively patient energy futures traders 

willing to stagger the allocation of a $1 million wealth into futures positions within a 60-minute 

window are prepared to pay up TCs of up to 6.7 b.p., demands for more immediate execution 

raise the transaction costs to 20 b.p. (Marshall et al. 2012). Bearing their point in mind, it might 

be worth it to analyze whether the need for immediacy could harm performance so much that 

it deters traders from implementing the trades. The results, reported in Table 6, show that 

inferences regarding the presence of an energy risk premium and the superiority of EWI hold 

after transaction costs. For example, the risk premium based on the phases of backwardation 

and contango are still significant at the 5% level or better after accounting for transaction costs. 

EWI still offers the highest net mean excess returns and the highest net Sharpe ratio.  

Finally, we perform a breakeven analysis that gives the transaction costs required for the 

mean excess return of a given strategy to be zero; namely, �̃�𝑃,𝑡+1 = 0 in the following equation  

�̃�𝑃,𝑡+1 = ∑ �̃�𝑖,𝑗,𝑡𝑟𝑖,𝑡+1 − ∑ 𝑇𝐶𝑖,𝑡|�̃�𝑖,𝑗,𝑡 − �̃�𝑖,𝑗,𝑡−1+|
𝑁
𝑖=1

𝑁
𝑖=1 ,   (6) 
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where following Szakmary et al. (2010) and Paschke et al. (2020) inter alia, heterogeneity in 

the transaction costs across energy futures contract at time t is allowed with 𝑇𝐶𝑖,𝑡 defined as 

 𝑇𝐶𝑖,𝑡 =
$10+𝑘∙𝑇𝑖𝑐𝑘𝑖∙𝐶𝑀𝑖

𝐹𝑖,𝑡∙𝐶𝑀𝑖
,      (7) 

which formalizes the wisdom that commodity futures trading costs are a function of the: a) 

minimum tick of the ith contract (𝑇𝑖𝑐𝑘𝑖), b) contract size or contract multiplier (𝐶𝑀𝑖), c) time 

t settlement price (𝐹𝑖,𝑡), d) a brokerage fee of roughly $10 (Pashke et al., 2020), and e) a 

parameter 𝑘 that measures the number of times the dollar value of one tick is to be paid for the 

price impact of trading to wipe out the gross returns of the strategy. We solve Equation (6) for 

k, and calculate 𝑇𝐶𝑖,𝑡 using Equation (7) with the commodity-specific information of the 

minimum tick and contract multiplier reported in Panel C of Table 2. The last column of Table 

6 reports the average break-even cost 𝑇𝐶𝑖,𝑡 in b.p. across time 𝑡 = 1, . . , 𝑇 and energy 

commodities 𝑖 = 1,… ,𝑁. These estimates suggest that the trading costs needed for the profits 

of Tables 3 and 5 to be wiped out are extremely large. Specifically, it would require costs that 

are 56 times and 19 times the 6.7 b.p. and 20 b.p. estimates of Marshall et al. (2012), 

respectively, to wipe out the attractive gross profits of the TS, HP, SP and Mom strategies 

(Table 3) and those of the integrated strategies (Table 5). We can safely conclude that the risk 

premia extracted by the portfolio strategies proposed are not an artefact of transaction costs.13 

[Insert Table 6 around here] 

5.2. Alternative specifications of the weighting schemes  

Thus far, we followed the literature (see e.g., Asness et al., 2013) in forming balanced long-

short portfolios that invest 50% of the investor’s mandate in long positions and the remainder 

                                                           

13 The less refined approach that consists of solving the Equation (5), �̃�𝑃,𝑡+1 = 0, directly for 

𝑇𝐶 gives similar results which are unreported but available from the authors upon request.  
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50% in short positions. This could result in long positions being taken at time t in, for example, 

contangoed contracts (shall most or all contracts be in contango) and short positions being 

taken in, for example, backwardated contracts (shall most or all contracts be in backwardation). 

We test whether such occurrence impacts our general conclusions on performance by using as 

asset allocation criterion the actual signal k of commodity i at time t, 𝜃𝑖,𝑘,𝑡 ≡ 𝑥𝑖,𝑘,𝑡 (e.g., the 

roll-yield), instead of 𝜃𝑖,𝑘,𝑡 ≡ (𝑥𝑖,𝑘,𝑡 − �̅�𝑘,𝑡)/𝜎𝑘,𝑡
𝑥 . We then buy the 𝑁𝐿 energy futures contracts 

whose prices are expected to rise (allocation weights 𝑥𝑖,𝑘,𝑡 > 0) and short the 𝑁𝑆 energy futures 

contracts whose prices are expected to drop (allocation weights 𝑥𝑖,𝑘,𝑡 < 0) such that 𝑁𝐿 + 𝑁𝑆 =

𝑁 with 𝑁 denoting the size of the entire cross-section. Since in this case we use directly the 

(non-standardized) signal 𝑥𝑖,𝑘,𝑡 which is therefore not centered, the implication is that we no 

longer have a balanced portfolio, namely ∑ 𝑥𝑖,𝑘,𝑡
𝐿𝑁𝐿

𝑖=1 ≠ ∑ |𝑥𝑖,𝑘,𝑡
𝑆 |

𝑁𝑆
𝑖=1  where 𝑥𝑖,𝑘,𝑡

𝐿 = 𝑥𝑖,𝑘,𝑡 > 0 and 

𝑥𝑖,𝑘,𝑡
𝑆 = 𝑥𝑖,𝑘,𝑡 < 0. We invest �̃�𝑖,𝑘,𝑡 = 𝑥𝑖,𝑘,𝑡 ∑ |𝑥𝑖,𝑘,𝑡|

𝑁
𝑖=1⁄  in each contract i at portfolio formation 

time t so that the mandate is fully collateralized (∑ �̃�𝑖,𝑘,𝑡
𝑁
𝑖 = 1). Therefore, at each month end 

(time t) over the sample period this asset allocation could be 100% long (when 𝑁𝐿 = 𝑁), 100% 

short (when 𝑁𝑆 = 𝑁) or any long-short in between (when 𝑁𝐿 ≠ 0 and 𝑁𝑆 ≠ 0). Proceeding 

likewise for all signals, we end up with six portfolios sorted on single styles. We omit the 

liquidity-sorted portfolio whose signal is by definition always negative. The style-integrated 

portfolios are formed as before but using the non-standardized signals. Table 7, Panel A, 

presents summary statistics for the performance of the modified portfolios. The risk premia 

captured by these portfolios is notably inferior to that stemming from our portfolios based on 

standardized signals, 𝜃𝑖,𝑘,𝑡 ≡ (𝑥𝑖,𝑘,𝑡 − �̅�𝑘,𝑡)/𝜎𝑘,𝑡
𝑥 ; this standardized-signal approach has become 

typical since the seminal paper of Brandt et al. (2009). For example, the mean excess returns 

of the portfolios based on the non-standardized signals is 4% p.a. on average (Table 7, Panel 

A) versus 8.58% p.a. for the portfolios with weights given by the standardized signals (Tables 

3 and 5). The corresponding average Sharpe ratios are 0.18 and 0.61, respectively.  
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[Insert Table 7 around here] 

We attribute the notably smaller risk premia captured by the long-short portfolios based on 

non-standardized signals to the fact that these portfolios are not market neutral, i.e., they do not 

capture a signal-based risk premium that is actually immune to market movements. To show 

this, we regress the excess returns of the portfolios sorted on non-standardized signals onto the 

excess returns of the AVG portfolio. We do likewise for the excess returns of the portfolios 

sorted on standardized signals. Table 7, Panels B and C present the estimated parameters and 

goodness-of-fit statistics of these regressions. As anticipated, the portfolios based on non-

standardized signals are not market neutral: the AVG slope in Table 7, Panel B is significant 

at the 5% level or better for all the single-style portfolios but momentum with an average 

adjusted-R2 across single-styles of 0.21; it is also significant at the 10% level for most of the 

style-integrated portfolios. The intercept or alpha (performance over and above the market) is 

insignificant for all single- and style-integrated portfolios. The smaller risk premia stemming 

from the portfolios in Panel A is therefore driven by the poor performance of AVG (Table 3). 

Likewise, the style-integrated portfolios based on non-standardized signals capture a much 

smaller risk premia than the corresponding style-integrated portfolios based on standardized 

signals. In sharp contrast, the portfolios sorted on standardized signals (Table 7, Panel C) are 

market neutral: the slope coefficients are insignificant for all the single-style and style-

integrated portfolios with a negligible average adjusted-R2. The alphas are significant at the 5% 

level or better for all the single-style portfolios but value and skewness, and the style-integrated 

portfolios. Thus, the portfolios based on standardized signals capture a larger signal-based risk 

premia because they are immune to general energy futures market movements. 

In another exercise, we study the performance of alternative formulations of the OI and VTI 

portfolios; thereby testing the robustness of our conclusion regarding the superiority of EWI. 

Thus far, we restricted 𝝎𝑡 ≥ 0 in Equation (1) for the optimized integration approaches 
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(OI(PU), OI(Exp), OI(MV) and OI(Var)). We now allow 𝝎𝑡 to be freely estimated. A negative 

𝜔𝑘,𝑡 for the kth style at time t implies that the integrated portfolio effectively reverses the 

weights of the original kth style. Taking momentum as example, this implies that at time t we 

give larger positive (negative) weights to assets with poorer (better) past performance, a 

strategy that makes sense during large momentum drawdowns.  

Our earlier VTI approach inspired by Kirby and Ostdiek (2012) forced 𝜂 in the following 

specification of the style weights to be equal to 1 and only considered 𝜎𝑘,𝑡
2 , the volatility of the 

excess returns of the kth-style portfolio, as criterion for style allocation. We now consider two 

alternative VTI specifications. The first one, labelled VTI(𝜂), allocates more wealth to the least 

volatile styles; this is done by setting 𝜂 to 4 in the following equation  

𝜔𝑘,𝑡 =
(1 𝜎𝑘,𝑡

2⁄ )
𝜂

∑ (1 𝜎𝑘,𝑡
2⁄ )
𝜂𝐾

𝑘=1

 ,                                                       (8) 

while the second specification, labelled VTI(𝜇), considers both performance and volatility as 

criteria for style allocation as formalized by 

𝜔𝑘,𝑡 =
𝜇𝑘,𝑡
+ 𝜎𝑘,𝑡

2⁄

∑ (𝜇𝑘,𝑡
+ 𝜎𝑘,𝑡

2⁄ )𝐾
𝑘=1

 ,                                                       (9) 

where 𝜇𝑘,𝑡
+ = max(0, 𝜇𝑘,𝑡) and 𝜇𝑘,𝑡 is the mean excess return of the kth style. A 60-month 

window is used to estimate 𝛚𝑡 and 𝛟𝒕 in all these alternative formulations of the OI and VTI 

portfolios. The results in Table 8 reveal that none of these alternatives outperforms EWI. Thus, 

the style-integration that ascribes equal weights to all signals is confirmed as the best approach.  

[Insert Table 8 around here] 

5.3. Data mining 

Our conclusion thus far is that EWI outperforms the 19 alternative strategies considered: the 

AVG portfolio, the 7 single-style (SS) strategies, 𝑆𝑆𝑖=1,…,7, the 8 OI specifications 𝑂𝐼𝑖=1,…,8  
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and the 3 VTI specifications, 𝑉𝑇𝐼𝑖=1,2,3 (i.e., the integrated portfolios reported in Tables 5 and 

8). Is this a result of data snooping?14 We use the Superior Predictive Ability test of Hansen 

(2005) based on Sharpe ratio differences to address this issue. 

We treat EWI as benchmark and compare the Sharpe ratios of the 19 underperforming 

portfolios to that of EWI. Let SRm denote the Sharpe ratio of strategy 𝑚 =

{AVG, 𝑆𝑆𝑖=1,…,7, 𝑂𝐼𝑖=1,…,8, 𝑉𝑇𝐼𝑖=1,2,3} and 𝑆𝑅𝐸𝑊𝐼 the Sharpe ratio of EWI. Relative performance 

is measured by the Sharpe ratios differential, 𝑑𝑚 ≡ 𝑆𝑅𝑚 − 𝑆𝑅𝐸𝑊𝐼. The expected “loss” of the 

mth strategy relative to the benchmark is therefore 𝐸[𝑑𝑚] = 𝐸[ 𝑆𝑅𝑚 − 𝑆𝑅𝐸𝑊𝐼]. Strategy m is 

better in terms of Sharpe ratio than the benchmark (EWI) if and only if 𝐸[𝑑𝑚]  >  0. The null 

hypothesis is that the best of the 𝑀 = 19 strategies does not obtain a superior Sharpe ratio than 

the Sharpe ratio of the EWI benchmark; i.e., 𝐻0: 𝑚𝑎𝑥𝑚=1,…,𝑀𝐸[𝑆𝑅𝑚]  ≤  𝐸[𝑆𝑅𝐸𝑊𝐼].  

Using the bootstrap method of Politis and Romano (1994), we obtain 10,000 bootstrap time-

series of excess returns for the EWI benchmark and for the 19 underperforming portfolios by 

pooling random blocks from the original time-series of excess returns. The length of each 

sample block follows a geometric distribution with expected value 1/p with p = {0.2, 0.5}. 

Subsequently, we obtain 10,000 pseudo values for 𝑑𝑚
∗  for each of the 𝑚 =

{AVG, 𝑆𝑆𝑖=1,…,7, 𝑂𝐼𝑖=1,…,8, 𝑉𝑇𝐼𝑖=1,2,3} strategies. The p-values of 0.9772 (p=0.2) and 0.9725 

(p=0.5) clearly show that the null hypothesis cannot be rejected. Altogether, we conclude that 

the superiority of the EWI portfolio cannot be attributed to data snooping. 

5.4. Subsample analysis 

Finally, we test whether the results are sample specific by re-evaluating the performance of the 

single and integrated energy portfolios over different sub-periods defined as follows: i) high 

                                                           

14 Employing the same dataset to assess the performance of many investment strategies can 

trigger false discoveries; this is the data snooping issue as it is understood by practitioners. 
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versus low volatility in energy futures markets where the volatility is modelled by fitting a 

GARCH(1,1) model to the excess returns of AVG15, ii) pre and post the financialization of 

commodity futures markets roughly dated January 2006 (Stoll and Whaley, 2010), iii) in 

periods of recession and expansion according to the NBER-dated business cycle phases, and 

iv) over the bust of the 2008 oil price bubble (July 2008 – February 2009)16 versus the rest of 

the sample. Table 9 reports the Sharpe ratios of the single-style strategies in Panel A and those 

of the integrated strategies in Panel B. The single-style risk premia based on backwardation 

and contango are often robust to the sub-sample considered; yet, they are found to be stronger 

in periods of expansion and since the financialization of commodity futures markets. Over the 

period spanning the bust of the 2008 oil price bubble (July 2008 to February 2009), all the 

long-short portfolios present positive Sharpe ratios ranging from 0.18 (Skewness) to 3.34 

(OI(Var)).17 Most importantly, the integrated portfolios deliver positive Sharpe ratios in all 

sub-samples; the conclusion holds irrespective of the integration approach considered. 

Altogether, the table further highlights the benefits of style-integrated long-short portfolios as 

they are able to capture sizeable energy risk premia irrespective of market conditions. 

[Insert Table 9 around here] 

                                                           

15 The threshold to separate the high and low volatility regimes is defined as the average of the 

annualized fitted volatility estimated at 27.6%.  

16  The bust of the 2008 oil price bubble had a remarkable effect in energy futures. For instance, 

the AVG portfolio lost 13.47% a month from July 2008 to February 2009. 

17 A reassuring finding is that over the bust period of the oil bubble the long-short portfolios 

formed according to the HP and SP signals motivated by the hedging pressure hypothesis still 

capture sizeable risk premia. For instance, the mean excess return of the SP portfolio is 2.17% 

per month (26.04% p.a.) and a Sharpe ratio of 1.10 suggesting that the risk transfer mechanism 

was at play also during this challenging period – namely, speculators earned a significant 

premium of 2.17% per month (26.04% p.a.) for shouldering the price risk that hedgers sought 

to avoid. The results of a similar exercise over January 2008 to February 2009 which spans the 

boom and bust components of the bubble are qualitatively similar. 
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6. Conclusions 

The theory of storage of Kaldor (1939), Working (1949) and Brennan (1958) and the hedging 

pressure hypothesis of Cootner (1960) and Hirshleifer (1988, 1990) suggest that the state of 

the commodity futures market, backwardation versus contango, contains predictive ability for 

commodity futures prices. This article examines the ability to extract energy risk premia of 

long-short portfolios formed according to various futures contract characteristics that proxy the 

backwardation and contango dynamics such as the roll-yield, hedging pressure and momentum 

inter alia. The energy risk premia thus captured ranges from a sizeable 7.58% to 13.28% a year 

with Sharpe ratios of 0.65 to 0.75. Jointly exploiting the backwardation versus contango signals 

(and other signals such as liquidity, value and skewness) into a long-short integrated portfolio 

increases the Sharpe ratio further to 0.90. The findings hold after accounting for trading costs, 

alternative designs of the integrated portfolio, data snooping tests and economic sub-periods.  

Our empirical findings serve to endorse the theory of storage and hedging pressure hypothesis 

in the specific energy futures sector. From a regulatory perspective, the ability to extract a 

significant energy risk premium through a long-short portfolio formed according to the hedging 

pressure characteristic reveals that an effective risk transfer mechanism from hedgers to 

speculators is at play in the energy futures sector. This empirical finding indirectly suggests 

that calls for further regulation of speculative activity are unwarranted at this stage. From a 

practitioners’ perspective, our paper proposes long-short strategies that can inspire the design 

of energy-based smart-beta index products and thus are relevant for asset management practice.  
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Table 1. Individual investment styles.  

The first column lists the style, the second and third columns report the signal or characteristic of the underlying asset used to construct the long-

short portfolios (a higher 𝑥𝑖,𝑡 indicates a higher expectation of a futures price increase), and the last column summarizes the background literature. 

 

Style Signal References

Panel A: Styles that capture the fundamentals of backwardation and contango

Term structure 

(TS)

Roll yield or basis defined as difference in daily log prices of front-

end contract (T1) and next maturity (T2) contract on average over 

the past year (D = number of trading days within the past year)

Kaldor (1939), Working (1949), Brennan (1958), Cho and Douglas 

(1990), Serletis and Hulleman (1994), Alquist and Kilian (2010), 

Pindyck (2001), Szymanowska et al. (2014),  Gorton et al. (2013), 

Byun (2017), Koijen et al. (2018)

Hedging pressure 

(HP)

Standardized weekly net open interest of hedgers (short positions           

minus long positions over total positions) on average over the past        

year (W = number of weeks within the previous year)

Cootner (1960), Hirshleifer (1988), Sanders et al. (2004), Basu and 

Miffre (2013), Dewally et al. (2013), Kang et al. (2020)

Speculative 

pressure (SP)

Standardized weekly net open interest of speculators (long positions 

minus short positions over total positions) on average over the past 

year (W = number of weeks within the previous year)

Cootner (1960), Hirshleifer (1988), Sanders et al. (2004), 

Bessembinder (1992), Basu and Miffre (2013), Dewally et al. 

(2013), Fattouh et al. (2013)

Momentum (Mom) Average excess daily return of the commodity over the past year           

(D = number of trading days within the past year) 

Erb and Harvey (2006), Miffre and Rallis (2007), Asness et al. 

(2013)

Panel B: Styles that are pervasive sources of risk across asset classes

Value Log of the average daily front-end futures prices  4.5 to 5.5 years 

ago divided by the log front-end futures price at time t (D = number 

of trading days within the year) 

Asness et al. (2013)

Liquidity Minus Amivest measure of liquidity or dollar daily volume over 

absolute daily return during the prior 2 months of daily observations 

(D = number of trading days within the past 2 months)

Amihud et al. (2005), Marshall et al. (2012), Szymanowska et al. 

(2014), Koijen et al. (2018)

Skewness Minus third moment of daily return distribution over the previous year 

of daily observations (D = number of trading days within the past 

year)

Amaya et al. (2015), Chiang (2016), Fernandez-Perez et al. (2018)
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Table 2. Summary statistics for energy futures and signals 

Panel A presents summary statistics for long-only positions in individual energy futures 

contracts. Mean and standard deviation (StDev) are annualized. Newey-West significance t-

statistics are reported in parentheses. Panel B shows the mean of each signal as defined in Table 

1. The signals are based on the slope of the term structure (TS), hedging pressure (HP), 

speculative pressure (SP), past performance or momentum (Mom), value, Amivest liquidity 

measure (liquidity) and skewness. The signals are measured so that higher values indicate 

expectation of higher excess returns. Panel C reports the futures exchange or futures market 

where the contract is traded – New York Mercantile Exchange (NYMEX), Intercontinental 

Exchange (ICE) or Chicago Board of Trade (CBOT) –, the contract multiplier – expressed as 

barrels (bbl), gallons (gal), metric million British thermal units (MMBtu), megawatt-hour 

(MWh) or metric tons (mt) – and minimum tick size per commodity futures contract for the 

transaction cost analysis. The start and end of the sample period are shown in the last two rows. 

 

 

  

Brent crude 

oil Heating oil

Light sweet 

crude oil WTI crude oil Natural gas Ethanol

RBOB 

gasoline Unleaded gas

Electricity 

PJM Coal

Panel A: Excess returns

Mean -0.0532 0.0181 -0.0200 -0.1155 -0.2991 0.2678 -0.0138 0.1904 -0.1809 -0.1002

(-0.42) (0.22) (-0.22) (-1.01) (-2.68) (2.63) (-0.13) (1.39) (-1.15) (-1.31)

StDev 0.3212 0.2993 0.3160 0.3214 0.4652 0.3485 0.3264 0.3698 0.4974 0.2541

99% VaR (Cornish-Fisher) 0.3054 0.2380 0.2664 0.2879 0.3776 0.1843 0.3348 0.2398 0.4071 0.2072

Maximum drawdown -0.8317 -0.8205 -0.9034 -0.9034 -0.9974 -0.4083 -0.6980 -0.3764 -0.9351 -0.8270

Sharpe ratio -0.1655 0.0603 -0.0633 -0.3594 -0.6429 0.7683 -0.0422 0.5148 -0.3636 -0.3945

Panel B: Average signals 

TS -0.0043 -0.0026 -0.0041 -0.0081 -0.0211 0.0185 -0.0011 0.0075 -0.0077 -0.0063

HP -0.3478 0.0627 0.0982 0.0534 -0.0875 0.1539 0.1731 0.1037 0.0747 0.0840

SP -0.3618 0.1322 0.2391 0.2720 -0.2256 0.4034 0.5260 0.3979 0.5179 0.6812

Mom -0.0055 0.0194 -0.0199 -0.1183 -0.3122 0.2857 -0.0346 0.1226 -0.1764 -0.0949

Value 0.2376 -0.3130 -0.2667 0.1586 0.0008 0.1679 0.0623 -0.5570 0.2796 0.0545

Liquidity -2.2489 -0.1056 -24.8532 -7.0468 -0.4862 -0.0021 -0.1571 -0.0339 -0.0709 -0.0885

Skewness 0.2049 0.0925 0.1867 0.0805 -0.0623 0.1021 0.1637 0.2209 0.1515 0.4991

Panel C: Other  information

Exchange NYMEX NYMEX NYMEX ICE NYMEX CBOT NYMEX NYMEX NYMEX NYMEX

Contract multiplier 1,000bbl 42,000gal 1,000bbl 1,000bbl 10,000MMBtu 29,000gal 42,000gal 42,000gal 40MWh 1,550mt

Minimum tick $0.01 $0.0001 $0.01 $0.01 $0.001 $0.001 $0.0001 $0.0001 $0.05 $0.01

Sample start 30/07/2007 31/12/1990 31/12/1990 3/02/2006 31/12/1990 30/03/2006 20/10/2005 31/12/1990 22/03/2004 22/03/2004

Sample end 29/03/2019 29/03/2019 29/03/2019 29/03/2019 29/03/2019 29/03/2019 29/03/2019 29/12/2006 21/08/2015 25/11/2016
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Table 3. Performance of single-style portfolios 

The table summarizes the performance of K=7 long-short single-style portfolios based on the 

following signals: the slope of the term structure (TS), hedging pressure (HP), speculative 

pressure (SP), momentum (Mom), value, liquidity or skewness. AVG stands for a long-only 

equally-weighted and monthly-rebalanced portfolio of all energy futures. The portfolios are 

fully collateralized and held for one month. Panel A reports statistics for the monthly portfolio 

excess returns over the full sample period from July 2001 to March 2019. Mean and standard 

deviation (StDev) are annualized. Significance t-statistics are reported in parentheses and are 

Newey-West adjusted for the mean. CER is the annualized certainty-equivalent return based 

on power utility preferences (𝛾 = 5). Panel B reports the annual Sharpe ratio of each style over 

non-overlapping subsamples of equal size and the number in parenthesis represents the relative 

ranking; a ranking of 1 (8) is assigned to the strategy with the highest (lowest) Sharpe ratio.  

 

  

Mean 0.1170 0.0758 0.0816 0.1328 0.0620 0.0132 -0.0029 -0.0220

(2.79) (2.22) (2.79) (3.53) (1.16) (0.45) (-0.08) (-0.29)

StDev 0.1828 0.1335 0.1256 0.1765 0.1957 0.1089 0.1749 0.2658

Skewness -0.0627 0.2752 -0.4036 -0.1460 0.2874 0.4066 -0.4732 -0.2836

(-0.37) (1.64) (-2.40) (-0.87) (1.71) (2.42) (-2.82) (-1.69)

Excess Kurtosis 1.5054 2.8693 3.4324 1.5075 0.8548 0.5792 0.5529 1.1571

(4.48) (8.55) (10.23) (4.49) (2.55) (1.73) (1.65) (3.45)

JB normality test p -value 0.0024 0.0010 0.0010 0.0022 0.0171 0.0196 0.0127 0.0057

Downside volatility (0%) 0.1213 0.0871 0.0964 0.1185 0.1143 0.0596 0.1270 0.1876

99% VaR (Cornish-Fisher) 0.1339 0.1003 0.1152 0.1305 0.1238 0.0649 0.1376 0.2148

% of positive months 56.81% 55.87% 61.03% 58.22% 53.99% 45.54% 53.52% 52.11%

Maximum drawdown -0.2945 -0.2597 -0.2775 -0.3168 -0.6753 -0.2735 -0.3805 -0.8060

Sharpe ratio 0.6403 0.5676 0.6498 0.7524 0.3168 0.1214 -0.0165 -0.0829

Sortino ratio (0%) 0.9648 0.8706 0.8466 1.1213 0.5426 0.2218 -0.0227 -0.1174

Omega ratio 1.6422 1.5996 1.6873 1.8002 1.2707 1.0943 0.9878 0.9391

CER 0.0317 0.0315 0.0402 0.0524 -0.0319 -0.0157 -0.0855 -0.2266

Panel B: Sharpe ratio (relative ranking) of single-sort strategies over non-overlapping subsamples of equal size

Jul-01 Nov-05 -0.1344 (6) 0.3885 (4) 0.2368 (5) 1.0300 (2) 1.3555 (1) -0.2288 (8) -0.2037 (7) 0.5729 (3)

Dec-05 Apr-10 1.0838 (2) 0.7753 (4) 1.3964 (1) 0.9685 (3) -0.5941 (8) -0.3767 (6) 0.2116 (5) -0.5271 (7)

May-10 Sep-14 0.9793 (1) 0.8723 (2) 0.7481 (4) 0.7780 (3) 0.0019 (7) 0.5758 (5) -0.0953 (8) 0.2234 (6)

Oct-14 Mar-19 0.5995 (2) 0.0236 (7) 0.1731 (5) 0.1770 (4) 0.7400 (1) 0.5301 (3) 0.0335 (6) -0.6210 (7)

Mean ranking

AVG

(5.75)

Backwardation and contango risk premia Other long-short risk premia

SP Mom Skewness

Panel A: Performance over entire sample July 2001-Mar 2019

TS HP Value Liquidity

(5.50) (6.50)(2.75) (4.25) (3.75) (3.00) (4.25)
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Table 4. Pearson correlation  

The table reports Pearson pairwise correlations of the monthly excess returns of the single-

style portfolios. p-values for the null hypothesis of zero correlation are reported in curly 

brackets. The monthly excess returns span the period from July 2001 to March 2019.  

 

  

TS HP SP Mom Value Liquidity 

HP 0.25

{0.00}

SP 0.38 0.79

{0.00} {0.00}

Mom 0.66 0.28 0.30

{0.00} {0.00} {0.00}

Value -0.23 -0.24 -0.05 -0.34

{0.00} {0.00} {0.44} {0.00}

Liquidity -0.26 -0.14 -0.21 -0.15 0.20

{0.00} {0.03} {0.00} {0.03} {0.00}

Skewness 0.28 0.18 0.30 0.13 -0.09 -0.10

{0.00} {0.01} {0.00} {0.05} {0.18} {0.14}
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Table 5. Performance of integrated portfolios 

Panel A reports summary statistics for the monthly excess returns of integrated style portfolios 

over the sample period from July 2001 to March 2019. EWI is equally-weighted integration, 

OI is optimal integration with power utility (PU), exponential utility (Exp), mean-variance 

utility (MV) and variance minimization (Var), VTI is volatility-timing integration. Mean and 

standard deviation (StDev) are annualized. Newey-West robust t-statistics are shown in 

parenthesis for the mean. CER is annualized certainty-equivalent return with power utility 

preferences (𝛾 = 5). The asymptotic p-values of the Opdyke (2007) test are for 𝐻01: 𝑆𝑅𝐸𝑊𝐼 ≥
𝑆𝑅𝑗 versus 𝐻𝐴1: 𝑆𝑅𝐸𝑊𝐼 < 𝑆𝑅𝑗 where j is an integrated portfolio other than EWI. The bootstrap 

p-values of the CER test are for 𝐻02: 𝐶𝐸𝑅𝐸𝑊𝐼 ≥ 𝐶𝐸𝑅𝑗 versus 𝐻𝐴2: 𝐶𝐸𝑅𝐸𝑊𝐼 < 𝐶𝐸𝑅𝑗 . Panel B 

reports the annual Sharpe ratio of each integrated portfolio over non-overlapping subsamples 

of equal size and the number in parenthesis represents the relative ranking; a ranking of 1 to 14 

(with 14 denoting the total number of portfolio strategies summarized in Tables 3 and 5) is 

assigned to the strategy according to the Sharpe ratio where 1 denotes highest. 

 

  

Mean 0.1238 0.1159 0.1146 0.1076 0.0846 0.0894

(4.05) (4.06) (4.01) (3.54) (2.99) (3.24)

StDev 0.1375 0.1394 0.1397 0.1448 0.1111 0.1105

Skewness -0.3452 -0.2590 -0.2780 -0.5989 -0.5098 0.0207

(-2.06) (-1.54) (-1.66) (-3.57) (-3.04) (0.12)

Excess Kurtosis 2.7249 4.0610 4.1028 5.4093 6.3952 2.0522

(8.12) (12.10) (12.22) (16.11) (19.05) (6.11)

JB normality test p -value 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

Downside volatility (0%) 0.0965 0.1023 0.1031 0.1141 0.0810 0.0673

99% VaR (Cornish-Fisher) 0.1156 0.1288 0.1301 0.1539 0.1244 0.0815

% of positive months 61.50% 61.50% 61.97% 0.6197 60.09% 60.09%

Maximum drawdown -0.2232 -0.2135 -0.2161 -0.2690 -0.2863 -0.2335

Sharpe ratio 0.9002 0.8311 0.8199 0.7429 0.7613 0.8096

Opdyke test p -value (H0: SREWI-SRj≥0) - 0.6519 0.6754 0.8265 0.7436 0.7204

Sortino ratio (0%) 1.2824 1.1321 1.1115 0.9429 1.0435 1.3288

Omega ratio 2.0351 1.9759 1.9570 1.8472 1.8666 1.8582

CER 0.0736 0.0645 0.0629 0.0501 0.0515 0.0582

CER bootstrap p -value (H0: CEREWI-CERj≥0) - 0.7483 0.7827 0.9290 0.9017 0.9018

Panel B: Sharpe ratio (relative ranking) of integrated strategies over 4 non-overlapping subsamples of equal size

Jul-01 Nov-05 0.7041 (7) 1.2692 (2) 1.2665 (3) 1.2572 (4) 0.7730 (6) 0.4916 (9)

Dec-05 Apr-10 1.1100 (2) 0.6476 (10) 0.6487 (8) 0.6479 (9) 0.8394 (6) 0.9692 (4)

May-10 Sep-14 1.2013 (2) 0.7481 (10) 0.8723 (8) 0.7780 (9) 1.0422 (6) 1.1548 (4)

Oct-14 Mar-19 0.5995 (3) 0.5632 (4) 0.5301 (5) 0.5075 (6) 0.7400 (1) 0.6122 (2)

Mean ranking

Optimized integration (OI)

(6.50) (6.00) (7.00) (4.75) (4.75)

OI(PU) OI(Exp) OI(MV)EWI VTIOI(Var)

(3.50)

Panel A: Performance over entire sample July 2001-Mar 2019



 

36 
 

Table 6. Turnover and net Sharpe ratio of single-style and integrated portfolios 

The table presents the portfolio turnover, the annualized mean excess returns, associated 

Newey-West t-statistic and Sharpe ratio (SR) net of 6.7 (20) basis point (bp) proportional 

transaction costs (TC) and the breakeven TC (expressed in bp) that set the mean return of the 

strategy equal zero. TS is term structure, HP is hedging pressure, SP is speculative pressure, 

Mom is momentum, EWI is equally-weighted integration, OI is optimal integration with power 

utility (PU), exponential utility (Exp), mean-variance utility (MV) and variance minimization 

(Var), VTI is volatility-timing integration. N/A for the skewness style refers to the fact that the 

breakeven TCs are not defined as this style earns a negative mean excess return over the sample 

period under consideration. The sample covers the period from July 2001 to March 2019. 

 

  

Mean t-stat SR Mean t-stat SR

Panel A: Single-style portfolios

TS 0.2108 0.1153 (2.75) 0.6308 0.1119 (2.67) 0.6121 372

HP 0.0972 0.0750 (2.19) 0.5613 0.0733 (2.14) 0.5488 587

SP 0.1084 0.0807 (2.76) 0.6425 0.0789 (2.70) 0.6279 514

Mom 0.3758 0.1298 (3.44) 0.7347 0.1238 (3.27) 0.6994 282

Value 0.3915 0.0588 (1.11) 0.3011 0.0525 (0.99) 0.2696 138

Liquidity 0.1792 0.0118 (0.40) 0.1079 0.0088 (0.30) 0.0813 65

Skewness 0.3878 -0.0060 (-0.16) -0.0345 -0.0123 (-0.32) -0.0702 N/A

Panel B: Integrated portfolios

EWI 0.2298 0.1219 (3.99) 0.8866 0.1182 (3.87) 0.8596 417

OI(PU) 0.3301 0.1132 (3.96) 0.8117 0.1078 (3.78) 0.7732 307

OI(Exp) 0.3306 0.1119 (3.91) 0.8005 0.1065 (3.73) 0.7621 305

OI(MV) 0.3334 0.1049 (3.45) 0.7240 0.0995 (3.28) 0.6865 282

OI(Var) 0.2297 0.0827 (2.92) 0.7448 0.0789 (2.79) 0.7120 262

VTI 0.1566 0.0881 (3.19) 0.7980 0.0856 (3.10) 0.7749 427

Net returns (TC = 6.7 bp)Turnover Net returns (TC = 20 bp) Break-even TC         

(bp)
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Table 7. Performance of portfolios based on non-standardized weighting schemes 

The table summarizes the performance of long-short single-style and integrated portfolios 

under a non-standardized weighting scheme based on the following signals: the slope of the 

term structure (TS), hedging pressure (HP), speculative pressure (SP), momentum (Mom), 

value, or skewness. EWI is equally-weighted integration, OI is optimal integration with power 

utility (PU), exponential utility (Exp), mean-variance utility (MV) and variance minimization 

(Var), VTI is volatility-timing integration. The portfolios are fully collateralized and held for 

one month. AVG stands for a long-only equally-weighted and monthly-rebalanced portfolio of 

all energy futures. Panel A reports statistics for the monthly portfolio excess returns. Mean and 

standard deviation (StDev) are annualized. Significance t-statistics are reported in parentheses 

and are Newey-West adjusted for the mean. CER is the annualized certainty-equivalent return 

based on power utility preferences (𝛾 = 5). Panel B (Panel C) reports the annualized alpha, 

market beta and adjusted-R2 for a regression of the excess returns of the portfolio at hand based 

on the non-standardized (standardized) weighting scheme on a constant and the excess returns 

of the AVG portfolio. Newey-West adjusted t-statistics are reported in parenthesis. The sample 

period from July 2001 to March 2019. 

 

  

TS HP SP Mom Value Skewness EWI OI(PU) OI(Exp) OI(MV) OI(Var) VTI

Panel A: Risk and performance of the portfolios based on non-standardized weighting scheme

Mean 0.0494 0.0590 0.0356 0.0812 0.0348 -0.0281 0.0293 0.0554 0.0554 0.0568 0.0411 0.0124

(0.77) (0.92) (0.64) (1.44) (0.44) (-0.47) (0.74) (1.10) (1.10) (1.15) (0.77) (0.28)

StDev 0.2471 0.2537 0.2239 0.2589 0.2782 0.2268 0.1739 0.2031 0.2027 0.2005 0.2133 0.1749

Sharpe ratio 0.1999 0.2327 0.1592 0.3138 0.1251 -0.1238 0.1687 0.2731 0.2735 0.2831 0.1927 0.0710

Sortino ratio (0%) 0.2857 0.2824 0.1967 0.4885 0.2346 -0.1555 0.2121 0.4394 0.4382 0.4421 0.3041 0.0806

Omega ratio 1.1659 1.2193 1.1355 1.2689 1.0963 0.9087 1.1402 1.2311 1.2317 1.2429 1.1578 1.0597

CER -0.1032 -0.1019 -0.0897 -0.0863 -0.1587 -0.1567 -0.0463 -0.0476 -0.0473 -0.0437 -0.0726 -0.0641

Panel B: Market neutrality of the portfolios based on non-standardized weighting scheme

Annualized alpha 0.0428 0.0725 0.0471 0.0840 0.0236 -0.0220 0.0311 0.0505 0.0506 0.0523 0.0362 0.0159

(0.68) (1.50) (1.21) (1.61) (0.38) (-0.44) (0.84) (1.13) (1.13) (1.17) (0.76) (0.42)

b(AVG) -0.2996 0.6116 0.5194 0.1248 -0.5092 0.2772 0.0780 -0.2229 -0.2198 -0.2025 -0.2227 0.1588

(-2.39) (4.79) (4.33) (0.82) (-3.36) (2.13) (0.75) (-1.89) (-1.86) (-1.72) (-1.67) (1.51)

Adj-R² 0.10 0.41 0.38 0.01 0.23 0.10 0.01 0.08 0.08 0.07 0.07 0.05

Panel C: Market neutrality of the portfolios based on standardized weighting scheme

Annualized alpha 0.1148 0.0764 0.0800 0.1323 0.0616 -0.0040 0.1287 0.1310 0.1306 0.1303 0.0899 0.1032

(2.86) (2.20) (2.77) (3.68) (1.16) (-0.11) (4.37) (4.70) (4.69) (4.67) (3.15) (3.63)

b(AVG) -0.0985 0.0259 -0.0727 -0.0239 -0.0175 -0.0512 -0.0528 -0.0461 -0.0453 -0.0409 -0.0092 -0.0299

(-1.57) (0.55) (-1.65) (-0.41) (-0.26) (-0.76) (-1.12) (-0.98) (-0.96) (-0.85) (-0.22) (-0.72)

Adj-R² 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Single-style portfolios Style-integrated portfolios
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Table 8. Integrated portfolios based on alternative style weights 

The table reports summary statistics for integrated portfolios under various choices for 𝛚𝑡 
where 𝛚𝑡 is the 𝐾 × 1 vector of weights that defines the allocation of the integrated portfolio 

to the K single-style portfolios. EWI is equally-weighted integration. OI is optimal integration 

with power utility OI(PU), exponential utility OI(Exp), mean-variance utility OI(MV) and 

variance minimization OI(Var), the OI approach now allows for free weights (∀ω). VTI is 

volatility-timing integration with volatility aggressiveness (𝜂) and style performance (µ). Mean 

and standard deviation (StDev) are annualized. Newey-West robust t-statistics are shown in 

parenthesis for the mean. CER is annualized certainty-equivalent return with power utility 

preferences (𝛾 = 5). The asymptotic p-values of the Opdyke (2007) test are for 𝐻01: 𝑆𝑅𝐸𝑊𝐼 ≥
𝑆𝑅𝑗 versus 𝐻𝐴1: 𝑆𝑅𝐸𝑊𝐼 < 𝑆𝑅𝑗 where j is an integrated portfolio other than EWI. The bootstrap 

p-values of the CER test are for 𝐻02: 𝐶𝐸𝑅𝐸𝑊𝐼 ≥ 𝐶𝐸𝑅𝑗 versus 𝐻𝐴2: 𝐶𝐸𝑅𝐸𝑊𝐼 < 𝐶𝐸𝑅𝑗 . The 

sample covers the period from July 2001 to March 2019. 

 

 

  

EWI OI(PU) OI(Exp) OI(MV) OI(Var) VTI(η) VTI(μ)

Mean 0.1238 0.0543 0.0531 0.0506 0.0805 0.0461 0.1250

(4.05) (2.13) (2.10) (2.02) (2.81) (1.69) (3.49)

StDev 0.1375 0.1319 0.1312 0.1290 0.1070 0.1022 0.1672

Skewness -0.3452 -0.2871 -0.2948 -0.3444 0.3418 0.1944 -0.3954

(-2.06) (-1.71) (-1.76) (-2.05) (2.04) (1.16) (-2.36)

Excess Kurtosis 2.7249 4.1296 4.1965 4.3631 3.1853 2.0365 2.5669

(8.12) (12.30) (12.50) (13.00) (9.49) (6.07) (7.65)

JB normality test p -value 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

Downside volatility (0%) 0.0965 0.1022 0.1013 0.0989 0.0634 0.0630 0.1233

99% VaR (Cornish-Fisher) 0.1156 0.1277 0.1278 0.1282 0.0790 0.0742 0.1420

% of positive months 61.50% 58.22% 57.75% 0.5728 61.03% 54.46% 59.62%

Maximum drawdown -0.2232 -0.2700 -0.2715 -0.2553 -0.2753 -0.2610 -0.2901

Sharpe ratio 0.9002 0.4116 0.4052 0.3919 0.7520 0.4513 0.7473

Opdyke test p -value (H0: SREWI-SRj≥0) - 0.9842 0.9855 0.9894 0.7478 0.9628 0.8335

Sortino ratio (0%) 1.2824 0.5315 0.5243 0.5110 1.2686 0.7318 1.0132

Omega ratio 2.0351 1.4146 1.4062 1.3913 1.8231 1.4110 1.8223

CER 0.0736 0.0090 0.0083 0.0070 0.0518 0.0202 0.0504

CER bootstrap p -value (H0: CEREWI-CERj≥0) - 0.9911 0.9924 0.9944 0.8853 0.9826 0.9142

VTIOI
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Table 9. Economic sub-period analysis 

The table reports the annualized Sharpe ratio of the long-only baseline AVG portfolio (Panel 

A) and of each long-short portfolio (Panels B and C) over various sub-periods: high versus low 

volatility regimes, pre- versus post-financialization (dated on January 2006), NBER-dated 

recession and expansion periods, and the 2008 oil price bubble-bust period (July 2008 – 

February 2009) versus the remaining of the sample (Other). TS is term structure, HP is hedging 

pressure, SP is speculative pressure, Mom is momentum, EWI is equally-weighted integration, 

OI is optimal integration with power utility (PU), exponential utility (Exp), mean-variance 

utility (MV) and variance minimization (Var), VTI is volatility-timing integration. 

 

 

  

July 2008 - 

Feb 2009
Other

Panel A: Long-only portfolio

AVG -0.5236 0.2819 0.5694 -0.3701 0.1027 -1.0256 -5.9675 0.1610

Panel A: Single-style portfolios

TS 0.7350 0.5732 0.0076 0.8710 0.8224 -0.5176 0.7892 0.6323

HP 0.4539 0.6593 0.3434 0.6276 0.5539 0.6933 0.4029 0.6038

SP 0.6722 0.6518 0.2583 0.8316 0.6437 0.7372 1.0957 0.6231

Mom 0.8236 0.7026 0.9293 0.6983 0.8357 0.1083 1.8862 0.7072

Value 0.4070 0.2536 1.4370 -0.0846 0.2856 0.4934 0.3188 0.3167

Liquidity -0.0742 0.2416 -0.2752 0.2448 0.1499 -0.1063 2.4255 0.0251

Skewness 0.0558 -0.0722 -0.1763 0.0517 0.1203 -0.9541 0.1815 -0.0245

Panel B: Integrated portfolios

EWI 0.9117 0.8896 0.7553 0.9466 0.9960 0.1984 2.9989 0.8284

OI(PU) 0.9268 0.7654 1.2635 0.6995 0.8813 0.4576 1.6951 0.7800

OI(Exp) 0.9242 0.7473 1.2614 0.6861 0.8677 0.4625 1.7282 0.7683

OI(MV) 0.9081 0.6247 1.2553 0.5967 0.7788 0.4638 1.8158 0.6915

OI(Var) 1.0286 0.6266 0.8032 0.7545 0.7818 0.5825 3.3409 0.6753

VTI 0.7390 0.8478 0.4862 0.9106 0.8767 0.3349 2.2179 0.7404

Expansion

Expansion versus 

recession

High versus low energy 
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Low Post
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Figure 1. Future value of $1 invested in long-only and long-short single-style energy 

portfolios 

TS is term structure, HP is hedging pressure, SP is speculative pressure, Mom is momentum. 
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Figure 2. Future value of $1 invested in long-short integrated portfolios 

EWI is equally-weighted integration, OI is optimal integration with power utility (PU), 

exponential utility (Exp), mean-variance utility (MV) and variance minimization (Var), VTI is 

volatility timing integration. 

 

 


